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ABSTRACT. Society is an aggregate of present and future generations. We study
stochastic societal optimization problems in which similar treatment of generations
in similar situations is possible. For such problems, all patient, inequality averse
societal welfare functions that are perfectly Pareto responsive have the same opti-
mal policies. When the outcomes of irreversible decisions are partially learnable, the
optimal policies for patience preferences yield a variant of the precautionary princi-
ple. Under mild conditions, optimal policies exist and there is a single Bellman-like
equation characterizing them.



Generations to come

... intergenerational solidarity is not optional, but rather a basic ques-
tion of justice, since the world we have received also belongs to those
who will follow us. (Pope Francis [23])

As we peer into society’s future, we — you and I, and our government
— must avoid the impulse to live only for today, plundering for our own
ease and convenience the precious resources of tomorrow. We cannot
mortgage the material assets of our grandchildren without risking the
loss also of their political and spiritual heritage. We want democracy
to survive for all generations to come ... . (Eisenhower, 1953)

Timescales and choices

With 500 million years left of acceptable habitat for humans on Earth,
population being stable at 10 billion with an average length of life equal
to 73 years, the ratio of people who will potentially live in the future
to people living now is approximately 10 million to 1. (Asheim [3])

If you are planning for a year, sow rice; if you are planning for a decade,
plant trees; if you are planning for a lifetime, educate people. (Attrib-
uted to Confucius, 500 B.C.)

1. INTRODUCTION

Present societal choices may have an enormous impact on the number of future
people and the world in which they live. Analyses of intergenerational allocations
of costs and benefits have a long history. We take and generalize an approach from
an early attempt to reason about them, an attempt that is ch is consonant with the
values commonly expressed in analyses of equity, and which meets the more pragmatic
criteria of tractability and applicability.

1.1. Present Threats and an Old Analysis. The looming possibility of drastic
change to the climate equilibrium and the associated easy access resources from oceans
and forests may be a threat to civilization as we know it. We still believe, or hope,
that the expected duration of human society is much longer than the timescale of
the decisions that affect this possibility. In the presence of decisions with extremely
long-lasting effects and the associated mis-match of timescales, notions of patient
preferences for long-run optimality become attractive criteria for decision problems
that affect society, society being conceived of as an aggregate of the generations that
make it up.

The analysis of intergenerational allocations and welfare has a long history, from
which we take, as starting point, Sebastien Le Prestre de Vauban’s Traité de la Cul-
ture des Foréts (in e.g. [39] or [40]), written in the late 1600’s. Vauban (Louis XIV’s
defense minister), noted that several aspects of the economics and ecology of forests



complicate the analysis of good societal practices for foresty: first, forests, being a free
or easy access resource, were systematically over-exploited; second, after replanting,
forests start being productive in slightly less than 100 years but don’t become fully
productive for 200 years; and third, no private enterprise can have so long and multi-
generational a time horizon. From these observations, Vauban concluded that the
only institutions that could, and should, undertake such projects in society’s interest
were the government, in the form of the monarchy at the time, and the church.® The
calculations behind his conclusion assumed that society would be around for at least
the next 200 years to enjoy the net undiscounted benefits.

From Vauban’s summing of undiscounted costs and benefits as a way of expressing
concern for the welfare of future generations, we take the following: if 7 represents the
random time until the end of society and w = (ug, u1, us, . . .) is a sequence of numerical
measures of different generations, then

Lr(u) = E 7 31w (1)
is a measure of society’s welfare that, conditional on 7 = ¢, treats all generations
equally. If Prob(t < M) is small for large M, then L,(-) is a measure of welfare for
a patient society, one confident in its longevity. To capture the 107 : 1 ratio between
people in the present generation and people who may live in future generations cited
above, we take limits of the L.(-)’s in (1) as Prob(t < M) goes to 0 for all M.

This class of limits have representations as integrals against a subclass of strongly
translation invariant, purely finitely additive measures, and this property will be cru-
cial below. Having positive multiples of these limits as tangents is one of two offered
characterizations of the concave social welfare functions studied here. The second
characterization arises from a variant of the preferences used to study optimality while
maintaining a concern for intergenerational equity.

1.2. Intergenerational Ethics. There is a long-held view that it is not acceptable
to slight future generations (e.g. [37], [35]) and by taking limits, we guarantee, per
Ramsey [36] that in our theory, “we do not discount later enjoyments in comparison
with earlier ones, a practice which is ethically indefensible and arises merely from the
weakness of the imagination.” Ramsey’s theory posited a “Bliss” point, reachable in
finite time, and examined the optimality equations for this point. These optimality
equations are less generally applicable than one might hope, Chakravarty [14] showed
that, in quite simple examples, the divergence of infinite horizon integrals/sums can
lead to the Ramsey optimality equations being satisfied by feasible plans with minimal
long-run utility.

To overcome such problems, Weiszécker [41] formulated the notion of overtaking
optimality — a path is overtaking optimal if its accumulated benefits are eventually
weakly higher than any other feasible path (see Brock [12] for an axiomatization of
these preferences). The overtaking criterion captures a notion of patience and has
been extensively used in studies of growth theory, especially the ‘turnpike’ properties

TAs well as the government and the church, Vauban also argued for the possibility that, in some
settings, a market-like solution to the various incentives problem might be found by making large
enough stakes in a forest inheritable but not divisible.



of deterministic optimal paths. This literature was surveyed, extended and unified
in McKenzie [31], and the first general existence result for overtaking optimality in
convex problems was given by Brock and Haurie [11].

We are primarily interested in intergenerational choice in problems where uncer-
tainty is central. The concavity of the social welfare functions we study has two roles:
applied to distributions over streams of utility, it captures risk aversion; applied to
streams of utility with no randomness it captures a preference for smoothing. The
property of having tangents in the class described above can be formulated in terms
of a variant of the overtaking criterion studied by Denardo and Miller [17], overtaking
of the intergenerational average of accumulated benefits.

Our main axiom for these preferences is the following: for any two paths, u and v, of
measures of generational utilities, if the long-run average of the difference u—wv is above
and strictly bounded away from 0, then w is strictly prefered to v. Unlike the classical
overtaking criterion, the average overtaking criterion is immune to bounded (and more)
permutations of the “names” of the generations.? In the study of intergenerational
allocations, indifference between permuted sequences of measures of generational well-
being is called “equity,” or “weak anonymity,” or “intergenerational neutrality.”

There is a set of results giving an “incompatibility” between this equity requirement
and the Pareto principle.

1.3. On the Pareto Criterion. Diamond [18] showed that there is no continuous
function on the space of sequences of utilities that is indifferent to uniformly bounded
permutations and also satisfies a version of the Pareto principle. Basu and Mitra [7]
and Fleurbaey and Michel [22] showed that this incompatibility extends to all real-
valued social welfare functions, continuous or not, and Asheim [3] provides an extensive
review of this literature. From the perspective of criteria based on average overtaking,
this conflict arises from treating utility improvements accruing to null coalitions as
being strict improvements in social welfare.

We normalize sequences of generational measures of well-being to be non-negative,
suppose that they are bounded, and denote by W the result class of sequences.?
An intergenerational allocation w in W strictly average overtakes an allocation v if
lim infp 75 S o(us — v;) > 0 and average overtakes it if the lim inf is non-negative.
The allocation 0 = (0, 0,0, ...) can never strictly average overtake any element of W,
but there is an important subclass of allocations that it does weakly overtake, those
with benefits accruing to a null coalition.

For a coalition of generations B and a stream of measures of well-being w, u + r1p
represents giving a utility bump of r to every member of B. A coalition B is a null
coalition if O average overtakes r1pg, equivalently, if u average overtakes w + r1pg, and
it is a non-null coalition if the allocation r1pg strictly average overtakes 0. There is an
intimate connection between this view of coalitions of generations and Hildenbrand’s
[24] foundational treatment of Pareto optimality with measure spaces of agents —

2f u = (5,8,0,8,0,...) and v = (0,8,0,8,0,...), then > i< (us —vy) = 5 so that u overtakes v,
but by permuting v to v™ = (8,0,8,0,8,0,...), >, cp(us — vf) is equal to —3 for T'=0,2,4, ... and
is equal to 45 for T'=1,3,5,.... By contrast, u, v, and v™ all have the same long-run average, 4.

3See Blackorby et al. [9] for a discussion of this normalization.



there, as here, the appropriate Pareto criterion involves ignoring null coalitions and
recognizing non-null coalitions.

Our main axiom requires that if w strictly overtakes v on average, then intergen-
erational preferences strictly prefer w to v. This delivers Pareto responsiveness for
our social welfare functions: for any non-null coalition B and any utility bump r > 0,
u + rlpg strictly average-overtakes w, hence w + rlp is strictly prefered; for any null
coalition, u +r1p average-overtakes w which in turn average-overtakes u + 1715, hence
u and v + rlgp are indifferent.

1.4. Methodology. Our methodological point of view is that one cannot fully un-
derstand a class of preferences without knowing their implications in the analysis of
problems of interest. Axiomatic analyses are complementary, but not completely sat-
isfactory.* For this reason, we study the implications of our social welfare functions in
three classes of applications: general equilibrium models with infinite time horizons;
Markovian decision problems; irreversible decisions with long-run implications; and
the use of the Pareto criterion.

In general equilibrium models with an infinite time horizon, one typically makes
assumptions — on preferences in exchange economy models and on preferences and
technologies in production economy models — to guarantee that equilibria have prices
that can be represented as integrals against countably additive probabilities. Bewley
8] identifies the requisite assumptions as “an asymptotic form of impatience,” Brown
and Lewis [13] gave a sharp characterization of the form of “myopia,” and Araujo
[2, Thm. 3] showed that combining the countably additive and purely finitely additive
properties of the tangents in one preference relation leads to the non-existence of Pareto
optima in these models. Working with preferences having tangents in the subclass of
purely finitely additive measures identified above, we give an existence result as well
as strong variants of the First and Second Welfare Theorems. In terms of dynasty
interpretations of infinitely-lived economic agents, the different weights assigned to
coalitions of future generations by our tangents give the tradeoffs between the welfare
of different non-null subsets of the future generations within the dynasties.

General equilibrium theory is rarely focused on the analysis of externalities, our
primary interest. To capture the one-way flow of externalities, both positive and
negative, from earlier to later generations, we turn to a class of problems known as
Markovian decision problems (MDPs). In these models: the utility at any given time
is a function of the state of the system and the choice of present action; externalities
are encoded as states of a system; and the present state and present choice of actions
determine the distribution of future states. There is a vast literature on the existence
and characterization of stationary solutions to MDPs that maximize the long-run

4This is also expressed in [5, p. 206], “By applying ethical criteria to concrete economic models,
we learn about their consequences, and this may change our views about their attractiveness.”



average reward, Arapostathis et al. [1] survey 200+ of the important works in this
field.?

We will see that the patient welfare functions studied here are particularly well-
behaved on the class of ergodic sequences, those that arise from the stationary policies
that maximize the long run average payoff. Therefore, the set of utility functionals to
which the MDP existence and characterization results apply include the concave, pa-
tients ones that we study. Further, the concavity of the social welfare functions allows
for a more complete treatment of Markovian decision problems with irreversibilities,
and this yields both a variant of the precautionary principle as well as a different
foundation for sustainability analyses.

The insistence on social indifference to boons given to null subsets of a patient so-
ciety has an implication that Chichilnisky [15] refers to as the “dictatorship of the
future.” The translation invariant, purely finitely additive character of the measures
representing the tangents to our social welfare functions means that they are indiffer-
ent to, inter alia, ignoring the “mistreatment” of any finite number of generations, a
“dictatorship of the future” if you will. Chichilnisky’s proposal to alleviate this prob-
lem is to use the class of nonstationary preferences that Araujo [2, Thm. 3] used to
show the non-existence of Pareto optimal allocations in general equilibrium models.
We give an alternate, ethically sound method to circumvent the dictatorship, one for
which a conditional equal treatment assumption can be made with no loss.

The existence of stationary solutions means that it is optimal for generations in
similar situations to make similar decisions, and this is our conditional equal treatment
assumption. With this, the only generations that can be “mistreated” are those that
find themselves in situations that do not occur. For us, the existence of patient optima
with conditional equal treatment properties outweighs the existence of alternative,
non-stationary, ethically suspect optima.

1.5. Outline. (Outline TBD) Theorems are about our class of preferences. Proposi-
tions concern applications of our preferences to particular models.

2. PATIENT, INEQUALITY AVERSE SOCIAL WELFARE FUNCTIONALS

The inequality averse intergenerational social welfare functions that we work with
satisfy a strong form of patience/anonymity. One can develop this class of functions
axiomatically or one can specify that the tangents have desirable properties. We begin
with the axiomatics, but one could as easily start with the class of tangents.

2.1. Notation and Setting. Realizations of intergenerational streams of well-being
belong to W, the non-negative elements of /... By assumption, ¢, is equipped with
the sup norm, ||u|| := sup,cy, |u¢| where w = (ug, us, .. .), and the associated distance,
d(u,v) = ||u — v||. The interior of W is denoted int(W), and u € int(W) if and only
if inf, u; > r for some strictly positive r.

PSince the survey, Meyn [33] has used an operator theoretic framework to reduce the analysis of
stability and approximability of infinite state space MDPs to the finite state space case, Borkar [10]
has extended the generality of the convex analytic approach to MDPs, while Feinberg et al. [20] give
a more general set of sufficient conditions for the existence and characterization of solutions.



To allow for the study of stochastic dynamic intergenerational problems, the domain
for preferences is the mixture set, M, of countably additive Borel probabilities on W
having bounded support, (IB)[p({u € W : |ju|]| < B}) = 1]. By assumption, the set
M is given the weak* topology.

2.1.1. Resultants. We study ‘risk averse expected utility’ preferences on M. These
are the preferences that can be represented by p > ¢ if and only if [, S(u)dp(u) >
Jw S(u) dg(u) for a continuous, concave intergenerational welfare function S(-). To
give the axiomatic form of the inequality aversion contained in concavity, we will
use the resultant or expectation of a p € M is denoted 7(p). This is the infinite
dimensional version of the expectation of a vector in R¥, and it is defined as the unique
point W satisfying [(v,y) dp(v) = (r(p),y) for all y € (.

2.1.2. Tangents. A concave function S : W — [0, 00) has a non-empty set of tangents,
denoted DS(u), at any interior w. The set of tangents determine properties of S(-) —
if L € DS(u), then concavity implies that for any v € W, S(u) + L(v — u) > S(v).
Knowing the class of differences, v — wu, for which each L(-) is non-negative gives
general property of S(-). ¢

Tangents are continuous linear functionals on /., and as such, each has an inte-
gral representation, L(u) = fNo u dy(t), denoted (u, ), where «y is a signed, finitely
additive measure on Ny having finite (variation) norm, ||y := supj, < [L(u)| < oo.
A net (generalized sequence) 7, of measures Ny converges in the weak*-topology to
v if (u,v,) — (u,) for all u € (. By Alaoglu’s theorem, the weak* closure of a
norm-bounded set of measures on Ny is weak* compact.

2.1.3. Permutations. We will define the patience of a social welfare functional using
indifference to a class of permutations. The set of integers, negative and non-negative is
denoted Z and defined as {...,—2,—1,0,1,2,...}. A permutation is a 1-to-1 function
7 : Ny — Z that is onto Ny. Given u = (ug, u1,us,...) € {5 and a permutation m,
define u™ as (Ur-1(0), Ur-1(1), Ur-1(2), - - -). A permutation is finite if 7(7") = T for all
but finitely many generations, it is bounded if |7(7") — T'| is uniformly bounded, and

it is an o(7T) permutation if lim sup; ‘“(TTJ)JT‘ = 0. This last class of permutations

are closely related to a variant of the overtaking criterion.

2.1.4. o(T)-Owvertaking. For u,v € l, u o(T)-overtakes v, written u o) v, if

lim infr_ee 75 Sp o (u — v) > 0, (2)
and u strictly o(T)-overtakes v, written u >, v, if
liminfr_, o T+r1 Zfzo(ut — ) > 0. (3)

The classical definition of u overtaking v requires the stronger, unaveraged condition
lim infr_, o ZtT:O(ut — ;) > 0, but the classical strict overtaking criterion, Ztho(Ut —
vy) > € for some strictly positive e and for all sufficiently large T is not sufficient for
o(T)-strict overtaking.® The o(T)-overtaking criterion is, for obvious reasons, called

6See [31] for a survey of models of long-run optimal economic growth using the overtaking criterion,
[30] and [22] for axiomatic treatments of patience, [3] for a survey.



“average overtaking” in the literature, see e.g. [17]. Lemma 1 (below) gives our reason
for using this name.

2.1.5. Ergodicity. The ergodic subclass of /, is denoted Erg and defined as the set
of u € l, for which the long run average, lra(u) := limp_,, TLH Ztho uy, exists. The
o(T) permutations, overtaking and the ergodic class are tightly related.

Lemma 1. If 7 is an o(T) permutation, then for all u € l, U Zory U™ Zor) u, and
for all u € Erg, Ira(u) = Ira(u™).

There is useful geometry behind Lemma 1. Define N = {z € {, : Ira(z) = 0} and
for v € W, and define (v +N) = {v+2:2 € N}. We have u Zomviff u > (v+N)
and u =) v iff for some r > 0, u + rly, > (v + N).

2.2. An Axiomatic Formulation. Our assumptions on social preferences are given
in terms of a binary relation > on M. We always assume that > is asymmetric,
that is, if p > ¢, then it is not the case that ¢ > p. Define ~ and 7 on M by p ~ ¢
if neither p > ¢ nor ¢ > p, and p 72 ¢ by p = q or p ~ ¢q. As usual, > is negatively
transitive if for all p,q,7 € M, [p > 1] = [[p > ¢ V[g > r]], and we call a negatively
transitive > an asymmetric weak order.

2.2.1. Desiderata. We have two desiderata for our intergenerational preferences: they
should be patient, defined as indifference to o(T") permutations; and they should be
exactly Pareto, increases in the utility of null coalitions has no effect on intergen-
erational preferences while uniform increases accruing to non-null coalitions have a
strictly positive effect.

For w € W and ¢ € M, we write “u > ¢” for p > ¢ where p({u}) = 1, with the
same convention for “-” and “~.” In particular, we write u > (resp. 7, resp. ~)v
for p > (resp. zZ,resp. ~)q where p({u}) = 1 and ¢({v}) = 1. In this fashion, we
restrict > to W by identifying points w in W with the associated point masses/Dirac
measures, 0,,, in M.

Definition 2.1. A preference relation = on W is patient if for all o(T') permutations
mand allu € W, u ~ u”™.

The vector 0 = (0,0,0,...) can never strictly overtake any element of W. There is
an important subclass that 0 does overtake. We say that B C Ny is a null coalition
if OiO(T) 1p and it is a non-null coalition if 15 >~,1)0. The appropriate Pareto
criterion for patient preferences involves ignoring null coalitions and recognizing non-
null coalitions.

Definition 2.2. A preference relation = on W is exactly Pareto if

(a) for all w € W, all null coalitions B and all >0, u +rlg ~u, and
(b) for alluw € W, all non-null coalitions B and all r > 0, u+rlg > u.

2.2.2. Axzioms. We will invoke the following axioms on .
Axiom [. Weak Order. > is an asymmetric weak order.
Axiom II. Independence. For all p,q,7 € M and all « € (0,1), if p > ¢, then
ap+ (1 —a)r = aqg+ (1 —a)r.



Axiom III. Continuity. For all ¢ € M, the sets {pe M :p>q} and {p e M :p <
q} are open.

Axiom IV. Risk and Inequality aversion. For any p € M, r(p) = p.

Axiom V. Respect for overtaking. [u >, v] = [u > v].

The first three axioms are standard in the expected utility theory of choice under
uncertainty: Axiom I is the usual ordering assumption for preference relations; Axiom
IT is the “linearity in probabilities” assumption for the existence of an expected utility
representation for >; and Axiom III guarantees that the representation is continuous.
For expected utility theory, Axiom IV guarantees risk aversion in the form of concav-
ity of the expected utility function, here the concavity of the social expected utility
function implies that social preferences are inequality averse on W and risk averse on
M. As noted, Axiom V loosens the classical overtaking criterion.

2.2.3. Representation. The next result gives the representation theorem for preferences
satisfying the Axioms.

Theorem A. A social ordering > satisfies Axioms I-V if and only if there exists a con-

tinuous, concave S : W — [0,00) such that [p = q] < [[ S(u)dp(u) > [ S(u)dg(u)]

with S(-) satisfying the following properties,

(1) it is patient, for all u € W and all o(T) permutations, S(u) = S(u™), and

(2) it is exactly Pareto, for all w € W and all r > 0, if B is a null coalition, then
S(u+rlg) =S(u), and if B is a non-null coalition, then S(u +rlg) > S(u).

2.3. Formulation by Tangents. Let 7 be a random variable with » ;. P(7 =
T) = 1. If we interpret 7 as the random time at which society ends and P(7 < M) < €
for large M and small €, then the mapping u — L,(u) := F TLH Y i Ut is a measure
of welfare for a patient society, one confident in its longevity. The mappings L.(-) are
also continuous, linear, positive, and have norm 1. Therefore, for each distribution of
T, there exists a unique probability 7, such that L,(u) = (u,n,) for all u.

2.3.1. The Class V. We denote by pV the set of weak® accumulation points of the
linear functionals L, as P(1 < M) — 0 for all M,

pV ={cl({n, : Prob(t < M) <e}): M € Ny, e > 0}. (4)

The class pV is non-empty (by the finite intersection property of the class of sets in
equation (4)), as well as compact and convex.

A concave function on W has a non-empty set of tangents at every interior point
of W. Our tangents will belong to the following class.

Definition 2.3. The class V is the closed convexr cone generated by pV.

2.3.2. Interior Points and V-Concavity. Continuous concave functions may fail to have
tangent functions at the boundary points of their domain. The Cobb-Douglas functions
flzy,29) = x?xglfa) for 0 < o < 1 and z1,20 > 0 are a case in point. These
considerations indicate the need form care in formulating a subset of the concave

functions on W in terms of the existence of tangents.



Definition 2.4. A function S : W — [0, 00) is V-concave on int(W) if it is contin-
uous and for all w € int(W), the set of tangent functions at uw is a closed, non-empty,
norm bounded set of strictly positive elements of V. A function is V-concave if the
same condition holds for all u € W.

2.3.3. Axiomatic Properties Arising from Tangents. The following relates V-concave
functions and preferences satisfying our Axioms.

Theorem B. If S : W — [0,00) is V-concave, then the expected utility preferences it
represents satisfy Axioms I-V, and if a continuous concave S : W — [0, 00) represents
preferences satisfying Axioms 1-V, then it is V-concave on int(W).

For u,v € Erg, > v if and only if Ira(u) > lra(v). This leads to the social
welfare functions having a particularly simple structure when restricted to the class
Erg C W.

Corollary B.1. If a social ordering > satisfies Axioms I-V, then there exists an
increasing, concave @ : [0,00) — [0, 00) such that for all p,q € M satisfying p(Erg) =
q(Erg) =1, p = q if and only if [ p(Ira(v))dp(v) > [ ¢(Ira(v)) dg(v).

This will play a large role in our analysis of optimization problems with ergodic
solutions. In strongly ergodic models, it is a probability 1 event under the optimal
policy that all paths yield the same long run average. In such models, Corollary
B.1 implies that one maximizes the long run average if and only if one maximizes
the expected value of S(-) for every social welfare function satisfying Axioms I-V.
In models where optimal policies give a distribution over the long run average, the
concavity of ¢(-) determines how the social welfare function trades off different risky
long run prospects.

3. APPLICATIONS

We begin with a brief treatment of patient preferences in general equilibrium mod-
els with bounded sequence commodity spaces. We show that with our preferences,
competitive equilibria exist and the First and Second Welfare Theorems hold. The
contrast between this result and the results on the need for “myopic” preferences
for the existence of Pareto optima clarifies some aspects of the structure of patient
preferences.

General equilibrium theory has a difficult time with externalities, and intergener-
ational externalities are our major focus. Our second set of applications are models
in which externalities are encoded as the states in a Markovian decision problem and
present actions crucially influence the distribution of future states. In the context of
models with a single long-run average payoff, we have the strong result that all of our
patient preferences have the same optimality equations.

Irreversible decisions are the ne plus ultra of externalities in intergenerational dy-
namic problems. This is our third class of applications. For patient preferences,
optimal policies in the presence of irreversible decisions embody a version of the pre-
cautionary principle.
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3.1. Patience and Myopia in General Equilibrium Theory. Bewley [8] stud-
ies general equilibrium models with commodity spaces that are uniformly bounded
sequences of non-negative consumption vectors in R*. Bewley’s Theorem 1 gives suffi-
cient conditions for the existence of a competitive equilibrium with prices that positive,
finitely additive R*-valued measures, while his Theorems 2 and 3 study conditions for
the existence of equilibria with prices in the set of summable R*-valued sequences.
Brown and Lewis [13] and Araujo [2] study the same class of general equilibrium mod-
els and give results, respectively, on the role of /need for myopia in preferences for the
existence of Pareto optima.

3.1.1. Notation and Assumptions. Let % denote the set of x € (RF)No such that
SUpsen, [|2¢|| < co. Feasible consumptions and endowments belong to W* := {x €
(% x> 0}. BEach agent/dynasty i in a finite set I, has an endowment w; € W*. We
give W¥ the sup norm.

Assumption A. Fach w; is an interior point of W¥.

This implies that w := ), w; is also an interior point of W*.

Feasible consumption streams are vectors (x;);e; with each ; € W* and Y, @; <
w. The preferences of ¢ are given by a utility function  — U;(x). We say that a
V-concave S : W — R is V-concave at the boundary if DS(u) # ) for all u € W
(not just all u € int(W)).

Assumption B. U;(z) = S;(u;(x)) where: w; = (uio(zo), ui1(z1),...); Si(+) is V-
concave at the boundary; and the u;;, t € Ny are uniformly bounded, continuous,
concave, strictly increasing period utility functions on [0,w; C RY with u;4(0) = 0
and lim inf;{max u; ;(w; )} > 0.

It is the aggregation of period utilities by a V-concave utility function that makes
the preferences patient. The assumption that the range of the utilities u;; does not
disappear guarantees that the agents are non-trivial parts of the economy.

Definition 3.1. An equilibrium for an exchange economy model € = (w;, U;)ies 18

a feasible consumption stream, (x;)icr and a price 7 in the topological dual of €% such
that for alli € I and all y € WF,

Ui(y) > Us()] = [(y, ™) > (z,m)]. (5)

3.1.2. Equilibrium FExistence and the Welfare Theorems. The following equilibrium
existence result follows directly from Bewley [8, Theorem 1] and does not require
V-concavity at the boundary.

Proposition 1. Under Assumptions A and B, an equilibrium exists.

For finite dimensional production and exchange economies without externalities, the
First Welfare Theorem states that competitive equilibria are Pareto optimal, and the
Second Welfare Theorem states that all Pareto optima are competitive equilibria after
appropriate re-arrangement of the initial endowments. Using preferences with tangents
that are integrals against convex combinations of countably and purely finitely additive
measures Araujo [2, Theorem 3] shows that Pareto optimal allocations may not exist.
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Such preferences are not in the class of patient preferences we are using here, and this
difference leads to very different results.

Because the tangents of V-concave functions have representations as integrals against
purely finitely measures, the price vector in Proposition 1 must be purely finitely ad-
ditive. Our next result shows that, for such preferences, we have the First and Second
Welfare Theorems. To complete the analysis, we present two examples. The first, due
to Araujo [2], shows that for preferences with tangents that are a mix of countably
and purely finitely additive measures, e-Pareto optimal equilibria may not exist. The
second example draws a parallel with optimal allocations of uncertainty: in the allo-
cation of risk, if (say) agents ¢ and j assign probability 1 and probability 0 to an event
E, then the optimal allocations give ¢ all of the consumption in the event E and give
agent j all of the consumption in the event E°¢; if dynasties ¢ and j put mass 1 and
mass 0 on the coalition F, we have the same pattern.

Proposition 2. Under Assumptions A and B, every equilibrium is Pareto optimal,
and every Pareto optimal allocation is an equilibrium for an appropriate re-arrangement
of the initial endowments.

The tangents to V-concave preferences have representations as integrals against
purely finitely measures. This is crucial to the existence of Pareto optimal points as
the following example demonstrates.

Example 3.1 (Araujo). For I = {1,2}, let w; = ws = 1 be the constant endowment
of one unit of the single good. For an allocation x, let Uy(x) = x1 + (@, n) where n is
a non-negative, purely finitely additive measure that satisfies (wy,n) > 1. Let Uy(y) =
(y,7) + (y,n) where v is countably additive and strictly positive, say v, = (1 — )"
so that (y,7) = (1= B) 222y

Suppose now that (x,y) is an individually rational Pareto optimal allocation. Be-
cause v, > 0 for all t, Pareto optimality implies that x1, = 0 for allt > 2. Feasibility
implies that x1 < 2. Combining, Uy(x) < 2+ 0. However, Uj(w1) = 1+ (wq,n) > 2,
a contradiction.

Continuous linear preferences on W* can be decomposed into a countably additive
part and a purely finitely additive part. For any € > 0, the value of the countably
additive parts are determined on {0, 1, ..., 7T} for sufficiently large 7', while the value of
the purely finitely additive part is entirely determined on {T'+1,7+2,...}. For linear
preferences, this implies that e-individually rational and Pareto optimal allocations
exist. We conjecture that the same is true for concave utility functions.

Example 3.2. Let the agents and their endowments be as in the previous exam-
ple. Suppose that U;(y) = (y,v:) where (y1,72) is any accumulation point of the set
(Uni for, Unifo (ry2). It is possible to demonstrate’a set of generations, E, such that
(1g,v1) = 1 and (1g,v2) = 0. All Pareto optimal allocations must assign dynasty 1
the entire economy’s endowment in E and must assign dynasty 2 the entire economy’s
endowment in E°.

"General form of this result to be added to appendix.
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3.2. Patience in MDPs. Example of MDP without overtaking optimal, but having
average overtaking optimal solution from [17]. Simpler more general proof of existence.

3.2.1. A Stark Model. Suppose that the world’s ecosystem can be in one of two states,
damaged or undamaged: in the damaged state, the seas, forests and the biota that
survive are unable to produce oxygen and foodstuff in the amounts humans are evolved
to need: in the undamaged state, the seas and forests are able to produce oxygen
concentrations supporting life as we currently know it. In the undamaged state, x =
G, society chooses the transition probability, » to the damaged state, x = B, with
0 <r <r <7 < 1. The expected utility of choosing r is ug(r), and higher choices
of r lead to a higher expected utility for the present generation, up(r) > 0. In a
parallel fashion, in the damaged state, society chooses the transition probability, s to
the undamaged state with 0 < s < s <5 < 1, and higher choices of s lead to lower
expected utility of the present generation, u/z(s) < 0. A generation in a good state
can sacrifice some present utility in order to lower the future probability of disastrous
climate changes, a generation in a bad state must sacrifice some of their present utility
in order to raise the the future probability of a return to a better world.

Starting from the present, t = 0, a policy, w, chooses an 7 and a s as a function of
the present state. This choice gives rise to a Markov process, &% = (®¥),en,, taking
either the value G or B. A policy w is S-optimal if it maximizes E (S(®)|®g = z) for
each z. The easiest way to develop the optimality equations uses the expression of the
Markov process @ as a sequence of i.i.d. (independent and identically distributed)
sojourns, here adapted to a two-state process.

If a is an atom of a Markov process, then from any recurrent state, x # «, the
process will find its way back to « in a random time with finite expectation. The time
path of the process during periods between a departure from « and a first return to
a is called a sojourn from « because the process is temporarily staying someplace
other than a. In a the present model, either state can be regarded as an atom.

3.2.2. The Long-Run Average Optimality Fquations. Because the probabilities r and
s are interior, any policy w = (r,s) leads to the process ®* having a well-defined
long-run average, p = p* := F limp_, TLHU((I);”)

Let EY be the expectation operator when using a policy w and starting from ¢, = x.
To characterize an optimal w, we need to find numbers p, h(G), and h(B) such that

p+h(G) = g@% [ug(r) + EEh(®)], and (6)
p+ H(B) = ma [ (s) + Fgh(,)]. 7)

In parallel with the Bellman equations for a discounted stochastic dynamic program-
ming problem, the problems in (6) and (7) maximize a present utility plus an expected
value of where the process will arrive one step into the future. The difference is the
replacement of the discounted value function with the expected deviation from the
long-run average during the sojourn.
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In this model, EGh(®1) = (1—7r)h(G) +rh(B) and ESh(P,) = sh(G)+ (1 —s)h(B).
Therefore, the first order equations (FOCs) for an interior solution to (6) and (7) are

ug(r) = [M(G) = h(B)] and up(s) = [A(B) = h(G)]. (8)

In this particular model, h(G) = (ug(r) — p) - E1p, E15 = (1 —r)/r, h*(B) =
(up(s) — p) - E1g, E1¢ = (1 — s)/s because 75 and 7 are geometric distributions.
We assume that the payoffs in the good state are higher than those in the bad state,
which leads to ug(r) —p > 0 > up(s) — p. When the expected values of the times
until transitions between states are large, we expect [h*(G) — h*(B)] to be a large
positive number. From this, one expects the right-hand sides of these to be too large
(in absolute value) for interior solutions. This would imply that the optimal policy is
as careful as possible in the good state and works as hard as possible to return to the
good states when in the bad state, that is, w* = (r,3).5

By contrast, consider the policies that myopically maximize utility in the damaged
state, the policies of the form (7, s). Any such policy maximizes the expected value of
the Rawlsian social welfare function, Sgawis(w) = liminf, u; because Sgawis(u) = up(s)
with probability 1 for any policy. It is the failure of the Rawlsian ordering, Sgauis(*),
to respect the Pareto ordering that is at work here. With probability 1, along any
path, there is a non-negligible portion of the generations in the good state, their utility
does not enter in the Rawlsian ordering, and this precludes making tradeoffs between
the welfare of different proportions of the generations that make up society.

3.2.3. The Long-Run S(-)-Optimal Equations. As we argued above, one does not fully
understand a class of preferences or the set of assumptions behind them until one knows
their implications in the analysis of problems of interest. One of the two main results
in this paper shows that a policy for a Markovian decision problem is S-optimal for
a V-concave societal welfare function if and only if the policy maximizes the long-run
average utility. For the analysis of Markovian models, this means that we can appeal
to all of the techniques that have been developed to insure the existence of solutions
to equations such as (6) and (7) [32, See especially| to find S-optimal policies. Here,
we give some intuitions for this result.

Following a policy w = (r, s), gives rise, with probability 1, to a sequence of utili-
ties u = (ug, uy, Us, ...) that is ergodic/Cesaro summable, limy_, TLH ZtT:O Uy exists.
Further, with probability 1, the limit is the same along all paths, and it was denoted
p = p¥ above. Every L in the class V has the property that for all u,u’ with the
same Cesaro sum/long run average, L(u) = L(u'). Putting the pieces together, with
probability 1, all of tangent functionals treat all of the realizations the same. This in
turn means that, restricted to a probability 1 set of realizations, S(u) = ¢(p) where
©(+) is concave and strictly increasing. As a result, maximizing p = p" is necessary
and sufficient for finding an S-optimal policy.

8In this simple model, it is easy to verify that each w = (r,s) gives rise to the long-run average
p=p(rs) = Z5uc(r) + 5up(s). Verifying that the FOCs 9p/0r = 0 and dp/ds = 0 reduce to
(8) is routine.
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3.3. Patience and Sustainability. Following Krautkraemer [27], sustainability “ba-
sically gets at the issue of whether or not future generations will be at least as well off
as the present generation.” In systems potentially subject to large shocks such as dra-
matic climate change or collapses of civilizations, a definition must take into account
the variability. One can do that using stochastic state variables as in MDPs, and in
that context, our patient preferences suggest that “at least as well off as the present
generation” should be replaced by “at least as well of in expectation as past gen-
erations have been.” By handling variability, the definitions of patience and Pareto
optimality advanced in this paper provide normative justifications of sustainability
complementary to those in the literature. A careful analysis of these throws further
light on our definitions.

Previous analyses of patience and intergenerational equity have centrally used weak
anonymity, understood as social indifference to finite or bounded permutations. This
property links patience to purely finitely additive measures on Ny, the space of gen-
erations. A measure 77 on Ny is purely finitely additive if and only if for all u =
(ug, u1,...) € W with u; — 0, fNo updn(t) = 0. If the w; are strictly positive, this
means that patient and equitable preferences must be indifferent to the addition of
u. This violates the strong Pareto optimality criterion, the one that insists that
vanishingly small increases in the well-being of what we call null coalitions must be
respected.

Domain restrictions have been used to circumvent such difficulties. For example, in
the Dasgupta and Heal [16] and Solow [38] model of capital accumulation and resource
depletion, discounted utilitarianism, ranking elements in W using Lg(u) = (1 —
B) ZteNO w3, has the property that for all 3 < 1, the long-run well-being converges
to 0. One relatively simple approach is to restrict attention to sustainable paths of
generational well-being, i.e. the non-decreasing paths, and to look within that subset
for paths that maximize the discounted sum of intergeneration well-being, or that
satisfy other equity conditions from the social choice literature.

In the first approach, the optima among the non-decreasing sequences converge to
steady state levels of well-being that are higher for discount factors g closer to 1.
Taking limits of the Lg(-) as 8 1 1 gives a subset of pV. The bounded monotonic
sequences belong to Erg, and restricted to Erg, the rankings of all of the preferences
in V agree, picking the stream with the highest long-run average, i.e. the Golden Rule
optimum. In the second approach, a minimal set of ethical conditions for judging time
paths of intergenerational utility is the Suppes-Sen Grading principle. This is a very
incomplete ranking, but, under some mild conditions on the technology linking the
well-being of generations, Asheim et al. [4] show that the set of Suppes-Sen maximal
paths are the set of nondecreasing, technologically efficient paths. Such paths are the
sustainable ones in the sense of non-diminishing paths of well-being, which means that
the unsustainable paths are not maximal, hence cannot be justified.

If one takes seriously the possibility of large intergenerational swings in utility, then
there are drastically non-convex technologies that make inequality socially optimal
with out utility functions. For example, if the generational utilities can be either 1
or 5 or 2, and the technology is such that: every generation with utility 5 must be

15



followed by a generation with utility of 1; every 1 can be followed either by a 2 or a 5;
and every 2 can be followed by a 2 or a 1. The feasible path (1,5,1,5,1,5,...) is much
more unequal but has a higher long-run average than the feasible path (1,2,2,2,...).

3.4. Patience and Irreversibility. We look at a simple model of a fishery where
species extinction is possible, but avoidable at a cost. We will see the distinction
between the long-run behavior of discount optimal policies and optimal policies for
patient preferences at work.

Suppose that there are two states, 1 and 2, that the sets of available actions are
A(1) = [0,1], A(2) = {1}, that utilities u(a, s) are given by u(1,2) = 0, that using a
higher action in state 1 is more profitable, du(a,1)/da > 0, but that higher actions
make it more likely that you will move to state 2 and that state 2 is absorbing,

p272(1) = ]_
Specifically,
e u(a,s =1)=10(1 + v/a),
0 ifa<a®
® pio(a) =

s(a—a®)? ifa>a°

3.4.1. The Patient Solution. Running any risk of the absorbing state means that
Ira(u) = 0, therefore one sets the patient optimum as a” = a° and lra(u) = 10(1 +

Vae).
3.4.2. The Discounted Solution. Define ¢q;2(a) = 1 — p12(a). The Bellman equation
for discount factor 8 has Vj3(2) =0, and

Vs(1) = max 10(1 + v/a) + B [q12(a)V5(1) + p12(a)0)] .

a€l0,1]

The FOCs are .
%:ﬁvﬁ.(a_w’)
where Vg = V3(1).
We now argue that (a* — a°) %, which means that as 8 1 1, the optimal
action converges downwards to a°. This is continuous policy convergence, but the

long-run occupation measure always puts mass 1 on the absorbing state for § < 1.
To see why this works, note that if a* is the solution, then

V(1) = Vs = u(a®)/(1 = B qr2(a’))
where u(a*) = 10(1 + v/a*). Plugging this into the FOCs yields

B-10(1+ Var)(a* —a°) = 1 — B(1 — %(a* @) =1-8+ %5@* — ).

Dividing both sides by (a* — a°) yields

5-10(1+\/E)=(

1_ﬁ 1 * o
a*—a°)+§6(a —a°).

. . * o (1-5)
As B 1 1, the only way to arrange this to stay true is to have (a* — a°) e
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3.4.3. The Previous in a Marine Reserve Fishery Model. Suppose that by putting
aside p of the fishing area into a marine reserve, the probability that the fish go

extinct is
0 if p>p°
o(p) =

tp—p°)? ifp<p>’

Thus, having a marine reserve of less than p° in a stationary policy means that the
fish go extinct, eventually, with probability 1, while a marine reserve larger than p°
guarantees fish forever.

If (x —a) of the fish are left to breed in the non-protected part of the fishery, the new
fish available in the non-protected part are (1 — p) f(x — a) with probability ¢(p) and
0 fish forever with probability 1 — ¢(p), f(:) the usual fish growth function, strictly
increasing, strictly concave, slope at 0 strictly larger than 1, but the slope is eventually
strictly less than 1.

In the patient solutions, marine rine reserve size is p° and the policy involves golden
rule fishing on the remaining part. By contrast, in the discounted solution, p*(3) 1 p°

as 811, a*(B) tgolden rule as 5 1 1.

3.5. Irreversibility and the Precautionary Principle. In many stochastic dy-
namic decision problems, the decision maker has only partial information about the
state variables or the consequences of actions. Let us again consider a specific example
to heighten the intuitions about maximizing patient preferences in such contexts. A
hidden state X takes the two values z; < 0 < x;, with strictly positive probabilities
(1 — g) and g, and we assume that £ X < 0. When the action a = 1 is taken, utility
will go up/down by X forever thereafter and no further actions are available. When
the action a = 0 is taken, utility will be unchanged forever thereafter and no further
actions are available. Until either a = 0 or a = 1 is chosen, the action s is available.
When a = s is chosen, a signal that is perhaps related to X will be observed. There
is a random number of signals informative about the value of X. Every attempt to
observe an informative signal costs c.

The random number of informative signals is another hidden state, M, distributed
with probability p,, m = 0,1,... where ) p,, = 1. The signals Sy, S1,...,5u are
independent and informative Bernoulli’s, that is, they are distributed iid Bern(q) if
X = x;, and distributed iid Bern(l — p) if X = x;, where + < p,q < 1. The signals

2
Syrs1, Saraa, - - - are distributed iid Bern(w) for some 7 € (0, 1).

For any V-concave preferences we have the following version of the
precautionary principle: if there is a positive probability that beliefs
will converge to F?X > 0, then in any optimal path, signals will be

observed until beliefs 3 have converged to either E#X > 0 or E/X < 0;
and it cannot be optimal to never make a decision.

For s € {0,1}", define Bin(r,n)(s) as the probability that a binomial with parame-
ters r and n takes the value s. The posterior beliefs after making m observations and
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observing s € {0,1}"™ are

B . g - Bin(q,m)(s)
Blanls,m) = P(M > )g - Bin(q,m)(s) + (1 — g) - Bin(1 — p, m)(s) )
M g R(Q7n7m>(s>
+nzsp"g-R<q,n,m><s> +(1—=9)- R(L=p,n,m)(s)

where R(p,n,m) = Bin(p,n)((si)iL,) - Bin(m,m —n)((si)iZ,41)-

Observation: picking M observations of s followed either by a =0 or a = 1 so as to
maximize E Y., u:0" has the property that for 6 1 1, the optimal M*(8) 1. If p,, = 0
for all m > M, then M*(§) + M. If p,, > 0 for infinitely many m, then M*(J) 1 oc.
The proof comes from the observation that for any b > 0,

M ¢t
C'Zt:O(S
—=0"_ | 0as 1l
b'Zt>M5t

4. DISCUSSION

We now discuss several issues.

e One could expand the set pV to include all of the Banach-Mazur limits. Using
such utility functions would make it difficult to evaluate the social utility of
stationary policies in “most” MDPs and would simultaneously make it possible
for optimal policies to be strictly non-stationary, violating conditional equal
treatment in a strong fashion.

e The conditional equal treatment property seems to have no implications for the
value of optimal policies when a generation is in a transient state. However, the
average reward optimality equations (AROES) tell a very different story — one
picks the action along the stochastic path to a recurrent state that maximizes
the summed deviation from the long-run average payoff. We conjecture that
the policies that solve AROEs in transient states have a property like perfect
equilibria in games — they are the policies picked in nearby perturbations of
the MDP.

e Restricted to the streams of well-being generated by stationary policies in
MDPs, our preferences all agree, a form of “linearity” which rather defeats
the idea of concavity as inequality aversion. This is mis-leading.

e One could have generation ¢’s utility depend positive on the utility of generation
t + 1. This pushes solutions toward smoothing of intergenerational utilities.

e One could and should add a resilience analysis to the climate change model
given above.

4.1. Banach-Mazur Limits. Our definition of patience requires that S(u) = S(u™)
for all o(t) permutations. This is a more stringent requirement than the requirement
usually found in the literature, that S(u) = S(u™) only for the bounded permutations,
those with |7(t) — t| uniformly bounded. The class of tangent functionals allowed by
this looser requirement grows from V to the the set of all Banach-Mazur limits. The
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use of this larger class of tangents allows social welfare functions for which optimality
requires violations of the equal treatment property.

A continuous linear L : ¢y, — R with the properties L(u) > 0 for all v > 0,
L((1,1,1,...)) =1, and L(u™) = L(u) for all v and bounded permutations 7 is called
a Banach-Mazur limit [6, Ch. I1.3]. Every Banach-Mazur limit can be represented
as an integral against a purely finitely additive probability, L(u) = (u,n), and the set
of all such functionals is denoted BM.

4.1.1. Violations of Conditional Equal Treatment. Elements of BM \ V include accu-
mulation points of uniform distributions on {7”,..., T} where (T"— T") becomes un-
boundedly large and TT/ becomes arbitrarily close to 1. Let n be such an accumulation
point. Because 7 ignores all but the “tail” of the consumption streams, it simultane-
ously fails to respect the Pareto criterion and fails to be immune to o(t) permutations.”
As a result, there are well-behaved stationary Markovian decision problems for which
the optima of e.g. the social welfare function S(u) = (u,n) are non-stationary in a
particularly disturbing fashion. The optima involve “feasts” during a sequence of in-
tervals {T,...,T,} at the expense of “starvation” of the generations between T, and
T) ... Further, the set B of starving generations has {(B) = 1 because T% becomes
arbitrarily close to 1.

4.1.2. The Almost Convergent Sequences. Starting with U° = (ug, uy,us, .. .), for each
j € Ny, define the points U7 € {, as follows.

UO Ug (51 U9 us
Ul ug+u1 u1tug u2+u3 uz+uq

2 2 2 2
U2 uotuitu2 u1tustus Ug+u3+u4 uztugstus
3 3 3 3

Ui upt-Fu;  urtetui4r u+ctuj4e uzttujgs
Jjt+1 J+1 Jj+1 J+1

Definition 4.1. u = (ug, u, Uz, ...) € ls is almost convergent to r if for every
€ > 0, there exists J such that for all j > J, every element of U7 is within € of r.

It is clear that any almost convergent u belongs to Erg, however, the set of almost
convergent utilities is too small to contain the outcomes of even the simplest non-
degenerate Markov processes.

Example 4.1. Suppose that for all t € Ny, u; is either 0 or 1 and that u; follows a
Markov process: if uy = 0 then w1 = 1 with probability o € (0,1); and if uy = 1 then
g1 = 0 with probability B € (0,1). With probability 1, the realizations of this Markov
chain belong to Erg and lra(u) = Cﬁﬁ However, with probability 1, for each j € Ny,
each realization contains infinitely many length (j + 1) sequences of 0’s and contain
infinitely many length (j + 1) sequences of 1’s. Therefore each U’ contains infinitely
many elements equal to 0 and infinitely many elements equal to 1, hence cannot be
almost convergent.

9The Polya index of [30] has this kind of tail-only sensitivity.
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The following characterization of almost convergent sequences is [29, Theorem 1].

Theorem C (Lorentz). u is almost convergent if and only if for every n,n' € BM,
(u,m) = (u, 7).

One can show that concave social welfare functions with Banach-Mazur tangents
have the property that for all u that are almost convergent, S(u) = ¢(lra(u)) for some
concave, strictly increasing ¢(-). Thus, defining patience using tangents immune only
to bounded permutations results in a theory that can be fruitfully applied, but only
to models in which the optima involve almost convergent sequences of utilities with
probability 1. This is a slightly larger class than e.g. deterministic growth models with
convergent sequences of utilities, but seems smaller than one would wish.

4.2. Concavity and Inequality Aversion. The result that S(u) > S(v) iff Ira(u) >
Ira(v) for u,v € Erg, could be interpreted as a linearity result, a repudiation of
the inequality and risk aversion built into the concavity of S(-). An analysis of the
programming applications, those with u, = v(a;, ;) where a; represents the actions
taken by generation ¢, ®, represents the state of the system faced by generation t,
shows that this is misleading in at least two senses.

The first, and perhaps most obvious, way in which this is misleading comes from the
observation that @, is stochastic. Variability in ®; and concavity of v(ay, -) makes the
expected value of u; lower. It is the long-run expected value of the u; that determines
S(u) for patient preferences, and riskier paths yield lower expected utility.

The second way in which this is misleading involves entrainment and/or hysteresis
[34, For a review of these are other concepts related to irreversibilities, see|. In deci-
sion problems with “urn-like” components, early decisions and early stochastic events
determine the long run path of the system.'® When different long run paths have
different long run utilities and these are stochastic, the concavity of S(-) induces risk
aversion over the choice of paths.

4.3. State Doubling, or Caring for the Next Generation. The social welfare
functions under study are equivalent to a monotonic transformation of the linear
functional v — L(u) on Erg. Therefore, the concavity of S(-) can have no bite on
determistic elements of this domain. For example, the following two sequences of
utilities belong to Erg and are indifferent for all V-concave social welfare functions,

u=(1,2,3,4,4,3,2,1,1,2,3,4,4,3,2,1,...) and (10)
U= (4,1,3,1,4,2,3,2,4,1,3,1,4,2,3,2,...). (11)

103ome decisions clearly set history on different paths. For example, in 1953, after Stalin’s death,
Dwight D. Eisenhower argued that the world found itself at “... one of those times in the affairs of
nations when the gravest choices must be made, if there is to be a turning toward a just and lasting
peace.” He talked of the long-run consequences of present choices, “Every gun that is made, every
warship launched, every rocket fired signifies, in the final sense, a theft from those who hunger and
are not fed, those who are cold and are not clothed. This world in arms is not spending money alone.
It is spending the sweat of its laborers, the genius of its scientists, the hopes of its children. ... This,
I repeat, is the best way of life to be found on the road the world has been taking. This is not a way
of life at all, in any true sense. Under the cloud of threatening war, it is humanity hanging from a
cross of iron.”
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In the wu, the utility differences between subsequent generations are either 0 or 1, in
u”, the utility differences range from 1 to 3. Thus, smoothing of inter-generational
consumption patterns does not matter.

A solution is to make generation t’s well-being depend on both their state and actions
as well as the state and actions taken by generation ¢ 4+ 1 and then to maximize S(-).
In particular, if each generation dislikes their offspring doing worse than they do, this
pushes the solutions toward smoothing.

4.4. Resilience in the Climate Change Model. One could interpret the states G
and B in the climate change model as indicating two basins of attraction in a more
complex model. In such a model, the “depth” of the basins is known as “resilience.”
By adding measures of closeness to the boundary of the basins to the simple model, one
can capture more subtle aspects of optimal policies — for example, near a “tipping
point” from the good state to the bad state, efforts to avert the change are more
valuable and the optimal sacrifices larger.

5. SUMMARY AND CONCLUSIONS

A Pareto criterion that ignores vanishingly small rewards or positive rewards to
vanishingly small portions of society is compatible with patience. For the purposes
of applicability, the definition of patience should be indifference between o(t) permu-
tations rather than the more commonly used notion of indifference between bounded
permutations. For large classes of stationary problems [32], the optimal long run poli-
cies can be found by solving a functional equation similar to the Bellman equation
for discounted dynamic programming. Further, this can be done by the appropriate
variant of the policy iteration algorithm.
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APPENDIX A. PROOFS

For the proofs using nonstandard analysis, we work in a k-saturated, nonstandard
enlargement of a superstructure V' (Z) where the base set, Z, contains R and £, and &
is a cardinal greater than the cardinality of V(Z). For nearstandard r € *R*, °r € R¥
denotes the standard part of r [25, §II.1 and I1.8] or [28, Ch. 3]. The essential result
that we use is [26, Theorem 3.1]: if 7 is an extreme point in the set of Banach-Mazur
limits, then there exists in interval subset of *Ng, {T",7"+1,...,T} with (T —=T") ~ oo

__ O

such that (u,n) = °(*u, nr r) where Up 7 is the *-uniform distribution on {77,...,T}.

For bounded sequences, the Hardy-Littlewood Tauberian theorem tells us that
limy_ oo TLH ZtT:O u; = c if and only if limgy (1 — 8) D0 w8 = ¢. We record the
nonstandard formulation of this and include a proof for completeness.

Lemma 2. The following are equivalent:

(1) u € Erg;

(2) for alln,n' € pV, (u,n) = (u,n'); and

(3) fOT all 577 = 17 /877 < 17 (1 - ﬁ) Zioutﬁt = (1 - 7) E?ioutfyt'

Proof. (1) < (2). Let nr denote the uniform distribution on {0,1,...,7} so that
(uw,nr) = TLH ZtT:o up =: Aver(u).

By definition, u € Erg iff limy Aver(u) exists. The existence of this limit is equiv-
alent to the statement that for all infinite 7,7, Aver(u) ~ Aver(u). From |26,
Theorem 3.1], the extreme points of V have an expression as L(u) = °(*u,nr) where
nr is the uniform distribution on {0,1,...,7}, T infinite. Integrating to the same
value on all extreme points implies integrating to the same on all points.

(2) = (3) Suppose, without loss, that for all infinite ¢, (u,n;) ~ 1 where 7, is
the uniform distribution on {0,1,...,t}. For § ~ 1, the density y; = (1 — 3)5" is,
to within an infinitesimal, a convex combination of uniform distributions on infinite
intervals {0,1,...,t}. To see this, calculation shows that

Ri=(1-8)3 2 uwB = (1= B)* 3572 B'(t+ 1)(u, mr). (12)
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There exists infinite 7 < 71 such that [, ' (t+1) = > 2, f'(t + 1) = 0. There-
fore, because ||u/| is finite,

R~ (1— B2 Y1, Bt + 1) {u,mn,). (13)

For each infinite ¢, (u,n;) ~ 1, and the sum of the weights (1 — 8)?8%(t + 1), t €
{r,7+1,...,7'} is infinitesimally close to 1. Therefore, R ~ 1.

(2) < (3) Now suppose that for all 5 < 1,8 ~ 1, °(1 — 8) > 2 wf' = 1, where
again the “1” is without loss. Let G denote the set of standard functions, ¢ : [0,1] — R
such that for all § < 1,8 ~ 1,

*(1=8) i wB9(8) = [ o (14)

We detour to develop properties of the class of “good” functions G.
It is clear that G is a vector space of functions containing the constants. Therefore,
to show that G contains the polynomials, it is sufﬁ(nent to show that it contains the

monomials, g(z) = 2*. For g(z) = 2%, we have fo ) dz = 7. We now show that

for g(x) = 2%, (1= 8) Y72 wB'g(B") =~ g7 For =~ 1,5 < 1, we have *! ~ 1 and

BE+1 < 1. By assumption, °(1 — gF1) S, (8¥) = 1. Therefore,

Zuﬁt Bt Zu ﬁk—H (15)

- %(1 — B e w(B) (16)
~ (1 — 6) ~ 1 (17)

1= By k+1

where the last “~” follows from I’Hopital’s rule.

Therefore, G contains all of the polynomials. It is also closed under uniform con-
vergence, so by the (Stone-)Weierstrass theorem, it contains all of the continuous
functions. Consider the function

_J0 ifx<l1/e
9(x) = {1/1: if1/e <z <1, (18)

Note that fol = 1, and that, if ¢ € G, then taking 8 = eV for infinite N,
1-8)>%2 outﬁt (8) = NZt oU = 1.

The function g is not continuous, but for every € > 0, it is sandwiched between
continuous functions that are within € of g outside of the interval (1/e —¢,1/e + ¢),
and that integrate to within the interval (1 —¢,1 + €). Since € is arbitrary and the
continuous functions belong to G, for any f ~ 1, f <1, (1 — ) > ,qwf" ~ 1. O

Proof of Lemma 1. Suppose that 7 is o(T) and fix u € /.. For any infinite 7' € *Nj,
let t" be the largest ¢t € {0,1,...,T} such that 7(¢) < 0 and let ¢ be the minimum
t € {0,1,...,T} such that w(t) > T. We show that t'/(T'+1) ~ 0 and t#/(T+1) ~ 1.
If °tT/T = a > 0, then t' is infinite and |7 (¢7) — ¢7|/t! = 1, contradicting 7 being
o(T). If °t*/T = (1 — 8) < 0, then t* is infinite and °|7(¢7) — ¢'|/tT > B, contradicting
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7 being o(T"). This is sufficient to show that w Zo¢r) u™ because, letting 7" = {t €
{0,1,...,T}: 0 <=(t) < T},

T T

1 _ 1
T—+12<ut —uf)| = T—HZ(W — Ur—1(1))
t=0 t=0
S|t Y e
—_— Uy — U pe—— Uy — U
= |T+1 T T 4 Lo
teT tgT" t<T
#{tg 1"}
<042 ——=
<0+ 2l - F

The arguments for u™ o7y w are essentially identical.

For second part of the claim, note that the arguments just given show that for any
infinite 7" and u € Erg, Aver(u) = Aver(u™). O
Proof of Theorem A. Suppose that > satisfies Axioms [-V. We draw heavily on
Theorem 4, Ch. 3 in [21] which characterizes expected utility preference relations .
Our Axioms I and IT are Fishburn’s A1 and A2, our Axiom III is a strong form of his
A3 and it directly implies his A4* and A5*.

Our mixture set, M, the set of measures with bounded support is closed under finite
convex combinations. As we work with the Borel o-field on W, our Axiom III implies
that the domain for our probabilities contains all preference intervals, which then
implies that M is closed under taking conditional measures on preference intervals,
completing the verification of Fishburn’s A0.2.

Having verified A1-A5 and A0.2, Fishburn’s result shows that there exists an inte-
grable S : W — R such that p = ¢ iff [ S(v)dp(v) > [S(v)dg(v). Restricted to the
closed set of point masses, {0, : w € W}, Axiom III implies that S(-) is continuous.
By considering measures with two point supports and their resultants, Axiom IV im-
plies that S(-) is concave. For the normalization that S : W — [0, 00), note that there
is no loss in setting S(0) = 0 — for all w € W, u o) 0 so that Axiom V implies
S(u) > S(0).

We now show that S(-) is exactly Pareto. If B is a null coalition, then for any u € W
and any r > 0, u Zo(r) (u+71B) Zor) w so that Axiom V implies S(u) = S(u+7rlp).
If B is a non-null coaltion, then for any w € W and any r > 0, (u + r1p) >o) u s0
that Axiom V implies S(u +rlg) > S(u+rlp).

We now show that S(-) is patient. From Lemma 1, if 7 is an o(7") permutation, then
for all u € (o, U Zor) U™ Zo(r) w so that Axiom V implies S(u) > S(u™) > S(u).

Now suppose that there exists a continuous, concave S : W — [0, 00) such that
p = q] & [[ S(u)dp(u) > [ S(u)dg(u)] with S(-) satisfying the properties (1) and
(2). Verification of Axioms I through IV is routine. To verify Axiom V, suppose
that u o) v and let 7" = liminfr_, T+r1 ZtT:O(ut — vy). By definition, ' > 0. Set
r = 1'/2 and note that u >, (v + rly,) >o(r) v and that Ny is a non-null coaltion.
By property (2), S(u) > S(v +rly,) > S(v). O

Proof of Theorem B. We first show that any V-concave S(-) is perfectly Pareto. Pick
an arbitrary u € W.
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e If B is a null coalition, we must show that S(u +rlg) > S(u) > S(u +rlp)
for all » > 0. For all n € pV, (15,m7) = 0. Because V is the closed cone
containing pV, for all L € V and all r € R, L(rlg) = 0. For any L € DS(u),
S(u)+ L((u+rlg) —u) > S(u+rlp) so that S(u) > S(uw+rlp). Similarly,
for any L' € DS(u +rlg), S(u+rlB)+ L'(u — (v +rlpg)) > S(u) so that
S(u+rlg) > S(u).

e If B is a non-null coalition, we must show that S(u+r1pg) > S(u) for all > 0.
For all n € pV, (15,n) > 0. Because V is the closed cone containing pV and
any L' € DS(u + rlp) is a strictly positive element of V, L'(r1g) > 0. Since
S(u+rlg)+L'(u—(u+rlg)) > S(u), we have S(u+rlg) > S(u)+ L' (rlp)
so that S(u +rlg) > S(u).

We now show that any V-concave S(-) is patient. Pick an arbitrary w € W and an
arbitrary o(7T') permutation. We must show that S(u) = S(u™). From Lemma 1, we
know that © ZZor) U™ Zor) w and that for every n € V and every z € N, (z,1) = 0.
Therefore, for any L € DS(u) and any L' € DS(u™), L(u — u™) = L'(u — u™) = 0.
Therefore S(u) + 0 > S(u™) and S(u™) + 0 > S(u).

For the second part, assume that > satisfies Axioms I-V and that integrals against
S(-) represent the preferences on M. We must show that S(-) is V-concave on int(W).
Pick an arbitrary u € int(W) and L € DS(u). If L € V, then there exist vy, vy € Erg
with Ira(v;) = Ira(vs) and L(v; —v3) # 0. Reversing the role of v; and vy if necessary,
L(v; — vy) < 0. Because w is interior, for some r > 0, v := u + r(v; — v9) is interior.

We first prove the intermediate claim that w o) v Zoer) . For any infinite T
T+r1 ZtT:o v = T+r1 Zf,Tzo uy + 7"T+r1 ZtT:O(th — Ugy) = T+r1 ZtT:o uy + 0. Therefore,
lim infp TLH Ztho v; = liminfp TLH ZtT:O Uy

Returning to the argument, by Axioms V and continuity, S(u) = S(v). However,

by the properties of tangents for concave functions, S(u)+ L(v—u) > S(v). However,
L(v —u) =rL(vy — v2) <0, a contradiction. O

Proof of Proposition 1. As this is an exchange economy model, we need only verify
(i)-(iv) in Bewley’s Theorem 1. (i) is the assumption that the consumption sets are
convex and Mackey closed, which is immediate. (ii) is the assumption that the pref-
erence relations are transitive, reflexive and complete, which is satisfied because the
preferences are given by utility functions. (iii) is the assumption that for all ¢ € I
and all consumption vectors, x, the set {z € W* : Uj(z) > U;(x)} is convex and
Mackey closed. Convexity follows from the concavity of U;(+), and a convex subset of
the dual of a Banach space is closed for all the topologies between the weak*-topology
and the norm topology if and only if it is norm closed [19, Cor. V.2.14]. Therefore,
norm continuity of the U;() delivers the necessary closure. (iv) is the the assumption
that for all 4 € I and all consumption vectors, x, the set {z € W* : U;(z) < Uj(x)} is
norm closed, which follows directly from the norm continuity of U;(-). O

Proof of Proposition 2. For convex sets, weak® and norm closure are equivalent.  [J
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