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Abstract

I study a game of strategic experimentation with two-armed bandits in which the

state of the world is restless, “reboots” at exponentially distributed random times.

Players observe neither the initial state of the world nor reboot times, but may learn

about whether the current state is good via news that arrives at exponential times.

Unlike in standard good-news models of strategic experimentation in which the state is

rested, there are parameters for which the encouragement effect is present and players

experiment beyond the single-player threshold. There also exists a range of parameters

for which the free-riding effect is mute and the equilibrium is efficient.
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1 Introduction

None of all standard models of strategic experimentation like in Bolton and Harris (1999),

Keller, Rady, and Cripps (2005), and Keller and Rady (2015) allows for the underlying state

to change over time, or to be restless. The restless state, however, is what we often observe.

Consumers experimenting with firms have either an ordinary experience or particularly happy

with new features of firms’ products, that is, the underlying quality of these products is

restless from their point of view. Viruses mutate over time, and so, even though a new drug

succeeds at the moment, it does not mean that it will aways perform better than placebo.

The contribution of this paper is twofold. First, it is theoretically relevant, for it tests

whether some of the standard results, in particular, those in Keller, Rady, and Cripps (2005),

rely on the state not changing over time, or being rested. Second, it addresses economically

relevant questions as is clear from the applications just mentioned.

I consider a good-news, two-armed exponential bandit model as in Keller, Rady, and

Cripps (2005) with the exception that the state of the world (or the type of the risky arm)

which is common to all players changes, or “reboots,” over time. There is a finite number of

players, each with a unit of perfectly divisible resource. Each player continuously decides how

to split her resource between two arms, safe and risky, that is, how much to experiment with

the risky arm. The safe arm has a known payoff, whereas payoffs from the risky arm depend

on its initially unknown type, good or bad. If the type is good, the risky arm generates

higher payoffs than the safe one, while it yields nothing if it is bad. Payoffs from the good

risky arm arrive at Poisson times independently across players and are referred to as news.

They are publicly observable and reveal perfectly that the (current) state is good. The state

reboots at exponentially distributed times unobserved by players and becomes good with a

certain reboot probability independent of the previous state.

Restlessness of the state leads to “non-standard” dynamics of resource allocation in the

social planner’s problem and symmetric equilibrium. Even if players start with allocating

all resources to the safe arm, they may switch to the risky arm eventually, for the state may

become good after the reboot. On the other hand, the possibility that the state becomes

bad may result in experimentation ceasing even after news has arrived. These do not occur

if the state is rested. With the rested state and in absence of news, players become only

more pessimistic over time and experimentation either ceases and never resumes again or

never even starts. If news does arrive, players learn that the state is good, the state does

not change over time, and hence they allocate all resources to the risky arm thereafter.

The first main result is for the case with the reboot probability equal to one, that is,

in which the state becomes good after the reboot. I show that, like in Keller, Rady, and

Cripps (2005), there is no encouragement effect, in the sense that experimentation does not

go beyond the single-player threshold. This is not surprising, since an arrival of news reveals
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that the current state is good and it will be good thereafter even if it reboots, so there is no

value from other players’ experimentation after that.

The second main result is for the case with the reboot probability equal to zero, that is,

in which the state becomes bad after the reboot. Unlike in Keller, Rady, and Cripps (2005),

there is the encouragement effect. Indeed, players choose to experiment with the risky arm

because they want benefit from its higher payoff if it is initially good. An arrival of news

reveals that the initial state is good, but it becomes bad after the reboot. That is why

experimentation by other players is still valuable, for it helps to learn whether the reboot

has occurred.

The free-riding effect is present in both cases. That is, starting at some threshold belief

and in absence of news, each player gradually decreases the fraction of her resource which she

allocates to the risky arm and thus free-rides on other players’ experimentation. Interestingly,

however, if the state is good after the reboot, there exists a range of parameters for which

the free-riding effect is mute and the symmetric equilibrium is efficient. As is intuitive, this

the case when the state reboots relatively often or there are few players.

In general, that is, for intermediate reboot probabilities, there are parameters for which

there exists or does not exist the encouragement effect and for which the symmetric equi-

librium is efficient. Overall, the two special cases span all possible efficient and equilibrium

dynamic resource allocation and make economics behind it clear.

The paper is organized as follows. I discuss related literature next. The model is described

in Section 2. As already pointed out, the main results are clear from the two special cases

with the reboot probability equal to one and zero. The benchmark social planner’s problem

and the unique symmetric equilibrium for these cases are analyzed in Sections 3 and 4. The

analysis of the general case is in Appendix A. Section 5 concludes. All the proofs are gathered

in Appendix B.

Related literature. The paper contributes to the literature on strategic experimentation

and, as discussed, is an extension to Keller, Rady, and Cripps (2005) allowing the underlying

state to change over time. Bolton and Harris (1999) is the founding paper of the strategic

experimentation literature with news arriving according to a Brownian process rather than

a Poisson process. Keller and Rady (2015) strudies a two-armed exponential bandit model,

but with bad news rather than with good news, that is, with news arriving if the state is bad.

Keller and Rady also examine the case of inconclusive bad news. The case of inconclusive

good news is analyzed in Keller and Rady (2010).

Vasama (2016) builds on the model of Bolton and Harris (1999) and allows the drift to

depend on players’ experimentation with the risky arm and thus to evolve over time. Vasama

also extends Keller, Rady, and Cripps (2005) and allows players’ valuations to change over
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time. Unlike in this paper, the safe arm is absorbing in both versions, and the model is not

solved in closed form.

Fryer and Harms (2015) studies a general two-armed bandit model in which the expected

return from the risky arm increases if the arm is chosen and decreases otherwise. Fryer and

Harms show that the optimal strategy can be described by Gittins index (Gittins, 1979).

Board and Meyer-ter-Vehn (2013) considers a model of firm reputation in which the rep-

utation is restless from the point of view of consumers and depends on the firm’s investments

in the quality. Board and Meyer-ter-Vehn (2014) analyzes an extension with the firm not ob-

serving the underlying quality either and being allowed to exit the market. Halac and Prat

(forthcoming) studies a two-sided moral hazard model of managerial attention and agent

effort which has similar dynamics.

Keller and Rady (1999) analyzes a model of a monopoly who faces changing demand

curve. Keller and Rady (2003) considers an extension to a duopoly.

A few papers in the literature on operations research and engineering study restless

bandits and mostly focus on the optimality of the Whittle index (Whittle, 1988), a gen-

eralization of the Gittins index. For example, Dusonchet and Hongler (2003), Faihe and

Müller (1998), Glazebrook, Hodge, and Kirkbride (2011), Glazebrook, Kirkbride, and Ruiz-

Hernandez (2006), Hodge and Glazebrook (2015), La Scala and Moran (2008), Le Ny, Dahleh,

and Feron (2008), Liu and Zhao (2010), Niño Mora (2001), Niño Mora (2002), Slivkins and

Upfal (2008), Veatch and Wein (1996), Weber and Weiss (1990), and Zhao, Krishnamachari,

and Liu (2008).

2 Model

Players, actions, and states. Time t ∈ [0,∞) is continuous, and the horizon is infinite.

There are I ≥ 1 players and two alternatives, or arms: a safe arm S and a risky one R.

Each player is endowed with one unit of perfectly divisible resource per unit of time and

continuously chooses how to split it between the two arms.

If player i allocates the fraction xi,t ∈ [0, 1] of her resource to R over an interval [t, t+dt),

and consequently 1−xi,t to S, she receives (1−xi,t)sdt from S, where s > 0 and i = 1, . . . , I.

That is, the safe arm yields a known constant flow payoff which is proportional to the fraction

of the resource allocated to it. The risky arm’s payoff at time t depends on an unknown

binary state at that moment in time ωt ∈ {0, 1}. Specifically, the risky arm yields a lump-

sum payoff h > 0 at some point in the interval [t, t + dt) with probability λXtdt, where

λ > 0 and Xt =
∑I

i=1 xi,t is the aggregate resource allocation at time t, if ωt = 1 and with

probability zero if ωt = 0. I say that the risky arm is good (resp., bad) if ωt = 1 (resp.,

ωt = 0) and refer to the lump-sums as news received by players. Conditional on the state,
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arrival of news is independent across players. Overall, player i’s payoff over the interval

[t, t+ dt) is equal to

[(1− xi,t)s+ xi,tgωt]dt,

where g := λh. Player i is said to experiment at time t if xi,t > 0. Parameters are such that

g > s > 0.

The state is restless, that is, it changes, or “reboots,” over time. Independently of the

current state ωt and actions taken by players, the state reboots at some point in the interval

[t, t+ dt) with probability ϕdt, where ϕ > 0, and then ωt+dt = 1 with probability p0 ∈ [0, 1],

referred to as a reboot probability. The Poisson processes of the state reboots and news

arrivals are conditionally independent.

Information and learning. Actions and news are publicly observable. News is also

conclusive, that is, players learn that ωt = 1 if a lump-sum occurs. On the other hand, the

reboot times are unobservable to players. All the above is common knowledge.

Players have a (common) prior belief p0 ∈ [0, 1] that the state is 1. As they share the same

information, they have a (common) belief pt that ωt = 1 at any time t. Given the aggregate

resource allocation Xt =
∑I

i=1 xi,t and in absence of news, the belief pt is determined by

Bayes’ rule:

pt+dt = p0ϕdt+ (1− ϕdt)
pt(1− λXtdt)

pt(1− λXtdt) + (1− pt)
+ o(dt).

The first term p0ϕdt reflects the possibility that the state reboots in [t, t+ dt) and becomes

1 with probability p0. The second term reflects players learning about the state if there is

no news in [t, t+dt). Hence, the law of motion that governs the belief in absence of news is

as follows:

ṗt = P (pt) := ϕ(p0 − pt)− λXtpt(1− pt). (1)

In particular, even if Xt = 0, the belief does not stay the same and evolves with time as

follows:

ṗt = ϕ(p0 − pt).

If no resource continues to be allocated to R, the belief converges to p0, the reboot probability.

If Xt > 0, the law of motion (1) can be rewritten as

ṗt = −λXt(pt − αXt)(βXt − pt),

where

αX :=
1

2X

(
X + ψ −

√
(X + ψ)2 − 4Xψp0

)
, (2)
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Figure 1: Evolution of the belief pt if the aggregate resource allocation to the risky arm is
Xt = X. Parameters: (I, ψ, p0) = (2, 1, 0.75).

βX :=
1

2X

(
X + ψ +

√
(X + ψ)2 − 4Xψp0

)
, (3)

and ψ := ϕ/λ. In the special cases with the reboot probabilities p0 = 1 and p0 = 0, αX and

βX take simpler forms and their dependence on X can be clearly seen. If p0 = 1, αX = ψ/X

and βX = 1 if ψ/X ≤ 1, and αX = 1 and βX = 1 + ψ/X otherwise. If p0 = 0, αX = 0 and

βX = 1 + ψ/X. Properties of αX and βX for p0 ∈ (0, 1) are captured by the next lemma.

Lemma 2.1. For all p0 ∈ (0, 1) and X > 0, αX and βX satisfy the following properties:

– αX ∈ [0, p0] and βX ≥ 1;

– αX is strictly decreasing with X;

– limX→0 αX = p0.

It follows that, if the same fraction X continues to be allocated to R and if no news

arrives, the belief converges to αX . The limit belief αX is lower for larger X. It is convenient

to define α0 := p0.

All in all, given Xt = X, the belief increases in the interval [t, t + dt), that is, ṗt > 0,

if pt ∈ [0, αX), and decreases, that is, ṗt < 0, if pt ∈ (αX , 1]. Figure 1 captures the belief

dynamics in absence of news.

If news does arrive, the belief jumps to 1. However, unlike in Keller, Rady, and Cripps

(2005) and except for the special case with p0 = 1, the state may reboot and hence, even

though news is conclusive, the belief does not stay at 1, but starts going down according to

(1) in the next instant.1

1In the setting of Keller, Rady, and Cripps (2005), αX = 0 and βX = 1 for any X ∈ [0, I].
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Payoffs. Players discount payoffs at a (common) rate r > 0. Given players’ actions x =

{xt}t≥0, where xt = (x1,t, . . . , xI,t) is measurable with respect to information available by

time t, and the (common) prior belief p0 that the state is 1, player i’s expected normalized

payoff is as follows:

E

[∫ ∞

0

re−rt[(1− xi,t)s+ xi,tgωt]dt

∣∣∣∣ p0] ,
where the expectation is taken over {xt}t≥0 and {ωt}t≥0.

At any time t, if player i allocates xi,t to R, her expected payoff over the interval [t, t+dt)

is equal to

[(1− xi,t)s+ xi,tgpt]dt,

where pt is the (common) belief that ωt = 1. By the Law of Iterated Expectations, her

expected normalized payoff can be rewritten as follows:

E

[∫ ∞

0

re−rt[(1− xi,t)s+ xi,tgpt]dt

∣∣∣∣ p0] ,
where the expectation is taken over {xt}t≥0 and {pt}t≥0.

Strategies and equilibrium. A pure strategy of player i is a map xi,t: [0, 1] → [0, 1] such

that, given the belief pt and by allocating the fraction xi,t to R, she maximizes her expected

normalized payoff

E

[∫ ∞

t

re−r(τ−t)[(1− xi,τ )s+ xi,τgpτ ]dτ

∣∣∣∣ pt] ,
where the expectation is taken over {xτ}τ≥0 and {pτ}τ≥0. I assume that players’ strategies

satisfy regularity conditions that ensure that (1) has a unique solution (see Klein and Rady,

2011). I look for Markov perfect equilibria in pure strategies with p as a state variable and

in which players use symmetric strategies, that is, they allocate the same fraction of the

resource to R given the belief.

3 Social Planner’s Problem

As a benchmark, I consider the social planner’s problem. The efficient resource allocation has

the bang-bang property as in standard strategic experimentation literature, but its dynamics

are richer. Similar to Board and Meyer-ter-Vehn (2013), the efficient threshold p∗ can be

one of two types:

– convergent : given the efficient resource allocation and in absence of news, the belief p

stays at p∗ upon reaching it, that is, P (p∗) = 0 (recall the law of motion (1));
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– permeable: given the efficient resource allocation and in absence of news, the belief p

goes through p∗, that is, either P (p∗) > 0 or P (p∗) < 0.

Whether the threshold is convergent or permeable depends on parameters and is associated

with a different efficient dynamic resource allocation:

– full experimentation: experimentation always starts and never ceases afterwards, and

all resources are allocated to R on path;

– partial experimentation: experimentation always starts and never ceases afterwards,

but only a fraction of resources is allocated to R at the threshold p∗ on path;

– no experimentation: experimentation never takes place or ceases eventually and never

resumes again, and all resources are allocated to S on path.

All the three pattens of the efficient dynamic resource allocation are spanned by the

special cases with the reboot probabilities p0 = 1 and p0 = 0. If the state is good after the

reboot, that is, if p0 = 1, the optimum exhibits either the full or partial experimentation

property. If the state is bad after the reboot, that is, if p0 = 0, the optimum always exhibits

the no experimentation property. These are summarized by Propositions 3.1 and 3.2 and

discussed in detail below.

The two special cases make economics behind each pattern clear. That is why I leave

the intermediate case with p0 ∈ (0, 1), for which the efficient dynamic resource allocation

exhibits the full, partial, or no experimentation property, for Appendix A.

3.1 Special Case with p0 = 1

As already pointed out, if the state becomes good eventually, experimentation always starts

and never ceases afterwards. If all resources are allocated to S, that is, if X = 0, the belief

always drifts up and hence it reaches p∗ and experimentation starts. If all resources are

allocated to R, that is, if X = I, the belief reaches αI and stays there is absence of news.

(Recall that, if p0 = 1, αI = ψ/I if ψ/I ≤ 1 and αI = 1 otherwise.) Hence, experimentation

never ceases, but whether it is efficient to experiment fully, that is, whether αI ≥ p∗, depends

on whether the state reboots at a higher rate than news arrives and on the number of players,

as emphasized in Proposition 3.1.

Proposition 3.1 (Efficient Allocation: p0 = 1). The optimal strategy of the social planner
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is (essentially) unique. It is a cut-off strategy with

X(p) =


I if p > p∗,

X∗ if p = p∗,

0 if p < p∗,

where X∗ and p∗ are as follow:

(i) if ψ/I ≥ s/g, then X∗ ∈ [0, 1] and p∗ = s/g (full experimentation);

(ii) if ψ/I < s/g, then X∗ = ψ/p∗ and p∗ is given by (4) (partial experimentation).

It follows from Proposition 3.1 that, if the state reboots at a sufficiently higher rate than

news arrives, that is, if ψ/I ≥ s/g, where ψ := ϕ/λ with ϕ the reboot rate and λ the news

arrival rate, the efficient behavior is myopic, that is, p∗ = s/g. If learning is slow compared

to how fast the state reboots and becomes good, the opportunity to learn loses its value and

it is efficient to allocate all resources to R only when the immediate payoff from the risky

arm is higher.

All in all, myopic behavior takes place if ψ/I ≥ s/g. Then ψ/I ≥ p∗, that is, the belief

stays in [ψ/I, 1] and the optimum exhibits the full experimentation property. The threshold

is permeable with P (p∗) > 0. Any X∗ ∈ [0, I] at p∗ leads to the increase in the belief, so

that X = I is optimal in the next moment in time. Hence, any such X∗ is optimal.

If there are many players or news arrives relatively fast, that is, if s/g > ψ/I, it becomes

optimal to experiment for beliefs below the myopic one, that is, p∗ < s/g. The efficient

threshold is given by

p∗ =
−s(ψI − µI) +

√
∆I

2(g(1 + µI)− s)
, (4)

where ψI := ψ/I, µI := µ/I, µ := r/λ, and

∆I := s2(ψI − µI)
2 + 4sψI(g(1 + µI)− s).

The more players are present, the larger is the range of beliefs for which it is efficient to

allocate all resources to R. On the other hand, the higher is the rate of the state reboot, the

higher the efficient threshold is. These are captured by the next two lemmata.

Lemma 3.1 (Number of Players: p0 = 1). The efficient threshold given by (4) is strictly

decreasing with the number of players I.

Lemma 3.2 (Reboot Rate: p0 = 1). The efficient threshold given by (4) is strictly increasing

with the relative rate of the state reboot ψ.
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Figure 2: Evolution of the belief p in optimum that exhibits the full (left) and partial (right)
experimentation properties. Parameters: (I, λ, ϕ, r, g, p0) = (2, 1, 1, 1, 1, 1), s = 0.3 (left),
and s = 0.7 (right).

The threshold is convergent, that is, P (p∗) = 0. There exists X∗ ∈ [0, I], namely,

X∗ = ψ/p∗, such that the belief stays at p∗ if no news arrives. Any X ∈ [0, I] different from

X∗ results in fluctuations of the belief around p∗ in absence of news. Indeed,

– if X > X∗, the belief falls below p∗, which makes X = 0 optimal in the next moment

in time, which in turn causes the belief to rise to p∗ again;

– if X < X∗, the belief goes up above p∗, so that X = I is optimal in the next instant,

which pushes the belief down to p∗ again.

As a result, experimentation never ceases, but only fraction X∗ of resources is allocated to

R at the threshold p∗.

Figure 2 shows how the belief evolves, in particular, whether it increases (resp., decreases)

so that P (p) > 0 (resp., P (p) < 0), when the fractionX = 0 orX = I of resources is allocated

to R. The thick curves correspond to the efficient dynamic resource allocation.

3.2 Special Case with p0 = 0

If the state becomes bad after the reboot, experimentation never takes place or ceases even-

tually and never resumes afterwards. Whatever the fraction of resources allocated to R is,

that is, whatever X ∈ [0, 1], the belief always drifts down in absence of news. If news arrives

the belief jumps to 1, but starts drifting down again in the next instant. Hence, it reaches

p∗ eventually and experimentation ceases.
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Figure 3: Evolution of the belief p in optimum that exhibits the no experimentation property.
Parameters: (I, λ, ϕ, r, g, s, p0) = (2, 1, 1, 1, 1, 0.7, 0).

Proposition 3.2 (Efficient Allocation: p0 = 0). The optimal strategy of the social planner

is (essentially) unique. It is a cut-off strategy with

X(p) =


I if p > p∗,

X∗ if p = p∗,

0 if p < p∗,

where X∗ ∈ [0, 1] and p∗ solves (5) (no experimentation).

The opportunity to learn whether the initial state is good is valued, for there will not be

a chance to benefit from the good state after the state reboot. The threshold is such that

p∗ < s/g and it solves

s+
µI
p∗

(s− gp∗) = g
µI

µI + ψI
+ s

1 + ψI − p∗
µI + ψI

ΦI(1)

ΦI(p∗)
, (5)

where

ΦI(p) := (1 + ψI − p)

(
1 + ψI − p

p

) µI
1+ψI

. (6)

The threshold is permeable with P (p∗) < 0. As mentioned, any X∗ ∈ [0, I] leads to the

decrease in the belief in absence of news, so that X = 0 is optimal in the next instant. Hence,

any such X∗ is optimal. The thick curve in Figure 3 shows the efficient dynamic resource

allocation.
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4 Strategic Problem

Unlike in standard good-news models of strategic experimentation in which the state is

rested, there are parameters for which the encouragement effect is present and players ex-

periment beyond the single-player threshold. This is the case for relatively low reboot prob-

abilities. There also exists a range of parameters for which free-riding effect is mute and the

equilibrium is efficient. In particular, this is the case when the reboot probability is relative

high and learning is slow compared to how fast the state reboots.

The (symmetric) equilibrium has either the bang-bang property or, in short, a gradual

decrease in the level of experimentation. To be more precise in the latter case, there are

two thresholds such that each player allocates the whole resource to R for beliefs above

the upper threshold and the whole resource to S for the beliefs below the lower threshold,

and she gradually decreases the fraction of resource allocated to R for beliefs between the

two thresholds. The equilibrium with the bang-bang property has either the full or partial

experimentation pattern of the dynamic resource allocation. The equilibrium with no bang-

bang property has either partial or no experimentation pattern.

Again, all four cases of the equilibrium resource allocation are spanned by the special

cases with the reboot probabilities p0 = 1 and p0 = 0, so I leave the intermediate case

with p0 ∈ (0, 1) for Appendix A. Similar to the social planner’s problem, if p0 = 1, the

equilibrium exhibits either the full or partial experimentation property, while it exhibits the

no experimentation property if p0 = 0.

4.1 Special Case with p0 = 1

If the state becomes good after the reboot, there is no encouragement effect, but there exists

a range of parameters for which the symmetric equilibrium is efficient.

Proposition 4.1 (Symmetric Equilibrium: p0 = 1). There exists the (essentially) unique

symmetric equilibrium such that

x(p) =


1 if p > p̄,

x†(p) if p ∈ [p, p̄],

0 if p < p,

where x†, p, and p̄ are as follows:

(i) if ψ/I ≥ s/g, then x† ∈ [0, 1] and p† = p = p̄ = s/g (full experimentation);

(ii) if ψ ≥ s/g > ψ/I, then x† =
ψ
Ip†

and p† = p = p̄ = s/g (partial experimentation with

bang-bang property);
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(iii) if s/g > ψ, then x† is given by (7), p is given by (8), and p̄ solves (9) (partial experi-

mentation with no bang-bang property).

Proposition 4.1 implies that, if the state reboots at a sufficiently higher rate than news

arrives, that is, if ψ ≥ s/g, the equilibrium behavior is myopic, that is, p = p̄ = s/g. For

ψ/I ≥ s/g, such behavior is actually efficient, and hence the free-riding effect is mute. This

is not the case for ψ ≥ s/g ≥ ψ/I, as it is efficient to experiment for beliefs below the

myopic threshold, whereas players behave as if they were alone. In other words, there is no

encouragement effect.

If the state reboots relatively slow, that is, if s/g > ψ, learning the initial state becomes

valuable and players experiment beyond the myopic threshold. However, they free-ride on

each others’ experimentation, that is, as the belief falls from p̄ to p in absence of news, they

gradually decrease the fraction of their resource which they allocate to R. The equilibrium

resource allocation for p ∈ [p, p̄] is given by

x†(p) =
s(µ+ ψ)

p−p
p

+ sψ
(p−p)2

pp2
− s(µ+ ψ)(1− p) ln

(
p

1−p
1−p
p

)
(I − 1)(s− gp)

, (7)

where p is equal to

p =
−s(ψ − µ) +

√
∆

2(g(1 + µ)− s)
(8)

with

∆ := s2(ψ − µ)2 + 4sψ(g(1 + µ)− s),

and p̄ solves

s(µ+ ψ)
p̄− p

p
+ sψ

(p̄− p)2

p̄p2
− s(µ+ ψ)(1− p̄) ln

(
p̄

1− p̄

1− p

p

)
= (I − 1)(s− gp̄). (9)

Observe that the efficient threshold given by (4) for I = 1 coincides with p, that is, the

encouragement effect is absent for this range of parameters as well. This is due to the

continuation payoff being independent of the number of players, for, if news arrives, the

belief jumps to 1 and stays there thereafter, and thus there is no value from other players’

experimentation.

4.2 Special Case with p0 = 0

If the state becomes bad after the reboot, the encouragement effect is present.
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Proposition 4.2 (Symmetric Equilibrium: p0 = 0). There exists the (essentially) unique

symmetric equilibrium such that

x(p) =


1 if p > p̄,

x†(p) if p ∈ [p, p̄],

0 if p < p,

where x† is given by (12), whereas p and p̄ solve (10) and (11) (no experimentation).2

The opportunity to learn the initial state is valued, that is, each player allocates the whole

resource to R even for beliefs below s/g. Moreover, the encouragement effect is present, for

p is below the single-player threshold pinned down by (5) for I = 1. All in all, the thresholds

p and p̄ solve

s(µ+ ψ)
p̄− p

p
− s(µ− (µ+ ψ)p̄) ln

(
p̄

1− p̄

1− p

p

)
= (I − 1)(s− gp̄) (10)

and

IµI(s− gp̄)

p̄

1 + µI + ψI
µI + ψI

=

(
s+

IµI(s− gp)

p
− g

µI
µI + ψI

)(
1 +

µI − (µI + ψI)p̄

(1 + ψI − p̄)p̄

ΦI(p̄)

ΦI(1)

)
. (11)

The equilibrium resource allocation for p ∈ [p, p̄] is given by

x†(p) =
s(µ+ ψ)

p−p
p

− s(µ− (µ+ ψ)p) ln
(

p
1−p

1−p
p

)
(I − 1)(s− gp)

, (12)

that is, as the belief falls from p̄ to p in absence of news, players gradually decrease the

fraction of their resource allocated to R and thus free-ride on each others’ experimentation.

5 Conclusion

The paper has highlighted that some results in standard strategic experimentation models,

in particular, in Keller, Rady, and Cripps (2005), rely on the state being rested, not changing

over time. The equilibrium property that experimentation stops at the single-player thresh-

old, that is, that there is no encouragement effect, is a by-product not only of conclusive

2The system of equations (10) and (11) has two solutions such that p < p̄, but only one of them is
admissible. The inadmissible solution is the one with p̄ = µ/(µ+ ψ).
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good news, but also of the rested state. If the state is restless and is unlikely to be good

after the reboot, players experiment longer than they would on their own. Furthermore,

even though the interior resource allocation, that is, players free-riding on each others’ ex-

perimentation, also takes place if the state is restless, there exists a range of parameters for

which the free-riding effect is mute. This is the case when the state reboots relatively often

and is likely to be good the reboot.
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A General Results

This appendix presents results in general, that is, for any reboot probability p0 ∈ [0, 1]. As

can be easily checked propositions in Sections 3 and 4 are special cases of propositions below.

A.1 Social Planner’s Problem

Proposition A.1 (Efficient Allocation: p0 ∈ [0, 1]). The optimal strategy of the social

planner is (essentially) unique. It is a cut-off strategy with

X(p) =


I if p > p∗,

X∗ if p = p∗,

0 if p < p∗,

where X∗ and p∗ are as follows:

(i) if αI ≥ s/g, then X∗ ∈ [0, 1] and p∗ = s/g (full experimentation);

17



(ii) if neither αI ≥ s/g nor condition (13) holds, X∗ =
ψ(p0−p∗)
p∗(1−p∗) and p∗ solves (16) (partial

experimentation);

(iii) if condition (13) holds, then X∗ ∈ [0, 1] and p∗ solves (15) (no experimentation).

The optimum exhibits the no experimentation property (region (iii) in Figure 4, left)

when

s(µ+ ψ)(µ+ Ip0)− g[µ2 + µ(I + ψ) + Iψp0]p0 ≥ sI2p0(1− p0)
ΦI(1)

ΦI(p0)
, (13)

where3

ΦI(p) := (βI − p)

(
βI − p

p− αI

) µ
I
+αI

βI−αI
. (14)

The threshold p∗ is such that p∗ > p0 and is pinned down by the following equation

s(µ+ ψ)(µ+ Ip∗)− g[µ2 + µ(I + ψ) + Iψp0]p∗ = sI[Ip∗(1− p∗)− ψ(p0 − p∗)]
ΦI(1)

ΦI(p∗)
. (15)

The optimum exhibits a partial experimentation property for parameters that violate

both αI ≥ s/g and (13) above (region (ii) in Figure 4, left). The threshold p∗ is such that

p∗ ∈ [αI , p
0] pinned down by the following equation

s

(
(µ+ ψ)(µ+ Ip∗)p∗ +

ψ(p0 − p∗)[µ(1− p∗) + ψ(p0 − p∗)]

1− p∗

)
− g[µ2 + µ(I + ψ) + Iψp0]p2∗

= s
[Ip∗(1− p∗)− ψ(p0 − p∗)]

2

1− p∗

ΦI(1)

ΦI(p∗)
. (16)

A.2 Strategic Problem

Proposition A.2 (Symmetric Equilibrium: p0 ∈ [0, 1]). The symmetric equilibrium is such

that

x(p) =


1 if p > p̄,

x†(p) if p ∈ [p, p̄],

0 if p < p,

where x†, p, and p̄ are as follows:

(i) if αI ≥ s/g, then x† ∈ [0, 1] and p = p̄ = s/g (full experimentation);

(ii) if α1 ≥ s/g > αI , then x†(p†) =
ψ(p0−p†)
Ip†(1−p†)

and p† = p = p̄ = s/g (partial experimentation

with bang-bang property);

3Note that (6) is a special case of (14) for αI = 0 and βI = 1 + ψI .
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Figure 4: Parameter ranges for different patterns of the dynamic resource allocation in
the social planner’s problem (left) and the symmetric equilibrium (right). Parameters:
(I, λ, ϕ, r, g) = (2, 1, 1, 1, 1).

(iii) if neither α1 ≥ s/g nor the condition (to be found) holds, x† is given by (20) and p

and p̄ solve (21) and (22) (partial experimentation with no bang-bang property);

(iv) if the condition (to be found) holds, then x†(p) is given by (17) and p and p̄ solve (18)

and (19) (no experimentation).4

The equilibrium exhibits a no experimentation property when the condition (to be found

and is approximated numerically by the curve that separates regions (iii) and (iv) in Figure

4, right) holds. (The dashed line in Figure 4, right, corresponds to the curve that separates

regions (ii) and (iii) in Figure 4, left.) The equilibrium resource allocation for p ∈ [p, p̄] is as

follows:

x†(p) =
sµ

p−p
pp

− s[µ(1− p) + ψ(p0 − p)]
(
p−p
pp

+ ln
(

p
1−p

1−p
p

))
(I − 1)(s− gp)

, (17)

that is, as the belief falls from p̄ to p in absence of news, players gradually decrease the

fraction of their resource allocated to R. The upper and lower thresholds, p̄ and p, are such

that p̄ > p > p0 and solve the system of the following two equations:

s(µ+ ψ)
µ+ p

p
− g[µ2 + µ(1 + ψ) + ψp0]− s− gp̄

p̄
[µ2 + µ(I + ψ) + Iψp0]

=

(
s(µ+ ψ)

µ+ p

p
− g[µ2 + µ(1 + ψ) + ψp0]

)
µ(1− p̄) + ψ(p0 − p̄)

ψ(p0 − p̄)− Ip̄(1− p̄)

ΦI(p̄)

ΦI(1)
(18)

4The system of equations (10) and (11) has two solutions such that p < p̄, but only one of them is

admissible. The inadmissible solution is the one with p̄ = (µ+ ψp0)/(µ+ ψ).
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and

sµ
p̄− p

p̄p
− s[µ(1− p̄) + ψ(p0 − p̄)]

(
p̄− p

p̄p
+ ln

(
p̄

1− p̄

1− p

p

))
= (I − 1)(s− gp̄). (19)

If the equilibrium exhibits a partial experimentation property, the upper and lower thresh-

olds are such that p̄ ≥ αI and p ≤ p0. It is not bang-bang if s/g > ψ and the condition that

pins down equilibria with the no experimentation property is violated (region (iii) in Figure

4, right). The equilibrium resource allocation for p ∈ [p, p̄] is as follows:

x†(p) =
sµ

p−p
pp

+ s
ψ(p0−p)(p̄−p)

(1−p)p2 − s[µ(1− p) + ψ(p0 − p)]
(
p−p
pp

+ ln
(

p
1−p

1−p
p

))
(I − 1)(s− gp)

, (20)

that is, as the belief falls from p̄ to p in absence of news, players gradually decrease the

fraction of their resource allocated to R. The upper and lower thresholds, p̄ and p, solve the

system of the following two equations:

s(µ+ ψ)
µ+ p

p
+ s

ψ(p0 − p)[µ(1− p) + ψ(p0 − p)]

p2(1− p)

− g[µ2 + µ(1 + ψ) + ψp0]− s− gp̄

p̄
[µ2 + µ(I + ψ) + Iψp0]

=

(
s(µ+ ψ)

µ+ p

p
+ s

ψ(p0 − p)[µ(1− p) + ψ(p0 − p)]

p2(1− p)
− g[µ2 + µ(1 + ψ) + ψp0]

)
× µ(1− p̄) + ψ(p0 − p̄)

ψ(p0 − p̄)− Ip̄(1− p̄)

ΦI(p̄)

ΦI(1)
(21)

and

sµ
p̄− p

p̄p
+ s

ψ(p0 − p)(p̄− p)

p2(1− p)
− s[µ(1− p̄) + ψ(p0 − p̄)]

(
p̄− p

p̄p
+ ln

(
p̄

1− p̄

1− p

p

))
= (I − 1)(s− gp̄). (22)

There exists p† ∈ [p, p̄] such that αIx† = p†, where

x†(p†) =
ψ(p0 − p†)

Ip†(1− p†)
.
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B Proofs

B.1 Proof of Lemma 2.1

Clearly, αX ∈ (0, p0) and βX > 1. To show the dependence on X, take a derivative of αX

with respect to X:

dαX
dX

=
ψ

2X2
√

(X + ψ)2 − 4Xψp0

(
X + ψ − 2Xp0 −

√
(X + ψ)2 − 4Xψp0

)
.

Observe that √
(X + ψ)2 − 4Xψp0 > X + ψ − 2Xp0,

(X + ψ)2 − 4Xψp0 > (X + ψ)2 − 4Xp0(X + ψ) + 4X2(p0)2,

1 > p0.

Hence, ∂αX/∂X < 0. Finally, to show the limit, apply l’Hôpital rule.

B.2 Proof of Lemmata 3.1 and 3.2

For s/g > ψI := ψ/I, the efficient threshold p∗ is given by (4). The derivatives of p∗ with

respect to I and ψI are as follows:

dp∗
dI

= −s(g − s)
ψI − µI

I(g(1 + µI)− s)
√
∆

(
ψI

ψI − µI
− p∗

)
< 0

and
dp∗
dψI

= s
1− p∗√

∆
> 0.

The statements of the lemmata follow.

B.3 Proofs of Propositions 3.1, 3.2, and A.1

The social planner is concerned about which fraction X = {Xt}t≥0, where Xt ∈ [0, I], to

allocate to R in each moment at time in order to maximize the sum of payoffs, or equivalently

the average expected payoff. By the Principle of Optimality, the social planner’s problem

can be written as the Hamilton-Jacobi-Bellman (HJB) equation:

v(p) = max
X∈[0,I]

{
rdt ·

[(
1− X

I

)
s+

X

I
gp

]
+ (1− rdt) · E[v(p+ dp) | p]

}
+ o(dt),
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where v(p) denotes the average value function and X stands for the current fraction of

resources allocated to R. To find E[v(p+ dp) | p], observe that

– with probability λXpdt, news arrives: the value function jumps to v(1);

– with probability p(1 − λXdt) + (1 − p) = 1 − λXpdt, there is no news: assuming

differentiability, the value function becomes

v(p) + v′(p)dp = v(p) +
[
ϕ(p0 − p)− λXp(1− p)

]
v′(p)dt.

Therefore, the HJB equation for the social planner’s problem takes the form:

v(p) = s+
ψ

µ
(p0 − p)v′(p) + max

X∈[0,I]

{
X

(
bv(p)−

c(p)

I

)}
, (23)

with µ := r/λ, ψ := ϕ/λ,

bv(p) :=
1

µ
p[v(1)− v(p)− (1− p)v′(p)], and c(p) := s− gp,

where bv(p) is the expected discounted benefit from the risky arm that captures the jump in

the value function v(1)− v(p) when good news arrives and value depreciation when there is

no news, whereas c(p) stands for the opportunity cost of playing risky.

Propositions 3.1, 3.2, and A.1 are proved using the verification argument.

B.3.1 Proof of Proposition 3.1

If ψ/I ≥ s/g and players adopt the stated strategy, the value function is equal to

v∗(p) =

g
µp+ψ
µ+ψ

if p > p∗,

s+ gψ(1−p∗)
µ+ψ

(
1−p∗
1−p

) µ
ψ

if p ≤ p∗,
(24)

with p∗ = s/g.

If ψ/I < s/g and players adopt the stated strategy, the value function is equal to

v∗(p) =

g
µIp+ψI
µI+ψI

+ CIΦI(p) if p > p∗,

s+ s
ψ2
I (1−p∗)

(µI+ψI)p2∗

(
1−p∗
1−p

) µI
ψI if p ≤ p∗,

(25)

where

CI :=
µI(s− gp∗)(p∗ − ψI)

(µI + ψI)p∗ΦI(p∗)
,
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ΦI(p) is given by (14) for αI = ψI and βI = 1, and p∗ is given by (4).

It can be verified that, in each of the cases, bv∗(p) > c(p)/I for p > p∗ and bv∗(p) ≤ c(p)/I

for p ≤ p∗. That is, v∗(p) solves the HJB equation (23) and hence is the value function for

the social planner’s problem. For all p, the action prescribed by Proposition 3.1 achieves the

maximum in the HJB equation, so this common strategy is optimal.

B.3.2 Proof of Proposition 3.2

If players adopt the stated strategy, the value function is equal to

v∗(p) =

(v∗(1) + gµI)
p

1+µI+ψI
+ CIΦI(p) if p > p∗,

s if p ≤ p∗,
(26)

where

CI :=
µI(s− gp∗)

p∗

(
ΦI(1) +

µI−(µI+ψI)p∗
(1+ψI−p∗)p∗

ΦI(p∗)
)

and p∗ solves (5). Equation (5) is a special case of equation (15), and thus it is suffices to

argue the uniqueness of the solution in the general case with p0 ∈ [0, 1], which is done in

Appendix B.3.3.

It can be verified that bv∗(p) > c(p)/I for p > p∗ and bv∗(p) ≤ c(p)/I for p ≤ p∗. That is,

v∗(p) solves the HJB equation (23) and hence is the value function for the social planner’s

problem. For all p, the action prescribed by Proposition 3.2 achieves the maximum in the

HJB equation, so this common strategy is optimal.

B.3.3 Proof of Proposition A.1

If αI ≥ s/g and players adopt the stated strategy, the value function is equal to5

v∗(p) =

g
µp+ψp0

µ+ψ
if p > p∗,

s+ gψ(p
0−p∗)
µ+ψ

(
p0−p∗
p0−p

) µ
ψ

if p ≤ p∗,
(27)

with p∗ = s/g.

If (13) holds and players adopt the stated strategy, the value function is equal to6

v∗(p) =

(v∗(1) + gµI)
µIp+ψIp

0

µ2I+µI(1+ψI)+ψIp
0 + CIΦI(p) if p > p∗,

s if p ≤ p∗,
(28)

5Note that (24) is a special case with p0 = 1.
6Note that (26) is a special case with p0 = 0.
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where

CI :=
µI(s− gp∗)

p∗

(
ΦI(1) +

µI(1−p∗)+ψI(p0−p∗)
p∗(1−⋆)−ψI(p0−p∗)

ΦI(p∗)
) ,

and p∗ solves (15). The right-hand side of (15) is strictly increasing in p∗ for all p∗ ∈ (αI , 1).

Also, the right-hand side evaluated at p∗ = 1 is equal to Isψ(1− p0), whereas the left-hand

side is as follows:

s(µ+ ψ)(µ+ I)− g(µ2 + µ(I + ψ) + Iψp0) < Isψ(1− p0)

because g > s. (The efficient threshold is below the myopic one, that is, p∗ < s/g. Numeri-

cally, the left-hand side is below the right-hand side at p∗ = s/g, but this is still to be shown

analytically.) Therefore, there exists p∗ ≥ p0 if and only if the left-hand side evaluated at

p∗ = p0 is above the right-hand side, that is, if and only if the condition (13) holds.

If neither αI ≥ s/g nor (13) holds, and if players adopt the stated strategy, the value

function is equal to7

v∗(p) =

(v∗(1) + gµI)
µIp+ψIp

0

µ2I+µI(1+ψI)+ψIp
0 + CIΦI(p) if p > p∗,

s+ s
ψ2
I (p

0−p∗)
(µI+ψI)p2∗

(
p0−p∗
p0−p

) µI
ψI if p ≤ p∗,

(29)

where

CI :=
µI(s− gp∗)

p∗

(
ΦI(1) +

µI(1−p∗)+ψI(p0−p∗)
p∗(1−⋆)−ψI(p0−p∗)

ΦI(p∗)
) ,

and p∗ solves (16). The right-hand side of (16) is non-negative, strictly increasing, and

convex in p∗ for p∗ ≥ αI . Indeed, the first-order derivative with respect to p∗ is as follows:

s
[Ip∗(1− p∗)− ψ(p0 − p∗)][2I(1− p∗)

2 + µ(1− p∗) + ψ(2− p∗ − p0)]

(1− p∗)2
ΦI(1)

ΦI(p∗)
> 0

for p∗ ≥ αI . The second-order derivative with respect to p∗ takes the form:

s

(1− p∗)3

(
(1− p∗)

2[2I2(1− p∗)
2 + Iµ+ 2Iµ(1− p∗) + µ2]

+ ψ(1− p∗)[2I(1− p∗)
2 + 2I − I(1 + p∗)p

0 + µ(1− p∗) + 2µ(1− p0)]

+ 2ψ2(1− p0)2
) ΦI(1)

ΦI(p∗)
> 0.

The left-hand side of (16) is not monotone in p∗, but it has at most one inflection point.

7Note that (25) is a special case with p0 = 1.
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Indeed, the third-order derivative with respect to p∗ is as follows:

s
6(1− p0)2ψ2

(1− p∗)4
> 0.

The left-hand side is equal to ψp0(µ + ψp0) > 0 at p∗ = 0, and it goes to plus infinity as

p∗ goes to 1 (and thus it is convex for high enough p∗). Furthermore, the left-hand side

evaluated at p∗ = s/g is equal to

−s

[
µ
(
1− s

g

)
+ ψ

(
p0 − s

g

)] [
I s
g

(
1− s

g

)
− ψ

(
p0 − s

g

)]
1− s

g

≤ 0

for (µ+ψp0)/(µ+ψ) > s/g ≥ αI , whereas its derivative with respect to p∗ at p∗ = s/g is as

follows:

−s

[
µ
(
1− s

g

)
+ ψ

(
p0 − s

g

)] [
2I

(
1− s

g

)2

+ µ
(
1− s

g

)
+ ψ

(
2− s

g
− p0

)]
(
1− s

g

)2 < 0.

Therefore, there exists p∗ satisfying (16) and p∗ ∈ [αI , p
0] if (i) the left hand side of (16)

is below its right-hand side at p∗ = p0 and (ii) it is above its right-hand side at p∗ = αI .

Trivially, (i) is satisfied if the condition (13) with the opposite inequality holds. The condition

(ii) is equivalent to

s

g
≥ [µ2 + µ(I + ψ) + Iψp0]α2

I

(µ+ ψ)(µ+ IαI)αI +
ψ(p0−αI)[µ(1−αI)+ψ(p0−αI)]

1−αI

= αI .

It can be verified that, in each of the cases, bv∗(p) > c(p)/I for p > p∗ and bv∗(p) ≤ c(p)/I

for p ≤ p∗. That is, v∗(p) solves the HJB equation (23) and hence is the value function for

the social planner’s problem. For all p, the action prescribed by Proposition A.1 achieves

the maximum in the HJB equation, so this common strategy is optimal.

B.4 Proofs of Propositions 4.1, 4.2, and A.2

Player i is concerned about how much of her resource xi ∈ [0, 1] to allocate to the risky arm

in order to maximize her expected utility vi(p), where i = 1, . . . , I. Thus, she solves

vi(p) = max
xi∈[0,1]

{rdt · [(1− xi)s+ xigp] + (1− rdt) · E[vi(p+ dp)]}+ o(dt).

To find E[vi(p+ dp)], observe that
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– with probability λ(X−i + xi)pdt, where X−i =
∑

j ̸=i xj is the aggregate of resources

allocated to the risky arm by other players, good news arrives: the value function

jumps to vi(1);

– with probability p(1−λ(X−i+xi)dt)+ (1− p) = 1−λ(X−i+xi)pdt, there is no news:

assuming differentiability, the value function becomes

vi(p) + v′i(p)dp = vi(p) +
[
ϕ(p0 − p)− λ(X−i + xi)p(1− p)

]
v′i(p)dt.

Therefore, the player i’s problem can be rewritten as follows:

vi(p) = s+
ψ

µ
(p0 − p)v′i(p) +X−ibvi(p) + max

xi∈[0,1]
{xi(bvi(p)− c(p))} , (30)

where

bvi(p) =
1

µ
p[vi(1)− vi(p)− (1− p)v′i(p)] and c(p) = s− gp

are the expected discounted benefit and the opportunity cost of playing risky.

Propositions 4.1, 4.2, and A.2 are proved using verification argument.

B.4.1 Proof of Proposition 4.1

If ψ ≥ s/g and players adopt the stated strategy, the value function is equal to

v†(p) =

g
µp+ψ
µ+ψ

if p > p†,

s+ g
ψ(1−p†)
µ+ψ

(
1−p†
1−p

) µ
ψ

if p ≤ p†,
(31)

with p† = p = p̄ = s/g.

If s/g > ψ and players adopt the stated strategy, the value function is equal to

v†(p) =


g µp+ψ
µ+ψ

+ CIΦI(p) if p > p̄,

g (1+µ)ψ
µ+ψ

+ sµ(p−ψ)
(µ+ψ)p

+ (I − 1)x†(p)
µ(s−gp)
µ+ψ

if p ∈ [p, p̄],

s+ C0

(1−p)
µ
ψ

if p < p,

(32)

where

CI :=
IµI(s− gp̄)(p̄− ψI)

(µI + ψI)p̄ΦI(p̄)
, C0 :=

(
g − s−

µ(s− gp)

p

)
ψ(1− p)

µ
ψ

µ+ ψ
,

x† is given by (7), p is given by (8), and p̄ is pinned down by (9). The upper threshold p̄
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that solves (9) is unique. Gathering all terms in the left-hand side and taking a derivative

with respect to p̄ yield

s(µ+ ψ)

(
p̄− p

p̄p
+ ln

(
p̄

1− p̄

1− p

p

))
+ sψ

p̄2 − p2

p̄2p2
+ (I − 1)g > 0.

Moreover, the left-hand side of (9) evaluated at p̄ = p is zero, whereas the right-hand side

is equal to (I − 1)(s − gp) > 0. On the other hand, the left-hand side of (9) evaluated

at p̄ = 1 is equal to sµ(1 − p)/p + sψ(1 − p)/p2 > 0, whereas the right-hand side is equal

to (I − 1)(s − g) < 0. (The upper threshold is below the myopic one, that is, p̄ < s/g.

Numerically, the left-hand side of (9) evaluated at p̄ = s/g is above the right-hand side, but

this is still to be shown analytically.)

It can be verified that, in each of the cases, bv†(p) > c(p) for p > p̄, bv†(p) = c(p) for

p ∈ [p, p̄], and bv†(p) < c(p) for p < p. That is, v†(p) solves the HJB equation (30) and hence

is the value function in the symmetric equilibrium.

B.4.2 Proof of Proposition 4.2

If players adopt the stated strategy, the value function is equal to

v†(p) =


(v†(1) + gµI)

p
1+µI+ψI

+ CIΦI(p) if p > p̄,

−(v†(1) + µp) ψp
µ−(µ+ψ)p

+ s µ(1+ψ−p)
µ−(µ+ψ)p

+ (I − 1)x†(p)
µ(1−p)(s−gp)
µ−(µ+ψ)p

if p ∈ [p, p̄],

s if p ≤ p,

(33)

where

CI :=
IµI(s− gp̄)

p̄
(
ΦI(1) +

µI−(µI+ψI)p̄
(1+ψI−p̄)p̄

ΦI(p̄)
) ,

x† is given by (12), and p and p̄ solve the system of two equations (10) and (11). Numerically

(and to be argued analytically), the system admits two solutions such that p̄ > p, but one

of them, namely, with p̄ = µ/(µ + ψ), is inadmissible. The admissible solutions has the

property s/g > p̄ > p.

It can be verified that bv†(p) > c(p) for p > p̄, bv†(p) = c(p) for p ∈ [p, p̄], and bv†(p) < c(p)

for p < p. That is, v†(p) solves the HJB equation (30) and hence is the value function in the

symmetric equilibrium.
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B.4.3 Proof of Proposition A.2

If α1 ≥ s/g and players adopt the strategy specified, the value functions is equal to8

v†(p) =

g
µp+ψp0

µ+ψ
if p > p†,

s+ g
ψ(p0−p†)
µ+ψ

(
p0−p†
p0−p

) µ
ψ

if p ≤ p†,
(34)

with p† = p = p̄ = s/g.

If neither α1 ≥ s/g nor the condition on parameters (that pins down the no experimen-

tation case and which is to be found) holds, and if players adopt the strategy specified, the

value function is equal to9

v†(p) =



(v†(1) + gµI)
µIp+ψIp

0

µ2I+µI(1+ψI)+ψIp
0 + CIΦI(p) if p > p̄,

(v†(1) + gµ) ψ(p0−p)
µ(1−p)+ψ(p0−p) + sµ p(1−p)−ψ(p0−p)

p[µ(1−p)+ψ(p0−p)]

+(I − 1)x†(p)
µ(1−p)(s−gp)

µ(1−p)+ψ(p0−p) if p ∈ [p, p̄],

s+ C0

(1−p)
µ
ψ

if p < p,

(35)

where

CI :=
µ(s− gp̄)

p̄
(
ΦI(1) +

µ(1−p̄)+ψ(p0−p̄)
Ip̄(1−p̄)−ψ(p0−p̄)ΦI(p̄)

) ,
C0 :=

(
v†(1)− s−

µ(s− gp)

p

)
ψ(p0 − p)

µ
ψ
+1

µ(1− p) + ψ(p0 − p)
,

x† is given by (20), and p and p̄ solve the system of two equations (21) and (22). Numerically

(and to be argued analytically), the system admits a unique solution such that p̄ > p. This

solution also has the property p < p0 and s/g > p̄ > αI .

If the condition (to be found) holds, and if players adopt the strategy specified, the value

function is equal to10

v†(p) =



(v†(1) + gµI)
µIp+ψIp

0

µ2I+µI(1+ψI)+ψIp
0 + CIΦI(p) if p > p̄,

(v†(1) + gµ) ψ(p0−p)
µ(1−p)+ψ(p0−p) + sµ p(1−p)−ψ(p0−p)

p[µ(1−p)+ψ(p0−p)]

+(I − 1)x†(p)
µ(1−p)(s−gp)

µ(1−p)+ψ(p0−p) if p ∈ [p, p̄],

s if p < p,

(36)

8Note that (31) is a special case with p0 = 1.
9Note that (32) is a special case with p0 = 1.

10Note that (33) is a special case with p0 = 0.
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where

CI :=
µ(s− gp̄)

p̄
(
ΦI(1) +

µ(1−p̄)+ψ(p0−p̄)
Ip̄(1−p̄)−ψ(p0−p̄)ΦI(p̄)

) ,
x† is given by (20), and p and p̄ solve the system of two equations (21) and (22). Numerically

(and to be argued analytically), the system admits two solutions such that p̄ > p, but one

of them, namely, with p̄ = (µ+ ψp0)/(µ+ ψ), is inadmissible. The admissible solutions has

the property s/g > p̄ > p.

It can be verified that, in each of the cases, bv†(p) > c(p) for p > p̄, bv†(p) = c(p) for

p ∈ [p, p̄], and bv†(p) < c(p) for p < p. That is, v†(p) solves the HJB equation (30) and hence

is the value function in the symmetric equilibrium.
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