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Abstract

I study an environment in which selfish and normative agents share
a common resource. Using Gul and Pesendorfer’s temptation setup, I
assume that normative individuals have a preference for reciprocity as
well as a temptation to be selfish. I discuss the strategic interaction
among players in this setting when types are public information. I
show under which conditions there exist equilibria in which selfish
players cooperate, avoiding the tragedy of the commons. I also show
that in some circumstances, the social planner can Pareto-improve the
social outcome by hiding or manipulating information.

Keywords: Reciprocity, Self control and temptation, The tragedy of
the commons

1 Introduction

Traditional economic research has been established premising the assump-
tion that human beings are self-interested. Many studies, however, recently
question whether selfishness effectively explains certain social phenomenon
to suggest alternative preferences. Preference of reciprocity is of increasing
interest for many economists to complement what selfishness cannot explain.
Rabin [1993] and Levine [1998] argue theoretically that being nice to others
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leads reciprocal behaviors. The power of reciprocity may also have an impact
on social policy (Bowles and Gintis [2000]).

Reciprocal behavior is applicable to the problem of how to provide a
public good to the society. Public good indeed presents the difficulty in a
society with self-interested agents due to the classical prisoners’ dilemma
problem. Positive reciprocity in the context of public good indicates that
individuals would like to cooperate keeping the public good in quality of
others are also willing to cooperate, given that a contribution to the common
resource represents a positive behavior, which incentivizes reciprocal agents
to cooperate as well (Sugden [1984], Keser and Winden [2000]).

I adopt the self-control and temptation model of Gul and Pesendorfer
[2001] to body out the preference of reciprocity in the model that every
agent shares a common resource. To be more precise, I define a normative
agent that has a normative utility function as a weighted average of every
agent’s outward payoff, and also has a temptation to behave as selfish agent,
where selfish agent is defined as a classical self-interested agent. I extend Gul
and Pesendorfer’s model in a finite-stage extensive form game framework so
that each agent’s menu choice constitutes a history that leads to a different
subgame.

I also take the notion of renegotiation-proofness (Pearce [1989], Ray
[1994]) to effectively achieve a robust equilibrium. I call an equilibrium is
renegotiation-proof if for each stage it is not dominated by any other subgame
with given history and agents’ previous menu choice. Pearce [1989] shows
that renegotiation-proof equilibrium outcome lies on the Pareto optimal fron-
tier. Ray [1994] extended the result by showing that such equilibrium out-
come may exist as singleton or continuous sets on the Pareto optimal frontier.
I demonstrate that under some condition, renegotiation-proof equilibrium in
this paper’s framework also lies on the Pareto optimal frontier.

Fehr and Schmidt [1999] show that even a minority of reciprocal agents



can induce a majority of selfish agents fully cooperate based on a punishment
device. I first show that this result holds in the menu choice framework. I
also prove that there exist renegotiation-proof equilibria that a considerable
number of selfish agents cooperate, without imposing a worst equilibrium
as a punishment. The existence of renegotiation-proof equilibrium inducing
selfish agents’ cooperation implies that preference of reciprocity still has a
driving force even when all the agents are assumed to find the best out-
come at each stage with given history, instead of some agents being ready to
punish others’ deviation. It is possible since existence of normative agents’
temptation threats some selfish agents to keep cooperate. I also reveal in a
model where agents are allowed to partially cooperate or defect that there
exist symmetric renegotiation-proof equilibria where all the normative agents
identically behave by holding a temptation partially and all the selfish agents

also identically behave to cooperate partially.

2 Preliminaries

There is a finite number of agents in the society, each of whom utilizes a
resource good to consume. Individual outputs are interpersonally compara-
ble. There is a single common good from which every agent gets individual
resource good. The common good is non-excludable and rival as usual, and
the value varies depending on all the agents’ behaviors.

Let N = {1,2,---,n} be the set of agents and assume n > 2. Each
agent decides to cooperate or defect toward the common good. Assume that
the common good has a initial value of w > 0. I call ‘c (cooperate)’ as
using the common good as much as any agent can without harming it at all,
‘d (defect)’ means overusing the common good to maximize personal payoff
and to harm the common good. That is, if every agent plays ¢ then the

common good maintains its value as w and everyone consumes w. Moreover,



[ assume that if K out of n agents play ¢ and (n — K) agents play d, then
agents who chose ¢ primarily get w — (n — K)my and those who chose d
get w — (n — K)my + my where my > my; > 0. In words, each agent who
defects not only enjoys an additional msy as a personal payoff but also hurts
the common good by m; so that the value of the common good after n — K
agents defect be w—(n— K)my. Every agent receives a resource good equal to
the value of the common good first, and those who defect enjoy an additional
value of my where m; < mos < n-my.

I call an assignment of types made by nature at stage 0 a type assignment.
Let T" = {normative, selfish}" be the set of type assignments. For any t =
(t1,ta,-+- ,t,) € T, t; is agent ¢’s type. Let K(t) the number of normative
agents in ¢t € T. Let’s assume that ¢ and d, as described in the previous
paragraph, are the only two alternatives agents can play, and menu is defined
as a nonempty subset of {c,d}. There are two types of agents: normative
or selfish. Agents’ actions take place according to the following timeline.
Nature assigns each agent their type at stage 0, each agent ¢ € N at stage
0 learns ¢; and K (t), and then picks a menu or delay its menu choice. Each
agent at stage 1 learns ¢, and then holds its own menu if they already chose
at the previous stage or choose its menu if its menu choice was delayed, and
choose an alternative in its own menu at stage 2. That is, each agent can
choose its menu when information is incomplete, or when more information
is revealed. Consumption occurs only in stage 2. Empty set is not allowed
for a choice of menu at stage 0 and 1, and one and only one alternative must
be chosen at stage 2. Let S; = {{c}, {d}, {c,d}} be the set of menus when
potential alternatives are only ¢ or d, and denote D as ‘delay.” Then each
agent chooses a menu or delay option in {{c}, {d},{c,d}, D} at stage 0, and
chooses a menu in {{c},{d}, {c, d}} only if its stage-0 menu choice was D.

Denote the 3-stage game with a set of menus S as G(5). Let (Aj, As, 2)
forz€ Ay =A; C Sorze Ay CS,A; = D denote an agent’s 3-stage menu



and alternative choices. I also define a subgame of G(S) which starts with
a given type assignment disregarding nature’s role also as a 3-stage game,
and denote it as G(95,t) with a set of menus S and a given type assignment
teT.

For the fixed set of agents N and set of menus S, subgame perfect equi-
librium is defined as a solution concept from G(.5). I also define equilibrium
component as a solution concept from G(S) which starts after nature as-
signs a t € T as given, and denote this game as G(S,t). That is, G(S,t)
for any ¢ € T is a subgame of G(S) where only nature made the decision.
Let E = {ea}acrspp be the set of subgame perfect equilibria where I is an
index set. For each equilibrium e, = {€! }er € E, €, for each t € T is an
equilibrium component.

Let P := {(A,a) : A C Z nonempty ,a € A}. We define K : P" — N,
that K (q) represents the number of alternatives at stage 2 that are c. We also
define K; : P" — N, for each ¢ € N to represent the number of alternatives
that all the agents but ¢+ choose which are c.

For any collective choice vector ¢ = (¢;)icy € P" where ¢; = (¢, ¢%) € P
is each agent 7’s choice pair of menu and alternative, each selfish agent ¢’s
utility function is v; : P* — N, where

vi(q) = {_<” ~ R if a; = ¢

~

—(n — K(q))m1 + ma, if a; = d .

Normative agents wish to maximize the collective utilities. They have a
desire to follow the social norm: maximize the weighted average of everyone’s
payoff where the weight (¢ + 1) > 1 is taken over agents who eventually
choose ’c¢’; but they are also tempted to be selfish to maximize their own
payoff. With given K (number of agents who cooperate rather than me),

Utility function for normative agent ¢ is U; : P" — N

Ui(q) = u(q) +vi(q) — maxv;((Ai, y); ¢—i)

YyEA;



(0 + DK (q)(—(n — K(q))m1) + (n — K(q))(—(n — K(q))m; +my)

where u(q) = i oK)

for some ¢ > 0. As expressed above, all the selfish agents’ utility functions
are symmetric, as well as all the normative agents; utility functions. Since
v; and u; for every agent ¢ € N actually depend on i’s choice of alternative
and collective choices or alternatives of others, for any collective choive ¢
we occationally abuse vi(qf'; D" e iy 4F) and w(gf; - 5w iy ¢5)» or simply
v;(z; K) and u(z; K) for some z € {c,d} and some real number K € [0,n—1],
instead of v;(q) and u(q).

Let © € N be any normative agent for a while. It is easy to check that
both v;(-, K) and u(-, K) increase in K. Moreover, if we define g(K) :=
u(e; K) —u(d; K) and h(K) == u(c; K) + a-vi(c; K) — u(d; K) — a - v;(d; K),
then both g([A() and h([A() strictly increase in K. With given K, g(f() >0
represents that normative agents prefer menu {c} to {c,d} at stage 1, and
h(IA( ) > 0 represents that when normative agents already chose {c, d} as their
menu, they prefer the alternative ¢ to d.

I also assume
g(0) < 0,h(0) <0,9(n—1) > 0,h(n —1) > 0.

In words, every normative agent always chooses {c,d} as his menu when he
knows that everyone else will defect, and always chooses {c} as his menu
when he knows that everyone else will cooperate. Moreover, every normative
agent who already chose {c¢,d} as his menu will eventually choose ¢ as his
alternative when he realizes that everyone else will cooperate, and vice versa.

From the fact that g(-) and h(-) strictly increase, there are a unique
thresholds K, K, that satisfy g(K, — 1) = h(K;, —1) = 0. It is easy to
show that K, < Kj;. As K, and K, are not necessarily integers, we define
K, := [K,]|,K; := [K},|. That is, if there are at least K agents in the

society who are willing to play c eventually then every normative agent would



like to hole {c} as the menu and play ¢ eventually, and if there are at least K»
agents in the society who are willing to play ¢ eventually then every normative
agent who already holds {¢, d} would like to choose ¢ as the alternative. Note
that Ky > K; > 2 from the fact that K;, > K, > 0. I assume that the degree
of temptation a is large enough so that K; < K, and also assume that
K7 > 1 so that any normative agent will not cooperate when all the other

agents are supposed to defect.

3 Equilibrium

3.1 Subgame perfect equilibrim: Imperfect full coop-
eration equilibrium

I first show in this section that there exists an equilibrium where all the
agents cooperate, provided the society has minimum number of normative
agents. For this purpose, we will see that the ‘worst equilibrium’ is used as
a tool for a punishment by normative agents whenever any selfish agent tries
to deviate from cooperation.

I start by defining three basic actions before introducing strategies. Full
defection means playing ({d},{d},d) and full cooperation means playing
({c}, {c},c). Judgment reservation means to choose D at stage 0, play
(D, {c}, ¢) if every menu already chosen at stage 0 is {c}, and play (D, {d}, d)
otherwise. Judgment reservation is an action which may be plausible only
for normative agents. Note that the ‘threshold’ in judgment reservation is
K, which is the minimum level of normative agents required to effectively
punish any selfish agent’s deviation from cooperation.

Let’s first describe two basic strategies using the basic actions. The de-
fecting strategy in a game G(S;) for each i € N and each type assignment
t € T is to fully defect no matter what t; is and other agents’ strategies

are. The cooperating strategy in a game G(S) for each i € N and each type



assignment t € T is to fully cooperate no matter what ¢; is and what other

agents’ strategies are.

Definition 1. The worst equilibrium is an equilibrium where everyone plays

the defecting strategy.

Any selfish agent has an individual incentive to fully defect in the worst
equilibrium. Note that even any normative agent who knows that everyone
else will eventually defect at stage 2 has incentive to defect because of his
temptation. As a result, everyone gets the same utility level as —nmy + mo
for any type assignment in the worst equilibrium.

We can construct an equilibrium that induces selfish agents to cooperate
using the worst equilibrium as a threat. It is easy to think as the following:
no matter what ¢ € T is, all the normative agents delay at stage 0 and be
ready to play (D, {d},d) unless every selfish chooses {c} at stage 0. There
are, however, two issues that disrupt this plan work as an equilibrium. First,
at least A normative agents are required to let the punishment as strong as
selfish agents’ incentive to defect. Second, if there are more than or equal
to K selfish agents, then each selfish agent has incentive to defect from full
cooperation to full defect given that all the other selfish play full cooperation,
since there are enough cooperation from the selfish so that normative agents
play (D,{c},c) anyway. When K (t) < K regarding the first issue, there is
no way for normative agents to strategically keep selfish agents cooperate so
that everyone plays as in the worst equilibrium. However, when K < K; and
K(t) € [K,n — K], at most K; — 1 selfish agents fully cooperate at stage
0 is a necessary condition to construct an equilibrium component, and and
normative agents play (D, {c}, ¢) if at least K; — 1 selfish agents hold {c} at
this equilibrium component.

One question arises in the discussion of the previous paragraph: how can

we determine who will fully cooperate when K (t) € [K,n—K;|? Note that no



agent can learn anyone’s type including its own type at the beginning of the
game, which means that selfish agents cannot prearrange who will fully coop-
erate and who will fully defect before the game starts since they don’t know
whether they will be selfish or not before the nature announces t € T'. 1 pro-
pose a ‘numbering’ process for this commitment. That is, number every agent
from 1 to n, and when ¢t € T is announced at the beginning of stage 1, it be-
comes a common knowledge. There are n! different ways to reorder n agents.
Define a permutation 7 : N — N be a mapping that assigns everyone a
unique number. Denote 7, w9, - -+ , T, be all distinct permutations, and IT be
the set of permutations. Let’s assume that nature not only randomly assigns
everyone’s type, but also a permutation so that every agent is ‘numbered’ at
stage 0. Moreover, assume that all the agents learn their own type and their
position among agents with same type. To specify, if N = {1,2,3,4,5},t =
(normative, normative, selfish, normative, selfish), 7 = (3,1, 2,5, 4), then agent
2 is the first normative, agent 3 is the first selfish, agent 1 is the second nor-
mative, agent 5 is the second selfish, and agent 4 is the third normative.
After nature picks 7, every agent immediately learn its own type and its own
position as well as K (t).

To come back to the discussion how to decide which selfish agents are
supposed to fully cooperate, now we have an ‘order’ of group of selfish agent
and normative agents respectively. Therefore, we can indicate that the ‘first’
K; — 1 selfish agents fully cooperate at stage 0 when K(t) € [K,n — Ki].
Let’s define a cooperative strategy reflecting the discussion above. Cooperative
strategy in a game G(S) for each ¢ € N and each type assignment ¢ € T is
as follows: i) If I am selfish and K (¢) < K then fully defect, ii) if [ am selfish
and K(t) > max{K,n — K; + 1} then fully cooperate, iii) if I am selfish and
K(t) € [K,n — K], then fully cooperate if I am the first K; — 1 selfish and

fully defect otherwise, iv) if I am normative then reserve judgment.
Definition 2. The imperfect full cooperation equilibrium is an equilibrium
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where everyone plays the cooperative strategy.

In imperfect full cooperation equilibrium, all the normative agents delay
their decision to see how selfish agents behave, and perform a punishment by
playing as in the worst equilibrium. Note that every normative agent indeed
has incentive to play (D, {d},d) if they know that ay selfish agent deviates
to fully defect so that strictly less than K7 — 1 selfish agents fully cooperate
and all the other normative agents play (D,{d},d). In an imperfect full
cooperation equilibrium, as a result, every agent holds {c} as its menu and
play ¢ when K(t) > max{K,n — K; + 1}, everyone defects when K (t) < K,
and partial cooperation occurs when K + K; < n and K(t) € [K,n — K;].

The following proposition reflects this result.

Proposition 1. If K + K1 > n and K(t) > K, then there exists an equilib-
rium component where every agent chooses its menu as {c} and cooperates
at stage 2 in G(Sy,t).

Proposition 1 shows that if K is large enough, K can be small with the
following holds: with given conditions, even K normative agents can have
a driving force to make all the selfish agents fully cooperate. This result
indicates that this paper is in line with Fehr and Schmidt [1999]’s result: even
a small number of normative agents can induce a majority of selfish agents

to cooperate using punishment device given some circumstances satisfied.

3.2 Subgame perfect equilibrium with social planner

I extend the model including a social planner who has a power to control the
type information at stage 0. Social planner makes a decision right after the
nature picks t € T" and 7 € Il whether to let every agent learn K (¢) or not. I
call such 3-stage game with a set of menus S and with a social planner G'(.S)
and such game with given t as a type assigement G’(5,t). Let’s redefine the
process of the game G'(S}).

10



Stage 0: Nature picks t € T and w € II. Social planner decides whether
to reveal K (t) or not. Each agent i learns its own type and position, learn
K(t) only when the social planner allows, and then choose their menu in
{{c},{d},{c.d}, D}.

Stage 1: Agents learn t, all the agents’ stage 0 menu choice, and then those
who delayed the menu choice choose their menu in {{c}, {d}, {c,d}}.

Stage 2: Agents learn all the others’ menu choice at stage 1, and then choose

an alternative from their own menu.

I define fully cooperative strategy in G'(S7) that the social planner always
conceal K (t), every selfish agent fully cooperates no matter what ¢ € T and
m € II is, and every normative agent reserves judgment. In a state that
every agent plays fully cooperative strategy, every selfish plays ({c}, {c},¢)
and every normative plays (D, {c},c) at any ¢t € T and 7 € II. T call

Definition 3. The full cooperation equilibrium is an equilibrium where ev-

eryone including the social planner plays the fully cooperative strategy.

Even though the fully cooperation equilibrium is not guaranteed to exist,
it is likely to exist when n is large enough or the personal benefit from defect

is not too large compared to hurting the common good.

1
Lemma 1. If 2 < nt
my

then full cooperation equilibrium exists.

Sketch. If a selfish agent must deviate at stage 0, deviating to ({d}, {d},d)
maximizes its payoff. Let such selfish agent i € N. When K(t) = K, a
selfish agent who deviates from ({c}, {c},c) to ({d},{d},d) has additional
payoft of (my—my) — K -my, where (my —m;) comes from its own deviation,
and K - my comes from K normative agents’ defects. Moreover, given that

t € T is announced and 7 is selfish, P(K(t) = K) = (”I_(l) Therefore i keeps
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playing ({c},{c},c) if

According to lemma 1, with given any finite m; and ms, there always
exists the full cooperation equilibrium whenever n is large enough. The
required condition for lemma 1 is more likely to be satisfied than proposition
1 in a sense that it only requires a large economy, not even requiring anything
for K nor K; which is related to the characteristics of agents’ type. To

summarize, subgame perfect equilibrium has a plausible feature in this model.

3.3 Renegotiation-proof equilibrium

We saw how threat effectively works in imperfect full cooperation equilibrium
in the previous section. However, when any selfish agent deviates from coop-
erating strategy, and if there are still enough selfish agents fully cooperating
or there are enough normative agents in the society, then there is actually
no reason for normative agents not to cooperate beyond their initial plan.
The notion of renegotiation-proofness is brought to this paper with this mo-
tivation. Renegotiation-proof equilibrium is defined that all the agents can
‘renegotiate’ at each subgame regardless of their initial commmitment to find
the best solution given type assigement, permutation, and history of agents’
previous menu choices.

Before we define renegotiation-proof equilibrium, we need to formally
establish the information that agents observe at the beginning of each stage.
I call history be the collective information that agents share at the beginning

of each stage. I denote h’ for £ = 0,1,2 be a history at stage ¢ for game
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G(-) or G'(-). h® = K(t) after t € T is announced by nature in game G(-),
and h° = K(t) or () depending on the social planner’s choice. A history at
stage 1 contains the type assignment, permutation, and all the agents’ menu
choice at stage 0. Formally, H! is the set of histories at stage 1 where H' =
{(Ay,-- A, t,m) + Ay € {{c},{d},{c,d},D} Vi € N, and t € T, 7 € 1I}.
For any h' = (A, -+, A, t,m) € H', denote h; = A; for i € N, h},, =t,
and hl 4o = m. A history at stage 2 is based on the previous history at stage
1. For any h' € H', H?(h') is the set of histories at stage 2 given that the
previous history at stage 1 is h', formally, H?(h') = {(Ay, -+, A, t,7) :
A; € {{c},{d},{c.d}} Vi € N where A; = hj if k' # D, and t = h), |, m =
hhvo}. Let H? = Uy H*(RY).

For each ¢ € 1,2 and any h' € H*, denote G(-,h*) the subgame of
G(-) which starts at stage ¢ with given history h*, denote E,(h%) the set of
subgame perect equilibria starts at stage ¢ with given history A, and let
Ey = Upecye Eo(R'). Note that there is no concept of equilibrium component
for subgames since type assignment is already a common knowledge at the
beginning of stage 1.

F'= (F},--- | F'): E — R"is a mapping from an equilibrium to a vector
of all the agents’ utility when type assignment is ¢. Let F' = {F'};cr be the
utility function for any type assignment and for every agent.

Here is some useful notation. For any e,,es € E and any t € T', we
write F'(e,) > F'(eg) if Fl(e,) > Fl(eg) for all i € N, F'(e,) > F'(ep) if
Fl(ey) > Fl(ep) for all i € N and F'(e,) # F'(ep).

I also define Pareto improvement and Pareto optimality in a classical way.

Definition 4. For any e,,ep € E, e, Pareto improves eg if
F(ea) > F(eg).

€. is Pareto optimal if there is no equilibrium in E that Pareto improves e,.
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I define Pareto improvement and Pareto optimality of Ey(h') and Ey(h?)
for some h' € H' and h* € H?(h') in line with Definition 4.

Definition 5. For each ¢ = 1,2, any h* € H*, any e,,,es, € Ei(h'), eq,
Pareto improves eg, if
F(eaz) > F<€ﬁ2)'

€a, € Ey(h') is Pareto optimal if there is no equilibrium in E,(h*) that Pareto

lmproves €, .

Pareto improvement and optimality for subgame is defined based on the
same history.
Let’s abbreviate the concept of Pareto improvement and Pareto optimal-

ity for equilibrium component as follows:

Definition 6. For any e,,es € E and any t € T, el, Pareto improves etﬁ if

F'(eq) > F'(ep).

t

Ca

is Pareto optimal if there is no equilibrium component with type ¢ that

: t
Pareto improves e,.

For any subset E,, C E,, any equilibria ey € E and e; € Ej, and for
each ¢ = 1,2, say that an equilibrium e,_; is supported by E,, it any sub-
game at stage ¢ in e, ; results in an equilibrium in E,,. Let &(Fy(h?)) =
{es € Ey(h?) : ey is Pareto optimal} for any h? € H?. For any h' € H, let
@, (E;(h'Y)) be the set of equilibria in F;(h') supported by Unzerzn Ey(FEa(h?)).
Define & (E;(h')) be the set of equilibria in ®;(FE;(h')) not Pareto improved
by any e; € ®1(Ei(h')).

I define a renegotiation-proof equilibrium as a refinement of subgame per-
fect equilibrium, adopting the basic notion from Pearce [1989]. Renegotiation-
proof equilibrium is a subgame perfect equilibrium that every subgame is

Pareto optimal.
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Definition 7. For any set of menus S, A subgame perfect equilibrium e € E
in G(S) is renegotiation-proof if it is supported by & (E;(h')) where ht € H*

is generated by e. Denote Erpp = {e € E : e is renegotiation-proof}.

The following lemma demonstrates that the analysis at the final stage in

any renegotiation-proof equilibrium is simple.

Lemma 2. At stage 2 in any renegotiation-proof equilibrium of G(S1) with
any given collective choice of menus and any type assignment, choice of al-

ternatives is deterministic.

I introduce two main patterns of renegotiation-proof equilibria. The first
is selfish-move-first (SMF) equilibrium, and the second is normative-move-
first (SMF) equilibrium. Selfish-move-first (SMF) strategy is defined as fol-
lows: i) if I am selfish and K < K(t) < K; and I am the first K — K (¢)
selfish then play ({c}, {c}, ¢), ii) if I am selfish not in the case of i) then play
({d},{d},d), iii) if I am normative then play the defecting strategy.

Definition 8. A SMF equilibrium is a renegotiation-proof equilibrium where

everyone plays the Selfish-move-first strategy.

In SMF' equilibrium all the normatives delay their menu choice at stage
0 and see how selfish agents ‘well behave.” Selfish agents, however, know
that normative agents will collectively act to achieve Pareto optimality at
each stage so that minimum number of selfish agents required for normative
agents to play (D, {c}, ¢) cooperate.

Normative-move-first (NMF) strategy is defined as follows:
If T am selfish, then delay at stage 0, and at stage 1 if the number of normative
holding {c,d} is at least K and I am the first Ky — K(t) selfish then play
(D,{c}, ¢), otherwise play (D, {d},d).
If T am normative, then choose {c, d} at stage 0 if I am the first &K normative
and K < K(t) < K, and choose {c} otherwise. At stage 2, if i am holding
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{¢,d} then play ¢ only if the number of selfish agents who holds {c} and

normative agents is at least K.

Definition 9. A NMF equilibrium is a renegotiation-proof equilibrium where

everyone plays the Normative-move-first strategy.

In NMF equilibrium all the selfishs delay their menu choice at stage 0 to
see whether enough number of normative agents are really choosing {c, d}
at stage 0 so that selfish agents are supposed to be punished if they do not
‘well behave.’

I define a Separating equilibrium as a combination of a SMF equilibrium
and NMF' equilibrium 2.

Definition 10. A Separating equilibrium is a renegotiation-proof equilibrium
where there exists 77 C T such that everyone plays the SMF strategy if t € T}
and everyone plays the NMF strategy if ¢t € T\1}.

Proposition 2. If Ky — Ky < K then any separating equilibrium is Pareto
optimal in Erpg. If Ko — K1 > K then a separating equilibrium is Pareto
optimal in Erpp if any t € Ty satisfies K(t) > Ky — K

Proposition 2 says that a separating equilibrium is Pareto optimal in
Erpr under a circumstance. Separating equilibrim, obviously, is not the only
renegotiation-proof equilibrium concept in G(S;). However, the following
proposition shows that if we care of efficiency, or Pareto optimality, then the
set of separating equilibria is enough to deal with. In other words, all the
equilibrium outcome achieved by separating equilibria covers all the Pareto

optimal allocations of renegotiation-proof equilibria

Proposition 3. Any Pareto optimal outcome of renegotiation-proof equilib-

rim can be achieved by a separating equilibrium.
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3.4 Partial cooperation or defect

I now assume that each agent can pick the degree of cooperation or de-
fect. To be specific, letting 0 represent ¢ and 1 represent d, a € (0,1)
means partial cooperation and defect. If a € [0,1] is close to 0 it repre-
sents a cooperating behavior with a tiny amount of defect. Formally, define
Sy ={A C[0,1] : A is compact } a set of menus. The timeline is as follows:
Stage 0: Nature picks ¢ € T and m € II. Each agent ¢ learns t;, its own
position, and then chooses its menu € [0, 1] or delays menu choice.

Stage 1: Agents learn all the agents’ stage 0 menu choice, and then those
who delayed the menu choice choose their menu C [0, 1].

Stage 2: Agents learn all the others’ menu choice, and choose an alternative

from their own menu.

Let’s focus on ‘symmetric equilibria’: all selfish agents share the same

strategy as well as all normative agents.

I start with simplifying the menu choice for normative agents.

Lemma 3. For any compact A C [0,1], anyz € A, and any K, U((A,2); K) <
U([0, mazxsecaal; K).
Lemma 4. For any K, if A € S mazimizes max,caU((A, 2); K), then
max;ea U((4, 2); K) = max.eq U([0, mazeaal; K)

By lemma 3 and 4, we can assume that normative agents choose their

menu in a form of [0, a] with a € [0, 1].

I show that there exist symmetric equilibria in G(S3) corresponding to
those in G/(51).
The symmetric defecting strategy:

If T am selfish, then play ({ Kng__ If(g) I3 {Kng__ }f(g) b [29__ éi?) if K(t) =
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K, — 1, play ({d}, {d},d) otherwise.

If T am normative, then delay at stage 0, and at stage 1 if the collective
cooperation of selfish and the number of normative is at least K; then play
(D,{0},0), otherwise (D, [0, 1],1).

Definition 11. The Symmetric worst equilibrium is an equilibrium in G(Sz)

where everyone plays the symmetric defecting strategy.

Selfish-move-first (SMF) strategy:
If T am selfish and i) m < K(t) < K, then play ({
ii) otherwise play ({1}, {1},1).
If I am normative then play the defecting strategy.

Ky — K(1)
n— K(t) A

Ky — K@), K, - K()
n— K(t) b n— K(t) )’

Definition 12. A SMF equilibrium is an equilibrium where everyone plays

the Selfish-move-first strategy.

Normative-move-first (NMF) strategy:
If T am selfish, then delay at stage 0, and at stage 1 if the maximum of

punishment normatives can collectively perform is at least m then play

(D, {Kh__[f(g)}’ ih—_fiii))’ otherwise play (D, {1},1).

If I am normative, then choose |0, ] at stage 0 if m < K(t) < K}, and

m
K(t)
choose {0} otherwise. At stage 2, play 0 only if the number of collective
cooperation by selfish agents and normative agents is at least K}, and play

m .
— otherwise.
h

Definition 13. A NMF equilibrium is an equilibrium where everyone plays

the Normative-move-first strategy.
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