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1 Introduction

One of the main issues analyzed in the literature of coalitional game theory is
how to divide the outcome obtained by agents that cooperate. One approach
to dealing with the problem consists of proposing rules or solutions that are
used to solve the game. In this approach, the Shapley value (Shapley, 1953)
and the prenucleolus (Schmeidler, 1969) stand out as the best-known, most
widely analyzed single-valued solutions for coalitional games with transfer-
able utility (TU games). One of the main reasons for the attractiveness of the
Shapley value lies in the fact that it respects the principle of monotonicity,
i.e. if a new TU game w is obtained from a given TU game v by increasing
the worth of a coalition S then the members of S receive a payoff in game
w that is no lower than in game v. On the other hand, the prenucleolus
respects the core stability principle, i.e. the prenucleolus selects a core al-
location whenever the game is balanced. A core allocation provides each
coalition with at least the worth of the coalition, the amount that the mem-
bers of the coalition can obtain by themselves. It seems very attractive to ask
for a solution that fulfils both principles, since they share a kind of incentive
compatibility principle that can be summarized in the following idea: the
higher the worth of a coalition the better for its members. However, in the
class of balanced games they are not compatible (Young, 1985) and therefore,
the Shapley value does not respect core stability and the prenucleolus fails
to satisfy coalitional monotonicity.

There is no such incompatibility if the analysis is restricted to the class of
convex games where the Shapley value (Shapley, 1953) satisfies core stability.!
The prenucleolus and the per capita prenucleolus do not satisfy coalitional
monotonicity in this class. These results motivate the question that this
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paper seeks to solve: Is there any continuous® core solution that satisfies

Note also that Dutta and Ray (1989) introduce a solution for convex games that
satisfies core stability and coalitional monotonicity.

2With the requirement of continuity we avoid core solutions defined as follows. Let ¢
be a solution that coincides with the Shapley value if the game is convex and with the
prenucleolus otherwise. Then ¢ satisfies coalitional monotonicity in the class of convex

games but is not continuous.



coalitional monotonicity in the class of convex games? The answer is yes:
the SD-prenucleolus (the Surplus Distributor prenucleolus).

This solution, introduced by Arin and Katsev (2014), also satisfies ag-
gregate monotonicity and coalitional monotonicity for games with veto play-
ers. The SD-prenucleolus is the only known concept that satisfies coalitional
monotonicity for convex games while respecting the principle of core stability,
that is, it selects a core allocation whenever the game is balanced.

The rest of the paper is organized as follows: Section 2 introduces TU
games, solutions and properties. Section 3 provides the definition of the
SD-prenucleolus of a game and introduces the SD-reduced game property.
Section 4 proves that the SD-prenucleolus satisfies coalitional monotonicity
in the class of SD-relevant games. Section 5 proves that convex games are
SD-relevant games. Section 6 ends the paper with some concluding remarks.

2 Preliminaries: TU games

A cooperative n-person game in characteristic function form is a pair (N, v),
where N is a finite set of n elements and v : 2V — R is a real-valued function
defined on the family 2% of all subsets of N with v(f)) = 0. Elements of N
are called players and the real valued function v the characteristic function
of the game. Any subset S of N is called a coalition. A game is monotonic
if whenever T' C S then v(T") < v(S). The number of players in S is denoted
by |S|. Given S C N we denote by N\S the set of players of N that are
not in S. A distribution of v(/N) among the players, an allocation, is a real-
valued vector z € RY where z; is the payoff assigned by x to player i. A
distribution satisfying > xz; = v(N) is called an efficient allocation and the
set of efficient allocaticz);];[ is denoted by X (N,v). We denote Y z; by z(S).
The core of a game is the set of efficient allocations that Camig:g be blocked
by any coalition, i.e.

C(N,v) ={z € X(N,v): z(S) > v(S) forall S C N}.



A game is balanced when it has a nonempty core (Bondareva (1963) and
Shapley (1967)). We say that a game (V,v) is convex if

v(S)+v(T) <v(SUT)+v(SNT) for all S, T C N.

Let Ty be a nonempty set of games. A solution ¢ on I'y is a correspondence
that associates a set (NN, v) in R¥with each game (N,v) in Ty such that
z(N) < v(N) for all x € p(V,v). This solution is efficient if the previous
inequality holds with equality. We say that a solution satisfies core stability
in Iy if it selects core allocations whenever the game is balanced and belongs
to I'g.

The solution is single-valued if the set contains a single element for each
game in the set of games. A core solution is a single-valued solution concept
that selects a core allocation whenever the game is balanced.

We say that the vector x weakly lexicographically dominates the vector y
(denoted by = > y) if either 2 = % or there is k such that 2; = y, for all
i€{1,2,...k — 1} and 2}, > y,, where r and y are the vectors with the same
components as the vectors x, y, but rearranged in a non decreasing order
(i >j =1 > 7).

Given a game (N, v), a coalition S C N and = € X (N, v), the satisfaction
of S with respect to x is defined as f(S,x) = z(S) — v(5). Let 6(z) be the
vector of all satisfactions at x arranged in non decreasing order. Schmeidler
(1969) introduced the prenucleolus® of a game v, denoted by PN (N,v), as
the unique allocation that lexicographically maximizes the vector of non de-
creasingly ordered satisfactions over the set of allocations. In formula:

PN(N,v) ={z € X(N,v)|0(z) =1 0(y) for all y € X(N,v)}.

The per capita prenucleolus (Grotte, 1970) is defined analogously by using
the concept of per capita satisfaction instead of satisfaction. Given S, S ## (),
and x the per capita satisfaction of S at xis

N € )
fre(s.a) = g

3The solution concept was defined using the notion of excess instead of satisfaction.

Given a game (N,v) and an allocation x, the excess of a coalition S with respect to x in
game (N, v) is defined as follows: e(S,x) := v(S) — z(S).
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The prenucleolus and the per capita prenucleolus are core solutions. Other
weighted prenucleoli can be defined in a similar way whenever a weighted
satisfaction function is defined.

For two-person games the prenucleolus and the per capita prenucleolus
coincide with the standard solution that allocates to each player the sum of
the worth of his/her individual coalition and half of the surplus of the game
(the difference between the worth of the grand coalition and the sum of the
worth of individual coalitions).

The following monotonicity properties are defined for single-valued solu-
tions.

e ¢ satisfies coalitional monotonicity in Iy if the following condition
holds: If v,w € Ty, v(T) < w(T) for some T'C N and v(S) = w(S) for
all S € 2M\ {T'} then ¢,(N,v) < ;(N,w) for all i € T.

e ( satisfies aggregate monotonicity in Iy if the following condition holds:
If v,w € Ty, v(N) < w(N) and v(S) = w(S) for all S € 2V\ {N} then
©;(N,w) — ¢,(N,v) >0 for all i € N.

e o satisfies strong aggregate monotonicity in 'y if the following condition
holds: If v, w € Ty, v(N) < w(N) and v(S) = w(S) for all S € 2V\ {N}
then ¢, (N, w) — ¢;(N,v) = p;(N,w) — ¢;(N,v) > 0 for all 4,j € N.

Young (1985) proves that no core solution satisfies coalitional monotonic-
ity in the class of balanced games. However, there are core solutions, includ-
ing the per capita prenucleolus and the SD-prenucleolus (defined in Subsec-
tion 3.1), that satisfy strong aggregate monotonicity. The prenucleolus does
not satisfy aggregate monotonicity in the class of convex games (Hokari,
2000). The per capita prenucleolus does not satisfy coalitional monotonicity
in the class of convex games (see Arin, 2013).

The following notation is widely used in this work. We denote by (N, bg)
the game whose characteristic function is

bS(T):{ 1 ifT=35

0 otherwise.



Given two TU games (N,v) and (N,w) with the same set of players we
denote by (N,v + w) a new game where (v + w)(S) = v(S) + w(S) for all
S C N. Given a game (N,v) and a real number A we denote by (N, \v) a
new game where (Av)(S) = Av(S) for all S C N.

3 The SD-prenucleolus

3.1 Definition

In 2014, Arin and Katsev introduce the SD-prenucleolus, a single-valued
solution concept for TU games. In this section we recall some definitions and
results that are needed in the present paper.

The definition of the SD-prenucleolus is based on the concept of satisfac-
tion of a coalition with respect to an allocation. Given a game (NN, v) and an
allocation x € X (N, v) we calculate a new satisfaction vector (F(S,x))scn-
We define the components of this vector recursively by defining an algorithm.

The algorithm has several steps (at most 2!Vl — 2) and at each step we
identify the collection of coalitions H that has obtained the satisfaction. In
the first step this collection H is empty. The algorithm ends when H =
2N\ {N}.

For a collection H C 2V \ {N} and a function FF : H — R we will
define the function Fy : 2M\ {HU{N}} — R. To this end, we introduce
some notation. For H C 2¥\{N} and S C N, we denote

O'H(S) = U T.

TeH,TCS

For S C N we denote by fy r(i,S) the satisfaction of player ¢ with respect
to a coalition S and a collection H (i € o4(S5)):

fH,F(Z',S) = min F(T)

T:TeH,ieTCS

Now we define a value Fy(S) for all S € 2¥\ {HU{N}}. We consider
two cases (since it is evident that o4 (S) C 5):



1. Relevant coalitions. o4(S) # S. In this case the satisfaction of S is

2(5) —v(S) = > fur(i,S)

i€on(9S)
S F TV .

Note that if collection H is empty then the current satisfaction of coalition

S coincides with its per capita satisfaction:

(S) = v(S)
Fy(S) = —————.
B
2. Completed coalitions. o4(S) = S. In this case the satisfaction of S is
Py (S) = 2(S) — v(S) — ; Frp(i S) + max frup (i, S). (2)

The algorithm that computes the new satisfaction vector, whose components
are denoted by F(S) = F(S,z), is the following:

Algorithm 1 Let (N,v) be a TU game and x € X (N,v).
Step 1: Set k =0, Hy = 0 and Fy(S) = w
Step 2: Set
sz—i—l = Hk U {S € Hk : FHk(S) = min FHk(T)}

TEHy,
Define for each S € Hyi1 \ Hy:

Step 3: If Hy1 # 2N \ {N} then let k = k + 1 and go to Step 2.
Otherwise go to Step 4.
Step 4: Stop. Return the vector (F(S,x))scn.

We say that a coalition S is relevant (completed) with respect to allocation
x if S was a relevant (completed) coalition at the step where its satisfaction
F(S,z) was determined. Given a TU game (N,v), a player i € S C N

and x € X(N,v) we denote by f;(S,z) = T;?Q%%SF(T’ z) and z(S,z) =

x; — f;(S, ) the satisfaction and the coalitional pagfoff of player ¢ in coalition
S at z. If there is no confusion we write f;(S) and z;(.S) instead of f;(.S,z)
and z;(S,z). Arin and Katsev (2014) prove the following lamé that is used
in the proof of Lemma 3.



Lemma 2 (Arin cmd Katsev, 2014) Let (N v) be a TU game and © €

-----

the assoczated collections of sets. If S € H;, T ¢ H; then F(T ) > F(S)

The lemma below proves that the surplus of a coalition® (z(S) —v(S)) is
fully divided among its members if the coalition is relevant. This is not the
case with completed coalitions, where the surplus of the coalition is higher
than the sum of the surpluses of the members of the coalition.

Lemma 3 Let (N,v) be a TU game and x € X(N,v). Then
1. If S C N is relevant then Z fi(S) = z(S) —v(9).

2. If S C N is completed then Z fi(S) < x(S) — v(S).
3. If SCT C N then f;(S) > TfejT) foralli e S.

Proof. Let k be the step of the Algorithm 1 where the satisfaction of
coalition S has been defined.
1. By definition (1),

2(S) = v(8) = Fr, (S)(IS] = low, (S)) + D frepr (i, ).

iEUHk (S)

By Lemma 2, f;(S) = Fy, (S) = F(S) for all i € S\oy, (S) and Fy, (S) >
fr,.r(3,8) = fi(S) for all i € o4, (S). Therefore,

p(S)—v(S) = DY f(S)+ D 8= fi(9)

i€S\ o3, (S) i€o, (5) €S
2. By definition (2),
( ZS Pt (i, S) + Frq, (S) — max fr p (i, 5).
1€

4The name Surplus Distributor prenucleolus reflects this fact. The Algorithm estab-
lishes how the surplus of a coalition is divided among its members. In Arin and Katsev
(2014), it is discussed the difference between the per capita prenucleolus and the SD-
prenucelolus with respect to this fact. Note that the pre capita prenucleolus is based on
the idea of equal division of the surplus among the members of the coalition.



By Lemma 2, fy, #(i,5) = fi(S) for all i € S and Fy, (S) > lTiIEE}ngHk,F(i, S).
Therefore,

D fi(S) < x(8) —v(S).

i€s

3. The result is immediately apparent. m

The SD-prenucleolus is a lexicographic value that selects an optimal ele-
ment in the set of vectors of satisfactions. We denote the SD-prenucleolus of
game (N, v) by SD(N,v).

Given a TU game (N, v) and an allocation z € X(N,v), let F* be the
vector of all satisfactions at x arranged in non decreasing order. We say
that the vector x belongs to the SD-prenucleolus if its satisfaction vector
dominates (or weakly dominates) every other satisfaction vector.

Definition 4 (Arin and Katsev, 2014) Let (N,v) be a TU game. Then
x € SD(N,v) if and only if for any y € X(N,v) it holds that F* = FY.

The SD-prenucleolus is a core solution that satisfies continuity, strong
aggregate monotonicity and other interesting properties (see Arin and Kat-
sev, 2014). In this paper, it is also established the equivalent of Kohlberg’s
theorem (Kohlberg, 1971) for the SD-prenucleolus. The theorem is useful for
checking whether an allocation is the SD-prenucleolus of a game or not.

Given a game (N, v), an allocation = € X (N, v) and a real number o we
define the following set of coalitions

Bo(z)={S CN:F(Szx) <a}.

Theorem 5 (Arin and Katsev, 2014) Let (N,v) be a TU game and x €
X(N,v). Then x = SD(N,v) if and only if the collection of sets B, (z) is
empty or balanced® for all .

We now introduce the class of SD-relevant games, a class that includes
the class of convex games.

°Let N be a finite set of players and let C be a collection of distinct nonempty subsets
of N. Define C; = {S € C:i€ S}.Cis said to be a balanced collection of sets over N if
there exist positive numbers (As)gce such that Y g . As =1foralli € N.
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Definition 6 A TU game (N,v) is SD-relevant if any S, S C N, is relevant
with respect to SD(N,v).

In the following, we introduce a balanced game that is not SD-relevant.
Let (N,v) be a TU game where N = {1,2,3,4} and

0 if |S|=10r S e {{1,2},{3,4}}
v(S)=1< 4 ifS=N
2 otherwise.

It can be checked that SD(N,v) = (1,1,1,1), F({1,2,3}) = land F'({1,3}) =
F({2,3}) = 0. Therefore, coalition {1,2,3} is completed with respect to the
allocation (1,1,1,1). Consequently, (/NV,v) is not SD-relevant.

3.2 SD-relevant games and SD-reduced game property

Like the prenucleolus and other lexicographic values, the SD-prenucleolus
satisfies a consistency property called the SD-reduced game property. This
property is based on the notion of the SD-reduced game, which we now
introduce.

Definition 7 Let (N,v) be a TU game, S C N and x € X(N,v). A game
(S,v") is the SD-reduced game with respect to S and x if

1. v*(S) =v(N) —x(N\ S)

2. for everyT C S

(S,0%) ). — 1 (N.w)
F (T7 (xz)z€5') Ugl]{/'lis F (U UT, I‘)

where FSVY)(T, (x;)ies) 4s the satisfaction in game (S,v”) of coalition T
at (z;)ies and FNY)(UUT,x) is the satisfaction in game (N, v) of coalition
UUT atx.

As a consequence of Lemma 8, for any game (N, v), any coalition S C N
and any allocation z € X (N, v) the SD-reduced game (S,v") exists and is
unique.
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Lemma 8 Let N be a finite set of players, v € RN, let V be a real number
and f € R¥MN}. Then there is a unique TU game (N,v) such that
1.vy(N)=V
2. (F(S,x))scn = [

The proof of the Lemma is immediately apparent and therefore omitted.

We say that a solution ¢ satisfies the SD-reduced game property on ', S D-
RGP, if for every game (N,v) € I" then (z;);es € ¢(S,v*) for any S C N
and any = € ¢(N,v).

The SD-prenucleolus satisfies the SD-reduced game property in the class
of all TU games. This type of property® plays a determinant role in the
characterization of lexicographic values such as the prenucleolus (Sobolev,
1975) and the per capita prenucleolus (Kleppe, 2010). The reduced games
associated with the prenucleolus and the per capita prenucleolus can be re-
formulated explicitly.

If a game is SD-relevant then any SD-reduced game with respect to
the SD-prenucleolus of the game is also SD-relevant. Therefore, in the
class of SD-relevant games the SD-reduced games with respect to the SD-
prenucleolus belong to this class.

Lemma 9 Let (N,v) be an SD-relevant game, S C N and x = SD(N,v).
Then (S,v*) is SD-relevant.

Proof. Let y = SD(S,v") and let P and M be two subsets of S such
that M UP # S. Assume, without loss of generality, that F'(M,y) > F(P,y).
We seek to prove that

F(MUP,y) <max{F(M,y),F(P,y)} = F(M,y).

Let F(M,y) = F(MUQ, z) and F(P,y) = F(PUT, x) where Q,T C N\S.
Note that (M UQ)U(PUT) # N. Since all coalitions in the game (N, v) are
relevant,

F(MuQ)u(PUT),x) <

6Note that the definition of this reduced game depends on the definition of the vector
of satisfactions. If the vector of satisfactions considered is (z(S) — v(S))scn then the
associated reduced game property is satisfied by the prenucleolus (see Theorem 5.2.7 in
Peleg and Sudholter (2007)).
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max {F(MUQ,z), F(PUT,x)} = F(MUQ,z).
Note that (M UQ)U (PUT) = (M UP)U(QUT). Therefore,

FIMUPy) <F(MUQ)U(PUT),z) <

S FPMUQ,x) = F(M,y).

Consequently, (S,v") is SD-relevant. m

Lemma 9 allows for a different interpretation of the SD-reduced game of
an SD-relevant game. SD-reduced games with respect to the SD-prenucleolus
of the game can be easily computed according to the result established by
the following lemma.

Lemma 10 Let (N,v) be an SD-relevant game, S C N and x = SD(N,v).
Consider the SD-reduced game (S,v") and T C S. Then

C(T)=o(TUN\S) = 3 4(TUN\S) =3 (T U N\ 5).

iEN\S i€T

Proof. By Lemma 9, (S,v") is SD-relevant. For game (S, v*) we denote

by f*5 the analog of function f in Algorithm 1. By definition of f™%(T) it
holds that

f75(T) = min FSY)(U) = min min F(UUR) =
i€UCT i€UCT RCN\S

= i FQM) = fi(TUN\S)).

Hence,

v(T) = a(T) =Y [P(T) =2(T) =) fi(TUN\S)) =

ieT i€T
= z(TU(N\S)).
i€T
Since coalition T"U (N \ S) is relevant in the game (N,v), by Lemma 3

v(TU(N\S))= >  z(TU(N\S)). Therefore,
1€TU(N\S)

D a(TUN\S) =0(TUN\S) = Y =(TUN\S)).

1€T 1EN\S
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The corollary below presents a simple formula for computing some SD-
reduced games. This result is used in the proof of the main theorem.

Let (NV,v) be a TU game and x € X (N, v). We denote by B(x) the set of
coalitions with minimal satisfaction with respect to x.

Corollary 11 Let (N,v) be an SD-relevant game, v = SD(N,v) and S €
B(x). Consider the SD-reduced game (N\S,v") and coalition T C N\S.
Then v*(T) = v(T'US) — v(S).

Proof. Since S € B(z), it holds that f;(S) = I(S)lgr’(s) and for any i € T'

such that S C T' it holds that f;(T") = f;(S). By applying Lemma 10,

v(TUS)—v"(T)=> z(TUS)=> z— Y f(TUS)=

€S €S €8

> (o= 5(8) = () = 18 “ ) — uis),

3.3 Antipartitions and SD-equivalent games

The notion of antipartition (Arin and Inarra, 1998) also plays a central
role in the proof of the main result of this paper. A collection of sets
C ={S:S C N}iscalled antipartition if the collection of sets { N\S : S € C}
is a partition of N. An antipartition is a balanced collection of sets. In or-
der to balance an antipartition Q each coalition receives the same weight,
ie. ‘C‘+1 Given a TU game (N, v) the satisfaction of an antipartition C is

defined by

o(N) = Csee g0(S)

If there is no confusion we write F(C) instead of F(C,v). Given a TU game
(N,v) and z € X(N,v) we denote by B(x) the set of coalitions with minimal
satisfaction at .

F(C,v) =

13



Lemma 12 Let (N,v) be a TU game and x € X(N,v). Let C be an antipar-
tition contained in B(x). Then F(S) = F(C) for all S € B(x).

Proof. It is emmediately apparent that for S € C,

z(S) —v(9)
FS)=—"F7+—""F=0.
Since C is balanced, Y ¢ . As2(S) = Y ..y @i = v(INV). By definition in
(3), IN|F(C) = v(N) = Xgec i=7v(S). Since C is balanced,

1 1
VN =D 1) = 2 g ) ) =

SeC

1 1
F = =a|N]|.
\C\—1|S| (S) ag C] 1]3\ a|N|

SecC

Sec

This last equality is a consequence of the fact that each player is present
in all coalitions of the antipartition but one. m

Note that if the set of coalitions with minimal satisfaction with respect
to the SD-prenucleolus of the game contains an antipartition then the satis-
faction of those coalitions only depends on the characteristic function of the
game.

Arin and Inarra (1998) prove that, given a convex game, the collection of
coalitions with minimal satisfaction with respect to the prenucleolus of the
game contains either a partition or an antipartition. In the case of the SD-
prenucleolus of SD-relevant games only antipartitions should be considered,
as the following lemma shows.

Lemma 13 Let (N,v) be an SD-relevant game. Then B(SD(N,v)) contains
an antipartition.

Proof. Let x = SD(N,v) and let S be a maximal coalition in B(z), that
is, there is no coalition 7" in B(x) such that S C T. Since B(z) is balanced
(Theorem 5), for each i € S there exists a coalition, T%, such that i ¢ T°
and 7" € B(z). Since (N,v) is SD-relevant, the maximality of S implies that
N\S C T". Let {T":i € S} be the set of maximal coalitions for each i in S

14



((it may occur that T% = TY for players i, j). Then {T":i € S} U {S} is an
antipartition. It is immediately apparent that (N\7") N (N\S) is empty. If
for any i, j € S it holds that (N\7")N(N\7") is nonempty then T°UT? # N
which contradicts the maximality of 7" and 77 since the fact that (N, v) is
SD-relevant implies that 7" U 77 is in B(z). =

Note that Lemma 13 also holds for the per capita prenucleolus since the
set of coalitions with minimal satisfaction with respect to the SD-prenucleolus
of the game and the set of coalitions with minimal satisfaction with respect
to the per capita prenucleolus of the game coincide. We now introduce the
notion of SD-equivalent games that is also used in the proof of the main
results of the paper.

Definition 14 We say that TU games (N,v) and (N,w) are SD-equivalent
if B(SD(N,v)) N B(SD(N,w)) contains an antipartition.

The next lemma allows us to consider only SD-equivalent games while
analyzing the coalitional monotonicity of the SD-prenucleolus in the class of
SD-relevant games.

Lemma 15 Let (N,v) be a TU game such that for some S C N and all
v € [0, ] the game (N,v + vbg) is SD-relevant. Then there exists 5 € (0, a]
such that:

1 (N,v) and (N,v + Bbg) are SD-equivalent games.

2 (N,v+ Bbg) and (N,v + abg) are SD-equivalent games.

Proof. Let y = SD(N,v+abs) = SD(N,w) and z = SD(N,v). Let Q be
an antipartition contained in B(z). If Q is contained in B(y) then with o =
the statement is true. If Q ¢ B(y) then S € B(y) and F(Q,v) >F(S,y,w).
Furthermore, any antipartition in B(y) must include coalition S. Let M be
an antipartition in B(y). Since M ¢ B(z),

«

F(M,v) > F(Q,v) > F(Q w) > F(M,w) = f(Mw)—W-

Therefore, there exists 8 € (0, a) such that
F(M,q) = F(Q,v) = F(Q,q) > F(M,w)
where (N, q) = (N,v + Bbg). =
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4 Monotonicity of the SD-prenucleolus

In the following we analyze the coalitional monotonicity of the SD-prenucleolus
in the class of SD-relevant games. The proof of the main result uses the fol-
lowing facts:

1 Only SD-equivalent games need to be considered.

2 Given an SD-relevant game, the set of coalitions with minimal satisfac-
tion with respect to the SD-prenucelolus of the game contains an antipar-
tition. The satisfaction of the coalitions included in the antipartition only
depends on the characteristic function of the game.

3 The SD-reduced games with respect to the SD-prenucleolus of the game
are SD-relevant and can be easily computed.

Now we are in a position to present the theorem.

Theorem 16 Let (N,v) be a TU game such that for some S C N and all
v € [0,a] the game (N,v + ~vbg) is SD-relevant. Then SD;(N,v + abg) >
SD;(N,v) for anyl € S.

Proof. Since the SD-prenucleolus and the standard solution coincide,
the statement holds if | V| < 2. Assume that the statement is true for games
with no more than k players. We seek to prove that it also holds for games
with k£ + 1 players.

Consider game (N, v) where |[N| = k + 1 and let (N, w) = (N, v + abg)
for some S C N and o > 0. Let x = SD(N,v) and y = SD(N,w). We show
that for each i € S it holds that z; < y;. Assume that (V,w) and (N, v) are
SD-equivalent games. Then there exists an antipartition, say (), contained
in B(x) N B(y). Let T € Q). We seek to compare the SD-prenucleolus of the
two SD-reduced games (N\T,v*) and (N\T,w?). We distinguish 3 cases:

1. S¢ Qand T ¢ S. By applying Corollary 11, the two SD-reduced
games coincide. Therefore, players in S N (N\T) receive the same payoff
in both games. Since the SD-prenucleolus satisfies the SD-reduced game
property, it must be the case that in games (/V,v) and (N,w) players in
SN (N\T) also receive the same payoff.
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2. S€@. Since S, T € Q, N\T C S. Since S,T € @ and v(S) < w(S),
F(Q,w) < F(Q,v). Since v(T) = w(T),

y(T) =w(T)+|T|F(Q,w) <v(T)+ |T|F(Q,v) = x(T).

Hence, y(N\T') > x(N\T). By applying Corollary 11, the two SD-reduced
games assign the same worth to coalitions that are subsets of S. Therefore,

s y(N\T) iU = N\T
W) = { v*(U)  otherwise

This means that (by strong aggregate monotonicity of the SD-prenucleolus)
for : € (N\T) it holds that SD;(N\T,wY) > SD;(N\T,v"). Since the SD-
prenucleolus satisfies SD-RGP, y; > x; for all i € N\T.

3. 5S¢ @ and T C S. By applying Corollary 11,

iy - ) v(U)+a iU =5\T
w(U) { v (U) otherwise.

In this case the TU game (N\T',wY) can be written as (N\T,v" 4+ abg\r).
By Lemma 9 the SD-reduced games (N\T,v") and (N\T,v”+abg\r) are SD-
relevant. Note also that for any v € [0, o] it also holds that (N\T', v* 4+~vbg\r)

is an SD-relevant game.” Since |[N\T| < k, it is true that for i € (N\T) N S
yi = SDy(N\T,w") > SD;(N\T,v") = =

It is thus proved that for any player i in SN (N\T) it holds that y; > x;.
Since this is true for any coalition 7" in (), it must be concluded that for any
player ¢ in S it holds that y; > x;

Assume that (N,w) and (N,v) are not SD-equivalent. By Lemma 15
there exists 3, 5 < a, such that (/V,v) and (N, v+ [bg) are SD-equivalent and
(N,w) and (N, v+ Bbg) are SD-equivalent. Hence, the above arguments can
be used to conclude that for any player i in S it holds that x; < SD;(N,v +

"This is so because (N\T,v" 4+ vbg\r) is the SD-reduced game of (N,v 4 vbg) with
respect to the SD-prenucleolus of (N, v + vbg). Recall that (N, v + vbg) is by assumption
SD-relevant.
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Bbs). Similarly, it must be concluded that for any player i in S it holds that
SD;(N,w) > SD;(N,v + pbg). Therefore, x; < y; forallic S. m

The following example illustrates that the theorem is not necessarily true
if the games are not SD-relevant. Consider the game (NN, v) introduced after
Definition 6 and the game (N,w) = (N,v + 2bg123}). It can be checked
that SD(N,v) = =z = (1,1,1,1) and SD(N,w) = y = (2,2,0,0). Since
{{1,3},{2,4}} = B(z) N B(y), (N,v) and (N,w) are SD-equivalent games.
However the two games are not SD-relevant. Note that

F({1,2,4} ,z,v) =1 > max(F({1,4} ,z,v), F({2,4} ,z,v)) =0
and similarly,
F({1,2,4} ,y,w) =2 > max(F({1,4},y,w), F({2,4} ,y,w)) = 0.

Coalition {1, 3} belongs to the antipartition included in B(z) N B(y). Con-
sider the SD-reduced games ({1,3},v*) and ({1,3},wY). Then

(1)) = 1 £ 0({1,2,4}) — v({2,4}) = 0

and

w({1}) =2 £ w({L,2,4}) - w({2.4}) = o({1,2,4}) - ({2, 4}) = 0.

The worth of coalitions in games ({1,3},v") and ({1,3},w?) depends on x
and y and not only on the characteristic functions v and w.

5 Convex games

In the class of convex games (Shapley, 1971) core stability and coalitional
monotonicity are compatible since in this class the Shapley value satisfies
both properties. The Shapley value is not a core solution. Therefore, the issue
of whether there is a core solution that satisfies coalitional monotonicity in
the class of convex games has hitherto been an open question. The following
theorem answers the question in the affirmative.
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Theorem 17 In the class of convex games the SD-prenucleolus satisfies coali-
tional monotonicity.

The proof of this theorem results immediately from the facts that convex
games are SD-relevant games (see lemma below) and the fact that if (IV,v)
and (N, v + abg) are convex then (N, v + vbg) is convex for any v € [0, a.

Lemma 18 Let (N,v) be a conver game and x € X(N,v). Then all coali-
tions are relevant with respect to x.

Proof. The lemma is obviously true for coalitions included in B(z). We
seek to prove that given any two relevant coalitions, S and T, S U T is
relevant. Assume that there exist two relevant coalitions S and T such that
SUT # N and SUT is completed. By convexity,

z(SUT)—v(SUT)+z(SNT)—v(SNT) <z(S) —v(S) + z(T) — v(T).

Since S and T are relevant, by Lemma 3, z(S) — v(S) = >_ fi(S) and
i€s

x(T)—o(T)=>_ fi(T). Since SUT is completed, by Lemma 3 2(SUT) —

i€T
v(SUT) > > fi(SUT). Therefore,
1eSUT
Y ASUT) +2(SNT)—o(SNT) <Y fi(S)+ > f(T)
1eSUT €S €T

Let D = {QCSUT:QZS,Q¢ZT and F(Q) < max(F(S),F(T))}. We
consider two cases.
a) D = (). In this case,

ST HSUT) =D A8+ D AT+ > min(fi(T), £:(9)).

esuT 1€S\T 1€T\S 1€TNS
Therefore,
2(SNT)—o(SNT) < Y max(f(T), fi(S)). (4)
i€TNS
By Lemma 3, 2(SNT)—v(SNT) > > f;(SNT). Since (SNT') C S and

i€TnsS

(SNT) C T, by part 3 of Lemma 3 f;(S) < f;(SNT) and f;(T) < f;(SNT) for
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all i € SNT. Consequently, f;(SNT) > max(f;(T), f;(S)) forallie SNT.
Therefore,

(SNT)—o(SNT) > Y max(fi(T), fi(S5)),
i€TNS
which contradicts inequality (4).

b) D # (). Let Q € argminF(R). Let coalitions S* and T* be:
ReD

g1 S MF@Q>F(S) o T if F(Q)> F(T)
] SuQ if F(Q) < F(S) ] TuQ if F(Q) < F(T).

We consider two cases:

b1) Coalitions S* and T' are relevant. Using coalitions S' and T*, the
arguments used for coalitions S and T can repeat. Since () has been chosen
with minimal satisfaction, for these two coalitions (S'and T1), case b) does
not occur. Hence, S'UT! = S UT is relevant.

b2) Assume, without loss of generality, that S is completed. Note that
St c SUT. We repeat the proof with coalitions S and (). This ends up either
in a contradiction (cases a) and bl)) or in case b2) with two coalitions S and

P (or @ and P) such that SUP (or QUP) is completed and P € arg minF'(R)
ReD?
where

D*={RCSUQ:RZS,R¢ZQ and F(R) < max(F(S), F(Q))}.

Now repeat the proof taking coalitions S and P (or @ and P). If the
proof ends in case a) or bl) the contradiction is found. If not, repeat the
proof with another two coalitions. Note that at the end two coalitions need
to be found for which case b2) does not occur since the number of coalitions
is finite and the satisfaction of the new coalition is lower than the satisfaction
of the removed coalition. =

6 Concluding remarks

This paper follows up the research started by Arin and Katsev in 2014.
Considering the results included in the two papers the SD-prenucleolus stands
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out as the only known core solution that satisfies coalitional monotonicity in
the class of convex games and in the class of veto balanced games®. Convex
games and games with veto players have been widely used to model many
different economic situations. In both classes the compatibility between core
stability and coalitional monotonicity was known. However the existence of
a continuous core solution satisfying coalitional monotonicity in those two
classes was an open question that has been answered in the positive way:
the SD-prenucleolus is a continuous core solution that satisfies coalitional
monotonicity in both classes of games.
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