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Abstract

We study a fixed-wage relationship between a firm and a worker in which nei-
ther knows how well-suited the worker is to the job. The worker decides how
to allocate his time on the job, a choice that affects both learning and the firm’s
bottom line. The employer, seeing the worker’s activity choices and outcomes,
decides whether or not to continue employing the worker. Even with no pri-
vate information, no hidden choices, and no cost of effort, a nontrivial agency
problem arises. When the employer becomes pessimistic enough about the
match quality, she cannot commit not to fire the worker. We show that, rather
than aligning interests, this threat creates a perverse incentive not to attract
attention: the worker strategically slows learning, harming productivity. As
the firm anticipates this, job insecurity can be a self-fulfilling prophecy. We
study the set of Markov perfect equilibria in our continuous-time, dynamic
game with multiple forward-looking players, explicitly describing the unique
Pareto optimum. We show that the firm necessarily employs ad hoc perfor-
mance standards: small differences in early random outcomes can have long-
lasting career consequences.
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1 Introduction
When it comes to job performance, be it in politics or in a company,
perception becomes reality. This implies that you ought to manage your
image and reputation as well as your actual work.1

Individual reputation is a major factor in an employee’s career within a firms.
In most firms, employees retain some flexibility as to how they allocate their time.
How they spend their time will affect how much their superiors can learn about
them, and so too their standing in the firm. Potentially, a career minded employee’s
reputational motive and the firm’s preferences may not be fully aligned. For exam-
ple, as Arthur, Hall, and Lawrence (1989) say, “If employees engage in these ca-
reer strategies, what are the implications for organizations? . . . [E]mployees [may]
make investments based on the perceived value of the investment. However, in-
vestments that hold perceived value for career success do not necessarily hold real
economic value for a firm.”

This misalignment creates a conflict of interest in the dynamic relationship. For
example, an employee might improve his reputation by delivering results on an
assigned project or he might do so by actively talking to people across the firm sug-
gesting ideas. The latter, while valuable, is potentially less valuable to the employer
than direct results on an assigned project. A conflict of this nature is pervasive in
many large organizations, employees can work both on deliverables and on their
image in the workplace.

For example, as Barney and Lawrence report, a group of engineers in an R&D
department of a firm were interviewed. It was found that the engineers got recogni-
tion for solving last minute problems under deadline pressure. Moreover, engineers
feel such activities contribute more to career success than research and development
innovation. While short-term problem solving is important, majority of a firm’s
economic success lies in innovation. Thus, from an employee’s perspective, orga-
nization provides more perceived value for activities that have less real economic
value.

We focus on studying what is the effect of such internal reputation of an em-
ployee on the relationship between the employee and the firm. In particular, we look
at a situation where employee’s effort in shaping a perception about himself is less
productive from the firm’s perspective. The motive behind perception management
is to assure the firm that the match between the employer and the employee is in
fact a good match. Since firms make profits out of synergies between the organiza-
tion and the employees, firms wish to continue relationships with good employees

1J. Pfeffer, HBR, 2010 https://hbr.org/2010/10/shape-perceptions-of-your-work
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and terminate the relationships with bad employees. In most firms, explicit con-
tracts on effort allocation choices and reputation building are infeasible. Therefore,
it is natural to study the dynamics of such relationships without commitment i.e.
through a game. This lack of contractibility over time allocation across various
tasks and employee’s reputational motives introduce a wedge between the owner
and the employee’s incentives for allocation choice.

The key innovation of our paper is in introducing a separate, payoff irrelevant,
channel to affect reputation for an employee. Specifically, our model consists of an
employee allocating his share of time between working on a project that has tangible
economic returns to the firm, and on activities related to improving his reputation
within the firm. More importantly, both the performance on the project and the
reputation activity directly affect the employee’s reputation. The distinction, from
the employee’s perspective, between the two tasks is purely about the sensitivity of
the evolution of beliefs based that the two choices induce. In particular, we assume
that if the agent allocates one unit of time towards building his reputation then the
expected change in his reputation is higher than the change were he to allocate a
unit of time towards performing his actual work. This setting seems realisitc in
many contexts where employees have the freedom to manage their time and their
standing in the firm has consequences on their career within the firm.

We study an infinite horizon continuous time game in which, at every instant, the
agent makes a decision about the share of his time that he wishes to allocate towards
building his reputation and the remaining to his actual work. An agent’s reputation
is captured by a belief regarding the likelihood of the type of the employee. An
employee more well-suited at the firm is more likely to be able to produce good
performance in his actual work as well as in his attempt to manage a perception
about himself. We assume that the reputation activity is payoff irrelevant for the
firm. Therefore, the firm wishes the employee spent only so much time on the repu-
tation activity so that it facilitates firm’s learning about the quality of the employee.
For example, if an employee devotes all his time towards creating his image, even if
he is successful at that, the firm would wish to terminate the employee. Therefore,
in equilibrium, the employee must, at some point of time, be spending some time
on his actual work in order to stay employed. The employee’s preferences are to re-
main employed for as long as possible. The firm, at every instant, decides whether
to continue the relationship or fire the employee. The game ends if the firm fires the
employee. We allow the principal to mix between continuing the interaction and
firing at any instant.

We characterize the set of all Markov Perfect Equilibria of this game. One could
potentially look at more equilibria that take into account the entire history of beliefs.
However, in firms or elsewhere, such complicated strategies are probably unrealis-
tic. Employee appraisals often are based on the employee’s previous reputation and
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his performance after the most recent appraisal. Moreover, from the perspective
of the model, one can think of MPEs as a restriction where both the players only
respond to the reputation of the agent.

There always exists a trivial equilibrium in which the employee always exerts
all the effort in building his reputation and the employer fires him at every belief.
We show that besides this trivial equilibrium, every other equilibrium generates the
same value to the principal. The equilibria are characterized by two cutoffs (zL, z∗).
The principal never fires the agent if the belief is above z∗ that is given in equation 6.
Between (zL, z∗) the agent keeps the agent indifferent by keeping his flow payoffs
zero. The principal also randomizes according to a particular rule to ensure that
such a behaviour is indeed optimal for the agent. We show that, for a wide class
of noise structures, above a belief z∗ the agent puts a constant fraction of his effort
across the two tasks. This is irrespective of how more or less informative the two
technologies are. Statistically, the agent’s incentives are to minimize learning. Our
Proposition 3 shows that, in fact, there is a unique fraction of effort that minimizes
learning for the principal. Given how general the noise structure is, we believe, that
this is of independent interest from the perspective of learning.

2 Existing Literature
There is a huge body of literature on career concerns starting from Holmström
(1999). However, much of that literature focuses on one task that affects both, the
firm’s profits as well as the agent’s reputation. We believe that that in many orga-
nizations there are distinct activities that have no economic consequences directly
except learning about the employee’s match quality for the firm. Also, Dewatripont,
Jewitt, and Tirole (1999), Dewatripont and Jewitt (1999) and Holmström (1999)
have hidden action for the agent and career concerns for the agent affects his effort.
We depart from this setting by introducing observable action to isolate the effect
of pure reputation building where signalling based on actions is ruled out. Besides
being realistic, this allows us to focus exclusively on the incentives arising out of
learning that is driven by output and not by conjectured effort.

At a more fundamental level, however, models of career concern affect the em-
ployee’s wage outside the firm as in Holmstrom(1982/99), Jovanovic (1979). This
is the key difference between our paper and most literature on career concerns. We
focus entirely on the dynamics within the firm that has no consequences outside the
firm.
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3 Model

3.1 The Environment
We study an infinite horizon, continuous time game between a principal (firm) and
an agent (worker). At each instant, the principal decides whether or not to irre-
versibly fire the agent, while the agent decides how to allocate his efforts between
two activities conditional on not being fired.

The worker-firm match quality θ ∈ {0, 1} is symmetrically unknown to the play-
ers, with prior E0θ = p0 ∈ (0, 1). Of the two activities, one is productive on average
if and only if the agent is well-matched with the firm (something neither principal
nor agent knows). The other activity is unproductive, though its outcomes are still
correlated with firm-employee match. How the agent allocates his efforts, along
with the outcomes each activity generates, are public. The principal only finds it
worthwhile to employ the agent if he will be productive enough; the agent wants to
stay employed, and so cares about what his efforts reveal.

At each instant, the agent makes an allocation choice kt ∈ [0, 1], which indicates
what proportion of his energy the agent allocates toward the productive activity; he
allocates the remaining fraction 1 − kt toward the unproductive activity. The prin-
cipal observes this allocation. Over the course of [t, t + dt), the principal observes
the allocation choice as well as the resulting (stochastic) output on each activity.
The players update their beliefs about the match quality, taking into account the
allocation choice. The principal decides whether to continue the relationship, at a
flow cost of c, or to fire the agent.

We stress that, no matter how the agent allocates his energy, our two players
always (on-path and off-path) have the same information about the match quality,
so that there can be no private beliefs.

3.2 Outcomes
We model both the productive and unproductive activities as a diffusion technolo-
gies with drift depending on both on the match quality and the agent’s allocation
choices. Let X1t denote the cumulative output on the productive activity and X2t

denote the cumulative outcome of the unproductive activity. The laws of motion of
the two activities are:

dX1t = ktµθ dt + σ1(kt) dB1t

dX2t = (1 − kt)βµθ dt + σ2(1 − kt) dB2t,
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where Bt := (B1t, B2t) is a 2-dimensional standard Brownian motion on a probability
space (Ω,F , P) equipped with a filtration F = (Ft)t≥0.

The firm’s accrued payoff over [t, t + dt) is dX1t − c dt while employing the
worker, and the worker’s accrued payoff is dt. Both players get a continuation
payoff of zero once the worker is fired.

We assume that µ > c > 0. This tells us that the firm would strictly want to
employ a well matched worker who puts enough energy toward productive activi-
ties, and that the firm would strictly want to fire an agent who is known to be poorly
matched with the firm.

For most of the paper, we assume σ1 = σ2 = 1 and β > 1. This exact functional
form is used for expositional convenience, but only three features—which could
easily be ensured2 by qualitative assumptions on primitives—actually matter for
our results: (1) some learning always happens, (2) multitasking is bad for learning,
and (3) the two activities aren’t exactly equally informative about match quality.
By making the unproductive activity more productive (β > 1), we leave open the
possibility that the principal would sometimes like the unproductive technology to
be used for informative purposes.

3.3 Evolution of Beliefs
We assume that the players (symmetrically) revise their beliefs about worker-firm
match via Bayesian updating. We assume that players cannot signal what they do
not know: nobody draws any direct inferences from the principal’s stopping choice
or the agent’s activity choice. However, the agent’s choice kt does indirectly affect
learning, as it affects the stochastic law of (dX1t, dX2t), and it affects the inferences
(concerning θ) the players draw from (dX1t, dX2t).

Let Pt ∈ (0, 1) be the time t public expectation of θ. i.e. Pt is the common
belief at time t that the worker and firm are well matched. Sometimes, it is more
convenient to work with the state variable Zt := log Pt

1−Pt
. It is, of course, informa-

tionally equivalent: any z is associated with a probability p(z) := 1
1+e−z . As noted in

Daley and Green (2012) the process Zt is a linear transformation of the two output
processes (X1t, X2t), and therefore is a Brownian diffusion process.

2For instance, we could assume (in addition to σ1, σ2 > 0 being measurable and of bounded
variation) that:

1. σ1, σ2 are both bounded away from zero.

2. α(k) := ... is strictly convex in k with interior minimum k∗.

3. σ2(1)
β
, σ1(1).
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Lemma 1. Whenever the principal has not yet stopped, the belief variable Z follows
the law of motion:

dZt =

[
µkt dX1t −

µ2k2
t

2
dt

]
+

[
βµ(1 − kt) dX2t −

β2µ2(1 − kt)2

2
dt

]
(1)

Proof. Proof in appendix. �

3.4 Strategies
Let Ht be the σ-algebra generated by3{Zs, X1s, X2s : 0 ≤ s ≤ t}. Referring to
Equation 1, we can see that the law of motion for beliefs involves the agent’s chose
allocation, kt. Thus, we define an agent strategy to be a [0, 1]-valued, pathwise
left-continuous stochastic process {kt}t that is measurable/predictable with respect
to the filtration {Ht}t.

Principal, at every instant, chooses whether to continue the relationship with the
agent or to irreversibly fire the agent. We model this by a left continuous stochastic
process s = {st : 0 ≤ t ≤ ∞} that is measurable/predictable with respect to (Ht)t≥0.
The interpretation is that the principal uses a stopping rule st such that

• If st < ∞, then the principal’s probability of firing the agent during [t, t + dt)
is st dt + o(dt).

• If st = ∞, then the principal fires the agent immediately.

We restrict our attention to Markov strategies where the state is captured by the
belief about the match quality, Z. Therefore, our equilibrium concept is Markov
Perfect Equilibria (MPE). The reasons for doing so are twofold. Maskin and Tirole
(2001) present an excellent discussion on MPEs and their relevance. To quote them,
”Markov Strategies prescribe the simplest form of behaviour that is consistent with
rationality”. In our setting the natural state variable is the belief about the match
quality. With beliefs and their law of motion defined, we can now describe Markov
strategies with beliefs as the state variable.

Definition 1. A Markov strategy profile is a pair (s, k), where

1. k : R −→ [0, 1] is Borel-measurable and of locally bounded variation. Let
the space of admissible strategies for the agent be K

3We do not assume that Zt is measurable with respect to {X1s, X2s : 0 ≤ s ≤ t}. This is for
technical convenience, as the stochastic differential equation for the beliefs given by Equation 1 is
only guaranteed to have a weak solution.
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2. s : R −→ [0,∞] is Borel-measurable, and of locally bounded variation in
some neighborhood of any z with s(z) < ∞. Let the space of admissible
strategies for the principal be S.

The interpretation is that, before the principal has terminated the agent:

• Beliefs move according to equation 1, yielding Zt.

• The agent currently allocates effort according to kt = k(Zt).

• The principal uses stopping rule st = s(Zt).

– If st < ∞, then the principal’s probability of firing the agent during
[t, t + dt) is st dt + o(dt).

– If st = ∞, then the principal fires the agent immediately.

Some quick remarks on how we’ve defined a strategy profile.

• By allowing s ∈ (0,∞), we have permitted the principal to mix.4 That is,
whenever s > 0, the instantaneous probability of stopping is st dt, and cor-
respondingly the probability of not stopping is 1 − stdt. This possibility is
of great importance as principal’s mixing can induce different behavior from
the agent. As we will see, this mixing is a necessary component of Pareto
optimal equilibrium.

• By forcing s to be bounded in any neighborhood of a point z with s(z) < ∞,
we have ensured that whenever s(Zt) < ∞, the probability of not being fired
in the next ε > 0 time is positive. This can be viewed as a normalization.

• Allowing the agent to choose k(z) ∈ (0, 1) is not exactly mixing. Rather, we
are allowing the agent to choose how to observably allocate his effort across
two tasks.5

• Two agent Markov strategies k, k̃ are essentially the same (i.e. generate the
same expected payoffs to both players for any given s and any given prior) if
and only if k(z) = k̃(z) for almost every z ∈ R.

• Two principal Markov strategies s, s̃ are essentially the same if and only if
s(z) = s̃(z) for almost every z ∈ R, and, in addition,

{z ∈ R : s(z) < ∞} = {z ∈ R : s̃(z) < ∞}.
4We haven’t allowed the probability of stopping at some belief z to be exactly q ∈ (0, 1). Notice:

conditional on hitting z, the state hits it again in the next ε > 0 time almost surely.
5We can easily allow for behavioral strategies κ : R −→ ∆[0, 1] on the part of the agent—so that

the agent tosses a private coin to choose public kt via measure κ(·|Zt)—but little is gained in terms
of insight, and the range of equilibrium value functions is the same.
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3.5 Strategies
3.5.1 Principal

The principal chooses an Ht measurable stopping rule st. From time t to t + dt the
principal fires the agent with probability stdt. The principal chooses st to maximize,

sup
s
E

[∫ ∞

0
e−rte−

∫ t
0 s(Zτ)dτ(dXk

1t − cdt)
]

(2)

where kt denotes the agent’s allocation kt. s is the principal’s stopping strategy dXkt
1t

is the associated controlled stochastic process X1t.

3.5.2 Agent

The agent only cares about being employed for as long as he can. He earns a flow
payoff of w (normalized to 1) so long as he is employed. Agent chooses a k = (ks),
aHt measurable function. Agent’s problem is -

sup
k
E

[∫ ∞

0
e−rte−

∫ t
0 s(Zτ)dτdt)

]
(3)

4 Equilibrium
Before formally defining an equilibrium, we will need a couple of definitions.
Given any control k ∈ K , and the principal’s strategy s ∈ S, the agent’s value
is defined as -

J(z, k, s) = Ez

[∫ ∞

0
e−rte−

∫ t
0 s(Zτ)dτ dt

]
(4)

Note that while k does not appear explicitly in the right hand side of the above
equation, dZ is driven by the choice of k.

Similarly, the principal’s value for a fixed control s ∈ S given an agent’s strategy
k ∈ K is defined as -

B(z, k, s) = E

[∫ ∞

0
e−rte−

∫ t
0 s(Zτ)dτ(dX1t − c dt)

]
(5)

Definition 2. A Markov Perfect Equilibrium is a pair of strategies (k, s) such that -

• (s, k) are {Zt} measurable.
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• Agent Optimality Given s, k solves the agent’s problem (3). That is 6,

J∗(Z, s) := sup
k̂∈K

J(Z, k̂, s) = J(Z, k, s)

• Agent Sequential Rationality: For all Z, the distance between K∆(Z, k, s) and
k(Z) tends to zero as ∆ does, where, for any ∆ > 0,

K∆(Z, k, s) := argmaxk̂∈[0,1](1−e−∆)+e−∆E
[
J(Z∆, k̂, s)

∣∣∣∣∣ Z0 = Z, ks = k̂ ∀s ∈ [0,∆)
]
.

If, at some time t, say Zt = z such that s(Z) = ∞, then,

kt ∈ arg max e−τE[J(Zt+τ, k, s|Zt = z]

for some τ > 0. (TO-DO)

• Principal Optimality Given k, s solves the principal’s problem (2). That is,

B∗(Z, k) := sup
ŝ∈S

B(Z, k, ŝ) = B(Z, k, s)

• Belief Consistency: Finally, the law of motion for the beliefs follows Equa-
tion 1 given any k.

The requirement of sequential rationality in this framework is the only non-
standard one, its form being tailored for continuous time. We want to require that
the agent is behaving optimally at every history. In a discrete time analogue of our
game, a currently hired agent knows his action will be able to affect the public belief
until the next period; our definition of sequential rationality recovers this intuition,
having an agent best-respond as though he will at least retain his job for the next
instant.

4.1 Characterizing Equilibrium
Fix an equilibrium (s, k), and let π, u : R −→ R be the following value functions:

• π(z) is the expected discounted continuation profit of the principal, given pub-
lic state Z and the agent’s strategy k. In particular π(Z) = B∗(Z, k) and we
suppress k to save notation.

6Typically, there are finiteness requirements on these value functions that are trivially satisfied
due to boundedness in our setting and hence are not specified.
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• u(z) is the expected discounted time spent unemployed, given public state z,
and the principal’s strategy s. Note that J∗(Z, s) ≤ 1. Agent’s payoff is his
expected discounted time that he wishes to maximize. We can then turn it into
a minimization problem by looking at the expected discounted unemployed
time. That is, U(z) = 1 − J∗(z, s). Again, we suppress s to save notation.
This simple change of notation induces one important change in the agent’s
problem. While the agent was maximizing J(Z, S ) now, he minimizes U(z).
That is, the agent wants to minimize his expected discounted employment
time.

When we want to talk about values as stochastic processes, we will use the notation
Πt = π(Zt), etc.

These value functions might be very wild. In particular, as one player’s behavior
might change with beliefs in an erratic way in equilibrium—and may be required to
by his/her own best response property—neither value function is known to be the
optimal value function to a well-behaved decision problem. This presents a chal-
lenge in deriving regularity properties. Even so, we are able to show the following,
proved in the appendix.

Lemma 2. π, u are continuous.

Recall Equation 1 for the law of motion for beliefs. Let us note down the fol-
lowing important facts that come out of Equation 1.

E(dZt) =

[
µ2k2

t

2
+
β2µ2(1 − kt)2

2

]
[2p(z) − 1] dt

E(dZt)2 = [µ2k2
t + β2µ2(1 − kt)2] dt

Let us define

α(k) :=
µ2[k2 + β2(1 − k)2]

2
(6)

The following lemma is our first step towards characterizing the entire set of equi-
libria. Towards characterizing all the equilibria, one could potentially expect arbi-
trary agent behaviour inducing different equilibria. However, it is shown below that
on an interval where the principal is assured not to fire the agent, the agent behaves
in a particular manner. He always chooses a fraction k =

β2

1+β2 irrespective of the
belief about the match quality. This fraction has the property that it minimizes the
speed of learning for the principal and the agent. The intuition behind this choice
comes from agent’s preferences. He wishes to be employed for as long as possible.
Therefore, if there is an interval on which the principal is assured not to fire the
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agent, then ideally the agent would want to be in that interval forever. However,
that is ruled out due to the technology we have which ensures that no matter what
the agent does, some information about the match quality is conveyed. Therefore,
the agent chooses a k such that the rate of this information is the slowest possible.
Moreover, as can be seen, this k has the property that it is not a function of Zt, the
belief about the match quality.

Lemma 3. If −∞ ≤ z0 < z1 ≤ ∞, and (z0, z1) is a maximal interval I such that
π(z) > 0 ∀z ∈ I, then k(z0,z1) = k∗ := β2

1+β2 almost everywhere, and z1 = ∞.

Proof. Principal best response implies s|(z0,z1) is finite-valued and is a.e. zero. Then,
whenever Zt = z ∈ (z0, z1), agent best response requires

Ut = min
k∈[0,1]

(1 − r dt)E[Ut+dt] + o(dt)

=⇒ rUt dt = min
k∈[0,1]

E[dUt] + o(dt)

= min
k∈[0,1]

u′(Zt)E[dZt] +
1
2

u′′(Zt)E
[
(dZt)2

]
+ o(dt)

= min
k∈[0,1]

α(k) {[2p(Zt) − 1]u′(Zt) + u′′(Zt)} dt + o(dt)

u(z) = min
k∈[0,1]

α(k) {[2p(Zt) − 1]u′(z) + u′′(z)} .

Because u > 0 on (z0, z1) and α > 0, it must be that the term on the right is also
positive. Therefore, the agent’s minimization problem amounts to minimizing α(k).

Recall,

α(k) =
1
2
µ2[k2 + β2(1 − k)2] (7)

It is easy to see that this is minimized at k = k∗, given by,

k∗ :=
β2

1 + β2 (8)

Now, the principal’s flow payoff is f (z) := µk∗p(z) − c for a.e. z ∈ (z0, z1).
Fix z̃ ∈ (z0, z1). As π is zero at any finite endpoint (by maximality of the interval
and Lemma 2), it must be that

π(z̃) =

∫ z1

z0

f dν

for some positive, absolutely continuous measure ν on (z0, z1). As π(z̃) > 0, it must
be that f is positive on a set of positive measure. Since f is increasing, it is pos-
itive in a neighborhood of z1. Finally, applying Rüschendorf, Urusov et al. (2008)
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(Prop.2.9, Pg.864), it cannot be optimal for the principal to stop at z1 if z1 is finite.
In fact, his optimal stopping point on the right, say z∗1 > z1, as shown in the figure
below. That is, the principal would like to continue, despite a possibly negative pay-
off, to the right of z1. The intuition behind this result is that for a diffusion process,
volatility induces (roughly) a movement of

√
(dt) in either direction while the drift

induces a movement of the order of dt. Since
√

dt >> dt, the volatility introduces
an option value that forces the principal to stop a little further to the right of z1. But
then, if the principal is guaranteed to not stop between (z1, z∗1) then, by the earlier
result, the agent uses k∗ on this interval as well. But then, given that the flow payoff
f is positive when the agent uses k∗ at z1, it is obviously positive for any z > z1.
Therefore, we have an unraveling effect as now it can no longer be optimal to stop
at z∗1. Therefore, z1 = ∞.

π(z)

z0 z1 z∗1

�

Lemma 3 established the agent’s behaviour on an interval where the principal
is assured not to fire the agent, and also correspondingly established that should
such an interval exist, then its right endpoint must be ∞. Now, before we present
our main result, let us get some structure on the principal’s behaviour whenever
the agent does something other than k∗. The following lemma shows that if there
is an interval such that the agent uses a k , k∗ a.e., moreover on that interval the
agent is not being fired with probability 1, then the principal’s firing behaviour is
guided by the agent’s value function. The reason behind this is simple. The agent
can be induced to use any k other than k∗ only if he is indifferent. The agent can be
kept indifferent provided the principal behaves in a certain way which the following
lemma establishes.

Lemma 4. Suppose −∞ ≤ z0 < z1 ≤ ∞, and suppose the interval I = (z0, z1) has
k(z) < {k∗, 0, 1} for almost every z ∈ I and u(z) < 1 for every z ∈ I. Then u|| is twice
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differentiable, and

s(z) =
u(z)

1 − u(z)
for almost every z ∈ I,

s(z) < ∞ for every z ∈ I,
u′′(z) = −[2p(z) − 1]u′(z) for every z ∈ I.

Proof. TO-DO: show that u is twice-differentiable. The argument rests on essen-
tially the economic intuition that to induce any k(z) < {k∗, 0, 1}, u must be affine in
p, the beliefs. If not, the agent would have a strict preference in either minimizing
information transmission or maximizing it. Given that neither is the case, u must
be affine in p.

Suppose Zt = z ∈ I. As u(Zt) < 1, we know s(Zt) < ∞, so that the agent’s
problem at Zt ∈ I solves

u(Zt) = min
k∈[0,1]

s(Zt) dt + [1 − s(Zt) dt](1 − dt)Eu(Zt + dZt) + o(dt),

which in turn rearranges to

[1 + s(Zt)]u(Zt) dt − s(Zt) dt = min
k∈[0,1]

Eu(Zt + dZt) + o(dt)

= min
k∈[0,1]

E[dUt] + o(dt)

= min
k∈[0,1]

u′(Zt)E[dZt] +
1
2

u′′(Zt)E[(dZt)2] + o(dt)

= min
k∈[0,1]

α(k)
[
(2Pt − 1)u′(Zt)dt + u′′(Zt)dt + o(dt)

]
The above implies the agent HJB,

[1 + s(z)]u(z) − s(z) = min
k∈[0,1]

α(k) {[2p(z) − 1]u′(z) + u′′(z)} . (9)

If [2p(Zt)−1]u′(Zt)+u′′(Zt) is anything other than zero, then the agent’s objective
will be to minimize α(k) or maximize it. As it’s uniquely minimized by k∗ and can
only be maximized by7 k ∈ {0, 1}. Since the agent (a.e.) doesn’t use any such
k, agent best response implies (2p − 1)u′ + u′′ on I. Then the above HJB yields
(1 + s)u − s =a.e. 0 on I as well. �

7If β > 1, it’s only maximized by 0. If β < 1, it’s only maximized by 1.
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Now, for the following lemma, define:

δ :=

√
1 + 4

α(k∗) − 1

2
> 0,

p∗ :=
cδ

µk∗(1 + δ) − c

z∗ := log
p∗

1 − p∗
.

Proposition 1. There exist zH ∈ {z∗,∞} and zL ∈ [z, zH) ∪ {zH} such that, given
z ∈ R:

• For z < zL:

π(z) = 0, u(z) = 1, s(z) = ∞, k(z) =a.e.

0 : β > 1
1 : β < 1

.

• For z ∈ (zL, zH):

π(z) = 0, u(z) < 1, s(z) < ∞, s(z) =a.e.
u(z)

1 − u(z)
, k(z) =a.e.

c
µp(z)

.

• For z > zH:

π(z) > 0, u(z) < 1, s(z) < ∞, s(z) =a.e. 0, k(z) =a.e. k∗.

Proof. Let zH := inf{z ∈ R : π(z) > 0}.
If π isn’t globally zero, then:
Lemma 3 tells us (since, by Lemma 2, and point with positive profit is surrounded
by an interval with positive profit) the form of k to the right of zH and that π > 0 to
the right of it. Principal best response then tells us the form of s to the the right of
zH, which then implies u < 1 there. Lemma 6 then tells us zH = z∗.
If π is globally zero, then zH = ∞, and the third bullet is then vaccuous.

Let zL := inf [{z ∈ (−∞, zH) : u(z) < 1} ∪ {zH}] . If zL < zH, then:
Lemma 8 then tells us (again, mediated by Lemma 2) that u < 1 on (zL, zH) and
provides the form of k on that interval. The form of π = 0 on that interval follows
from the definition of zH. The function relating s and u there comes from Lemma 4.
It implies s < ∞ on the interval, so that u < 1 there.
If zL = zH, then the second bullet is vaccuous.

By definition of zL, we must have u = 1 to the left of zL, which then implies

14



s = ∞ and so π = 0 in the same interval. The form of k in this interval follows from
Lemma 4. �

Call a postulated equilbrium as above a (zL, zH)-cutoff equilibrium.

Theorem 1. For any zL ∈
[
z, z∗

]
, there is a unique (zL, z∗)-cutoff equilibrium.

Proof. This is merely putting together all the lemmata above. �

5 Discussion
We have modeled a setting to isolate the effects of reputational concerns to study
their effect on efficiency. As Holmström (1999) noted, achieving efficiency in the
presence of reputational concerns is in general hard. Meanwhile, an ability to build
a reputation can create useful information for the firm. We demonstrate that there
is no tradeoff: the presence of the reputation-building technology unambiguously
harms the firm, yielding lower productivity and slower learning. Our equilibria
exhibit three distinct phases—one in which the employees work less on reputation
building and produce output that justifies their being in the firm, a second in which
they focus more on building reputation and are expected to contribute to the firm
in future, and a third in which their contribution, despite their high investment in
reputation building, is productive for the firm.

Reputation can be thought of as a standing in the firm that captures the kind of
roles an employee is given. Often times, in firms, employees, as their career pro-
gresses, take up roles that do not directly benefit the firm but it is expected that this
experience will in the future bring tangible benefits to the firm. This corresponds to
the second phase of our equilibria.

One key assumption in our model is that wages cannot be conditioned on, say,
the effort on the productive technology. Given that the effort is observable it is
a natural extension. While interesting from a modeling perspective, such wage
structures aren’t observed in firms. Our setting of a constant wage is considerably
more common. We show how the tradeoff between reputation and productivity
plays out when incentivizing the correct allocation through money is not feasible,
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Appendix
Proof of Lemma 2

Proof. Let us first prove that π is right-continuous (the same argument can then be
repeated exactly for left-continuity) at an arbitrary point z1.

Consider any z2 > z > z1, and consider stochastic process {Zt}t induced by k
with initial condition Z0 = z. Define the stopping time τz1,z2 := inf{s : zs < (z1, z2)},
the first exit time for the beliefs process from the interval (z1, z2).

Now,

V(z) = P(zτ = z1)E[e−rτV(z1)] + P(zτ = z2)E[e−rτV(z2)] + (1 − e−rτ)a
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where a ∈ [−c, µ] is the average flow payoff. Now, if we show that limz→z1 E(e−rτ) =

1 and limz→z1 P(zτ = z2) = 0 then we are done.
To this end, recall that the belief process is given by the SDE -

dZt = (2p(Zt) − 1)
µ2

2

[
k2

t + β2(1 − kt)2
]

dt + µ
[
kt dB1t + β(1 − kt) dB2t

]
(10)

Observe the above SDE has a bounded drift and bounded diffusion that is also
bounded from below by a strictly positive number.

Therefore, by lemma 5,we know that limz→z1 E(e−rτ) = 1 whenever z satisfies
the SDE 10.

�

Lemma 5. Suppose X is a (strong or weak) solution to the SDE

dXt = µdt + σ(Xt)dbt (11)

where µ ∈ {−γ, γ}, γ > 0, σ(x) ∈ Rd and ||σ(Xt)|| ∈ [m,M]Suppose X0 = x.
Define, τab = inf{s : Xs < (a, b)}.
Then, limx→a E

x(e−rτab) = 1 and limx→a P
x(Xτab = a) = 1 .

The same statements hold for b.

Proof. Let us fix µ = γ wlog. Firstly,

Xt = γt +

∫ t

0
σ(Xs)dbs

Therefore,

Xt − γt =

∫ t

0
σ(Xs)dbs

is a Ft martingale. Therefore, we can perform a time change to say that

Xt − γt =

∫ t

0
σ(Xs)dbs = Wα(t)

where Wα(s) is a different brownian motion with a clock α(t) =
∫ t

0

∑d
i σ

2
i (Xs)ds

It can be easily seen that α(t) is a strictly increasing and continuous function of
t for any ω. Moreover, α(t) ∈ [m2t,M2t]. Note that

{Xt = a} = {Xt−x−γt = a−x−γt} =
{ ∫ t

0
σ(Xs)dbs = a−x−γt

}
= {Wα(t) = a−x−γt}

(12)
We know that exp(θWα(t) −

θ2

2 α(t)) is a martingale for any θ > 0.

17



Define,
τα = inf{α : Wα = a − x − γα or Wα = b − x − γα} (13)

Now, a straightforward application of the optional stopping theorem gives that

exp(θWα(0) −
θ2

2
0) = 1 = Eexp(θWτα −

θ2

2
τα)

= P(Wτα = a − x − γτα)exp(θ(a − x)E(exp(−τα(γθ −
θ2

2
))

+P(Wτα = b − x − γτα)exp(θ(b − x)E(exp(−τα(γθ −
θ2

2
))

It can be easily checked by Dynkin’s formula that

lim
x→a
P(Wτα = a − x − γτα) = 1.

Therefore, taking limits as x→ a, we have,

1 = lim
x→a
E(exp(−τα(γθ −

θ2

2
)) (14)

Choosing the value of θ appropriately, we have that E(exp(−rτα)) → 1. Since
α(t) ∈ [mt,Mt], τα ∈ [m2τab,M2τab]. Hence, E(exp(−rτab)→ 1.

�

Lemma 6. If −∞ < z0 < ∞ with k|(z0,∞) =a.e. k∗ and z0 = inf{z ∈ R : π(z) > 0}, then
z0 = z∗ and

Proof. By Lemma 3, π = 0 to the left of z0. By Lemma 2, π is differentiable at
z0, i.e. π(z0) = 0 (value matching), and the right-hand side derivative is π′(z0) = 0
(smooth pasting).

Conditional on not stopping, the belief law of motion yields

E
[
dZt

]
= α(k∗)[2p(Zt) − 1] dt

1
2
E
[
(dZt)2

]
= α(k∗) dt

a.s. whenever Zt > z0. Moreover, the principal isn’t stopping as Πt > 0 there. Itō’s
Lemma then yields

π(z) =
[
p(z)µk∗ − c

]
+ α(k∗) {[2p(z) − 1]π′(z) + π′′(z)}

18



for z ∈ (z0,∞).
Now, we temporarily switch back to the domain of probabilities with the func-

tion π̂ given by π̂(p) := π
(
log p

1−p

)
for p ∈ (0, 1). The change of variables yields

π̂(p) = (pµk∗ − c) + p2(1 − p)2α(k∗)π̂′′(p)

for p > p0 := p(z0).
Therefore, on this interval, π̂ takes the form

π̂(p) = (pµk∗ − c) + C1 p−δ(1 − p)1+δ + C2 p1+δ(1 − p)−δ

for some constants C1,C2.
[IS THIS THE SOLUTION?]
Notice that δ > 0. Applying boundedness of π̂ at the right side of the interval

then implies C2 = 0. Therefore:

π̂(p) = (pµk∗ − c) + C1 p−δ(1 − p)1+δ for p > p0

π̂′(p) = µk∗ +

(
−δ

p
−

1 + δ

1 − p

) [
π̂(p) − (pµk∗ − c)

]
for p > p0.

Then, applying value matching and smooth pasting at p0 yields

0 = µk∗ +

(
−δ

p0
−

1 + δ

1 − p0

) [
0 − (p0µk∗ − c)

]
µk∗ = (c − p0µk∗)

(
δ

p0
+

1 + δ

1 − p0

)
= (c − p0µk∗)

δ + p0

p0(1 − p0)
(p0 − p2

0)µk∗ = c(δ + p0) − p0µk∗(δ + p0)
p0µk∗ = c(δ + p0) − p0µk∗δ

p0 =
cδ

µk∗(1 + δ) − c
.

So p0 = p∗, and therefore z0 = z∗. �

In passing, we pin down the principal’s value function in any productive equi-
librium.
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For z ≥ z∗,

π(z) = p(z)µk∗ − c + C1

(
p

1 − p

)−δ
(1 − p)

= [p(z)µk∗ − c] + C1
e−δz

1 + ez

0 = π(z∗)

= [p∗µk∗ − c] + C1
e−δz

∗

1 + ez∗

C1 = −[p∗µk∗ − c]
1 + ez∗

e−δz∗
,

so that

π(z) =

{
[p(z)µk∗ − c] − [p∗µk∗ − c]

1 + ez∗

1 + ez e−δ(z−z∗)
}

1z≥z∗ (15)

=

{
[p(z) − p∗]µk∗ + [p∗µk∗ − c]

(
1 −

1 + ez∗

1 + ez e−δ(z−z∗)
)}

1z≥z∗ (16)

Lemma 7. On any interval I over which the agent a.e. chooses k , 0, k∗, 1, the
function u takes the form

u(z) = Lp(z) + M

for some constants L,M.

Proof. By Lemma 4, it must be that (2p − 1)u′ + u′′ = 0 on the interval. That is,
(u′)′ = (1 − 2p)u′. As d

dz [z − 2 log(ez + 1)] = 1 − 2p(z), the solution to the given
homogeneous first-order ODE for u′ is:

u′(z) = L̃ez−2 log(ez+1) = L̃
ez

(1 + ez)2 for some constant L̃.

Integrating again yields u(z) = L̃
1+ez + M̃ = L̃[1− p(z)] + M̃ for some constants L̃, M̃.

Replacing the constants finishes the argument. �

Let us define
p :=

c
µ

(17)

We can define z := z(p) = log c
µ−c accordingly.

Lemma 8. If −∞ ≤ z ≤ z0 < z1 ≤ ∞, and (z0, z1) is a maximal interval I such that
π(z) = 0 & u(z) < 1 ∀z ∈ I, then µp(z)k(z) = c for almost every z ∈ (z0, z1), and
z1 = inf{z ∈ R : π(z) > 0}.
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Proof. As u|(z0,z1) < 1, it must be that s|(z0,z1) is finite-valued. So principal optimality
at z ∈ (z0, z1) tells us that

0 = π(z) =
[
µp(z)k(z) − c

]
dt + (1 − r dt)EU(z + dZ) + o(dt)

=
[
µp(z)k(z) − c

]
dt + o(dt).

Therefore, µp(z)k(z) − c = 0 at almost every z on the interval.
The remaining point, that z1 = inf{z ∈ R : π(z) > 0}, is immediate if z1 = ∞. So
suppose now that z1 < ∞.
We’ve shown that a.e. on the interval, the agent is using k , 0, k∗, 1. Therefore, by
Lemma 7, u is constant, strictly increasing, or strictly decreasing on the interval.
That limz↘z0 µp(z0) − c ≥ 0 implies z0 > −∞. Then, Lemma 3 implies π cannot
be positive anywhere to the left of z0. Then, the definition of (z0, z1) as maximal
(together with Lemma 2) implies u(z0) = 1, so that u is strictly decreasing on the
interval. Therefore, u(z1) < 1. Maximality of (z0, z1) then implies that z1 ≥ inf{z ∈
R : π(z) > 0}. Lastly, notice that we can’t have z1 > inf{z ∈ R : π(z) > 0} by
Lemma 3, since k , k∗ a.e. on the interval. �

Lemma 9. In a (zL,∞)-cutoff equilibrium, it must be that zL = ∞.

Proof. Assume zL < ∞ for a contradiction. By Lemma 7, we have some constants
L,M such that u(z) = L(ez + 2z− e−z) + M for every z > zL. As u is bounded, it must
then be that L = 0, so that u is constant on (zL,∞). But then u = M < 1 above zL,
and u = 1 above zL, contradicting Lemma 2. �

So an equilibrium is either a (zL, z∗)-cutoff equilibrium for some zL ∈ [z, z∗], or
it has s = ∞ globally.

Lemma 10. On the interval (zH,∞), u takes the form

u(z) = D1
e−δz

ez + 1

for some constant D1.

Proof. On this interval, s is finite-valued and a.e. zero. Here, Itō’s Lemma yields

u = α(k∗) {[2p − 1]u′ + u′′}

This DE is the homogeneous version of the one for π in the proof of Lemma 6.
It follows readily that, when p ≥ p(zH):

u
(
log

p
1 − p

)
= D1 p−δ(1 − p)1+δ + D2 p1+δ(1 − p)−δ
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for some constants D1,D2. Boundedness of u at the right then gives us D2 = 0,
yielding

u
(
log

p
1 − p

)
= D1 p−δ(1 − p)1+δ (18)

That is, for z ≥ zH,

u(z) = D1 p(z)−δ[1 − p(z)]1+δ

= D1

(
p(z)

1 − p(z)

)−δ
[1 − p(z)]

= D1(ez)−δ
1

1 + ez ,

�

Let us put the following lemmata together in order to proceed towards the char-
acterization of a (pL, pH)-cutoff equilibrium.

Lemma 11. Every (pL, pH)-cutoff equilibrium has û(pL) = 1, û continuous and
û|[pL,pH] affine in p.

The following result is perhaps of general interest from the perspective of dy-
namic games. Consider a two-player dynamic game in which both the players’
strategy space is a measurable function from a state variable, say, X ⊆ R to R. Let
X be a diffiusion process. Moreover, imagine that player 1 is playing a strategy that
is piecewise continuous in X. Then, can we say anything about the best response of
player 2? In particular, is it also piecewise continuous and how smooth is the value
function of player 2?

Proposition 2. If s is piecewise continuous, bounded over (p0, p1), and is of bounded
total variation, then û is differentiable over (p0, p1).

We want the following from a (zL, zH)-cutoff equilibrium.

1. Given the principal’s strategy s, specified k is IC for the agent. Above z∗,
we have that from Lemma 4. Between (zL, zH), IC holds if and only if (2p −
1)u′(z) + u′′(z) = 0. This implies, from Lemma 7, u takes the form u(z) =

A ez

1+ez + B.

2. Such a form of u on (zL, zH) also has a boundary condition that u(zL) = 1.
Moreover, due to Lemma 10, u to the right of zH must be of the form given
by equation 18. It must be the case that the left and the right solutions join
smoothly at zH.

22



3. On the other hand, u is described by the DE 9. The solution to that DE, taking
as given the s(z), must satisfy the same boundary conditions. Our task is to
show that there is a unique u that satisfies the boundary conditions and it takes
the required form.

To this end, we first establish that the there is a unique triple (L,M, c1) that
satisfies the boundary conditions at zL and zH.

Lemma 12. If

u(z) = A
ez

1 + ez + B

on the interval (zL, z∗) and u(z) = uR(z) to the right of z∗ then there is a unique triple
(A, B, c1) that satisfies the necessary boundary conditions.

Proof. On the left, we have uL(z) = A ez

1+ez + B.
The necessary boundary conditions for u(z) on the interval (zL, zH), denoted by

uL(z) are-

uL(zL) = 1
uL(zH) = uR(zH)

uL′(zH) = uR′(zH)

We have three unknowns, A, B, c1 and three equations. The three equations
are linearly indepedent (Done but not shown here). Hence, ∃ a unique solution
(A, B, c1) to the above system. �

Using the solution (A∗, B∗) obtained above, define,

u∗(z) = A
ez

1 + ez + B (19)

Accordingly, let us define,

s∗(z) =


0 if z ≥ zH

u∗(z)
1−u∗(z) if z ∈ [zL, zH)
∞ otherwise

(20)

Due to the lemma above, we know that in equilibrium the principal must be
using s∗ on (zL, zH).

The HJB equation for the agent’s value function is given in equation 9, which is
reproduced below for convenience.
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(1 + s(z))u(z) = s(z) + min
k
α(k)

[
(2p − 1)u′(z) + u′′(z)

]
(21)

However, a key issue that we have not addressed so far is that in writing the
HJB equation it is assumed that the value function u(z) is C2 a.e. and C1 every-
where. In one-dimensional diffusion problems, this enables us to use Ito’s formula
towards the standard verification results. The verification approach entails proving
that a candidate value function satisfies the HJB equation and the relevant boundary
conditions. To this end, we first prove below that given an s∗, there exists a unique
solution to the HJB equation that satisfies the boundary conditions, is C2 a.e. and
C1 everywhere.

Proposition 3. Given an s∗ as defined in Equation 20, the agent’s best response
k∗(z) is given by

k∗(z) =


k∗ if z ≥ zH

c
µp(z) if z ∈ [zL, zH)
0 otherwise

(22)

and the associated value function of the agent is given by u∗(z).

Proof. The proof is an application of the standard verification arguments. We will
need a minor tweak to the verification theorems as in Pham (2009) to incorporate a
discontinuity in s∗(z). �

Lemma 13. Given any (zL, zH) with zL < zH, and s∗(z), there is a unique function
u(z) satisfying the following equations -

(1 + s∗(z))u(z) = s∗(z) + α(k(z))
[
(2p − 1)u′(z) + u′′(z)

]
if z ∈ (zL, zH) (23)

u(z) = α(k∗)
[
(2p − 1)u′(z) + u′′(z)

]
if z > zH (24)

u(zL) = 1 (25)
u(∞) = 0 (26)

lim
z→zH−

u(z) = lim
z→zH+

u(z) (27)

lim
z→zH−

u′(z) = lim
z→zH+

u′(z) (28)

Proof. Let us begin with the solution to the right of zH and in p − space instead of
z − space.

The DE for the agent is -

u(z) =
s∗(z)

1 + s∗(z)
+

α(k)
1 + s∗(z)

[
(2p − 1)u′(z) + u′′(z)

]
(29)
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In the p−space this becomes,

u(p) =
s∗(p)

1 + s∗(p)
+

α(k)
1 + s ∗ (p)

p2(1 − p)2u′′(p) (30)

With s(p) = 0 and k = k∗ the solution to this DE was obtained in equation ?? in
z − space and in equation 18 in p − space.

u(p) = c1 p
1
2−

1
2

√
4

α(k∗) +1(1 − p)
1
2

(√
4

α(k∗) +1+1
)

(31)

Or,
u(p) = Cpδ(k

∗)(1 − p)1−δ(k∗) (32)

Recall that δ was defined in equation ??. Therefore,

u′(p) = c1

[
δ(k∗)

1 − p
p

1−δ(k∗)

− (1 − δ(k∗))
p

1 − p

δ(k∗)
]

(33)

Since δ(k∗) < 0,⇒ 1 − δ(k∗) > 0,⇒ u′(p) < 0.
Let us denote by uC(p) a particular solution of the form 32 with c1 = C.
For any two constants C > D > 0, we have,

1. uC(pH) > uD(pH)

2. And u′C(pH) < u′D(pH)

We know that uC(pH) − uD(pH) > 0. Suppose uC(p) − uD(p) > 0∀p ∈ [p1, pH]
Then,

uC(p1) − uD(p1) =
α(k)

1 + s(p1)
[u′′C(p1) − u′′D(p1)] (34)

⇒ [u′′C(p1) − u′′D(p1)] > 0 (35)
⇒ [u′C(p1) − u′D(p1)] = [uC − uD]′(p1) ↑ ∀p ∈ (p1, pH] (36)

But since (uC − uD)′ < 0 at pH ⇒ (uC − uD)′ < 0 ∀p ∈ (p1, pH]. Therefore,
uC −uD is strictly decreasing over (p1, pH], and is positive at pH. Therefore, uC −uD

is strictly positive at p1 and, in fact, the difference is strictly increasing as we move
to the left.

Hence, there is a unique constant for the solution on the right that can satisfy
the left boundary condition of u(pL) = 1 at pL. Therefore, the solution constructed
has to be unique.

�

Having proved that there is a unique u(z) that satisfies the requisite boundary
conditions, and the HJB equation, we still need to prove that the given s(z) and the
agent’s behaviour actually induce u(z).
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6 Appendix - Proof of Differentiability of value func-
tions

6.1 Preliminaries on the viscosity solution approach
A well-known object in stochastic control problems is the Hamiltonian.

Let dXt = µ(x, α)dt+σ(x, α)dbtH(x, a,M) := sup
α∈A

[
µ(x, α)a +

σ(x, α)2

2
M + f (x, α)

]
(37)

where f (x, α) is the flow payoff. Typically, Dom(H) is the domain of the Hamilto-
nian that ensures that the Hamiltonian is less than∞.

In our control problem for the agent,

H(p, a,M) := sup
k

[1 + p2(1 − p)2α(k)M]

Since this is always finite, dom(H) for our problem is R × R × R

6.2 Viscosity Solution
This subsection borrows substantively from Pham (Chapter 4). Consider the fol-
lowing nonlinear second order PDE,

F(x,w(x),w′(x),w”(x)) = 0, x ∈ O (38)

O is an open subset of R and F is a continuous funcion of O×R×R×real taking
values in R. The function F is also assumed to satisfy the ellipticity condition: for
all x ∈ O, r ∈ R, p ∈ R,M,M′ ∈ R,

M ≤ M′ ⇒ F(x, r, p,M) ≥ F(x, r, p,M′)

As will be clear later, this condition is always satisfied in typical stochastic control
problems and our problem is no exception.

Definition 3. Let w : O → R be continuous and locally bounded.

1. w is a viscosity subsolution of 38 on O if

F(x,w(x), ψ′(x), ψ”(x)) ≤ 0

for all x ∈ O and for all ψ ∈ C2(O) such that x is a maximum point of w − ψ.
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2. w is a viscosity supersolution of 38 on O if

F(x,w(x), ψ′(x), ψ”(x)) ≥ 0

for all x ∈ O and for all ψ ∈ C2(O) such that x is a minimum point of w − ψ.

3. We say that w is a viscosity solution of 38 if it is both a subsolution and
supersolution.

Coming back to a problem where one player controls stopping and the other
controls an action, define

J(x, α, γ) := E
∫ ∞

0
e−βte−

∫ t
0 γs(xs)ds f (xt, αt)dt + E

∫ ∞

0
e−βt(1 − e−

∫ t
0 γs(xs)ds) f dt

R(x, α, γ) := E
∫ ∞

0
e−βte−

∫ t
0 γs(xs)dsg(xt, αt)dt + E

∫ ∞

0
e−βt(1 − e−

∫ t
0 γs(xs)ds)gdt

v(x, γ∗) := sup
α

J(x, α, γ∗)

π(x, α∗) := sup
γ

R(x, α∗, γ)

Let us fix player 1 to be the one who controls the stopping decision, often the
Principal (P), and player 2 to be the agent (A) controlling the process {Xt}. Cor-
respondingly, v(x, γ∗) is the value function for the agent. We will suppress the
dependence of v on γ∗ and just call it v(x) for the purpose of this section.

Let γ̄(x) be a number large enough so that γ(y) < γ̄(x) for all y ∈ [x − ε, x + ε]
for some ε > 0.

6.3 Supersolution
Theorem 2. Suppose the value function v is locally bounded and the function f has
a quadriatic growth. Then, for all β > 0 large enough, v is a viscosity supersolution
to the HJB equation,

(β + γ̄(x))v(x) − H(x, v′(x), v′′(x)) = 0 (39)

Remark 1. The proof closely mimics the argument from Pham.

Proof. Let ψ ∈ C2(R) be a test function such that,

0 = (v − ψ)(x) = min
y

(v − ψ)(y)
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Pick a sequence xm → x. By continuity of v, v(xm) → v(x). Let ε > 0 be a number
such that γ(y) ≤ γ̄(x) for all y ∈ [x − ε, x + ε]. Let the sequence xm be such that
xm ∈ [x − ε

2 , x + ε
2 ] for all m. This is wlog.

Let ρ := ε
2 . Also, let f̄ (x) := max

y
{ f (y) : y ∈ [x − ε, x + ε]}.

Define,

ηm := v(xm) − ψ(xm)→ 0

Let a ∈ A and α the control identically equal to a. Therefore, it is an admissible
control. Denote by Xxm

s the associated controlled process. Let τm be the stopping
time given by τm = inf{s ≥ 0 : |Xxm

s − xm| ≥ ρ}. Let (hm) be a strictly positive
sequence such that,

hm → 0 and
ηm

hm
→ 0

Let the agent’s outside option, f = 0. By applying the dynamic programming
principle for v(xm) to θm := τm ∧ hm, we get,

v(xm) ≥ E
[∫ θm

0
e−βs

(
e−

∫ s
0 γ(xu)du f (Xxm

s ) + (1 − e−
∫ s

0 γ(xu)du) f
)

ds + e−βθme−
∫ θm

0 γ(xu)duv(Xxm
θm

)
]

ψ(xm) + ηm ≥ E

[∫ θm

0
e−βse−

∫ s
0 γ(xu)du f (Xxm

s )ds + e−βθme−
∫ θm

0 γ(xu)duψ(Xxm
θm

)
]

≥ E

[∫ θm

0
e−βse−

∫ s
0 γ(xu)du f (Xxm

s )ds + e−βθme−γ̄(x)θmψ(Xxm
θm

)
]

Using Ito’s formula, we get,

e−βθme−γ̄(x)θmψ(Xxm
θm

) =ψ(xm) − (β + γ̄(x))
∫ θm

0
e−(β+γ̄(x))sψ(Xxm

s )ds +

∫ θm

0
e−(β+γ̄(x))sLaψ(Xxm

s )ds

+

∫ θm

0
e−(β+γ̄(x))sψ′(Xxm

s )dBs

The stochastic integral term will cancel out due to boundedness of ψ when we take
expectations. Substituting and dividing by hm,

ηm

hm
+ E

[
1

hm

∫ θm

0
e−(β+γ̄(x))s ((β + γ̄(x))ψ(Xxm

s ) − Laψ(Xxm
s )

)
− e−βse−

∫ s
0 γ(xu)du f (x)ds

]
≥ 0

where f (x) is some sort of lim inf of f (x). The idea is that since I want the inequality
to be ≥, I just need to take the least value of f around x. In particular, if f is
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bounded, we can replace f (x) with the lower bound. (LEFT FOR ELLIOT TO
TAKE CARE OF THIS).

As m → ∞, θm = hm which itself is tiny (LEFT FOR ELLIOT TO TAKE
CARE OF THIS). Therefore, the integral converges to

hm

(
(β + γ̄(x))ψ(xm) − Laψ(xm) − f (x)

)
Hence, we have,

ηm

hm
+

(
(β + γ̄(x))ψ(xm) − Laψ(xm) − f (x)

)
≥ 0

Taking limits as m→ ∞, we get,

(β + γ̄(x))ψ(x) − Laψ(x) − f (x) ≥ 0 (40)

By the arbitrariness of a, we conclude the result.
�

6.4 Subsolution
Here, we assume that H(x, a,M) define in Equation 37 is finite for all x. In most of
the control problems that economists encounter, this will be true.

Let us specialize to our problem for now and define,

H(x,w,M) := sup
k

[µ(x, k)w + x2(1 − x)2α(k)M + 1]

In typical HJB equations, w above involves to the first derivative of the value
function and 1 is the flow payoff. In our case, since beleifs are a martingale,
µ(x, k) = 0 but we have chosen to present it nonetheless for the sake of making
it look similar to standard problems in control theory.

Note that H(x,w,M) is continuous in each of its arguments in case of our prob-
lem.

Theorem 3. Suppose the value function v is locally bounded and the function f has
a quadriatic growth. Then, for all β > 0 large enough, v is a viscosity supersolution
to the HJB equation,

βv(x) − H(x, v′(x), v′′(x)) = 0 (41)

Proof.
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Remark 2. This is nearly a reproduction of the argument in Pham except that we
start with e−βse−

∫ s
0 γ(xu)du and then replace it with e−βs. We can do this because we

need to get a ≤ inequality and since e−βse−
∫ s

0 γ(xu)du ≤ e−βs, and the value function is
positive we are entitled to make that change. Thereafter, the argument is mimicking
Pham.

Let x ∈ R be an arbitrary point and let ψ ∈ C2(R) be a test function such that,

0 = (v − ψ)(x) = max
y

(v − ψ)(y)

Suppose v is not a subsolution to Equation 3. By continuity of H, ∃ε > 0 such that

βv(y) − H(y, v′(y), v′′(y)) > ε

∀y ∈ [x − η, x + η].
Let xm → x be a sequence. As before, define,

γm := v(xm) − ψ(xm)

As in the argument on supersolution, let (hm) be a strictly positive sequence such
that,

hm → 0 and
γm

hm
→ 0

Let, as before, θm := τm ∧ hm, τm := inf{s ≥ 0 : |Xxm
s − xm| ≥ η′} for some

0 < η′ < η.
By the dynamic programming principle, ∃ a control km that is admissible (in our

case k(p) ∈ [0, 1]) such that,

ψ(xm) + γm −
εhm

2
≤E

[∫ θm

0
e−βse−

∫ s
0 γ(xu)duds + e−βθme−

∫ θm
0 γ(xu)duψ(Xxm

θm
)
]

≤E

[∫ θm

0
e−βsds + ψ(xm) +

∫ θm

0
(−βe−βtψ(Xxm

t ) + e−βtLkm
ψ(Xxm

s ))dt + e−βtψ′(Xxm
t )dbt

]
0 ≥

γm

hm
−
ε

2
+ E

[
1

hm

∫ θm

0
L(Xxm

t , km
s )

]
where L(x, k) := βψ(x) − Lkψ(x) − 1

By the usual reasoning (Needs to be made precise) the expectation of the
stochastic integral involving db will be 0, and hence the last inequality.

Now the argument runs exactly like Pham and we get the desired contradiction.
�
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6.5 Supersolution to Differentiability
Having obtained that v(x) satisfies Equation 40 in the sicosity supersolution sense,
we can now prove differentiability of the value function if v′−(x) ≤ v′+(x).

Suppose the inequality is strict. Then, consider the function,

ψε(y) = v(x) + p(y − x) +
1
2ε

(y − x)2

for some ρ ∈ (v′−(x), v′+(x)). From the supersolution property,

(β + γ̄(x)) − sup
α

[b(x, α)p + f (x) +
1
2ε
σ(x, α)2] ≥ 0

Sending ε to 0 gets the desired contradiction as σ > 0

6.6 Subsolution to differentiability
Since v(x) satisfies Equation 3 in the viscosity sense, now we can prove differentia-
bility of v(x) if v′−(x) ≥ v′+(x).

Suppose the inequality is strict. Then, consider the test function,

ψε(y) = v(x) + ρ(y − x) −
1
2ε

(y − x)2

for some ρ ∈ (v′+(x), v′−(x)).
From the subsolution property,

βψ(x) − sup
k

[b(x, k)ρ + 1 −
1
2ε
σ(x, k)2] ≤ 0

Sending ε to 0 gets the desired contradiction.

6.7 Principal
For the principal, the value function on the interval (pL, p∗) satisfies,

π(p) = α(k)p(1 − p)2π′′(p)

On (p∗, 1), we have ,

π(p) = (pk∗µ − c) + α(k∗)p(1 − p)2π′′(p)

By optimal
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