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Abstract

The regret-minimization paradigm has emerged as a powerful technique for designing al-
gorithms for online decision-making in adversarial environments. But so far, designing exact
minmax-optimal algorithms for minimizing the worst-case regret has proven to be a difficult task
in general, with only a few known results in specific settings. In this paper, we present a novel
set-valued dynamic programming approach for designing such exact regret-optimal policies for
playing repeated games with discounted losses.

Our approach first draws the connection between regret minimization, and determining min-
imal achievable guarantees in repeated games with vector-valued losses. We then characterize
the set of these minimal guarantees as the fixed point of a dynamic programming operator de-
fined on the space of Pareto frontiers of convex and compact sets. This approach simultaneously
results in the characterization of the optimal strategies that achieve these minimal guarantees,
and hence of regret-optimal strategies in the original repeated game. As an illustration of our
approach, we design a simple near-optimal strategy for prediction using expert advice for the
case of 2 experts and discounted losses. To the best of our knowledge, this is the first such
algorithm for this setting.

1 Introduction

In many scenarios involving repeated decision-making in uncertain environments, one desires ro-
bust performance guarantees. The well-known regret minimization paradigm captures this ob-
jective by formulating the problem as a repeated game between the decision-maker and the en-
vironment, which is modeled as an adversary. The goal of the decision-maker in this game is
to design an adaptive and possibly randomized algorithm for choosing actions (henceforth, algo-
rithm /strategy /policy) so as to minimize regret, which is defined as the difference between the
expected loss incurred by the algorithm, and the loss incurred by the best fixed action that could
have been chosen in hindsight against the sequence of actions chosen by the adversary. Since its
inception by Hannan in the 1950s [Han57], this formulation of an online decision-making problem
under uncertainty has been widely popular both in theory and practice, having been successfully
applied to problems like managing investment portfolios, weather forecasting, online spam detection
etc., and is now fundamental to the field of online learning.
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In this setting, several no-regret algorithms are now known, which ensure that the time-averaged
regret asymptotically vanishes in the long run, not just in expectation, but with probability 1,
irrespective of the sequence of actions chosen by the adversary. But in many realistic cases, e.g.,
when decision-making horizons are finite, the minimal expected regret one can achieve in the worst
case over all the sequence of actions chosen by the adversary (henceforth, just optimal regret)
is non-zero. In such cases, standard no-regret algorithms can perform quite poorly compared to
the optimum and except for a very few special cases, the exact optimal regret and strategies are
unknown.

The main contribution of this paper is the proposal of a systematic set-valued dynamic program-
ming approach for designing regret-optimal strategies in repeated games. Such an approach is most
fruitful, and hence is best illustrated, in the case of repeated games with discounted losses, which
is thus the focus of the paper. In these games, the loss criterion is the weighted sum of per-stage
losses, with the loss at stage ¢ > 1 weighted by 5¢~1, where 8 € (0,1) is called the discount factor.
Such discounting is natural in practice, where minimizing current losses is more important than the
ones in the futureE In this case, since the losses incurred in the initial stages have a non-vanishing
contribution to the cumulative loss as the number of stages increases, the optimal long-run average
discounted regret for any fixed 8 € (0,1) is non-zero (see [CBLO3], Thm 2.7)F] Several known
no-regret algorithms guarantee an average regret of O(y/1 — ) asymptotically in this setting, but
the performance of these algorithms can be far from optimal for a fixed 5. Our approach on the
other hand gives a procedure to compute e-regret-optimal strategies in these games for any € > 0.
These strategies are extremely simple to implement and require a finite memory (which grows as
e decreases). For instance, using our approach, we are able to design a provably near-optimal al-
gorithm for the problem of prediction using expert advice with discounted losses, for the case of 2
experts. To the best of our knowledge, no such algorithm was known before.

Our solution begins with a standard approach in regret minimization, of transforming the re-
peated game into a repeated game with vector losses. In this game, the number of vector compo-
nents is the number of actions available to the decision-maker, where each component keeps track
of the additional loss incurred relative to the loss incurred if the corresponding action was always
chosen in the past. The goal of regret minimization in the original game now translates to the
goal of simultaneously minimizing the worst-case expected losses on all the components in this
vector-valued game. In fact there is a tradeoff here: a better guarantee on one component implies
a worse guarantee on some other, and we consider the more ambitious objective of characterizing
the entire Pareto-frontier of the minimal losses that can be simultaneously guaranteed across the
different components. Our main technical contribution is an effective characterization of this set as
the fixed point of a set-valued dynamic programming operator, which simultaneously also charac-
terizes the strategies that achieve the different points on it. This characterization then allows us to
design an iterative scheme to approximate this set and compute approximately optimal strategies
for arbitrarily low approximation error.

The paper is organized as follows. In Section [2, we formally introduce the notion of regret opti-
mality in repeated games, and demonstrate the transformation of the regret minimization problem
into the problem of computing simultaneous guarantees on losses in a vector-valued repeated game.
In Section [3] we introduce the set-valued dynamic programming approach for computing these
guarantees, and give a characterization of both the optimal regret and the optimal policies. In

1For instance, such a discounting can capture the existence of a risk-free interest rate on your investments.
2By average discounted regret we mean that the weights are normalized by multiplying with (1— ), which ensures
that the sum of the weights over an infinite horizon is 1.



Section [4], we present an approximate value iteration procedure to approximate the optimal regret
and compute an e-optimal strategy in the case where the decision-maker has only 2 available ac-
tions. Section [9] illustrates our approach on the problem of prediction using expert advice with
2 experts. We compare the performance of a near-optimal policy that we compute with that of
two algorithms: one is the classical exponentially weighted average forecaster, and another one
is the optimal algorithm for prediction using expert advice with 2 experts and with geometrically
distributed stopping times, characterized recently by |[GPS14]. We summarize our contribution and
discuss future directions in Section [6] The proofs of all our results can be found in the appendix.

1.1 Related Literature

The first study of regret minimization in repeated games dates back to the pioneering work of
Hannan [Han57], who introduced the notion of regret optimality in repeated games and proposed
the earliest known no-regret algorithm. Since then, numerous other such algorithms have been pro-
posed, particularly for the problem of prediction using expert advice, see [LW94], Vov90, (CBFH™ 97,
F'S99], one particularly well-known being the multiplicative weights update algorithm, also known
as Hedge. Other settings with limited feedback have been considered, most notably the multi-
armed bandit setting [ACBFS02, BCB12]. Stronger notions of regret such as internal regret, have
also been studied [FV97, [CBL03, BMO05, [SLO5].

Similarly, regret minimization with non-uniformly weighted losses, of which the discounted loss is
a special case, has been considered before. While the average regret goes to zero if the weights satisfy
a non-summability condition, lower bounds exist ([CBLO03|], Thm 2.7) that show that the optimal
regret is bounded away from 0 if the weights are summable, which is the case with discounting.
Natural extensions of no-regret algorithms incur a regret of O(y/1 — ) in this case, for instance
see [CBLO03], Thm 2.8 and [Per14], Prop. 2.22E|

The results on exact regret minimization are few. In an early work, [Cov66] gave the optimal
algorithm for the problem of prediction using expert advice over any finite horizon T, for the case
of 2 experts, and where the losses are {0,1}. [GPS14] recently extended the result to the case
of 3 experts for both the finite horizon and geometrically distributed random horizon problemsﬁ
[AWYO08] considered a related problem, where a gambler places bets from a finite budget repeatedly
on a fixed menu of events, the outcomes of which are adversarially chosen from {0,1} (you win
or you lose), and characterized the minmax optimal strategies for the gambler and the adversary.
[LS13] considered a similar repeated decision-making problem where an adversary is restricted to
pick loss vectors (i.e., a loss for each action of the decision-maker in a stage) from a set of basis
vectors, and characterized the minmax optimal strategy for the decision-maker under both, a fixed
and an unknown horizon. Most of the approaches in these works are specific to their settings, and
exploit the assumptions on the structure of the loss vectorsm But in general if the loss vectors are

3[CZ10] derive better bounds for the case where future losses are given a higher weight that current ones.

4 Although a geometric time horizon model seems to be related to the infinite horizon model with discounted losses,
the two problem formulations define regret differently, and thus lead to different optimal regrets. We discuss this in
Section

®Many of these works rely on a particular nice property of these settings, which is that the optimal strategy of the
adversary is a controlled random walk that makes any algorithm incur the same regret. If the losses are simple, for
instance if they are the basis vectors, then this random walk can be exactly analyzed to compute the optimal regret.
Knowing the optimal regret then simplifies the computation of the optimal strategy of the decision-maker.

SAll of these are examples where games with finite action spaces (called matrix games) are repeated, which is the
setting that we are concerned with. But there are many works that consider exact minmax optimality in repeated
games with continuous action spaces, with specific types of loss functions, see [KMBI4, [BKM™15, [KMBATH] and



arbitrary, none of these approaches can be extended and indeed it is recognized that characterizing
the optimal regret and algorithm is difficult, cf. [LS13]. On the other hand, using our approach,
we are able to characterize the optimal regret and algorithm for any choice of bounded loss vectors.

Similar to our approach, the idea of characterizing the Pareto Frontier of all achievable regrets
with respect to different actions has been explored by [Kool3|, again in the specific context of
prediction with expert advice with 2 experts and {0,1} losses, and for the finite time horizon
problem. Our focus on the infinite horizon setting with discounted losses entails the development
and use of a more involved machinery of contractive set-valued dynamic programming operators,
and at the end it gives results that are much cleaner than those in the finite horizon setting. Set-
valued dynamic programs have been used in other contexts in the theory of dynamic games, for
instance to compute the set of equilibrium payoffs in non-zero sum repeated games with imperfect
monitoring [APS86l [APS90]. For the use of dynamic programming in zero-sum dynamic games
one can refer to the classic paper by Shapley [Sha53] on Stochastic games. For a general theory of
dynamic programming, see [Ber(5].

An important step in our approach is a reduction of the problem to a vector-valued repeated
game. The study of vector-valued repeated games was pioneered by Blackwell [Bla56a]. He gave
sufficient conditions for a set to be approachable by a player, which means that there exists a
strategy for a player that ensures that the average loss approaches this set regardless of the adver-
sary’s actions. Moreover, he explicitly defined an adaptive randomized strategy that ensures this.
Later he also showed that this theory can be used to obtain no-regret strategies as formulated by
Hannan [Han57], using the transformation of the repeated game into a vector-valued game that we
described earlier [Bla56b]. This theory was subsequently extended in various ways [Vie92] [Leh03],
and stronger connections with regret minimization and other learning problems like calibration were
shown [ABHII| [Per14]. But as far as we know, there has been no prior work on the discounted loss
criterion. In this paper, as a by-product of our analysis, we successfully bridge this important gap
in the theory of vector-valued repeated games. As a result, this theory bridges significant gaps in
other decision-making problems where Blackwell’s approachability theory has found applications[]

2 Model
Let G be a two player game with m actions A = {1,...,m} for player 1, who is assumed to be
the minimizer and who we will call Alice (the decision-maker), and n actions B = {1,...,n} for

player 2, who is the adversary and who we will call Bob. For each pair of actions a € A and b € B,
the corresponding loss for Alice is {(a,b) € R. The losses for different pairs of actions are known
to Alice. The game G is played repeatedly for T stages t = 1,2,--- ,T. In each stage, both Alice
and Bob simultaneously pick their actions a; € A and b; € B and Alice incurs the corresponding
loss I(at,by). The loss of the repeated game is defined to be the total discounted loss given by

Z;le Bt (ag, by), where 3 € (0,1). We define the total discounted regret of Alice as:

T

T
S 8 an, br) — ggggjlﬁt—wa, be). (1)

t=1

which is the difference between her actual discounted loss, and the loss corresponding to the single
best action that could have been chosen against the sequence of actions chosen by Bob in hindsight.

references therein.
A notable example is the analysis of zero-sum repeated games with incomplete information [Zam92) [AM95], [Sor02]



An adaptive randomized strategy w4 for Alice specifies for each stage ¢, a mapping from the set
of observations till stage ¢, i.e., H, = (a1,b1,--+ ,a;-1,bt—1), to a probability distribution on the
action set A, denoted by A(A). Let IT4 be the set of all such policies of Alice.

The adversary Bob is assumed to choose a deterministic oblivious strategy, i.e., his choice is
simply a sequence of actions g = (b1, ba, b3, - - - ,bT) chosen before the start of the game. Let Ilp
be the set of all such sequencesﬁ We would like to compute the worst case or minmax expected
discounted regret which is defined as:

T T
min max (Em [Zﬁt_ll(at,bt)] —géij{ll;ﬁt_ll(a, bt)>, (2)

wa€lly mp€ellp =1

and the strategy for Alice that guarantees this value. Here the expectation is over the randomness in
Alice’s strategy. Here one can see that there is no loss of generality in assuming that the adversary
is deterministic. Indeed if IIp is allowed to be the set of possible randomizations over T-length
sequences of Bob’s actions, the optimal policy of Bob in the problem

wp€llp

T T
max Fr, xp [Z B (ay, by) — min > 87 (a, bt)]
t=1 t=1

is a deterministic sequence.

We can now equivalently write as:

T
i E SUag, b) — Ua, by)) | 3
iy g max By | 320 b ~ .0 ®
In order to address this objective, it is convenient to define a vector-valued game G, in which,
for a pair of actions a € A and b € B, the vector of losses is r(a, b) with m components (recall that
|A| = m), where
Tk(a, b) = l(a7 b) - l(ka b) (4)
for k =1,--- ,m. ri(a,b) is the single-stage additional loss that Alice bears by choosing action a
instead of action k, when Bob chooses b: the so called single-stage regret with respect to action k.

For a choice of strategies m4 € 114 and wg € Il of the two players, the expected loss on component
k in this vector-valued repeated game over horizon 7' is given by

T
Rirams) = Eny| 30 o). %)
t=1

where the expectation is over the randomness in Alice’s strategy. Now observe that by playing a
fixed policy ma € Il4, irrespective of the strategy chosen by Bob, Alice guarantees that the total
expected loss on component k is no more than MAX_ k ey, Rf(ﬂ A, W%). Suppose that we determine

the set of all simultaneous guarantees that correspond to all the strategies w4 € 114, defined as:

wh & {( max RZ;(WA,T(%)) 1TA € HA}. (6)
k=1, ,m

W%EHB

8Having an oblivious adversary is a standard assumption in regret-minimization literature [CBLO3] and in fact it
is known that in this case, an oblivious adversary is as powerful as a non-oblivious (adaptive) adversary.



Then it is clear that

T
min max maxF Z =Y(1(ay, b)) — I(a,b = min maxzg.
TA€lly mp€llp acA s [tl B ( ( b t) ( ’ t)) xeWT k b

In fact, we are only interested in finding the minimal points in the set W7, i.e., its Lower Pareto
frontier, which is the defined as the set

AWT) &2 (x e WT . vx' e WI\ {x}, Tk s.t. zp < ).}, (7)

since all other points are strictly sub-optimal. Let this set be denoted as V. Our goal in this
paper is to characterize and compute the set V*>° that can be achieved in the infinite horizon game
and compute policies for Alice in IT4 that guarantee different points in it.

3 Set-valued dynamic programming

In the remainder of the paper, we will consider a general model for a vector-valued repeated game
G with m actions for Alice and n actions for Bob, where m and n are arbitrary but finite, and
we assume that the number of components in the vector of losses r(a,b) is K, where K may be
different from m. For ease of exposition, we will consider the case where K = 2, but the analysis
holds for any finite K.

Our goal is to compute the set of minimal guarantees V°° that Alice can achieve in the infinite
horizon vector-valued discounted repeated game and characterize the policies that achieve it. Our
results will hold for any vector-valued repeated game, not just the one that arises from the regret
minimization formulation discussed before.

In our analysis, we will assume that Bob is not restricted to playing oblivious deterministic
strategies, but can play any adaptive randomized strategy. An adaptive randomized strategy
wp for Bob specifies for each stage t, a mapping from the set of observations till stage ¢, i.e.,
H; = (a1,b1, -+ ,a;-1,bi—1), to a probability distribution on the action set B, denoted by A(B).
There is no loss in doing so, since will later show in Section that the optimal set V*° and the
optimal policies for Alice remain the same irrespective of which of the two strategy spaces are
assumed for Bob. Although the analysis is simpler if we restrict Bob to using only deterministic
oblivious strategies, the approach we take allows us to demonstrate that our results hold at a higher
level of generality in the broad context of characterizing minimal guarantees in repeated games with
vector losses.

3.1 Overview of results

Our main contributions are as follows:

1. We show that the set V*° of minimal losses that Alice can simultaneously guarantee in an
infinitely repeated vector-valued zero-sum repeated game with discounted losses is the fixed
point of a set-valued dynamic programming operator defined on the space of lower Pareto
frontiers of closed convex sets with an appropriately defined metric. We then show that the
optimal policies that guarantee different points in this set are of the following form. V°° can be
parametrized so that each point corresponds to a parameter value, which can be thought of as



an “information state”. Each state is associated with an immediate optimal randomized action
and a transition rule that depends on the observed action of the adversary. In order to attain
a point in V*°, Alice starts with the corresponding state, plays the associated randomized
action, transitions into another state depending on Bob’s observed action as dictated by the
rule, plays the randomized action associated with the new state and so on. In particular, the
strategy does not depend on Alice’s past actions and it depends on Bob’s past actions only
through this state that the minimizing player keeps track of.

2. For the case where Alice has only 2 actions, we give a value-iteration based procedure to
approximate V°° and to compute an approximately optimal policy that only uses a coarse
finite quantization of the parameter space. This strategy can be simply implemented by
a randomized finite-state automaton. Any desired diminishing approximation error can be
attained by choosing the appropriate quantization granularity and number of iterations. Our
procedure in principle can be extended to an arbitrary number of actions. We finally illustrate
our theory and the approximation procedure on a simple model of prediction with expert
advice with 2 experts.

3.2 Overview of the approach

We now present an informal description of our approach. Let GT denote the T- stage repeated
game and let G denote the infinitely repeated game. Let VO = {(0,0)}. We can show that one
can obtain the set V! from the set V7, by decomposing Alice’s strategy in G? ! into a strategy
for the 1st stage, and a continuation strategy for the remainder of the game from stage 2 onwards,
as a function of the action chosen by both the players in the 1st stage. The induction results from
the fact that the minimal guarantees that she can guarantee from stage 2 onwards are exactly the
set V. Suppose that at the start of GT*!, Alice fixes the following plan for the entire game: she
will play a mixed strategy e € A(A) in stage 1. Then depending on her realized action a and Bob’s
action b, from stage 2 onwards she will play a continuation strategy that achieves the guarantee
R(a,b) € VT (she will choose one such point R(a,b) for every a € A and b € B). Note that it is
strictly sub-optimal for Alice to choose any points outside VI from stage 2 onwards. Now this plan
for the entire game GT*! gives Alice the following expected simultaneous guarantees on the two
components:

<1~bﬂ€aé<{ > aa[ri(a,b) + BRi(a,b)] }1&%{ > aalra(a,b) + BRa(a,b)] })

a€A a€A

By varying the choice of a and the map R(a,b) we can obtain the set of all the simultaneous
guarantees that Alice can achieve in the (T + 1)-stage game. The Lower Pareto frontier of this set
is exactly VI, Thus there is an operator ®, such that

VT+1 _ q)('vT)

for any T > 0, where V° is defined to be the singleton set {(0,0)}. In what follows, we will show
that this operator is a contraction in the space of Lower Pareto frontiers of closed convex sets,
with an appropriately defined metric. This space is shown to be complete, and thus the sequence
VT converges in the metric d to a set V*, which is the unique fixed point of this operator ®. As
one would guess, this V* is indeed the set V°° of minimal simultaneous guarantees that Alice can
achieve in the infinitely repeated game G*.



The rest of this section formalizes these arguments. We will begin the formal presentation of
our results by first defining the space of Pareto frontiers that we will be working with.

3.3 The space of Pareto frontiers in [0, 1)

Definition 3.1. (a) Let u,v € R%2. We say that u < v if u1 < vy and us < va. Also, we say that
u=<vifuxvandu#v. If u=<v, we say that v is dominated by u.

(b) A Pareto frontier in [0,1]? is a subset V of [0,1]? such that no v € V is dominated by another
element of V.

(c) The Lower Pareto frontier (or simply Pareto frontier) of 8 C [0, 1]?, denoted by A(S), is the
set of elements of 8 that do mot dominate any another element of S.

The Pareto frontier of a set may be empty, as is certainly the case when the set is open. But
one can show that the Pareto frontier of a compact set is always non-empty. Since compactness is
equivalent to a set being closed and bounded in Euclidean spaces, any closed subset of [0,1]? has
a non-empty Pareto frontier. We define the following space of Pareto frontiers:

Definition 3.2. F is the space of Pareto frontiers of closed and conver subsets of [0,1]2.

We will now define a metric on this space. We first define the upset of a set, illustrated in Figure

m

Definition 3.3. Let A be a subset of [0,1]?. The upset up(A) of A is defined as up(A) = {x €
(0,12 | 21 > y1 and 2 > o, for somey € A}. FEquivalently, up(A) = {x € [0,1]*> | x =
y + v, for somey € A and v = 0}.

It is immediate that the upset of the Pareto frontier of a closed convex set in [0, 1]? is closed
and convex. We recall the definition of Hausdorff distance induced by the co-norm.

N up(V)

1 1 <

S

0
0 1 0 1

Figure 1: A Pareto frontier V and its upset up(V).

Definition 3.4. Let A and B be two subsets of R?. The Hausdorff distance h(A,B) between the
two sets is defined as

h(A,B) = max{sup inf ||x — ¥||eo, sup inf ||x — ¥||co}-
xcAYEB yegxe/[

We now define the distance between two pareto frontiers in F as the Hausdorff distance between
their upsets.



Definition 3.5. For two pareto frontiers W and V in F, we define the distance d(U,V) between
them as d(U, V) = h(up(U), up(V)).

We can then show that F is complete in the metric d. This follows from the completeness of the
Hausdorff metric for closed convex subsets of [0, 1]2.

Proposition 3.1. Let (V”)neN be a sequence in F. Suppose that sup,, g~ d(Vim, Vi) — 0. Then
there exists a unique V € F such that d(V,,V) — 0.

3.4 Dynamic programming operator and the existence of a fixed point

By scaling and shifting the losses, we assume without loss of generality that ri(a,b) € [0,1 — f] for
all (a,b, k). Accordingly, the total discounted rewards of the game take values in [0, 1] irrespective
of the time horizon. Now, for a closed set § C [0, 1]2, define the following operator ¥ that maps 8
to a subset of R2:

U(8) = { <max { > aq[ri(a,b) + BRi(a,b)] }%éag{ > ag[ra(a,b) + BRa(a,b)] })

beB acA acA
e A(A), R(a,b)eSVaeA,beB}. (8)

This operator can be interpreted as follows. Assuming that 8 is the set of pairs of expected
guarantees on losses that Alice can ensure in GT, W(8) is the set of pairs of expected guarantees
that she can ensure in GT*!. We will show that if § is closed then ¥(8) is closed as well. But if 8
is convex then W(8) is not necessarily convex. Nevertheless we can show that the Pareto frontier
of ¥(8) is the Pareto frontier of some convex and compact set.

Lemma 3.1. Let 8§ C [0,1]2 be a closed set. Then U(8) C [0,1]2 is closed. If in addition, § is
convez, then:

1. Any point u in A(V(8)) is of the form:

w— <Ibn€a§<{ S ori(a,b) + ﬁQl(b)}, %aé({ S ara(a,b) + BQz(b)}>.

acA acA
where Q(b) € A(8).
2. A(¥(8)) € F.
In the context of our discussion in Section the first point of the Lemma implies that in any
optimal plan for Alice in GT*!, the continuation strategy from stage 2 onwards need not depend on

her own action in stage 1 (but it depends on Bob’s action in the first stage). Define the following
dynamic programming operator ® on JF.

Definition 3.6. (Dynamic programming operator) For V € F, we define ®(V) = A(¥(V)).



Now since V is the Lower Pareto frontier of some closed convex subset of R?, say 8, and since
AT (V) = A(¥(S)), from Lemma we know that ®(V) € F whenever V € F. Next, we claim
that ® is a contraction in the metric d.

Lemma 3.2.
d(®(U), 2(V)) < Bd(U, V). (9)

Finally we show that the dynamic programming operator has a unique fixed point and starting
from a Pareto frontier in F, the sequence of frontiers obtained by a repeated application of this
operator converges to this point.

Theorem 3.1. Let V € F. Then the sequence (A, = ®"(V))nen converges in the metric d to a
Pareto frontier V* € F, which is the unique fixed point of the operator ®, i.e., the unique solution

of (V) =V.
We can then show that V* is indeed the optimal set V°° that we are looking for.
Theorem 3.2. V° = V*.

3.5 Optimal policies: Existence and Structure

For a Pareto frontier V € F, one can define a one-to-one function from some parameter set P
to V. Such a function parameterizes the Pareto frontier. For instance, consider the function
F:[-1,1] x F — R?, where one defines

F(p,V) = argminx +y (10)
(z9)

st.x>u, y>ue, ueV, y=x+0p.

F(p,V) is essentially the component-wise smallest point of intersection of the line y = x + p with
the upset of V in [0, 2]? (see Figure [2)).

y=x+p
s /
2
F(p.V) é
1
Vv
0 1 Chel

Figure 2: Parameterization of V.

Then for a given V, the function F(.,V) : [-1,1] — V is indeed one-to-one since any point on V
intersects exactly one of the lines. We can now express the dynamic programming operator in the
form of such a parametrization. Assume that V* is such that V* = ®(V*). Then for p € P, one can
choose a(p) € A(A) and ¢(b,p) € P for each b € B such that for k € {1,2},

Fi(p, V") = max{}  aa(p)ri(a,b) + BFi(a(b,p), V)3 (11)
acA

10



Then we have the following result.

Theorem 3.3. For any p1 € P, the upper bound F(p1,V*) in V* is guaranteed on losses by Alice
in the infinite horizon game by first choosing action ay € A with probability o, (p1). Then if Bob
chooses an action by € B, the optimal guarantees to choose from the second step onwards are then
BF (p2, V*) in BV*, where pa = q(b1,p1), which can be guaranteed by Alice by choosing action as € A
with probability o, (p2), and so on.

This implies that P can be thought of as a state space for the policy. Each state is associated
with an immediate optimal randomized action and a transition rule that depends on the observed
action of Bob. In order to attain a point in V*, Alice starts with the corresponding state, plays the
associated randomized action, transitions into another state depending on Bob’s observed action
as dictated by the rule, plays the randomized action associated with the new state and so on. In
particular, the policy does not depend on the past actions of Alice and it depends on the past actions
of Bob only through this information state that Alice keeps track of. Since Alice’s optimal policy
itself does not depend on her own past actions, Bob’s optimal response does not depend on them
either. Hence one can see that Bob has an oblivious best response to any optimal policy of Alice.
This fact is important for the following discussion.

3.6 Oblivious adversary

Recall that when we defined the dynamic programming operator, we assumed that Bob is allowed
to choose any adaptive non-oblivious strategy. We will now argue that even if we restrict Bob to
an oblivious deterministic policy, the set of minimal losses that Alice can guarantee is still V*, the
fixed point of our operator. First recall that Bob’s best response to Alice’s optimal strategy that
achieves different points on the frontier V* is deterministic and oblivious (offline). This is because
Alice does not take into account her own actions to determine the information state transitions.
In fact, if Alice is restricted to use strategies that do not depend on her own actions chosen in the
past, then the best response to such policy is always an offline deterministic policy, and hence the
minimal achievable frontier if Bob is restricted to use offline deterministic policies is V*. So all that
we need to verify is that Alice does not gain by using policies that depend on her own past actions,
when Bob is restricted to using only offline deterministic strategies. To see this, suppose that V7 is
the set of guarantees that Alice by using general randomized adaptive strategies in GT', assuming
that Bob is restricted to using deterministic offline policies. Then in GT*!, Alice’s policy is a choice
of a distribution over her actions, a, and then a mapping from the realized actions (a,b) to some
continuation (randomized adaptive) policy 7(a,b) € I14. But since Bob’s responses that maximize
the losses on the different components cannot depend on the realization of Alice’s action a, and
can only depend on «, his best responses from time 2 onwards would effectively be against the
strategy 7'(b) of Alice that chooses the policy m(a,b) with probability «, for each realized action
a. This policy better guarantee a point in V7T since all other policies are strictly-suboptimal. Thus
the guarantees that Alice can achieve in GT*! is given by the set:

7= ({3 00+ 8100 e 3 st + 50a09

|ae A(A), Q(b) € Vi Vb e B})
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But this is exactly the dynamic programming operator in Definition [3.6] Hence we can conclude
that V* is indeed the set of minimal guarantees, even if Bob is restricted to using deterministic
offline policies.

4 Approximation for K =2

Finding the minmax regret and the optimal policy that achieves it requires us to compute V* and
{(a(p),q(b,p) : p € P} that satisfies . Except in simple examples, it is not possible to do so
analytically. Hence we now propose a computational procedure to approximate the optimal Pareto
frontier in R? and devise approximately optimal policies. In order to do so, we need to define an
approximation of any Pareto frontier. Consider the following approximation scheme for a Pareto
frontier V € F. For a fixed positive integer N, define the approximation operator to be

I'y(V) = A<ch <{F(p,V) p€ {O,i%,i%, . ,iN]\_fl,il}}>>. (12)

where F(p, V) was defined in (10). Here ch denotes the convex hull of a set. Thus I'y (V) is a Lower
Pareto frontier of a convex polygon with at most 2N + 1 vertices.

Now suppose that V is the Pareto frontier of a convex and compact set. Then we know that
®(V) is also the Pareto frontier of a convex and compact set, and we can express the compound
operator I'y o (V) via a set of explicit optimization problems as in , that only take V as input:

F(p,®(V)) = argminz +y (13)
(z,y)
s.t. x> Zaarl(avb) +5Q1(b) Vbe B: y = ZaaTQ(a7 b) + 6@2(1)) Vbe B7
acA acA

y=x+p, a€A(A), Qb)eVVbeB

If V € F is a Lower Pareto frontier of a convex polygon, then this is a linear programming
problem, and further Iy o (V) is a Lower Pareto frontier of a convex polygon with at most 2NV 41
vertices. We then we have the following result:

Proposition 4.1. Let §° = {(0,0)} and let G, = (T'y o ®)"(G°). Then

* 1 175” n
d(V,Sn)§N<1_B>+6. (14)

And thus

limsupd(V*,$,) = O <N(11—ﬁ)> .

Hence for any e, there is a pair (IV,n) such that d(V*,G,) < e. This result implies an iterative
procedure for approximating V* by successively applying the compound operator I'y o ® to VY,
by solving the above linear program at each step. Since G" is a Lower Pareto frontier of a convex
polygon with at most 2NV + 1 vertices for each n, the size of the linear program remains the same
throughout.
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4.1 Extracting an approximately optimal policy

From G", one can also extract an approximately optimal strategy n™ in the infinite horizon game.
Suppose a*(p) and Q*(b, p) for b € B are the optimal values that solve the program to compute
F(p, ®(g")) for different p € {O,:t%,:t%, e ,:l:%,:l:l}. Then these define an approximately
optimal policy in the following class:

e . : ~ 1,2 N—1
Dei;ilmtlon 4.1. A (2N+1)-mode policy 7 is a mapping from eachp € {0, £+, %, -, 5, £1}
to the pair

1. a(p) € A(A), and

2. <Q(bap)a q,(b’p)’ ’i(b7p)>; where fO’F all b € B; Q(bvp)v q/(bap) € {Oviﬁvi%v T a:l:l} such
that |q(b,p) — q'(b,p)| = ., and (b, p) € [0,1].

The interpretation is as follows. One starts with some initial mode, i.e., a value of p €
{O,:l:%, -+~ ,£1}. Then at any step, if the current mode is p, then Alice first chooses action
a € A with probability a4(p). Then if Bob plays action b € B, Alice considers the new mode to
be ¢(b,p) with probability x(b,p), and ¢'(b,p) with probability 1 — (b, p) and plays accordingly
thereafter.

Now, a*(p) defines a(p) in the policy, and (q(b,p), ¢'(b,p), x(b,p)) are defined such that they
satisfy

Q" (b,p) = r(b, p)F(q(b,p),5") + (1 — s(b,p))F (¢’ (b, p), §").

Let V™ be the corresponding Pareto frontier that is attained by the policy m, (each point on
this frontier is guaranteed by choosing different possible initial randomizations over the 2NV + 1
modes). We have the following result.

Proposition 4.2.

- 1 1—/5)” " 1 Q—Bn—ﬁn—H
(v ,V)gN(l_ﬂ>+2B +N<(1—6)2>' (15)

And thus

: TTn k) ]'
hglf;pd(\? , V) = O(N(l _5)2>.

Remark: The procedure to approximate the frontier and extract an approximately optimal
policy illustrates that our characterization of the minmax optimal policy via the fixed point of a
dynamic programming operator opens up the possibility of using several dynamic programming
based approximation procedures. Here we have not tried to determine a computation procedure
that achieves the optimal error-complexity tradeoff. For fixed (N, n), in order to approximate the
optimal frontier, the procedure needs to solve nN linear programs, each with O(NN) variables and
constraints, to give the corresponding error bound in the theorem. Omne can split the error into
two terms: the first term is the quantization error which is bounded by ﬁ and the iteration
error which is bounded by ™. The second term is relatively benign but the first term requires
N = ﬁ, which grows rapidly when  is close to 1. For finding an approximately optimal policy,

the scaling is like ﬁ, which grows even faster. Nevertheless, all of this computation can be

done offline, and needs to be performed only once. The resulting approximately optimal policy is
1

very simple to implement, and requires a bounded memory (O(log W) bits).
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Table 1: Possible loss scenarios

Expert 1

1

0

1

0

1

1

0

Expert 2 | 0

Table 2: Single-stage regret w.r.t. Expert 1 & 2
Expert 1 | (0,1) | (0,-1) | (0,0) | (0,0)
Expert 2 | (-1,0) | (1,0) | (0,0) | (0,0)

5 Example: Combining expert advice

Consider the following model of combining expert advice. There are two experts who give Alice
recommendation for a decision-making task: say predicting whether a particular stock will rise
the next day or fall. Each day Alice decides to act on the recommendation made by one of
the experts. The experts’ recommendations may be correct or wrong, and if Alice acts on an
incorrect recommendation, she bears a loss of 1. Otherwise she does not incur any loss. This
model can be represented by Table [Il The rows correspond to the choice made by Alice and the
columns correspond to the four different possibilities: either one of the experts gives the correct
recommendation and the other doesn’t, or both give the correct recommendation or both give the
incorrect one. The matrix of single-stage regrets is given in Table

In Figure |3 the computed approximately optimal Pareto frontiers for a range of values of 5 are
shown with the corresponding (theoretical) approximation errors as given by Theorem

1 0.18
0.95% - B=0.95err=0.15 ® 77-mode e
0sh b - B=0.9err=0.1 0.17; | ® Hedge
’ kY * B=0.8err=0.05 * GPS
0.7%". ™, © B=0.7 err=0.05
Ve e, -+ B=06er=002 0.16¢ .
06fn T, « B=05err=0.02 . o H
.. "-.,'.. * B=0.4err=0.02
08gL " © B=0.2er=0.02 0.15 ¢ .
0.14+
° L] ° ® °
0.13r
[ ]
0-12 1 1 1 1 1
1 2 3 4 5

Figure 4: Average regret incurred by the 77-mode
approximately optimal policy, GPS, and Hedge
against 5 arbitrarily chosen strategies of the ad-
versary, for a discount factor 8 = 0.8.

Figure 3: Approximations of (1 — 3)V*
for different 8 values with correspond-
ing errors

5.1 Comparison with other algorithms

In this section, we compare the performance of an approximately optimal algorithm derived from our
approach to two known algorithms for the problem of prediction with expert advice with 2 experts.
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We will assume a discount factor of 0.8. One algorithm is the well known the exponentially weighted
average forecaster, which belongs to the Hedge or “Multiplicative Weights” class of algorithms. In
this algorithm, if L;(4) is the cumulative loss of expert 4 till time ¢, then the probability of choosing
expert ¢ at time ¢t 4 1 is

pi(t+ 1) o< exp(—ne Ly (7)),

where 7, = y/8log K /t, where K is the number of experts, which in this case is 2. If one uses the
discounted cumulative losses in this algorithm, then it achieves an upper bound of O(y/1 — /) on
the average discounted regret [CBLO3].

The second algorithm is the optimal algorithm given by [GPS14] for the problem with a geo-
metrically distributed time horizon, where at each stage, the game ends with a probability (1 — 3)
and continues with probability 8. This is essentially the same as our model of discounted losses,
where the discount factor is interpreted as the probability of continuation at each stage. But the
difference in that formulation and our formulation is in the definition of regret. In their formu-
lation, the loss of the decision-maker is compared to the expected loss of the best expert in the
realized time horizon (where the expectation is over the randomness in the time horizon), i.e., to
Er[min— o Y7 1;(i)], where I;() is the loss of expert i at time t. On the other hand, in our
formulation, the loss of the decision-maker is compared to the expert with the lowest expected loss,
i.e., to min;—; o ET[ZZ:l (7)) = mini—12(1 — B) > 12,4 Bt=1(7). Naturally, the optimal regret in
their formulation is at least as high as the optimal regret in our formulation, and in fact it turns
out to be strictly higher. For example, for § = 0.8, the optimal regret in their formulation is
1/6 ~ 0.166, while in our formulation, the regret in this case is 0.136, within an error of up to 0.05
(see Figure . Note that in the context where discounting captures the time value of money, our
formulation of regret is the natural one; it is difficult to attribute meaning to the notion of regret
defined in |[GPS14] in this context.

Figure 4| compares the expected regret incurred by the two algorithms (labeled as Hedge and
GPS), to the expected regret incurred by a 77 — mode approximately optimal policy, against 5
different arbitrarily chosen strategies of the adversaryﬂ Note that the expected regret incurred by
our policy remains close to the near-optimal value of 0.136, while that of the other two algorithms
exceed it by a considerable amount. Also note that as expected, the regret incurred by the GPS
algorithm never exceeds the optimal regret value of 0.166.

6 Conclusion and future directions

We presented a novel set-valued dynamic programming approach to characterize and approximate
the set of minimal guarantees that a player can achieve in a discounted repeated game with vector
losses. In particular, this gives us a way to compute approximately regret-minimizing strategies for
playing repeated games with discounted losses. We showed that this optimal set is the fixed point
of a contractive dynamic programming operator, and it is the Pareto frontier of some convex and
closed set. We also established the structure of the optimal strategies that achieve the different
points on this set. Finally we gave a value-iteration based procedure to approximately compute
this set and also find approximately optimal strategies for the case where there are two actions.
Of course, this set-valued dynamic programming approach can also be used to determine exactly

9In adversary’s strategy i = 1,2,--- , 5, the probability that expert 1 incurs a loss (and expert 2 doesn’t) at time
tis [1— (1/i+ 1)]**if t is odd, and [1 — (1/3 + 1)]* if ¢ is even.
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regret-optimal strategies for repeated games with a finite time horizon. In this case, one can show
that the optimal policy will depend on an information state and also the stage t.

The extension of this approach to the case of long-run average losses in infinitely repeated
games is much less straightforward, despite the fact that average cost dynamic programming for
standard dynamic optimization problems like MDPs is quite well understood. Such an extension
could improve our understanding of the construction of no-regret algorithms and would fill the last
remaining gap in seeing the classical dynamic programming paradigm as a holistic and methodical
approach to regret minimization.
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7 Appendix

Proof of Proposition[3.1. In order to prove the result, we need the following set of results about
the Hausdorff distance:

Lemma 7.1. a) h is a metric on the space of closed subsets of R2.

b) Assume that {A,} is a Cauchy sequence of closed subsets of [0,1]2. Then there is a unique
closed subset A of [0,1]% such that h(A,, A) — 0. This set A is defined as follows:

A={xe0,1)?|3Ix, € A, 5.t. X, — X}.

c) If the sets {A,} in b) are convex , then A is convex.

d) h(up(A),up(B)) < h(A, B).

Proof. a)-b) This is the well-known completeness property of the Hausdorff metric; see [Rud86]|.

c) Say that x,y € A. Then x = lim, x,, and y = lim, y, for x,, € A, and y, € A,. By
convexity of each A, z, := Ax,, + (1 — Ay, € A,,. But then, z, — z:= Ax+ (1 — \)y. It follows
that z € A, so that A is convex.

d) Let € := h(A,B). Pick x € up(A). Then x = y + v for some y € A and v = 0. There is
some y' € B with ||y — ¥'|loc < €. Then x’ = min{y’ + v,1} € up(B), where the minimization is
component-wise. We claim that ||x’ — x[|c < €.

If y' + v € [0,1]2, this is clear. Assume g} +v; > 1. Then,
:c'1:1<yi+v1 and x1 =y +v1 < L.

Thus,
0<a) —x1 <y)+v1—y1 —v1 =y — Y.

Hence, |} — x1| < |y} — y1|. Similarly, |2}, — 22| < |y4 — y2|. Thus, one has

%" = %[l < [y = ¥lloo <€
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Now we can prove the proposition. Under the given assumptions, {up(V),,n > 1} is Cauchy
in the Hausdorff metric, so that, by Lemma there is a unique closed convex set such that
h(up(V)n, A) — 0. But since h(up(V),, up(A)) < h(up(V)n, A) (from Lemma[7.1]), we have that
h(up(V)n,up(A)) — 0 and hence up(A) = A. Thus the Pareto frontier V of A is then such that
d(Vp,V) — 0.

To show uniqueness of V, assume that there is some U € F such that d(V,,U) — 0. Then,
the closed convex set up(U) is such that h(up(V)n,up(U)) — 0. By Lemma this implies that
up(U) = up(V), so that U = V. O

Proof of Lemma([3.1 In order to prove this lemma, we need a few intermediate results. First, we
need the following fact:
Lemma 7.2. Let 'V be the Lower Pareto frontier of a closed convex set. Then 'V is closed.

Proof. Suppose that {x"} is a sequence of points in V that converge to some point x. Then since
S is closed, x € S. We will show that x € V. Suppose not. Then there is some u € V such that

min(z1—ui,r2—us2)
2

u = x. Suppose first that u; < 1 and ug < x9. Then let € = and consider the ball

of radius € around x, i.e.

Bx(e) = {y € R?: |y = x| < ¢}.
Then for any point y in Bx(€), we have that u < y. But since {x"} converges to x, there exists some
point in the sequence that is in Bx(€), and u is dominated by this point, which is a contradiction.
Hence either u; = x1 or us = x2. Suppose w.l.o.g. that u; < x1 and us = x2. See Figure Let
§ = #5* and consider the ball of radius 0 centered at x, i.e. Bx(d). Let X" be a point in the

sequence such that x" € Bx(d). Now 2] > u; and hence it must be that 23 < us.

Now some A € (0,1), consider a point r = Au+ (1 — A\)x" such that r = u; + g. It is possible
to pick such a point since x; = u; + 26 and |2} — z1| < J, and hence z} > u; + % (please see the

figure). Now r € S since S is convex. Now 1 = x1 — 375 < x1 and also r9 < ug = 9 since A > 0

Figure 5: Construction in the proof of Lemma

and 2 < up. Let &' = #2572, Then consider the ball By(¢') centered at x. Clearly r < y for
any y € Bx(d'). But since {x"} converges to x, there exist some point in the sequence that is in
Bx(¢'), and r is dominated by this point, which is again a contradiction. Thus x € V and hence V
is closed. O

Remark: The Pareto frontier of a closed set need not be a closed set, as the example in Figure [0]
shows.

19



Figure 6: A closed set S whose Pareto frontier V is not closed.

Next we define the following notion of convexity of pareto frontiers.

Definition 7.1. A Pareto frontier V is p-convex if for any v, u € V and for each X\ € [0, 1], there
exists a point r(\) € V such that r(A) < Av + (1 — M)u.

We then show the following equivalences.

Lemma 7.3. For a Pareto frontier V C [0,1]2, the following statements are equivalent:

1. V is p-convex and a closed set.
2. V is p-convex and the lower Pareto frontier of a closed set 8 C [0,1]2.

3. 'V is the lower Pareto frontier of a closed convex set H C [0,1]%.

Proof. 1 is a special case of 2 and hence 1 implies 2. To show that 2 implies 3, if § is convex then
there is nothing to prove. So assume 8 is not convex. Then let H be the convex hull of §. First,
since [0, 1] x [0,1] is convex, H C [0,1] x [0,1]. Then since 8 is closed and bounded, it is also
compact. Hence H is the convex hull of a compact set, which is compact and hence closed and
bounded. Now we will show that V is the Lower Pareto frontier of H. To see this, any u € 8 is of
the form u = Ax + (1 — \)y where x,y € 8. But then there are points x’,y’ € V such that x’ < x
and y’ <y. Thus we have that

X'+ (1=Ny = Xx+(1-Ny=u.
But since V is convex, there exists some r(\) € V such that
rQ) XX+ (1= Ny = xx+(1-Ny=u.

Thus the Pareto frontier of H is a subset of V, but since V € H and it is a Pareto frontier, V is the
Lower Pareto frontier of 3. Finally Lemma shows that 3 implies that V is closed. To show it is
convex, suppose that u and v are two points in V. Since they also belong to H, which is convex, for
each A € [0,1], Au+ (1 — A\)v € 8 and thus there is some r(A) € V such that r(A) < Au+ (1 —\)v.
Thus V is convex. O

We can now finally prove the lemma. Note that W(8) is the image of the continuous function f
from the product space 8™*" x A(A) to a point in R?, which is a Hausdorff space. Since § is closed
and bounded, it is compact. Also the simplex A(A) is compact. Thus by Tychonoff’s theorem, the
product space 8"*" x A(A) is compact. Hence by the closed map lemma, f is a closed map and
hence ¥(8) is closed.
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Now assume that 8 is a closed convex set. Then A(S) exists by Lemma 3.1 and further it is

p-convex by Lemma [7.3] Let U = A(8). Clearly, A(¥(8)) = A(¥(U)). Recall that any point u in
A(T(U)) is of the form:

. <rbn€aé<{ S au[ri(a,b) + ARs(a, b)]} rgleag{ S aa[ra(a.b) + BRo(ab)] })

acA acA

for some o € A(A) and R(a,b) € U. But since U is p-convex, for each b € B, there exists some
Q(b) € U such that Q(b) < > | axR(a,b). Hence statement 1 follows.

Now let

u= (Igleaéc{ Zaarl(a,b)+5Q1(b)} max{ Zaarg (a,b) + BQ2(b )})

a€A a€A

and

v = (rgleaé({Z?]aT1<a,b)+ﬁR1<b)} maX{Z%M a,b) + BR2(b )})

acA
be two points in A(¥(U)), where e, n € A(A) and Q(b), R(b) € V.
For a fixed A € [0, 1], let kg = agA 4+ 14(1 — A). Then

Au+ (1-N)v (/\maX{Zaaﬁab+ﬁQl()}( Amax{znanab)+6R1()}

acA acA

Amax { 3 aura(a,b) + ﬁQz(b)} + (1 - A) max { ;nam(a, b) + BRg(b)}>

a€A

beB

= (o { 3 rorn(@ 0 +03@ 0+ 0N R0 fapa { X wara(a. b +53Qu0+1-NRa00) } )

acA acA
> (I&&é{{;nan(a,b)—i—ﬁLl(b)} Iglax{;ﬁarg a,b) + BLa(b )})

The first inequality holds since max is a convex function and the second follows since U is p-convex,
and hence L(b) = (L1(b), L2(b)) € U that satisfy the given relation exist. Thus A(¥(S§)) is p-convex.
And hence from Lemma it is the Lower Pareto frontier of a closed convex set in [0, 1]?, i.e., it
is in &F. O

Proof of Lemma[3.4 In order to prove this Lemma, we first define another metric on the space F
that is equivalent to d.

Definition 7.2. For two Pareto frontiers A and B of [0,1]%, we define
e(A,B) £

inf{fe>0:VuecA, IveBst. v3iut+el andVveB Jue A st. uxv+ell. (16)

Here1 = (1,1).
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We can show that the two metrics are equivalent.

Lemma 7.4.
e(A,B) =d(A,B).

Proof. Suppose that e(A, B) < e. Consider a point x € up(A) such that x =y + v where y € A
and v > 0. Suppose that there is no x’ € up(B) such that ||x — x||c < €. This means that up(B)
is a subset of the region 8§ shown in the Figure [7. But since y = x — v, y is in region 8'. But for
any u € 8 and w € 8, ||u — || > €. This contradicts the fact that for y there is some y’ € B,
such that y + €1 = y’. Thus d(A,B) < e. Now suppose that d(A,B) < e. Then for any x € A,

4
1

Sl

B

T g

)

|

)
I >

0 Y 1

Figure 7: Construction for the proof of Lemma [7.4]

there is a x’ € up(B) such that |[|[x — x'||cc < € where x’ =y + v fory € B and v = 0. Thus
x+ el =x'=y+v. Thus e(A,B) <e. O

Now suppose e(U, V) = €. Let
(5516&5( { ;aarl(a, b) + /331(1))},%135 { g aqra(a,b) + BRa(D) })

be some point in ®(V), where o € A(A). Then for each R(b), for each b, we can choose Q(b) € U
such that Q(b) = R(b) + €1. We then have

i { S auria,0) 45000} = o { Y aori(ad) + SR(0) + 510 - Ta(0)}

beB
a€A acA

IN

Igleaé( { Z aqri(a,b) + BR1(b) + Be}

a€A

= Igleaé({ Z agri(a,b) + BRl(b)} + fe.

acA

Similarly, we can show that

max { > aara(a,b) + 6Q2(b)} < max { > aara(a,b) + 532(1))} + Be. (17)

beB
acA a€A
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Thus

(max{Zaarl a,b) + BQ1(b } maX{Zaarg a,b) + BQ2(b )})

acA a€cA

< (%‘eaé‘{ > agri(a,b) +ﬁR1(b)} max{ > " agra(a,b) + SRy(b )}) + Bel.

a€A acA
But since

(1 { S w00+ 500 | { 3 auratast) + 5200} ) € waaw,

acA acA

and since ®(U) = A(¥(U)), there exists some (L, Ly) € ®(U) such that

(L1, L2) = <maX{Zozar1 a,b) + BQ1(b } ma {Zaarg a,b) + 8Qa2(b )})

acA acA
Thus

(L1, Ly) < (max{ > aqri(a,b) + BRi(b )} maX{Zaarg a,b) + BRa(b )}) + Bel.

acA a€A

We can show the other direction (roles of ®(U) and ®(V) reversed) similarly and thus we have that

e(@(W), B(V)) < Be = Be(W, V). (18)
O

Proof of Theorem[3.1]. Since ® is a contraction in the metric d, the sequence {A,} is Cauchy in F.
Hence by Lemma {A} converges to a Pareto frontier V* € F. The continuity of the operator
further implies that V* = ®(V*). To show uniqueness, observe that if there are two fixed points U
and V, then we have d(U,V) = d(®(U, ®(V)) < Bd(U, V), which implies that d(U,V) = 0 and hence
U="V. O

Proof of Theorem[3.2. In G*, fix T' > 1 and consider a truncated game where Alice can guarantee

the cumulative losses in f7H1V* after time T + 1. Then the minimal losses that she can guarantee
after time T is the set:

({max/B Zaarl (a,b) ﬁTHQl( maxﬁ Zaarg (a,b) ﬂTHQg(b)

acA a€A

lace A(4), Q(b) € VWb e B}).

This set is 87V*. By induction, this implies that the set of minimal losses that she can guarantee
after time 0 is V*.
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The losses of the truncated game and of the original game differ only after time 7"+ 1. Since
the losses at each step are bounded by (1 — f3), the cumulative losses after time 7"+ 1 are bounded

T
by 10-5) BTH1. Consequently, the minimal losses of the original game must be in the set

{u €01 :up ez — BT o + 8T Y, up € [wo — BT 2p + BT, z € \7*}.

Since T' > 1 is arbitrary, the minimal losses that Alice can guarantee in the original game must be

in V*. O

Proof of Theorem [3.3 Assume that Alice can guarantee every pair BT+ of cumulative losses with
u € V* after time T+ 1 by choosing some continuation strategy in II4. Let x = F(p,V*). We
claim that after time 7', Alice can guarantee a loss of no more than 57 x on each component by first
choosing ap = a with probability a,(p) and then if Bob chooses b € B, choosing a continuation
strategy that guarantees her F(p/, V*), where p’ = ¢(b,p). Indeed by following this strategy, her
expected loss after time T is then

{8") " aalp)rila,b) + 87 Fi(g(b,p), V*)} < BT Fi(p, V) = 8"y

when the game is Gi. Thus, this strategy for Alice guarantees that her loss after time 7" is no more
than 37V*. Hence by induction, following the indicated strategy (in the statement of the theorem)
for the first T steps and then using the continuation strategy from time 7'+ 1 onwards, guarantees
that her loss is not more than F(p;, V*) after time 0. Now, even if Alice plays arbitrarily after time
T + 1 after following the indicated strategy for the first T steps, she still guarantees that her loss
is no more than F(p1, V*) + 7 71(1,1)7. Since this is true for arbitrarily large values of T', playing
the given policy indefinitely guarantees that her loss is no more than F(p;, V*). O

Proof of Proposition[4.1 We first need the following lemma about the approximation operator.

Lemma ;.5. COTLS’id€7 a ‘; S SF ThE’I'L
) N N'

Proof. Any point in I'y (V) is of the form Au+ (1 — A)v where u,v € V. By the p-convexity of V,
there is some r(\) € V, such that r(\) < Au+ (1 — A\)v. Also clearly for any u € V,

1

win {Jju = Vil v € P () } < max {2 Y) =BG D)o 1 = 1l = | = 5

N[N

Next, we have §,, = 'y 0 ®(G,,_1)). Consider another sequence of Pareto frontiers

(An = @”(90)>%N (19)
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Then we have

d(An,9n) = d(®(An-1),I'n(®(5n-1)))
U (An1), B(Gnr)) + d(D(Gn1), T (D(Gn1)))
< B, Ga) + (20)

where inequality (a) is the triangle inequality and (b) follows from and Lemma Coupled
with the fact that d(Ap, Sp) = 0, we have that

1/1-p"
= — 21
w(=7) e
Since @ is a contraction, the sequence {A,} converges to some pareto frontier V*. Suppose that
we stop the generation of the sequences {A,} and {G,} at some n. Now since Ag = Go = {(0,0)},
and since the stage payoffs r(a,b) € [0,1 — 3], we have that d(A1,Ag) <1 — S. This implies from

the contraction property that d(V*, A,) < %ﬁﬁ) = (™ and thus by triangle inequality we have

* 1 175” n
a5 < 5 (T )+ (22)

O

Proof of Proposition[{.9. In order to prove this result, we need a few intermediate definitions and
results. First, we need to characterize the losses guaranteed by any (2N + 1)-mode policy. Such a
policy 7 defines the following operator on any function F : {0, i%, i%, e ,i%, +1} - R?:

beB

AN(F)(p) = (maX{ > aalp)ri(a,b) + w(b,p)BF(a(b.p)) + (1 = x(b,p)BF1(d (b))},

acA
s (3 calorafesd) O DSEAa) + (1= K DSEAS G} ) (29
ac
For a function F : {0, i%, i%, e ,:I:%, +1} — R?, define the following norm:
IF[| = max IF(P)loo-

pef0, % £ 2, £ 21 41}
We can easily show that A7, is a contraction in the norm.
Yy N

Lemma 7.6.
AN (F) — AV (G)[| < B[|F — G]. (24)

We can then show the following result.
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Lemma 7.7. Consider a (2N + 1)-mode policy w. Then there is a unique function

1 2 N -1
F":{0,+—,+—, -, +——— +1} - R?
{ ) N ) N ) 9 N ) }
such that A (F™) = F™. Further, The policy 7 initiated at mode p where p € {0, :i:%, :i:%, R

guarantees the vector of losses F™(p).

The first part of the result follows from the fact that the operator is a contraction and the
completeness of the space of vector-valued functions with a finite domain for the given norm. The
second part follows from arguments similar to those in the proof of Theorem 3.3.

Now let
v e F p):p € Ovj: ) ):l: 7:t )

where F™ is the fixed point of the operator A%".

Now define a sequence of functions F" : {0,:&%,:&%,--- ,i%,:l:l} — R? where F"(p) =
F(p,®(3"!)) = F(p,§"). We then have that
d(V™ V) < d(V™,G,) + d(Gp, V) (25)
1/1-p"
< d(V™,G,) + — " 26
From the definition of d, it is clear that d(V™,G,,) < ||F™ — F"|. Next we have
[F™ —F"[| < [[F™ - A (F")[| + [|AY (F") — F] (27)
(a) Tn (T Tn (TN n n
= AR (F™) = AR (FM)| + [F™+ —F7| (28)
(b)
< BIFE™ —F"|| + ||F"H —F". (29)
(30)

Here (a) holds because A7 (F") = F*! by the definition of the policy m,, and because F™ is a
fixed point of the operator A%. (b) holds because A7} is a contraction. Thus we have

Fn+l —_F"
a, g < o~ < I E @)
And finally we have:
1/1— /Bn HFn-I—l _ FnH
AV V) < — | —— T 32

To finish up, we need the following result:

Lemma 7.8.
[F" ™ —F"™|| < d(Sn1,5n)-

Proof. Let u = F*""1(p) and v = F"(p) for some p. Now u is the point of intersection of G, 1
and the line y = x + p. v is the point of intersection of the frontier G, and the line y = x + p.
Now suppose that ||u — v|ec > d(9n+1,9n). Then either for u, there is no r € G, such that
r < u+ 1d(Gy+1,9n) or for v, there is no r € G, 41 such that r < v + 1d(Gn+1, Gn). Either of the
two cases contradict the definition of d(G,+1,9,). Thus ||[u — v|ec < d(Gn+1,Gn)- O
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Finally, by the triangle inequality we have

d(9n+17 971) S d(-An+1a-An) + d(9n+17-An+1) + d(gnyﬂvn) (33)
1/1—pmtt 1/1-p"
< (1_ﬁ)”8n+N<1—ﬂ[3)+N<1—ﬁ5)' (34)
Combining with we have the result. O
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Table 3: An approximately optimal 77-mode policy for g = 0.8.

Modes | Pr. of choosing Ex. 1 | Transition if Ex. 1 incurs loss | Transition if Ex. 2 incurs loss
38 1 37 38
37 0.9999 36 38
36 0.9998 35 38
35 0.9996 33 38
34 0.9992 32 38
33 0.9987 31 38
32 0.998 30 38
31 0.9971 28 38
30 0.9958 27 38
29 0.9942 26 38
28 0.992 25 38
27 0.9894 23 38
26 0.9862 22 38
25 0.9823 21 38
24 0.9775 20 38
23 0.972 18 38
22 0.9654 17 38
21 0.9577 16 37
20 0.9489 15 35
19 0.9389 13 34
18 0.9276 12 33
17 0.9149 11 32
16 0.9008 10 30
15 0.8852 8 29
14 0.8682 7 28
13 0.8497 6 27
12 0.8296 5 25
11 0.8082 3 24
10 0.7855 2 23
9 0.7612 1 22
8 0.7357 0 20
7 0.709 2 19
6 0.6813 -3 18
5 0.6525 -4 17
4 0.623 -5 15
3 0.5928 -7 14
2 0.5621 -8 13
1 0.5311 -9 12
0 0.5 -10 10
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Table 4: An approximately optimal 77-mode policy for § = 0.8 (continued).

Modes | Pr. of choosing Ex. 1 | Transition if Ex. 1 incurs loss | Transition if Ex. 2 incurs loss
-1 0.4687 -12 9
-2 0.4377 -13 8
-3 0.407 -14 7
-4 0.3768 -15 5
-9 0.3473 -17 4
-6 0.3185 -18 3
-7 0.2908 -19 -2
-8 0.2642 -20 0
-9 0.2387 -22 -1
-10 0.2143 -23 -2
-11 0.1916 -24 -3
-12 0.1702 -25 -9
-13 0.1501 -27 -6
-14 0.1316 -28 -7
-15 0.1147 -29 -8
-16 0.0992 -30 -10
-17 0.0851 -32 -11
-18 0.0724 -33 -12
-19 0.0611 -34 -13
-20 0.0511 -35 -15
-21 0.0422 -37 -16
-22 0.0346 -38 -17
-23 0.028 -38 -18
-24 0.0224 -38 -20
-25 0.0177 -38 -21
-26 0.0137 -38 -22
-27 0.0106 -38 -23
-28 0.008 -38 -25
-29 0.0058 -38 -26
-30 0.0042 -38 -27
-31 0.0029 -38 -28
-32 0.002 -38 -30
-33 0.0013 -38 -31
-34 0.0008 -38 -32
-35 0.0004 -38 -33
-36 0.0002 -38 -35
-37 0.0001 -38 -36
-38 0 -38 -37
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