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Abstract

We provide a model of network-formation where the �quality�of a link, i.e.
the �delity-level of its transmission, depends on the amount invested in it and
is determined by a link-formation �technology�, an increasing strictly concave
function which is the only exogenous ingredient in the model. The revenue from
the investment in links is the information that the players receive through the
network. Two approaches are considered. First, assuming that the investments
in links are made by a planner, the basic question is that of e¢ ciency. Second, as-
suming that links are the result of investments of the players involved, according
to such a technology, whose reward from forming them is the information they
receive through the network that results. Then, there is the question of stability
in the underlying network-formation game in the sense of Nash equilibrium if
coordination is not feasible, or pairwise Nash if pairwise coordination is feasible.
JEL Classi�cation Numbers: A14, C72, D20, J00
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1 Introduction

This work is a contribution to the literature on economic models of network formation.
In this line of work an increasing �ow of research has been contributed by game-
theorists and economists in general after Myerson (1977) and Aumann and Myerson
(1988). After these pioneer works in the �eld, the two basic and most in�uential models
of network formation are those of JacksonWolinsky (1996) and Bala and Goyal (2000a),
where networks are the result of creating links between pairs of individuals, be it by
bilateral agreements in the �rst model or unilateral decisions in the second. In both
models, the cost of a link and its quality are exogenously given, giving rise to two-
parameter models. The simplicity of these basic models embodies some rigidity: either
necessarily bilateral formation and compulsory equal share of the �xed cost of each link,
or unilateral formation requiring full-covering of that �xed cost by the creator; and in
both cases a �xed level of quality for the resulting link. The point of this work is to
provide a more �exible model in both aspects: link-formation and link-performance.1.
We provide a model of network formation where links are the result of investments.

The �quality�of a link, i.e. the �delity-level of its transmission, is never perfect and
depends on the amount invested in it. A link-formation �technology�determines the
quality of the resulting link and is the only exogenous ingredient in the model. Formally,
a technology is assumed to be an increasing and strictly concave function whose range
is [0; 1), i.e. it is assumed that, whatever the investment in a link, there is always some
friction. The revenue from the investment in links is the information that the nodes
receive through the network that results. This model poses the following questions
that are addressed.
A �rst approach assumes that the investments in links are made by a planner. In this

scenario there are two basic questions. First, given an �infrastructure�speci�ed by an
underlying graph of feasible links, there is the question of existence and determination
of an optimal investment (i.e. maximizing the aggregate payo¤ of the nodes connected
by that infrastructure) in these links using them all. A second question is that of
e¢ ciency or, equivalently, about which infrastructures are e¢ cient in the sense of
maximizing in absolute terms the aggregate revenue for a given technology for an
optimal investment in their links. Necessary conditions for the existence of an optimal
investment in an infrastructure are established. This result is used to address the
second and fully characterize the e¢ cient structures. It is proved the only structures
that can be e¢ cient are the empty one, the complete network, the all-encompassing
star and an interesting type of hybrid star-complete network, and conditions for each
of them to be e¢ cient for a given technology are established. In fact, both complete
and all-encompassing stars are extreme cases of these hybrid structures. A remarkable

1In Olaizola and Valenciano�s (2015a) model, costs and �ow levels for links singly-supported and
doubly-supported di¤er and three exogenous parameters specify the model. Other extensions of the
seminal models are commented and compared with the one presented here after giving and outline of
it.
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aspect of these hybrid star-complete networks is that they can be described as core-
periphery structures.
A second approach assumes that links are the result of investments of the node-

players involved, whose reward from forming them is the information they receive
through the network that results. Links are formed according to a technology available
to all players. In this game-theoretic scenario, there is the question of stability in
the underlying network-formation game. Stability in the sense of Nash equilibrium
if coordination is not feasible, or pairwise Nash if pairwise coordination is feasible.
Necessary conditions for stability of the type of structures proved to be e¢ cient are
established, yielding the conclusion that stable complete and stable star networks are
not e¢ cient, and reciprocally. Note that the question of e¢ ciency in this context is
covered by the second issue addressed in the �rst approach.
In addition to these basic issues, this model admits several variations and extensions

that are brie�y commented in the last section.
Bloch and Dutta (2009) is possibly the closest model to the one introduced here

in spite of the obvious di¤erences. In their model as in ours the strength of a link
depends on the investment of the two players involved. Nevertheless, the coincidences
do not go beyond this. They assume that players have a �xed endowment, and the
link strength is an additively separable convex function of individual investments. Not
surprisingly the results are completely di¤erent. With respect to their assumption
about non-decreasing returns to investments they claim that �While this assumption
may seem at odds with the classical literature on productive investments, we strongly
believe that convexity is the right assumption to make when one discusses investments in
communication links.�(Bloch and Dutta, 2009, p. 42). In this respect, we still believe
that concavity is a reasonable assumption about link-formation technology. 2 In this
point there is a similarity with Hojman and Szeidl (2008), again outweighed by the
di¤erences. In their model players choose their links, and a player�s payo¤ is a strictly
increasing and concave function of a weighted sum of the number players at di¤erent
distances, with weights decreasing with distance. Thus the link-formation technology
is the discrete one of the seminal models, w.r.t. which the crucial di¤erence is in the
payo¤ function, which embodies the decreasing returns assumption. The di¤erence
with our model is apparent, in it the non-discrete link-formation technology is the only
exogenous ingredient, while the logic of the rest is as in the seminal models: payo¤ =
information - cost. A comparison with Galeotti and Goyal (2010), who assume that

2Our model seems a more natural extension of the basic model of Jackson and Wolinsky (1996) and
Bala and Goyal (2000a). Bloch and Dutta (2009) claim that the literature on discrete link formation
assumes an extreme form of convexity. But an echelon-function of the form

�(x) =

�
s; if x � c;
0; if x < c;

is an equaly extreme (if at all) form of concavity. In fact, such function can be seen as a limit case of
one of the possible extensions of this model brie�y commented in the last section.
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returns from information (which can be acquired personally or through connections) are
increasing and concave, while the costs of personally acquired information are linear,
draws to a similar conclusion.

2 Notation and terminology

A undirected weighted graph consists of a set of nodes N and a set of links speci�ed by
a map g : N2 ! R+, where N2 denotes the set of all subsets of N with cardinality 2;
and R+ denotes the set of non-negative real numbers. In the sequel ij stands for fi; jg
and gij for g(fi; jg) for any fi; jg 2 N2.3 When gij only takes the values 0 or 1, g is
said to be non-weighted. When gij > 0 it is said that a link of weight gij connects i
and j. Nd(i; g) := fj 2 N : gij > 0g; and N(i; g) denotes the set of nodes connected
with i by a path, i.e. a sequence of distinct nodes s.t. every two consecutive nodes are
connected by a link. If gij > 0, g � ij denotes the graph that results from eliminating
link ij i.e. g � ij = g0 s.t. g0ij = 0 and g0kl = gkl for all fk; lg 6= fi; jg. A graph is
connected if any two nodes are connected by a path. A component of a graph is a
maximal connected subgraph. A link is a bridge in a graph if its elimination causes the
two nodes it connects to be in di¤erent components in the resulting graph. A graph
has a cycle if there are two nodes connected by a link and also by a path of length 2 or
more (the length of a path is the number of links it contains, i.e. that of nodes minus
1).
Undirected graphs underlie a variety of situations were actual links mean some sort

of reciprocal connection or relationship. Such structures are commonly referred to as
networks. As behind a network there always lies a graph as a most salient feature, we
transfer the notions introduced so far for graphs to networks, identifying them with
the underlying graph and refer the new ones directly to networks.
The empty network is the one for which gij = 0 for all i; j (i 6= j). A complete

network is one where gij > 0 for all i; j (i 6= j).4 A tree is a connected network with
no cycles. An all-encompassing star consists of a network with n� 1 links in which a
node (the centre) is connected with each of the remaining nodes by a link. A node is
peripheral in a network if it is involved in one link only.

3 The model

The main ingredient in the model that has been brie�y sketched in the introduction is
a link-formation technology.

3The convenience of the distinction between ij and ij, especially as subindices, will be apparent
soon. With this convention gij = gji, while gij 6= gji in general.

4Note that there exist in�nite complete weighted networks, but only one in case of 0-1 networks.
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De�nition 1 A link-formation technology is a di¤erentiable map � : R+ ! [0; 1) s.t.
�(0) = 0, and satis�es the following conditions:
(C.1) �0(c) > 0, for all c � 0, i.e. it is increasing.
(C.2) It is strictly concave.

The interpretation of this function and the meaning of the assumptions are the
following. If c is the amount invested in a link to connect two nodes or players, �(c) is
interpreted as the level of �delity of the transmission of information through the link.5

More precisely, �(c) is the fraction of information �owing through the link that remains
intact.6 Flow occurs only through links invested in (�(0) = 0), but a perfect �delity in
transmission between di¤erent nodes is never reached (0 � �(c) < 1). The smoothness
of � makes the use of di¤erential calculus possible, which allows for a relatively simple
formal �marginal analysis�without getting involved in sophisticated technical issues.
Condition C.1 is quite plausible: the quality of a link is increasing with the investment
in it. C.2 is a reasonable condition, at least �in the long run�given that �0(c) > 0 and
the range of �.7

Based on this basic ingredient we consider two di¤erent scenarios.
Scenario 1: A set N = f1; 2; :::; ng of nodes can be connected by links accord-

ing to a link-formation technology. Investments are made by, say, a central plan-
ner. A link-investment vector is an n(n � 1)=2-vector, c = (cij)ij2N2, where cij de-
notes the investment in link ij 2 N2 through which the �delity-level is �(cij). Then
�c = (�c)ij2N2 = (�(cij))ij2N2 denotes the resulting weighted network. For a given
link-investment vector c = (cij)ij2N2, a node i receives from another node�s value v,
the fraction that reaches i through the best possible route in the weighted network
�c.8 Let Pij(�c) denote the set of paths in �c connecting i and j. For p 2 Pij(�c), let
�c(p) denote the resulting �delity-level determined by the product of the �delity-levels
through each link in that path. Then, i values information originating from j that
arrives via p by v�c(p): If information is routed via the best possible route from j to i,
then i�s valuation of the information originating from j 6= i is

Iij(�
c) = max

p2Pij(�c)
v�c(p) = v max

p2Pij(�c)
�c(p);

5We often prefer the term �node� to avoid a biased language. Moreover, in the �rst of the two
scenarios that we presently describe it is more appropriate to speak of nodes given their passive role.

6Nevertheless, other interpretations are possible. For instance, as a degree of reliability, as in
Bala and Goyal (2000b), or the �strength of a tie� (Granovetter, 1973), i.e. a measure of the qual-
ity/intensity/value of a relationship as e.g. in personal relationships, where quality/strength of a
�link� is a function of the �investments� of each of the two people involved. A link can also be
a means for the �ow of other goods, but we give preference here to the interpretation in terms of
information.

7It would also be reasonable to assume � to be convex up to a certain value of c, and concave
beyond an in�ection point. This and other variations of the model are considered in the concluding
section.

8We assume homogeneity in values. A more general model would not assume this value to be the
same for all i and j.
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and i�s overall revenue from �c is

Ii(�
c) =

X
j2N(i;�c)

Iij(�
c):

The value of the network resulting from a link-investment vector c = (cij)ij2N2 is the
aggregate payo¤, i.e. the total value of the information received by the nodes minus
the cost of the network:

v(�c) :=
X
i2N

Ii(�
c)�

X
ij2N2

cij: (1)

In this setting two questions are addressed. First, the problem of determining the
link-investment vector that maximizes the aggregate value for a given �infrastructure�
speci�ed by an underlying graph of feasible links. Second, the characterization of e¢ -
cient networks/link-investment vectors that maximize the aggregate value in absolute
terms.
Scenario 2: Let N , � and v be as in Scenario 1, but now the nodes/players form

the links by investing in them. The quality of a link depends on the total amount
invested in it by the two players it connects, and it is assumed that a link-formation
technology � is available to all agents and determines the quality of a link as a function
of the investment in it. An investment pro�le is speci�ed by a matrix c = (cij)i;j2N ,
where cij � 0 (with cii = 0) is the investment of player i in the link connecting i and
j, and determines a link-investment vector c

c! c = (cij)ij2N2 s.t. cij := cij + cji:

The available link-formation technology, �, yields a weighted network for each invest-
ment pro�le c. Namely, �c := �c, where

�cij = �
c
ij = �(cij) = �(cij + cji)

whenever i 6= j. Thus, i�s payo¤ is the value of the information received by i minus i�s
investment:

��i (c) = Ii(�
c)� Ci(c) = Ii(�c)�

X
j 6=i

cij: (2)

Note that a game in strategic form, where a strategy of a player is an (n�1)-vector
of investments and the payo¤ function is given by (2), is implicitly de�ned. Therefore,
the notion of Nash equilibrium can be applied: an investment pro�le is Nash stable if no
player has an incentive to change his/her investments�vector. In fact, this strictly non-
cooperative notion is not the only stability notion that makes sense in this context. A
re�nement of this notion consists of requiring also stability w.r.t. pairwise coordinated
moves, i.e. two players agreeing on a joint investment in a link as introduced by Jackson
and Wolinsky (1996).9

9This strong version of pairwise stability was suggested by Jackson and Wolinsky (1996) and
applied by Goyal and Joshi (2003) and Belle�amme and Bloch (2004) among others. See also Bloch
and Jackson (2006) for a discussion of di¤erent notions of equilibrium in network formation and
references therein.
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De�nition 2 An investment pro�le c is pairwise Nash stable if it is Nash stable and
there are no two players i and j that can improve their payo¤s by investing coordinately
in a link connecting them, that is, there is no c0 s.t. c0ik = cik for all k 6= j, and c0jk = cjk
for all k 6= i and

��i (c
0) > ��i (c) and ��j(c

0) > ��j(c):

We �rst consider Scenario 1 and address the question of e¢ ciency in relative and
absolute terms. Later, the question of stability is addressed in Scenario 2. All results
assume a link-formation technology as speci�ed in De�nition 1. Thus we deal with
a model with three �parameters�: the number of nodes/players n, the value v of the
information at each node, and the link-formation technology represented by function
�:10

4 Scenario 1: E¢ ciency

Let c and c0 be two link-investment vectors and v(�c) and v(�c
0
) their values as de�ned

by (1). If v(�c) � v(�c0) we say that �c dominates �c0 (or that c dominates c0). Network
�c (or link-investment vector c) is said to be e¢ cient if it dominates any other.11 Thus
e¢ ciency can be seen as the goal of a planner investing in links with the objective of
maximizing the aggregate bene�t, i.e. the aggregate value received by the nodes minus
the total cost of the network. We use the following notation: for all i; j 2 N; i 6= j;
pij denotes an optimal path connecting them (note it may be not unique), i.e. one for
which the resulting �delity-level is maximal:

�c(pij) = max
p2Pij(�c)

�c(p);

where �c(p) is the product of the �delity-levels of the links forming path p for the
link-investment vector c = (cij)ij2N2, and the aggregate payo¤ for this link-investment
vector is

v(�c) =
X
i2N

Ii(�
c)�

X
ij2N2

cij = 2v
X
ij2N2

�c(pij)�
X
ij2N2

cij: (3)

Note that in principle the last expression in (3) may not be unique. This occurs if for
some pair of nodes the optimal path connecting them is not unique.
We make use of the following notation: if pkl is an optimal path connecting nodes

k and l for a link-investment vector c that contains link ij; �(pijkl) denotes the product

10It can be assumed w.l.o.g. v = 1, which slightly simplifes the presentation, and this is assumed
in the examples. Nevertheless, it is preferable not to do so and keep explicit this otherwise hidden
parameter. In Scenario 1 this value can be interpreted as a subjective evaluation of the planner
w.r.t. which the e¢ ciency objective is speci�ed. Nevertheless, the reader may choose to ignore all
occurrences of v assuming v = 1.
11This the strong e¢ ciency notion introduced by Jackson and Wolinsky (1996).
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of �delity-levels for the path that would result from replacing in pkl the link cij by a
perfect one, i.e. by c0ij = 1: In other terms:

�(pijkl) =
�c(pkl)

�(cij)
:

Before addressing the question of e¢ ciency in absolute terms, we address the prob-
lem of maximizing the aggregate payo¤ for a given �infrastructure� speci�ed by an
underlying graph of feasible links.

De�nition 3 An infrastructure is a subset S � N2 which speci�es the set of links
which must be invested in. And a link-investment vector c = (cij)ij2N2 is optimal for
an infrastructure S if for all ij 2 N2; cij > 0 if and only if ij 2 S; and maximizes the
aggregate payo¤ given this constraint.

Then the following result establishes necessary conditions for a link-investment
vector to be optimal for an infrastructure.

Lemma 1 For a link-investment vector c = (cij)ij2N2 to be optimal for a given in-
frastructure S � N2, the following are necessary conditions: (i) For any two nodes
connected in S there is a unique optimal path connecting them, and (ii) For all ij 2 S;

�0(cij) =
1

2v
P

kl2N2(ij2pkl) �(p
ij
kl)
: (4)

Proof. Let c = (cij)ij2N2 be a link-investment vector s.t. cij > 0 if and only if ij 2 S:
We prove �rst part (ii). Assume c = (cij)ij2N2 to be optimal for S, and ij 2 S, i.e.
cij > 0. Then link ij is part of at least one optimal path in �c (the one connecting
i and j, otherwise c would not be optimal).12 Then, in any of the possibly di¤erent
but equivalent expressions of the right-hand side of (3), �(cij) would appear at least
once (i.e. �c(pij) = �(cij) if c is optimal), and possibly also in the product yielding
�c(pkl) for other pairs of nodes k; l. Fix any choice of these (possibly multiple) optimal
paths for every two connected nodes and let the aggregate payo¤be given by the right-
hand side of (3). The right-hand side is an up to n(n � 1)=2-variable function with
partial derivatives. (It is not claimed that these partial derivatives are those of the
aggregate payo¤ nor this is needed.) Even if a slight modi�cation of some cij > 0
might cause a path not to be optimal, a non-null partial derivative w.r.t. cij means
that by slightly increasing (if it were > 0) or decreasing (if it were < 0) the investment
in link ij the aggregate payo¤ (through those the same paths, optimal or not but

12Note that �(cij) actually appears in (3) only if cij > 0:
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still available) would surely increase, which contradicts c�s optimality for S. Then the
partial derivative of the right-hand side of (3) w.r.t. cij must be 0, i.e.

@

@cij
(2v

X
kl2N2

�c(pkl)�
X
kl2N2

ckl) = 2v�
0(cij)

X
kl2N2(ij2pkl)

�(pijkl)� 1 = 0;

which yields (4).
(i) Assume that two nodes g and h are connected by two di¤erent optimal paths

in �c. Then there is at least one link, say ij, that is part of one of these paths but not
of the other. Then the right-hand side of (4) admits at least two di¤erent expressions:
one where the optimal path between any pair of nodes k; l is pkl, and another one where
it is qkl, and such that for any pair k; l di¤erent from pair g; h, pkl = qkl, while for g
and h the optimal path is di¤erent, i.e. pgh 6= qgh; and only the �rst one contains ij.
In that case,

1

2v
P

kl2N2(ij2pkl) �
c(pijkl)

6= 1

2v
P

kl2N2(ij2pkl) �
c0(qijkl)

because X
kl2N2(ij2pkl)

�c(pijkl)�
X

kl2N2(ij2pkl)

�c
0
(qijkl) = �

c(pgh) > 0;

which leads to a contradiction because (4) yields two di¤erent values for �0(cij).

We postpone a comment on the clear interpretation of condition (4) to the formu-
lation of a result establishing necessary conditions for a link-investment vector to be
e¢ cient in absolute terms.

Proposition 1 For a link-investment vector c = (cij)ij2N2 to be e¢ cient the following
conditions are necessary: (i) For any two connected nodes there exists a unique optimal
path connecting them.
(ii) For each ij 2 N2 s.t. cij > 0 :

�0(cij) =
1

2v
P

kl2N2(ij2pkl) �(p
ij
kl)
: (5)

(iii) For each ij 2 N2 s.t. cij = 0, if �0(0) > 1=2v,

2v�c(pij) � 2v�(c])� c]; (6)

where c] = argmaxc>0(2v�(c)� c):

Proof. Assume c = (cij)ij2N2 to be e¢ cient, then c must be optimal for the infrastruc-
ture S = fij 2 N2 : cij > 0g. Then (i) and (ii) follow immediately form Lemma 1.
(iii) Assume cij = 0. Then no investment in link ij can increase the aggregate

payo¤, that is, for all c > 0; 2v�c(pij) � 2v�(c) � c; otherwise investing c in link
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ij would surely increase the aggregate payo¤. This yields condition (6). Note that
condition (6) has a bite only if �0(0) > 1=2v; otherwise, by the assumptions about
function �, 2v�(c)� c < 0 for all c > 0.
Comment: Part (i) establishes that in a network that results from an e¢ cient

link-investment vector any two nodes �see� each other through a unique best path
connecting them. Therefore each node sees the others through a unique tree rooted
at it, and all the other nodes see it through the same tree and consequently such
trees for two di¤erent nodes have in common at least the optimal path connecting
them. This is a consequence of part (ii) which establishes a set of equations on the
non-zero investments in links for a link-investment vector which have a very intuitive
interpretation. First note that the denominator of the right-hand side of (5) is 2v
times the sum of the �delity-levels through all optimal paths of which link ij is part
of (discounting link ij, i.e. divided by �(cij)). In other words, the actual �ow of
information that link ij supports. Thus this sum can be interpreted as a measure of
the importance or centrality of link ij in network �c. The interpretation of (5) is then
clear: the greater this measure, the smaller �0(cij) and consequently the greater cij,
that is, the greater the investment that e¢ ciency imposes in that link. Note also that
the less important link in this sense imposes a condition for the marginal �delity-level
w.r.t. investment at 0. Namely, if ij is the link for which the right-hand side of (5)
is maximal (and consequently cij > 0 minimal), for (5) to be feasible �0(0) must be
greater than this right-hand side, otherwise no such a cij exists. Condition (iii) is a
necessary condition for the existence of e¢ cient link-investment vectors where some
link receives no investment: no investment in that link must be pro�table for the two
nodes because it would increase the aggregate payo¤.
In di¤erent contexts the complete network and the star emerge as e¢ cient struc-

tures13. In order to prove that this is also true in the current model we �rst establish
necessary conditions for the e¢ ciency of each of these structures based on Proposition
1.

Proposition 2 For a complete network to be e¢ cient the following conditions are
necessary:
(i) The marginal �delity-level w.r.t. investment at 0 is greater than 1=2v, i.e.

�0(0) > 1=2v: (7)

(ii) All links are invested in the same amount, namely, c] s.t.

�0(c]) = 1=2v: (8)

(iii) The following relation holds:

c] � 2v(�(c])� �(c])2): (9)

13E.g. in Jackson and Wolinsky (1996), Bala and Goyal (2000), Olaizola nad Valenciano (2015c).
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Proof. Assume c = (cij)ij2N2 to be e¢ cient and complete, i.e. cij > 0 for all ij 2 N2.
Note �rst that every node sees every other node through the link connecting them better
than through any other path. Otherwise the link would be super�uous. Therefore, for
all ij 2 N2, �(pij) = �(cij) and �(p

ij
kl) = 1, and (5) becomes

�0(cij) =
1

2v�(pijij)
=
1

2v
:

Thus all links must receive the same investment c] s.t. �0(c]) = 1=2v: Note that
condition �0(c]) = 1=2v, necessary for the complete network to dominate any other
complete network for a given technology, is feasible only if �0(0) > 1=2v: As is easy
to check, if �0(0) � 1=2v, then the empty network dominates all complete networks.
Finally, condition (6) becomes (9) for this complete network.
Comment: Condition (7) imposes a lower bound on �0(0), i.e. on the marginal

�delity-level at the origin, for a technology to admit a complete network as e¢ cient.
Condition (5) from Proposition 1 becomes (8) and is then feasible, characterizing the
optimal investment for the complete infrastructure S = N2. It establishes that all links
must receive the same investment, precisely that for which the marginal �delity-level is
that lower bound 1=2v. Note that condition (8), derived form (5), has a clear meaning.
In an e¢ cient complete network every node sees any other node directly through the
link that connects them. Therefore, in order to be e¢ cient the investment c] must
maximize the contribution to the aggregate payo¤, i.e., c] must be s.t.

2v�(c])� c] = max(2v�(c)� c); (10)

or, equivalently:
c] = argmax(2v�(c)� c): (11)

Expressions which, by the assumptions on the technology, are equivalent to (8). Ad-
ditionally, condition (6) from Proposition 1 becomes (9) and is also necessary for it to
be e¢ cient in absolute terms: the �delity-level through a two c]-links path should not
be good enough to make super�uous a direct c]-link. It is important to note that none
of these conditions involve the number of nodes.
We now establish necessary conditions for a star network to be e¢ cient.

Proposition 3 For an all-encompassing star to be e¢ cient the following conditions
are necessary:
(i) All links are invested in the same amount c�n s.t.

�0(c�n ) =
1

2v(1 + (n� 2)� (c�n ))
: (12)

(ii) Additionally, if �0(0) > 1=2v,

2v�(c�n )
2 � 2v�(c])� c]; (13)

with c] given by (8):
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Proof. (i) Consider an all-encompassing star whose center is node n and where its
link with each node i is invested in cin > 0. Then, (5) becomes

�0(cin) =
1

2v(1 +
P

j2Nnfi;ng �(cjn))
:

But the investments in all links must be equal. Otherwise, assume cin < cjn, which
implies � (cin) < �(cjn), and, by C.1 and C.2, implies also that �

0 (cin) > �
0(cjn), which

by the last equality relating �0 (cin) and the remaining �(cjn)�s is equivalent to

1

2v(1 +
P

k2Nnfi;ng � (ckn))
>

1

2v(1 +
P

k2Nnfj;ng � (ckn))
;

which contradicts that � (cin) < �(cjn). Therefore, all links are invested in the same
amount, say c�n . Then, the equality above becomes

�0(c�n ) =
1

2v(1 + (n� 2)� (c�n ))
:

(ii) In order to be e¢ cient no link between peripheral nodes should improve the
aggregate payo¤, for which it is su¢ cient that it increases their payo¤s. In other words,
condition (6) becomes:

2v�(c�n )
2 � max

c>0
(2v�(c)� c);

which by (10) is equivalent to 2v�(c�n )
2 � 2v�(c])�c] if �0(0) > 1=2v, and holds trivially

if �0(0) � 1=2v.
Comment: Condition (5) from Proposition 1 becomes (12) and characterizes the

optimal investment for the star infrastructure imposing the same investment in every
link. Note that, unlike c], c�n depends on the number of nodes, hence the subindex. Now
condition (6) from Proposition 1 becomes (13) and prescribes that investing in a link to
connect two peripheral in the star cannot increase the aggregate payo¤. Nevertheless,
the question of the feasibility of condition (12) arises. The following lemma shows that
the existence of c�n such that (12) holds is guaranteed if �

0(0) > 1=2v whatever the
number of nodes, and for n big enough if �0(0) � 1=2v.

Lemma 2 Whatever the number of nodes, if �0(0) > 1=2v, then it is sure to exist
c�n such that (12) holds, and also when �

0(0) � 1=2v for n su¢ ciently large. On the
contrary, for a �xed n, no such c�n exists if �

0(0) � 1
2v(1+(n�2)�(1)) ; where �(1) denotes

limc!1 �(c).

Proof. Assume �0(0) > 1=2v; and let ' be the function '(c) := 1
2v(1+(n�2)�(c)) : We

prove that '(c) = �0(c) holds necessarily for some c > 0: Note that, as �(0) = 0; '(0) =
1=2v < �0(0): On the other hand, '(c) = 1

2v(1+(n�2)�(c)) >
1

2v(1+(n�2)�(1)) , for all c > 0.
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Thus, '(c) is a decreasing function whose value is always greater than 1
2v(1+(n�2)�(1))

and it is 1=2v at 0, while �0(c) is a decreasing function s.t. �0(0) > 1=2v = '(0).
Moreover, by the assumptions on function �, limc!1 �

0(c) = 0. Therefore at some
point necessarily '(c) = �0(c), i.e. (12) holds.
Now assume �0(0) � 1=2v. We prove that for n su¢ ciently big there exists c > 0 s.t.

'(c) < �0(c); for which it is su¢ cient to prove that for n su¢ ciently big '(1) � �0(1):
But it is easy to check that this is equivalent to

n� 2 � 1� 2v�0(1)
2v�(1)�0(1)

;

which is sure to hold for n big enough.
Finally, if for a �xed n inequality �0(0) � 1

2v(1+(n�2)�(1)) holds, then the graphs of
'(c) and �0(c) do not intersect, because

'(c) =
1

2v(1 + (n� 2)�(c)) >
1

2v(1 + (n� 2)�(1)) � �
0(0) > �0(c)

for all c. Note that there is no contradiction with the preceding result: whatever the
value of �0(0), for n big enough �0(0) > 1

2v(1+(n�2)�(1)) .

Conditions (9) and (13), necessary for the optimal complete network and the star
to be e¢ cient are:

2v�(c])2 � 2v�(c])� c] � 2v�(c�)2:
The �rst inequality ensures that by deleting a link in an optimal complete network
does not increase the aggregate payo¤, while the second guarantees that connecting by
a c]-link two nodes connected by a two c�-links path does not increase the aggregate
payo¤. Observe that these conditions determine an interval for c]

2v(�(c])� �(c�)2) � c] � 2v(�(c])� �(c])2);

where both conditions hold. As it turns out, outside this interval the only non-empty
e¢ cient structures are either the optimal complete or the optimal star, while inside
it both plus a sort of hybrid structure can be e¢ cient. We �rst describe this hybrid
structure.

De�nition 4 A hybrid star-complete structure consists of a set N of n nodes of which:
those in L � N , with l = #L, 1 � l � n, are directly connected among themselves and
with any of the other nodes in N , and those in N n L are arranged as spokes of a star
of center p� 2 L of which at most one of them, m�, is connected with a subset M (with
m = #M , 0 � m � n� l � 2) of the other spoke nodes of this star.

Note that this includes as extreme cases complete networks (L = N) and all-
encompassing stars (L = fp�g). In other words, the properly hybrid star-complete
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structure arises for fp�g ( L ( N . Figure 1 illustrates two hybrid star-complete
structures. The following lemma will be crucial for the characterization of the e¢ cient
networks, establishing necessary conditions for a hybrid star-complete network to be
e¢ cient, with N;L;M; m� and p� as in De�nition 4, and p = #P with P := N n (L [
M [ fm�g).

(a) Hybrid star-complete (b) Optimal hybrid star-complete

Figure 1

As with the complete network and the star, Proposition 1 imposes some constraints
for a hybrid star-complete network to be e¢ cient.

Proposition 4 Let �c be a hybrid star-complete network with c = (cij)ij2N2 : The fol-
lowing conditions are necessary for �c to be e¢ cient:
(i) All links except those forming the star, i.e. except those connecting p� with the
nodes in N n L, are invested in the same amount c] s.t. �0(c]) = 1=2v:
(ii) The links connecting p� with those in N n L can receive up to three di¤erent levels
of investment. Namely, the link connecting p� and m�; the links connecting p� with
nodes in M , and those connecting p� and nodes in P: If im and ip denote generic nodes
in M and in P respectively:

�0(cipp�) =
1

2v(1 + (p� 1)�(cipp�) +m�(cimp�) + �(cm�p�))
; (14)

�0(cimp�) =
1

2v(1 + (m� 1)�(cimp�) + p�(cipp�))
; (15)

�0(cm�p�) =
1

2v(1 + p�(cipp�))
: (16)

(iii) If l � 2;
c] � 2v(�(c])� �(c])�(cm�p�)): (17)

(iv) If M 6= ?,
c] � 2v(�(c])� �(cm�p�)�(cipp�)): (18)

(v) If M = ?,
c] � 2v(�(c])� �(cipp�)2) (19)

Proof. (i) Let c = (cij)ij2N2 be s.t. �
c is a hybrid star-complete network, withN;L;M;

m� and p� as in De�nition 4, and p = #P , where P := N n (L[M [fm�g). Assume c
is e¢ cient. In �c all pairs of nodes are directly linked with the sole exception of some
pairs of spoke-nodes of the star, of which those in M are linked with m�. These spoke
nodes of the star not directly connected are connected one another by two-link paths
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through the star. E¢ ciency implies that all links are used by optimal paths. This
entails that all pairs of nodes but those connected through two-link paths in the star
see each other through the link connecting them. Moreover, we show that all links but
those in the star are only used by the two nodes involved. Let i; j 2 N be any pair
of nodes. First, note that if i or j belongs to L n fp�g, they cannot be extremes of
an optimal path connecting them unless this is the 1-link path consisting of link ij.
Remains to be seen that also the links connecting m� and nodes in M are only used
by the two nodes involved. But this must be so, otherwise some link of the star would
be super�uous. Then, for all these links, as �(pij) = �(cij), �(p

ij
ij) = 1, and (4) yields

�0(cij) =
1

2v
:

Note that by the assumptions on �, the existence of c] s.t. �0(c]) = 1=2v is guaranteed
if and only if �0(0) > 1=2v, and in that case it would be unique.
(ii) Now consider the links which form the star. Condition (4) applies to all of

them. From the de�nition of hybrid star-complete network �c, it follows that there
are three di¤erent possible types of links corresponding to three di¤erent situations:
the link connecting p� and m�; the links connecting p� and nodes in M , and those
connecting p� and nodes in P: Only nodes in N n L use these links to see each other.
Then, applying (4) to each of the three cases we have the following.
- The nodes in P see all other spoke nodes in N n L through the star. Thus each

link ipp� is in the optimal path connecting p� with ip and with the other nodes in P
(i.e. P n fipg), with all nodes in M and with m�, therefore, by applying (5):

�0(cipp�) =
1

2v(1 +
P

i2Pnfipg
�(cip�) +

P
j2M

�(cjp�) + �(cm�p�))
(20)

But all these links must receive the same support: Let ip; jp 2 P be two nodes in P , and
assume cipp� < cjpp�. Then �(cipp�) < �(cjpp�), which by the assumptions on technology
�, implies that �0(cipp�) > �

0(cjpp�), which by the last equation relating �
0(cipp�) and the

investments in the remaining links in the star is equivalent to state thatX
i2Pnfipg

�(cip�) +
X
j2M

�(cjp�) + �(cm�p�) <
X

i2Pnfjpg

�(cip�) +
X
j2M

�(cjp�) + �(cm�p�);

i.e. �(cjpp�) < �(cipp�), which is a contradiction. Therefore cipp� = cjpp� for all ip; jp 2 P:
- All nodes in M see directly p�, and those in M n fimg and all nodes in P through

the star. Thus each link imp� is in the optimal paths for these connections, therefore:

�0(cimp�) =
1

2v(1 +
P

j2Mnfimg
�(cjp�) +

P
i2P
�(cip�))

; (21)
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and an entirely similar reasoning as the one used to show it for the links connecting
nodes in P with p� leads to the conclusion that all these links must receive the same
investments. Then equations (20) and (21) become (14) and (15).
- Finally, spoke node m� in the star sees p� and the nodes in M directly, and the

other nodes in P via the star. Again by applying (5), if ip denote a generic node in P ,
we conclude that link p�m� is only used to see m� and in the optimal paths connecting
p� with nodes in P , therefore:

�0(cp�m�) =
1

2v(1 +
P
i2P
�(cip�))

=
1

2v(1 + p�(cipp�))
:

(iii) If #L � 2, at least one node is directly connected with p� and m� by c]-
links. Then, if 2v�(c])�(cm�p�) > 2v�(c

]) � c] the aggregate payo¤ would increase by
eliminating one these c]-links.
(iv) If M 6= ?, the weakest connection between spoke nodes are between node m�

and the nodes in P . So if 2v�(cm�p�)�(cipp�)) < 2v�(c]) � c], then a c]-link between
them would increase the aggregate payo¤.
(v) If M = ?, and 2v�(cipp�)2 < 2v�(c])� c], then a c]-link between any two spoke

nodes in P would increase the aggregate payo¤.

Then we have the following characterizing result.

Proposition 5 The only e¢ cient structures are the optimal complete network (described
in Proposition 2), the optimal all-encompassing star (described in Proposition 3), the
hybrid star-complete structures (described in Proposition 4) and the empty network.
(i) If �0(0) > 1=2v and c] < 2v(�(c])��(c�n )2) the only e¢ cient structure is the optimal
complete network.
(ii) If �0(0) > 1=2v and c] > 2v(�(c])��(c])2) the only e¢ cient structure is the optimal
all-encompassing star.
(iii) If �0(0) > 1=2v and 2v(�(c])� �(c�n )2) � c] � 2v(�(c])� �(c])2) the only e¢ cient
structures are hybrid star-complete networks.
(iv) If �0(0) � 1

2v(1+(n�2)�(1)) the only e¢ cient structure is the empty network, while
if 1

2v(1+(n�2)�(1)) < �0(0) � 1=2v the only e¢ cient structure for n big enough is the
optimal all-encompassing star.

Proof. First note that any complete network is dominated either by the optimal
complete network described in Proposition 2 if �0(0) > 1=2v, or by the empty network
if �0(0) � 1=2v. Let c = (cij)ij2N2be a link-investment vector such that �c is connected,
with a number of linksm s.t. (n�1) � m � n(n�1)=2 and positive aggregate payo¤(if
it were negative it would be dominated by the empty network). At the end of the proof
the result is extended to any network, connected or not. We sketch roughly the idea
of the proof before formalizing it precisely. First, prove that any connected network is
dominated by one formed in the following way. Start by forming an all-encompassing
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star with the best n � 1 links in c, and if no links remain stop (this only occurs if
m = n � 1, i.e. the starting network is a tree). Otherwise, take the weakest of the
remaining available links and connect the two worst connected peripheral nodes in this
star with it if this improves their connection, otherwise dispose of the link. Now repeat
the procedure with a new of the weakest of the available links and a new pair of worst
connected nodes in the network under construction up to some link improves it or no
link remains. In the �rst case, improve the connection using the link and repeat the
procedure for the pair of nodes worst connected and the new weakest available link, but
with a di¤erence: instead of disposing of the link if it does not improve the connection,
replace the last one used to connect spokes of the star with it. At the end of this
process, a hybrid star-complete structure which yields a greater or equal aggregate
value as that of the initial network at less or equal cost arises. The second part of the
proof consists of imposing optimality conditions in order to re�ne the set of dominant
structures, showing that outside the interval speci�ed in (iii) the only e¢ cient hybrid
star-complete structure is one of the two extreme cases, the optimal complete network,
or the optimal all-encompassing star network, while within this interval optimal hybrid
star-complete networks are dominant structures.
We now formalize the procedure outlined. Starting from c, we describe an algorithm

to construct a new link-investment vector that yields a dominant hybrid star-complete
network, c0 = (c0ij)ij2N2, as the �nal outcome of a sequence of investment vectors
c01; c

0
2; :::, each of them resulting from the preceding one by adding at most one link.
Step 1: Let c01 be the star that results from connecting node 1 with the other n� 1

investing in each link exactly the same amount invested in each of the best n� 1 links
in c and s.t. c012 � c013 � ::: � c01n�1 � c01n. And let c1 be the result of eliminating in c
the n� 1 best links.
Step 2: From now on proceed as follows with the current c0t to form c0t+1: choose

two of the nodes worst connected for ct in the following way: nodes 2 and 3 in the �rst
iteration, and in general, if c0ij > 0 with i < j is the last added link, then:
- if j < n check whether i and j + 1 connection via node 1 in c0t can or cannot be

improved with the worst available link, say ckl, in ct; i.e. check if 2v�(c01j)�(c
0
1j+1) <

2v�(ckl)� ckl and in case a¢ rmative, make c01j+1 := ckl;
- if j = n (i has already been connected directly with all peripheral nodes), check

whether j + 1 and j + 2 connection via node 1 in c0t can or cannot be improved with
the worst available link in ct, say ckl, i.e. if 2v�(c01j+1)�(c

0
1j+2) < 2v�(ckl)� ckl, and in

case a¢ rmative, make c0j+1j+2 := ckl.
In both cases, make ct+1 by eliminating ckl in ct, and c0t+1 by adding the new link

to c0t, and go back to Step 2. Otherwise, i.e. if the worst available link in ct does not
improve the connection, replace with it the last connection made in the preceding step,
dispose of the replaced one, and go back to Step 2 with ct+1 resulting by eliminating
from ct the link disposed of, and c0t+1 = c

0
t: Figure 2 shows the dynamic of the process

to generate a dominant hybrid star-complete structure c0, and the aspect of the �nal
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outcome.

2 or 3 steps & outcome

Figure 2

Obviously the process ends in 1+m� (n� 1) = m�n+2 iterations, when ct = ?
and no links remain. Then, we show that if c0 = c0m�n+2, we have that v(�

c0) � v(�c):
As both �c and �c

0
are connected, v(�c) and v(�c

0
) are the sum of n(n�1)

2
terms, one

for each pair of nodes. Each of these terms corresponds to one pair of nodes and
gives the contribution to the aggregate payo¤ of the value that they receive from each
other (minus the cost of the link if they are directly connected). In the �rst step, by
organizing the the n�1 best links as a star, they connect all nodes: n�1 pairs directly
and all other pairs by the maximal number ( (n�1)(n�2)

2
) of two-link connections using

these best links. From then on, by the way in which c0 has been formed, when an
�available link� in c (i.e. in ct at stage t) of cost c is discarded this is because its
direct contribution (i.e. term 2v�(c) � c in the sum that yields v(�c)) is smaller or
equal than any term in v(�c

0
t). As after Step 1, once the initial star has been formed,

links added to form c0 are increasingly strong, one discarded link will never be missed.
As a result, the aggregate value of the resulting network cannot be smaller than that
of the initial one, and by construction the outcome is a hybrid star-complete network.
Thus any network is dominated by such an structure, which must satisfy the conditions
established in Proposition 4 to be e¢ cient. That is, all links but those forming the star
are c]-links, and those forming the star must be s.t. (14), (15) and (16).
Now, assuming �0(0) > 1=2v, there are the following possibilities:
(i) If c] < 2v�(c]) � 2v�(c�n )2, i.e. 2v�(c�n )2 < 2v�(c]) � c], with c�n given by (12),

then by connecting any two peripheral nodes in an all-encompassing star star satisfying
optimality condition (12) with a c]-link the aggregate payo¤ would increase. But then
the same must occur for any two spoke nodes in the star of a hybrid star-complete
network satisfying conditions (14), (15) and (16), because

�(c�n ) > �(cipp�) > �(cimp�) > �(cm�p�);

given that
�0(c�n ) < �

0(cipp�) < �
0(cimp�) < �

0(cm�p�):

Then it must be L = N . In other words, the only e¢ cient structure is the optimal
complete network .
(ii) By Proposition 4-(iii), if l � 2 then c] � 2v(�(c])� �(c])�(cm�p�)) � 2v(�(c])�

�(c])2), which contradicts c] > 2v(�(c]) � �(c])2). Therefore it must be l < 2, i.e.
L = fp�g, which means that the hybrid star-complete is actually an all-encompassing
star.
(iii) If 2v(�(c]) � �(c�n )2) � c] � 2v(�(c]) � �(c])2), none of the two preceding

conclusions applies, but some hybrid star-complete structure is sure to be e¢ cient.
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Nevertheless it is not possible to conclude in general terms which hybrid star-complete
network becomes e¢ cient.
(iv) Now assume �0(0) � 1=2v: By Lemma 2, if �0(0) � 1

2v(1+(n�2)�(1)) the only
e¢ cient structure is the empty network, while if 1

2v(1+(n�2)�(1)) < �
0(0) � 1=2v the only

e¢ cient structure for n big enough is the optimal all-encompassing star.
Now assume that the initial �c is not connected, but a component of a network with

a greater number of nodes. It is clear that the conclusion applies to it, i.e. a component
is dominated by one of these structures with the same number of nodes. Then, it is easy
to check that if c]n and c

�
n denote the link-investment vectors for the optimal complete

network and the optimal star of n nodes, then v(�c
]
n) < v(�c

]
n+1); and v(�c

�
n ) < v(�cn+1),

where �cn+1 is the result of adding to �c
�
n one node connected with the center by a link

in which the investment is also c]n: Therefore v(�
c�n ) < v(�cn+1) < v(�c

�
n+1). Similarly,

the aggregate value of a properly hybrid star-complete n-network increases by adding
one node connected with the center of the star by a link as good as the best one in it.
Therefore e¢ ciency implies connectedness. In this way, the proof is complete.

Comments: (i) The idea of the proof is interesting by its novelty, imposed by the
novelty of the framework, and is the following. First, prove constructively that any
link-investment vector/network that yields a positive aggregate payo¤ is dominated by
a hybrid-star complete structure, a sort of suboptimal mixture of complete and star
networks. The construction of the dominant structure from any given one is based on
the idea of reorganizing or rearranging the �available links� in the network given in
a most e¢ cient way. Then this type of dominant hybrid structure is further re�ned
imposing optimality conditions. This yields optimal hybrid star-complete structures
(characterized in Proposition 4), which include as particular extreme cases the optimal
complete and the optimal star networks. Finally, it is shown that among them only
the two extremes, the optimal complete and the optimal star networks, can be e¢ cient
outside an interval relating c]; c�n ; �(c

]) and �(c�n ), while within this interval is not
possible to conclude in general terms which hybrid structure is optimal.
(ii) Again, in a setting that, compared to the basic link-formation models of Jackson

and Wolinsky�s (1996) connections�model and Bala and Goyal�s (2000) two-way �ow
model, leaves many degrees of freedom, the only e¢ cient structures in those models
continue to be e¢ cient. Moreover, in a setting where there are in�nite complete and
star structures, only a particular type of each of such structures with the highest degree
of symmetry, as speci�ed by Propositions 2 and 3, emerges as e¢ cient. Nevertheless,
a most relevant result is the emergence of some other interesting hybrid structures
among the e¢ cient ones.
(iii) Strictly speaking, the proof leaves unanswered the question of whether properly

hybrid structures, i.e. di¤erent from the optimal all-encompassing star and complete
are actually e¢ cient for some technologies.14 The following example shows that for

14In fact, these structures were thought as a way of �cornering�the presumably only e¢ cient ones,
i.e. the star and the complete. It was to our surprise that they turned out actually e¢ cient for some
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certain technologies neither the complete nor the star are e¢ cient, and consequently a
properly speaking hybrid star-complete must be e¢ cient.

Example: Assume n = 12; v = 1 and a technology � such that c] = 0:25; �(c]) =
0:75; �0(c]) = 0:5; and c�12 = 3:5; �(c

�
12) = 0:8; and �

0(c�12) =
1
18
: The reader may check

that these �gures are consistent with the assumptions on � of the model.15

Then we are in case (iii) in Proposition 5 because c] = 0:25 and

2(�(c])� �(c�12)2) = 0:22 < 0:375 = 2(�(c])� �(c])2):

So there is room for hybrid structures di¤erent from the star and the complete to be
e¢ cient. In fact we have:

v(c]12) =
n(n�1)
2
(2v�(c])� c]) = 49: 5;

v(c�12) = 2v(n� 1)�(c�12) + v(n� 1)(n� 2)�(c�12)2 � (n� 1)c�12 = 49: 5;

So, there is a tie, therefore if c�12 < 3:5: v(c
�
12) > v(c

]
12); but if c

�
12 > 3:5: v(c

�
12) < v(c

]
12):

Let chsc12 be an optimal hybrid star-complete network s.t. 11 nodes form a 10-link
optimal star and the remaining node is connected with all the others by c]-links. Then
we have:

v(chsc12 ) = v(c
�
11) + 11� 2(�(c])� c]) = 20�(c�11) + 90� �(c�11)2 � 10c�11 + 16: 5:

Now assume c�11 = 0:3; �(c
�
11) = 0:77778 and �

0(c�11) =
1
16
:16 Then we have:

v(chsc12 ) = 83:5:

That is, network chsc12 beats both the 12-star and the 12-complete! This does not mean
that this particular hybrid star-complete network is e¢ cient, but the counterexample
proves that actually only properly hybrid star-complete networks are e¢ cient for some
technologies.
(iv) An interesting feature of the optimal hybrid star-complete networks is the

di¤erent levels of information received by di¤erent nodes in these structures. As has
been show in Proposition 4, the links that form the star may receive up to 3 di¤erent
levels of investment. By comparing (14), (15) and (16) it is clear that �0(cipp�) <
�0(cimp�) < �

0(cm�p�), that is
cipp� > cimp� > cm�p� :

The weakest among these links is the one connecting m� and the center, the next
level is for the links connecting those in M and the center, and the highest level of

technologies.
15Note that �0(c�12) =

1
18 =

1
2(1+10�0:8) =

1
2(1+(n�2)�(c�12))

.
16Note that 1

2(1+9��(c�11))
= 1

16 yields �(c
�
11) = 0:77778; thus everything is consistent if �

0(c�11) = 1=16;

because 1=18 < 1=16 < 1=2:
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investment is for the links connecting the remaining spoke nodes (i.e. those in P ) with
the center. In view of these investments, it is easy to conclude that p� receives the
highest amount of information, followed by nodes in P; then those in M followed by
node m�, and �nally those in L. If M = ?, there are only 3 levels because all spoke
nodes in the star are in the same conditions, which become 2 levels if L = ?, and only
one level if L = N:

5 Scenario 2: Stability

We now consider the second scenario described in Section 3, where nodes are players
who form the links by investing in them. An investment pro�le, speci�ed by a matrix
c = (cij)i;j2N , where cij � 0 (with cii = 0) is the investment of player i in the link
connecting i and j, determines a link-investment vector c

c! c = (cij)ij2N2 s.t. cij := cij + cji:

The available link-formation technology, �, yields a weighted network for each invest-
ment pro�le c. Namely, �c := �c, where

�cij = �
c
ij = �(cij) = �(cij + cji);

and payo¤s are given by (2), i.e.

��i (c) =
X

j2N(i;�c)

Iij(�
c)�

X
j2Nd(i;�c)

cij = v
X

j2N(i;�c)

�c(pij)�
X

j2Nd(i;�c)

cij: (22)

This scenario poses the question of stability. We address here the stability of the
structures that have emerged as e¢ cient: the empty network, the complete network, the
star and the hybrid star-complete networks. Although properly speaking one should
refer to stability of investment pro�les, we often express our results in terms of the
resulting networks. Thus a Nash or pairwise Nash �stable network� should be read
as a weighted network that results from a Nash or pairwise Nash stable investment
pro�le. The following result establishes a necessary and su¢ cient condition for the
empty network (which results from no investments) to be stable.

Proposition 6 The empty network is
(i) A Nash network if and only if �0(0) � 1=v.
(ii) A pairwise Nash stable network if and only if �0(0) � 1=2v.

Proof. (i) Let �0 be the empty network, which results when no link is invested in,
i.e. cij = 0 for all i; j 2 N . In these conditions a player has an incentive to invest
c > 0 in a link with another (or any number of them) only if v�(c)� c > 0. But under
conditions C.1 and C.2, if �0(0) � 1=v and c > 0; then �(c) < c�0(0) � c=v: Assume
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now that �0(0) > 1=v. Then, there exists c > 0 s.t. �(c) > c=v, and it is advantageous
to invest c in a link with another player. Therefore (i) is proved.
(ii) If pairwise coordination is feasible two players may form a link by jointly invest-

ing c by investing c=2 each. If �0(0) � 1=2v; then �(c) < c�0(0) � c=2v: On the contrary,
if �0(0) > 1=2v, then there exists c > 0 s.t. �(c) > c=2v, and it is advantageous to any
two players to invest c=2 each in a link connecting them.

Comments: (i) Thus, it all depends on the technology � and v, namely on the
marginal �delity-level w.r.t. the �rst unit invested: the empty network is Nash (pair-
wise Nash) stable if and only if this marginal �delity-level is equal or less than 1=v
(1=2v). In other words, the greater the value of the information at each player, the
smaller this marginal �delity-level must be for the empty network to be stable. When
pairwise coordination is feasible stability is more demanding.
(ii) Thus the empty network is Nash stable being surely ine¢ cient (1=2v < �0(0) �

1=v) or possibly ine¢ cient (�0(0) � 1=2v), and is pairwise Nash stable only in the latter
case.
In order to address the stability of complete and star networks we establish a result

very similar to Lemma 1, establishing necessary conditions for an investment pro�le to
be �stable for a given infrastructure�in the following sense.

De�nition 5 A link-investment vector c = (cij)ij2N2 is Nash (pairwise Nash) stable
for an infrastructure S if for all ij 2 N2; cij > 0 if and only if ij 2 S; and it is Nash
(pairwise Nash) stable in the strategic network formation game that results when the
strategies of players are constrained to invest only in links in S.

Lemma 3 For an investment pro�le c = (cij)i;j2N to be stable for a given infrastruc-
ture S � N2, the following are necessary conditions: (i) If a player invests in two
di¤erent links, the sets of players connected by optimal paths containing each of them
are disjoint. (ii) For all ij 2 S s.t. cij > 0 :

�0(cij) =
1

v
P

k2N(i;�c)(ij2pik) �(p
ij
ik)
: (23)

(iii) For all ij 2 S s.t. cij > 0 and cij = 0 :

�0(cij) �
1

v
P

k2N(i;�c)(ij2pik) �(p
ij
ik)
: (24)

Proof. Let c = (cij)ij2N2 be the link-investment vector associated with investment
pro�le c; s.t. cij > 0 if and only if ij 2 S: We prove �rst part (ii). Assume c to be
Nash stable for S, and ij 2 S. Then i and/or j, at least one of them, say i, invests
cij > 0. Then link ij is part of at least one optimal path in �

c for i�s information (the
one connecting i and j, otherwise i would withdraw support to it). Then, in any of the
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possibly di¤erent but equivalent expressions of the right-hand side of (22), �(cij) would
appear at least once (�c(pij) = �(cij) if c is stable), and possibly also in the product
yielding �c(pik) for other of nodes k. Fix any choice of these (possibly multiple) optimal
paths connecting i with every other node with whom i is connected and let i�s payo¤
be given by the right-hand side of (22). The right-hand side is an up to n(n � 1)-
variable function with partial derivatives. A non�null partial derivative w.r.t. cij of
this expression means that by slightly increasing (if it were > 0) or decreasing (if it
were < 0) the investment of i in link ij would increase i�s payo¤ (through the same
available paths), which contradicts c�s stability for S. Then the partial derivative of
the right-hand side of (22) w.r.t. cij must be 0, i.e., using the same notation as in
Section 4,

@

@cij
(v

X
k2N(i;�c)

�c(pik)�
X

k2Nd(i;�c)

cik) = v�
0(cij)

X
k2N(i;�c)(ij2pik)

�(pijik)� 1 = 0;

which yields (23).17

(i) Assume that player i invests in links with two nodes j and k, cij > 0 and cik > 0;
and for some player l there are two di¤erent optimal paths pil and p

0
il such that ij 2 pil

and ik 2 p0il. Then the right-hand side of (23) admits at least two di¤erent expressions
where the optimal path connecting i and any other player but l is the same, where one
uses pil and another uses p

0
il. In that case, (23) yields two di¤erent values for �

0(cij),
which is a contradiction.
(iii) Assume now that cij > 0 and cij = 0: A similar argument to the one used to

prove part (ii) leads in this case to the conclusion that

v�0(cij)
X

k2N(i;�c)(ij2pik)

�(pijik)� 1 � 0;

otherwise player i would have an incentive to invest in link ij, which yields (24).

As in the case e¢ ciency, we have an immediate consequence for stability in general:

Proposition 7 For an investment pro�le c = (cij)i;j2N to be Nash stable the following
conditions are necessary: (i) If a player invests in two di¤erent links, the sets of players
connected by optimal paths that contain each of them are disjoint.
(ii) For each ij 2 N2 s.t. cij > 0 :

�0(cij) =
1

v
P

k2N(i;�c)(ij2pik) �(p
ij
ik)
:

17Just note that by the chain rule

@

@cij
(�(cij + cji)) = �

0(cij + cji) � 1 = �0(cij):
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(iii) For each ij 2 N2 s.t. cij > 0 and cij = 0 :

�0(cij) �
1

v
P

k2N(i;�c)(ij2pik) �(p
ij
ik)
:

(iv) For each ij 2 N2 s.t. cij = 0, if �0(0) > 1=v,

v�c(pij) � v�(c#)� c#; (25)

where c# = argmaxc>0(v�(c)� c):
(v) To be pairwise Nash stable condition (25) must be replaced by

2v�c(pij) � 2v�(c])� c]; (26)

where c] is given by (8) or (11).

Proof. Assume c = (cij)i;j2N to be Nash stable, then c must be Nash stable for the
infrastructure S = fij 2 N2 : cij > 0g. Then (i), (ii) and (iii) follow immediately
from Lemma 3.
(iv) Assume cij = 0. Then no investment in link ij from i can increase i�s payo¤,

that is, for all c > 0; v�c(pij) � v�(c) � c; otherwise investing c in link ij would
surely increase i�s payo¤. This yields condition (25). Note that if �0(0) � 1=v, then
v�(c)� c < 0 for all c > 0.
(v) If pairwise coordination is feasible and 2v�c(pij) < 2v�(c

])� c], players i and j
have an incentive to invest c=2 each on link ij.
Comment: Part (i) establishes that what any player �sees� through di¤erent

links in which he/she invests do not overlap: if i sees l through an optimal path that
contains ij, it cannot be the case that i sees l through another optimal path that
contains ik 6= ij: Note the similarity and the di¤erence with part (i) in Proposition
1. As it occurs in Proposition 1, (i) is a consequence of (ii), which also here has a
clear interpretation. If player i invests in a link with j, the denominator of the fraction
in formula (23) that yields �0(cij) is v times the sum of the �delity-levels through all
optimal paths containing link ij (discounting that of link ij) through which player i
receives information. In other words, the actual amount of information that reaches j
on its optimal way to i. Thus this sum is a measure of the importance of link ij to
player i: the greater this amount, the smaller �0(cij), i.e. the greater cij and �(cij).
Note here the similarity and di¤erence with the meaning of similar expression (4) for
an e¢ cient link-investment vector: there it was the overall importance of the link for
the �ow of information, while here it is the importance for a player who invests in it.
Parts (iii) and (iv) refer to links not invested in and impose necessary conditions for
Nash and pairwise Nash stability, which amount to lack of incentives to invest in them
when coordination is or not unfeasible.
The following corollary establishes that in a Nash network links are entirely sup-

ported by the player who bene�ts most from the link, or shared in any way if both
bene�t equally.
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Corollary 1 If two players i and j are connected by a link in the network resulting
from a Nash investment pro�le c, then if both players bene�t equally from the link any
way of sharing the investment cij s.t. is consistent with equilibrium; otherwise, the
investment is made entirely by the player who bene�ts the most from the existence of
the link.

Proof. Let c be a Nash investment pro�le and assume cij > 0. Then if both invest
in link ij, condition (23) must hold for i and j, which are compatible only if the
denominator in the right-hand side of equation (23) are equal for i and j. In other
words, only if both players bene�t equally from the existence of the link. If they bene�t
di¤erently from it, both conditions are incompatible, and equilibrium is possible only if
the player who bene�ts the most covers entirely the investment. In this way conditions
(23) and (24) hold.
We now address the question of the stability of complete networks. The following

proposition gives necessary and su¢ cient conditions for a complete network to be
stable.

Proposition 8 Let c be an investment pro�le such that �c is complete, then �c is a
Nash network (and pairwise Nash) if and only if the following conditions hold:
(i) The marginal �delity-level w.r.t. investment at 0 must be greater than 1=v, i.e.

�0(0) > 1=v: (27)

(ii) All links receive the same joint investment, i.e. cij + cij = c# > 0, for all i 6= j,
given by

�0(c#) = 1=v: (28)

(iii) The only c# that satis�es (28) is such that

c# � 2v(�(c#)� �(c#)2): (29)

(iv) For all i; j (i 6= j) :
cij � v(�(c#)� �(c#)2): (30)

Proof. (i) Assume �c is complete, i.e. cij + cji > 0 for all i; j 2 N (i 6= j). In other
words, for all i; j at least one of the two players invests in the link, say i. Then, as all
links work, a necessary condition for a player i not to have an incentive to withdraw
its investment cij > 0 in link ij is that i sees j strictly better through it than any other
way. In other words, each link itself is the only optimal path it belongs to. Then, as
�(pij) = �(cij), �(p

ij
ij) = 1, and (23) yields

�0(cij) =
1

v
:

But, by C.1 and C.2, only if �0(0) > 1=v there exists c# > 0 s.t. �0
�
c#
�
= 1=v, which

in that case is unique. Note that pairwise Nash stability does not actually re�ne Nash
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stability for the complete network because all links exist and pairwise coordination
does not actually provide new options.
(ii) Therefore, in equilibrium all links must receive the same joint investment c# s.t.

�0
�
c#
�
= 1=v and consequently support the same �delity-level. Note that whatever

the investments cij > 0 and cji > 0; as long as cij + cji = c#; none of the two players
has an incentive to modify his/her investment in that link.
(iii) & (iv) Finally, for �c to be Nash stable no player must have an incentive to

withdraw support to a link, i.e. for all i; j (i 6= j) : �(c#)v� cij � �(c#)2v, which yields
(30). Which is compatible with cij + cji = c# if and only if (29).

Comments: (i) Condition (i) only concerns the technology � and v, the number of
players does not enter the conclusion. The marginal �delity-level w.r.t. the �rst unit
invested must be greater than 1=v, which is a necessary condition for the existence
of c# such that (28) holds. The same applies to pairwise Nash stability as it does
not actually re�ne Nash stability for the complete network given that all links exist
and pairwise coordination does not actually provide new options. Note that (27) is
the complementary of the necessary and su¢ cient condition for the empty network
to be Nash stable according to Proposition 6. Condition (ii) establishes that, as a
result of technological homogeneity, all links must receive the same joint support for a
complete network to be Nash stable, and (28) is required for the joint investment c#

to be optimal. The existence of such a c# is guaranteed by condition (i). Condition
(iii) is a condition which involves v, the technology � and the optimal investment c#,
and it is necessary and su¢ cient for condition (iv) to be feasible. Condition (iv) is
required because otherwise player i would have an incentive to withdraw support from
the link with j. Note that the �rst three conditions concern �, �(c#) and v, while
only (iv) concerns directly the way in which the cost of the link is shared by setting
an upper bound to the investment of each player. That is, if conditions (i)-(iii) hold,
complete networks supported by any investment pro�le satisfying (iv) are Nash stable.
As condition (i) guarantees the existence of a unique c# s.t. (28) holds, the stability
of complete networks hinges upon condition (29).
(ii) A comparison of conditions (27), (28) and (29) for stability (Proposition 8) with

conditions (7), (8) and (9) for e¢ ciency (Proposition 2) is pertinent here. In the �rst
case (�0(0) > 1=v vs. �0(0) > 1=2v), the condition on the technology for stability of
the complete network is more demanding. But even when both conditions hold, from
�0(c#) = 1=v vs. �0(c]) = 1=2v, the conclusion is clear: the optimal complete network is
not stable. The reason is clear: as �0(c]) = �0(c#)=2, then c] > c#, i.e. e¢ ciency entails
a joint investment in each link greater than what stability requires, and consequently
in a complete e¢ cient network players have an incentive to diminish their support to
links and take advantage of the externalities (inexistent in the optimal complete) that
free-riding generates. Finally, in the third case, the conditions on c# and c] respectively
are entirely similar.
We now address the question of stability of stars. The following proposition gives

necessary and su¢ cient conditions for a star to be Nash stable.
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Proposition 9 Let c be an investment pro�le such that �c is an all-encompassing star,
then �c is a Nash network if and only if (i) �c is a periphery-sponsored star where all
peripheral players invest the same amount c�n in the only link in which each of them is
involved given by:

�0(c�n) =
1

v(1 + (n� 2)�(c�n))
: (31)

(ii) Additionally, if �0(0) > 1=v;

v�(c�n)
2 � v�(c#)� c#; (32)

with c# given by (28).
(iii) �c is a pairwise Nash network if and only if (31) and

2v�(c�n)
2 � max

c>0
(2v�(c)� c) = 2v�(c])� c]: (33)

Proof. (i) That a Nash stable all-encompassing star must be periphery-sponsored is
directly concluded from Corollary 1: in a star peripheral players bene�t more than the
centre from their links. Now assume that two peripheral players, i and j, support their
links with di¤erent investments, say, cik < cjk, where k is the center, which entails
�cik < �cjk. By Lemma 3, it must hold �

0(cik) =
1

v+Ik(�
c�ik) , and �

0(cjk) =
1

v+Ik(�
c�jk) .

But note that
Ik(�

c � ik)� Ik(�c � jk) = (�cjk � �cik)v > 0;

i.e. Ik(�
c�ik) > Ik(�c�jk), but by this implies �0(cik) < �0(cjk), which entails cik > cjk,

by the assumptions on function �, which contradicts the initial assumption cik < cjk.
Thus, all peripheral players must invest the same amount in their links. This amount
c�n is determined by (23):

�0(c�n) =
1

v
P

k2N(i;�c)(ij2pik) �(p
ij
ik)
=

1

v(1 + (n� 2)�(c�n))
:

(ii) For any two peripheral players �c(pij) = �(c�n)
2 and condition (25) becomes

(32).
Remains only to be checked that it is worth for any peripheral player to invest c�,

i.e. that
c�n � �(c�n)(1 + (n� 2)�(c�n))v:

But if (31) holds, this is equivalent to check that c�n � �(c�n)=�0(c�n) or, equivalently that

�0(c�n) � �(c�n)=c�n

which follows from the smoothness and concavity of �.
(iii) Assuming pairwise coordination feasible, condition (26) becomes (33).
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Comments: (i) That only periphery-sponsored stars can be Nash stable is a direct
consequence of Corollary 1. Symmetry, i.e. that all peripheral players must invest the
same in equilibrium, follows from Lemma 3 and the assumptions about technology �.
Condition (31) is then necessary for an n-player periphery-sponsored star where each
peripheral player invests c�n to be Nash stable, otherwise there would be an incentive to
increase or decrease the investment. But this is not su¢ cient. If c�n is the investment
of each peripheral player in its link with the center s.t. (31) condition holds, condition
(32) sets a lower bound for c�n which ensures that no peripheral player has an incentive
to invest in a link with any other peripheral player. Note that, like for the empty
network and unlike for the complete one, this lower bound is strictly more demanding
for pairwise Nash stability.
(ii) A comparison of conditions (31), (32) and (33) for stability with those for ef-

�ciency for the same structure (Proposition 3) yields the following conclusions. As
it occurs with the complete network, the optimal star network is not stable: from
the conditions that determine �0(c�n) and �

0(c�n ); it follows that �
0(c�n) > �

0(c�n ), which
implies c�n < c�n . In other words, the optimal star is not stable because e¢ cient in-
vestments would invite to free-riding. As to the lower bounds for �(c�n)

2 for Nash
and pairwise Nash stability, the �rst one is stronger than (13), but latter (2v�(c�n)

2 �
maxc>0(2v�(c)� c)) is identical.
Remains to be discussed the question of existence of c�n satisfying conditions (31)

and (32). The following lemma, entirely similar to Lemma 2 and whose proof is omitted
for this reason, gives a su¢ cient condition for (31).

Lemma 4 Whatever the number of nodes, if �0(0) > 1=v, then it is sure to exist c�n such
that (31) holds, and also when �0(0) � 1=v for n su¢ ciently large. On the contrary, for
a �xed n, no such c�n exists if �

0(0) � 1
v(1+(n�2)�(1)) ; where �(1) denotes limc!1 �(c).

Proposition 10 The periphery-sponsored star is the only non-empty possibly Nash
stable network without cycles.

Proof. Assume that �c is a non-empty Nash stable network without cycles in which
there are two peripheral players, i and j, at a distance greater than 2. By Corollary 1,
both players must support their only link. It is then easy to see that if ��i (c) � ��j(c),
then i�s payo¤ increases by switching i�s investment from his only link to a link with
the same player with whom j supports a link.

Example 2 (an example here where both star an complete are stable)
Remains to be discussed the stability of properly hybrid star-complete networks.

Let N , L, M , P , m� and p� be as in De�nition 4 and Figure 1, but let us forget the
optimal investments there and let us deduce them from (23) by imposing stability.
First, note that all links connecting nodes in L among themselves, nodes in L n fp�g
with nodes in N n L, and also the links connecting m� with each node in M , generate
no externalities because they are used for each pair of players involved only to see each
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other. Therefore, in view of (23), all these links must receive an investment c#, s.t.
�0(c#) = 1=v: As to the nodes in N n L, as they see each other through the star they
form, it is clear that stability imposes that they must support entirely the investment
in their links with the center p�. Again by applying (23), if im and ip denote a generic
node in M and P respectively, we conclude that:18

- m� sees through link m�p� only p� and nodes in P , therefore:

�0(cm�p�) = �
0(cm�p�) =

1

v(1 + p�(cipp�))
;

- each im 2 M sees p� through link imp�, the other nodes in M (i.e. M n fimg)
and all nodes in P , therefore:

�0(cimp�) = �
0(cimp�) =

1

v(1 + (m� 1)�(cimp�) + p�(cipp�))
;

- each ip 2 P sees through link ipp� the other nodes in P (i.e. P n fipg), all nodes in
M and p�, therefore:

�0(cipp�) = �
0(cipp�) =

1

v(1 + (p� 1)�(cipp�) +m�(cimp�) + �(cm�p�))
:

Additionally, there are further necessary conditions:
- for all i; j 2 L (i 6= j) : cij � v(�(c#)��(c#)2), which is compatible with cij+cji = c#
if and only if c# � 2v(�(c#)� �(c#)2).
- for links connecting m� and any im 2 M , 2v�(cm�p�)�(cimp�) � 2v�(c#) � c# (note
that this condition implies the preceding one).
These conditions impose speci�c constraints for a hybrid star-complete network to

be stable very similar to those imposed by e¢ ciency.

6 Concluding remarks

We have introduced a simple �marginalist�model of network formation that is a natural
extension of the seminal models of Jackson and Wolinsky (1996) and Bala and Goyal
(2000a). A full characterization of e¢ cient structures has been achieved in this setting.
An interesting result is the emergence of hybrid star-complete structures among the
e¢ cient ones in addition to the extreme cases of such structures, complete networks
and stars, and the empty network. Necessary conditions for Nash and pairwise Nash
stability have been obtained, which permit to give necessary and su¢ cient conditions
for complete networks and stars to be stable in either sense. These conditions show

18An entirely similar argument to the one used in Proposition 4 leading to the conclusion that all
links of each of the three types must receive the same invetments for optimality, leads to the same
conclusion for stability, and is omitted.
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that hybrid structures cannot be stable, and that e¢ cient complete and stars networks
are not stable.
Apart from further exploring the model, there are a number of extensions worth

investigating. These are some of them:
(i) Exploring the impact of assuming heterogeneity, technological and/or in indi-

vidual values.
(ii) Exploring some variants of the technology function, as the following ones:

- Assuming � : R+ ! [0; ��) with �� < 1, i.e. setting an upper bound �� lower
than 1 for �(c):

- Assuming �(c) > 0 only for c > c, i.e. setting a �threshold�or minimal joint
investment for a link to admit �ow (translating the assumptions about � to a map
� : [c;1)! [0; 1), with �(c) = 0 for 0 � c � c:)

- Assuming � : R+ ! (��; 1), including the option to punish neighbors (this
possibly makes other changes in the model necessary).

- Assuming � �rst convex up to an in�ection point, then concave: this is
intuitively appealing and would yield as limiting cases Jackson and Wolinsky�s (1996)
connections model and Bala and Goyal�s (2000a) two-way �ow model.
(iii) Enriching the model, the basic one or any of its extensions, introducing some

dynamics.
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