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Abstract

I study an environment in which selfish and normative agents share
a common resource. Using Gul and Pesendorfer’s temptation setup, I
assume that normative individuals have a preference for reciprocity as
well as a temptation to be selfish. I discuss the strategic interaction
among players in this setting when types are public information. I
show under which conditions there exist equilibria in which selfish
players cooperate, avoiding the tragedy of the commons. I also show
that in some circumstances, the social planner can Pareto-improve the
social outcome by hiding or manipulating information.

Keywords: Reciprocity, Self control and temptation, The tragedy of
the commons

1 Introduction

Traditional economic research has been established premising the assump-

tion that human beings are self-interested. Many studies, however, recently

question whether selfishness effectively explains certain social phenomenon

to suggest alternative preferences. Preference of reciprocity is of increasing

interest for many economists to complement what selfishness cannot explain.

Rabin [1993] and Levine [1998] argue theoretically that being nice to others
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leads reciprocal behaviors. The power of reciprocity may also have an impact

on social policy (Bowles and Gintis [2000]).

Reciprocal behavior is applicable to the problem of how to provide a

public good to the society. Public good indeed presents the difficulty in a

society with self-interested agents due to the classical prisoners’ dilemma

problem. Positive reciprocity in the context of public good indicates that

individuals would like to cooperate keeping the public good in quality of

others are also willing to cooperate, given that a contribution to the common

resource represents a positive behavior, which incentivizes reciprocal agents

to cooperate as well (Sugden [1984], Keser and Winden [2000]).

I adopt the self-control and temptation model of Gul and Pesendorfer

[2001] to body out the preference of reciprocity in the model that every

agent shares a common resource. To be more precise, I define a normative

agent that has a normative utility function as a weighted average of every

agent’s outward payoff, and also has a temptation to behave as selfish agent,

where selfish agent is defined as a classical self-interested agent. I extend Gul

and Pesendorfer’s model in a finite-stage extensive form game framework so

that each agent’s menu choice constitutes a history that leads to a different

subgame.

I also take the notion of renegotiation-proofness (Pearce [1989], Ray

[1994]) to effectively achieve a robust equilibrium. I call an equilibrium is

renegotiation-proof if for each stage it is not dominated by any other subgame

with given history and agents’ previous menu choice. Pearce [1989] shows

that renegotiation-proof equilibrium outcome lies on the Pareto optimal fron-

tier. Ray [1994] extended the result by showing that such equilibrium out-

come may exist as singleton or continuous sets on the Pareto optimal frontier.

I demonstrate that under some condition, renegotiation-proof equilibrium in

this paper’s framework also lies on the Pareto optimal frontier.

Fehr and Schmidt [1999] show that even a minority of reciprocal agents
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can induce a majority of selfish agents fully cooperate based on a punishment

device. I first show that this result holds in the menu choice framework. I

also prove that there exist renegotiation-proof equilibria that a considerable

number of selfish agents cooperate, without imposing a worst equilibrium

as a punishment. The existence of renegotiation-proof equilibrium inducing

selfish agents’ cooperation implies that preference of reciprocity still has a

driving force even when all the agents are assumed to find the best out-

come at each stage with given history, instead of some agents being ready to

punish others’ deviation. It is possible since existence of normative agents’

temptation threats some selfish agents to keep cooperate. I also reveal in a

model where agents are allowed to partially cooperate or defect that there

exist symmetric renegotiation-proof equilibria where all the normative agents

identically behave by holding a temptation partially and all the selfish agents

also identically behave to cooperate partially.

2 Preliminaries

There is a finite number of agents in the society, each of whom utilizes a

resource good to consume. Individual outputs are interpersonally compara-

ble. There is a single common good from which every agent gets individual

resource good. The common good is non-excludable and rival as usual, and

the value varies depending on all the agents’ behaviors.

Let N = {1, 2, · · · , n} be the set of agents and assume n ≥ 2. Each

agent decides to cooperate or defect toward the common good. Assume that

the common good has a initial value of w > 0. I call ‘c (cooperate)’ as

using the common good as much as any agent can without harming it at all,

‘d (defect)’ means overusing the common good to maximize personal payoff

and to harm the common good. That is, if every agent plays c then the

common good maintains its value as w and everyone consumes w. Moreover,
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I assume that if K out of n agents play c and (n −K) agents play d, then

agents who chose c primarily get w − (n − K)m1 and those who chose d

get w − (n − K)m1 + m2 where m2 > m1 > 0. In words, each agent who

defects not only enjoys an additional m2 as a personal payoff but also hurts

the common good by m1 so that the value of the common good after n−K
agents defect be w−(n−K)m1. Every agent receives a resource good equal to

the value of the common good first, and those who defect enjoy an additional

value of m2 where m1 < m2 < n ·m1.

I call an assignment of types made by nature at stage 0 a type assignment.

Let T = {normative, selfish}n be the set of type assignments. For any t =

(t1, t2, · · · , tn) ∈ T , ti is agent i’s type. Let K(t) the number of normative

agents in t ∈ T . Let’s assume that c and d, as described in the previous

paragraph, are the only two alternatives agents can play, and menu is defined

as a nonempty subset of {c, d}. There are two types of agents: normative

or selfish. Agents’ actions take place according to the following timeline.

Nature assigns each agent their type at stage 0, each agent i ∈ N at stage

0 learns ti and K(t), and then picks a menu or delay its menu choice. Each

agent at stage 1 learns t, and then holds its own menu if they already chose

at the previous stage or choose its menu if its menu choice was delayed, and

choose an alternative in its own menu at stage 2. That is, each agent can

choose its menu when information is incomplete, or when more information

is revealed. Consumption occurs only in stage 2. Empty set is not allowed

for a choice of menu at stage 0 and 1, and one and only one alternative must

be chosen at stage 2. Let S1 = {{c}, {d}, {c, d}} be the set of menus when

potential alternatives are only c or d, and denote D as ‘delay.’ Then each

agent chooses a menu or delay option in {{c}, {d}, {c, d}, D} at stage 0, and

chooses a menu in {{c}, {d}, {c, d}} only if its stage-0 menu choice was D.

Denote the 3-stage game with a set of menus S as G(S). Let (A1, A2, z)

for z ∈ A2 = A1 ⊆ S or z ∈ A2 ⊆ S,A1 = D denote an agent’s 3-stage menu
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and alternative choices. I also define a subgame of G(S) which starts with

a given type assignment disregarding nature’s role also as a 3-stage game,

and denote it as G(S, t) with a set of menus S and a given type assignment

t ∈ T .

For the fixed set of agents N and set of menus S, subgame perfect equi-

librium is defined as a solution concept from G(S). I also define equilibrium

component as a solution concept from G(S) which starts after nature as-

signs a t ∈ T as given, and denote this game as G(S, t). That is, G(S, t)

for any t ∈ T is a subgame of G(S) where only nature made the decision.

Let E = {eα}α∈ISPE
be the set of subgame perfect equilibria where I is an

index set. For each equilibrium eα = {etα}t∈T ∈ E, etα for each t ∈ T is an

equilibrium component.

Let P := {(A, a) : A ⊆ Z nonempty , a ∈ A}. We define K̂ : P n → N+

that K̂(q) represents the number of alternatives at stage 2 that are c. We also

define K̂i : P n → N+ for each i ∈ N to represent the number of alternatives

that all the agents but i choose which are c.

For any collective choice vector q = (qi)i∈N ∈ P n where qi = (qAi , q
a
i ) ∈ P

is each agent i’s choice pair of menu and alternative, each selfish agent i’s

utility function is vi : P n → N+ where

vi(q) =

{
−(n− K̂(q))m1, if ai = c

−(n− K̂(q))m1 +m2, if ai = d
.

Normative agents wish to maximize the collective utilities. They have a

desire to follow the social norm: maximize the weighted average of everyone’s

payoff where the weight (ϕ + 1) > 1 is taken over agents who eventually

choose ’c’, but they are also tempted to be selfish to maximize their own

payoff. With given K̂ (number of agents who cooperate rather than me),

Utility function for normative agent i is Ui : P n → N+

Ui(q) = u(q) + vi(q)−max
y∈Ai

vi((Ai, y); q−i)
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where u(q) =
(ϕ+ 1)K̂(q)(−(n− K̂(q))m1) + (n− K̂(q))(−(n− K̂(q))m1 +m2)

n+ ϕK̂(q)

for some ϕ > 0. As expressed above, all the selfish agents’ utility functions

are symmetric, as well as all the normative agents; utility functions. Since

vi and ui for every agent i ∈ N actually depend on i’s choice of alternative

and collective choices or alternatives of others, for any collective choive q

we occationally abuse vi(q
a
i ;
∑

j∈N\{i} q
a
j ) and u(qai ;

∑
j∈N\{i} q

a
j ), or simply

vi(z; K̂) and u(z; K̂) for some z ∈ {c, d} and some real number K̂ ∈ [0, n−1],

instead of vi(q) and u(q).

Let i ∈ N be any normative agent for a while. It is easy to check that

both vi(·, K̂) and u(·, K̂) increase in K̂. Moreover, if we define g(K̂) :=

u(c; K̂)− u(d; K̂) and h(K̂) := u(c; K̂) + a · vi(c; K̂)− u(d; K̂)− a · vi(d; K̂),

then both g(K̂) and h(K̂) strictly increase in K̂. With given K̂, g(K̂) ≥ 0

represents that normative agents prefer menu {c} to {c, d} at stage 1, and

h(K̂) ≥ 0 represents that when normative agents already chose {c, d} as their

menu, they prefer the alternative c to d.

I also assume

g(0) < 0, h(0) < 0, g(n− 1) > 0, h(n− 1) > 0.

In words, every normative agent always chooses {c, d} as his menu when he

knows that everyone else will defect, and always chooses {c} as his menu

when he knows that everyone else will cooperate. Moreover, every normative

agent who already chose {c, d} as his menu will eventually choose c as his

alternative when he realizes that everyone else will cooperate, and vice versa.

From the fact that g(·) and h(·) strictly increase, there are a unique

thresholds Kg, Kh that satisfy g(Kg − 1) = h(Kh − 1) = 0. It is easy to

show that Kg < Kh. As Kg and Kh are not necessarily integers, we define

K1 := dKge , K2 := dKhe. That is, if there are at least K1 agents in the

society who are willing to play c eventually then every normative agent would
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like to hole {c} as the menu and play c eventually, and if there are at least K2

agents in the society who are willing to play c eventually then every normative

agent who already holds {c, d} would like to choose c as the alternative. Note

that K2 ≥ K1 ≥ 2 from the fact that Kh > Kg > 0. I assume that the degree

of temptation a is large enough so that K1 < K2, and also assume that

K1 > 1 so that any normative agent will not cooperate when all the other

agents are supposed to defect.

3 Equilibrium

3.1 Subgame perfect equilibrim: Imperfect full coop-
eration equilibrium

I first show in this section that there exists an equilibrium where all the

agents cooperate, provided the society has minimum number of normative

agents. For this purpose, we will see that the ‘worst equilibrium’ is used as

a tool for a punishment by normative agents whenever any selfish agent tries

to deviate from cooperation.

I start by defining three basic actions before introducing strategies. Full

defection means playing ({d}, {d}, d) and full cooperation means playing

({c}, {c}, c). Judgment reservation means to choose D at stage 0, play

(D, {c}, c) if every menu already chosen at stage 0 is {c}, and play (D, {d}, d)

otherwise. Judgment reservation is an action which may be plausible only

for normative agents. Note that the ‘threshold’ in judgment reservation is

K, which is the minimum level of normative agents required to effectively

punish any selfish agent’s deviation from cooperation.

Let’s first describe two basic strategies using the basic actions. The de-

fecting strategy in a game G(S1) for each i ∈ N and each type assignment

t ∈ T is to fully defect no matter what ti is and other agents’ strategies

are. The cooperating strategy in a game G(S1) for each i ∈ N and each type
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assignment t ∈ T is to fully cooperate no matter what ti is and what other

agents’ strategies are.

Definition 1. The worst equilibrium is an equilibrium where everyone plays

the defecting strategy.

Any selfish agent has an individual incentive to fully defect in the worst

equilibrium. Note that even any normative agent who knows that everyone

else will eventually defect at stage 2 has incentive to defect because of his

temptation. As a result, everyone gets the same utility level as −nm1 + m2

for any type assignment in the worst equilibrium.

We can construct an equilibrium that induces selfish agents to cooperate

using the worst equilibrium as a threat. It is easy to think as the following:

no matter what t ∈ T is, all the normative agents delay at stage 0 and be

ready to play (D, {d}, d) unless every selfish chooses {c} at stage 0. There

are, however, two issues that disrupt this plan work as an equilibrium. First,

at least K normative agents are required to let the punishment as strong as

selfish agents’ incentive to defect. Second, if there are more than or equal

to K1 selfish agents, then each selfish agent has incentive to defect from full

cooperation to full defect given that all the other selfish play full cooperation,

since there are enough cooperation from the selfish so that normative agents

play (D, {c}, c) anyway. When K(t) < K regarding the first issue, there is

no way for normative agents to strategically keep selfish agents cooperate so

that everyone plays as in the worst equilibrium. However, when K ≤ K1 and

K(t) ∈ [K,n − K1], at most K1 − 1 selfish agents fully cooperate at stage

0 is a necessary condition to construct an equilibrium component, and and

normative agents play (D, {c}, c) if at least K1− 1 selfish agents hold {c} at

this equilibrium component.

One question arises in the discussion of the previous paragraph: how can

we determine who will fully cooperate when K(t) ∈ [K,n−K1]? Note that no

8



agent can learn anyone’s type including its own type at the beginning of the

game, which means that selfish agents cannot prearrange who will fully coop-

erate and who will fully defect before the game starts since they don’t know

whether they will be selfish or not before the nature announces t ∈ T . I pro-

pose a ‘numbering’ process for this commitment. That is, number every agent

from 1 to n, and when t ∈ T is announced at the beginning of stage 1, it be-

comes a common knowledge. There are n! different ways to reorder n agents.

Define a permutation π : N → N be a mapping that assigns everyone a

unique number. Denote π1, π2, · · · , πn! be all distinct permutations, and Π be

the set of permutations. Let’s assume that nature not only randomly assigns

everyone’s type, but also a permutation so that every agent is ‘numbered’ at

stage 0. Moreover, assume that all the agents learn their own type and their

position among agents with same type. To specify, if N = {1, 2, 3, 4, 5}, t =

(normative, normative, selfish, normative, selfish), π = (3, 1, 2, 5, 4), then agent

2 is the first normative, agent 3 is the first selfish, agent 1 is the second nor-

mative, agent 5 is the second selfish, and agent 4 is the third normative.

After nature picks π, every agent immediately learn its own type and its own

position as well as K(t).

To come back to the discussion how to decide which selfish agents are

supposed to fully cooperate, now we have an ‘order’ of group of selfish agent

and normative agents respectively. Therefore, we can indicate that the ‘first’

K1 − 1 selfish agents fully cooperate at stage 0 when K(t) ∈ [K,n − K1].

Let’s define a cooperative strategy reflecting the discussion above. Cooperative

strategy in a game G(S1) for each i ∈ N and each type assignment t ∈ T is

as follows: i) If I am selfish and K(t) < K then fully defect, ii) if I am selfish

and K(t) ≥ max{K,n−K1 + 1} then fully cooperate, iii) if I am selfish and

K(t) ∈ [K,n−K1], then fully cooperate if I am the first K1 − 1 selfish and

fully defect otherwise, iv) if I am normative then reserve judgment.

Definition 2. The imperfect full cooperation equilibrium is an equilibrium
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where everyone plays the cooperative strategy.

In imperfect full cooperation equilibrium, all the normative agents delay

their decision to see how selfish agents behave, and perform a punishment by

playing as in the worst equilibrium. Note that every normative agent indeed

has incentive to play (D, {d}, d) if they know that ay selfish agent deviates

to fully defect so that strictly less than K1 − 1 selfish agents fully cooperate

and all the other normative agents play (D, {d}, d). In an imperfect full

cooperation equilibrium, as a result, every agent holds {c} as its menu and

play c when K(t) ≥ max{K,n−K1 + 1}, everyone defects when K(t) < K,

and partial cooperation occurs when K + K1 ≤ n and K(t) ∈ [K,n −K1].

The following proposition reflects this result.

Proposition 1. If K +K1 > n and K(t) ≥ K, then there exists an equilib-

rium component where every agent chooses its menu as {c} and cooperates

at stage 2 in G(S1, t).

Proposition 1 shows that if K1 is large enough, K can be small with the

following holds: with given conditions, even K normative agents can have

a driving force to make all the selfish agents fully cooperate. This result

indicates that this paper is in line with Fehr and Schmidt [1999]’s result: even

a small number of normative agents can induce a majority of selfish agents

to cooperate using punishment device given some circumstances satisfied.

3.2 Subgame perfect equilibrium with social planner

I extend the model including a social planner who has a power to control the

type information at stage 0. Social planner makes a decision right after the

nature picks t ∈ T and π ∈ Π whether to let every agent learn K(t) or not. I

call such 3-stage game with a set of menus S and with a social planner G′(S)

and such game with given t as a type assigement G′(S, t). Let’s redefine the

process of the game G′(S1).
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Stage 0: Nature picks t ∈ T and π ∈ Π. Social planner decides whether

to reveal K(t) or not. Each agent i learns its own type and position, learn

K(t) only when the social planner allows, and then choose their menu in

{{c}, {d}, {c, d}, D}.
Stage 1: Agents learn t, all the agents’ stage 0 menu choice, and then those

who delayed the menu choice choose their menu in {{c}, {d}, {c, d}}.
Stage 2: Agents learn all the others’ menu choice at stage 1, and then choose

an alternative from their own menu.

I define fully cooperative strategy in G′(S1) that the social planner always

conceal K(t), every selfish agent fully cooperates no matter what t ∈ T and

π ∈ Π is, and every normative agent reserves judgment. In a state that

every agent plays fully cooperative strategy, every selfish plays ({c}, {c}, c)
and every normative plays (D, {c}, c) at any t ∈ T and π ∈ Π. I call

Definition 3. The full cooperation equilibrium is an equilibrium where ev-

eryone including the social planner plays the fully cooperative strategy.

Even though the fully cooperation equilibrium is not guaranteed to exist,

it is likely to exist when n is large enough or the personal benefit from defect

is not too large compared to hurting the common good.

Lemma 1. If
m2

m1

<
n+ 1

2
then full cooperation equilibrium exists.

Sketch. If a selfish agent must deviate at stage 0, deviating to ({d}, {d}, d)

maximizes its payoff. Let such selfish agent i ∈ N . When K(t) = K, a

selfish agent who deviates from ({c}, {c}, c) to ({d}, {d}, d) has additional

payoff of (m2−m1)−K ·m1, where (m2−m1) comes from its own deviation,

and K ·m1 comes from K normative agents’ defects. Moreover, given that

t ∈ T is announced and i is selfish, P(K(t) = K) =
(
n−1
K

)
. Therefore i keeps
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playing ({c}, {c}, c) if

n−1∑
i=0

(
n− 1

i

)
(m2 −m1 − i ·m1) < 0.

That is,
m2

m1

< M =
n+ 1

2
.

According to lemma 1, with given any finite m1 and m2, there always

exists the full cooperation equilibrium whenever n is large enough. The

required condition for lemma 1 is more likely to be satisfied than proposition

1 in a sense that it only requires a large economy, not even requiring anything

for K nor K1 which is related to the characteristics of agents’ type. To

summarize, subgame perfect equilibrium has a plausible feature in this model.

3.3 Renegotiation-proof equilibrium

We saw how threat effectively works in imperfect full cooperation equilibrium

in the previous section. However, when any selfish agent deviates from coop-

erating strategy, and if there are still enough selfish agents fully cooperating

or there are enough normative agents in the society, then there is actually

no reason for normative agents not to cooperate beyond their initial plan.

The notion of renegotiation-proofness is brought to this paper with this mo-

tivation. Renegotiation-proof equilibrium is defined that all the agents can

‘renegotiate’ at each subgame regardless of their initial commmitment to find

the best solution given type assigement, permutation, and history of agents’

previous menu choices.

Before we define renegotiation-proof equilibrium, we need to formally

establish the information that agents observe at the beginning of each stage.

I call history be the collective information that agents share at the beginning

of each stage. I denote h` for ` = 0, 1, 2 be a history at stage ` for game
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G(·) or G′(·). h0 = K(t) after t ∈ T is announced by nature in game G(·),
and h0 = K(t) or ∅ depending on the social planner’s choice. A history at

stage 1 contains the type assignment, permutation, and all the agents’ menu

choice at stage 0. Formally, H1 is the set of histories at stage 1 where H1 =

{(A1, · · · , An, t, π) : Ai ∈ {{c}, {d}, {c, d}, D} ∀i ∈ N, and t ∈ T, π ∈ Π}.
For any h1 = (A1, · · · , An, t, π) ∈ H1, denote hi = Ai for i ∈ N , h1n+1 = t,

and h1n+2 = π. A history at stage 2 is based on the previous history at stage

1. For any h1 ∈ H1, H2(h1) is the set of histories at stage 2 given that the

previous history at stage 1 is h1, formally, H2(h1) = {(A1, · · · , An, t, π) :

Ai ∈ {{c}, {d}, {c, d}} ∀i ∈ N where Ai = h1i if h1 6= D, and t = h1n+1, π =

h1n+2}. Let H2 =
⋃
h1∈H1 H2(h1).

For each ` ∈ 1, 2 and any h` ∈ H`, denote G`(·, h`) the subgame of

G(·) which starts at stage ` with given history h`, denote E`(h
`) the set of

subgame perect equilibria starts at stage ` with given history h`, and let

E` =
⋃
h`∈H` E`(h

`). Note that there is no concept of equilibrium component

for subgames since type assignment is already a common knowledge at the

beginning of stage 1.

F t = (F t
1, · · · , F t

n) : E → Rn is a mapping from an equilibrium to a vector

of all the agents’ utility when type assignment is t. Let F = {F t}t∈T be the

utility function for any type assignment and for every agent.

Here is some useful notation. For any eα, eβ ∈ E and any t ∈ T , we

write F t(eα) ≥ F t(eβ) if F t
i (eα) ≥ F t

i (eβ) for all i ∈ N , F t(eα) > F t(eβ) if

F t
i (eα) ≥ F t

i (eβ) for all i ∈ N and F t(eα) 6= F t(eβ).

I also define Pareto improvement and Pareto optimality in a classical way.

Definition 4. For any eα, eβ ∈ E, eα Pareto improves eβ if

F (eα) > F (eβ).

eα is Pareto optimal if there is no equilibrium in E that Pareto improves eα.
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I define Pareto improvement and Pareto optimality of E1(h
1) and E2(h

2)

for some h1 ∈ H1 and h2 ∈ H2(h1) in line with Definition 4.

Definition 5. For each ` = 1, 2, any h` ∈ H`, any eα`
, eβ` ∈ E`(h

`), eα`

Pareto improves eβ` if

F (eα`
) > F (eβ`).

eα`
∈ E`(h`) is Pareto optimal if there is no equilibrium in E`(h

`) that Pareto

improves eα`
.

Pareto improvement and optimality for subgame is defined based on the

same history.

Let’s abbreviate the concept of Pareto improvement and Pareto optimal-

ity for equilibrium component as follows:

Definition 6. For any eα, eβ ∈ E and any t ∈ T , etα Pareto improves etβ if

F t(eα) > F t(eβ).

etα is Pareto optimal if there is no equilibrium component with type t that

Pareto improves etα.

For any subset Eα`
⊂ E`, any equilibria e0 ∈ E and e1 ∈ E1, and for

each ` = 1, 2, say that an equilibrium e`−1 is supported by Eα`
if any sub-

game at stage ` in e`−1 results in an equilibrium in Eα`
. Let E2(E2(h

2)) =

{e2 ∈ E2(h
2) : e2 is Pareto optimal} for any h2 ∈ H2. For any h1 ∈ H1, let

Φ1(E1(h
1)) be the set of equilibria in E1(h

1) supported by
⋃
h2∈H2(h1) E2(E2(h

2)).

Define E1(E1(h
1)) be the set of equilibria in Φ1(E1(h

1)) not Pareto improved

by any e1 ∈ Φ1(E1(h
1)).

I define a renegotiation-proof equilibrium as a refinement of subgame per-

fect equilibrium, adopting the basic notion from Pearce [1989]. Renegotiation-

proof equilibrium is a subgame perfect equilibrium that every subgame is

Pareto optimal.
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Definition 7. For any set of menus S, A subgame perfect equilibrium e ∈ E
in G(S) is renegotiation-proof if it is supported by E1(E1(h

1)) where h1 ∈ H1

is generated by e. Denote ERPE = {e ∈ E : e is renegotiation-proof}.

The following lemma demonstrates that the analysis at the final stage in

any renegotiation-proof equilibrium is simple.

Lemma 2. At stage 2 in any renegotiation-proof equilibrium of G(S1) with

any given collective choice of menus and any type assignment, choice of al-

ternatives is deterministic.

I introduce two main patterns of renegotiation-proof equilibria. The first

is selfish-move-first (SMF) equilibrium, and the second is normative-move-

first (SMF) equilibrium. Selfish-move-first (SMF) strategy is defined as fol-

lows: i) if I am selfish and K ≤ K(t) < K1 and I am the first K1 − K(t)

selfish then play ({c}, {c}, c), ii) if I am selfish not in the case of i) then play

({d}, {d}, d), iii) if I am normative then play the defecting strategy.

Definition 8. A SMF equilibrium is a renegotiation-proof equilibrium where

everyone plays the Selfish-move-first strategy.

In SMF equilibrium all the normatives delay their menu choice at stage

0 and see how selfish agents ‘well behave.’ Selfish agents, however, know

that normative agents will collectively act to achieve Pareto optimality at

each stage so that minimum number of selfish agents required for normative

agents to play (D, {c}, c) cooperate.

Normative-move-first (NMF) strategy is defined as follows:

If I am selfish, then delay at stage 0, and at stage 1 if the number of normative

holding {c, d} is at least K and I am the first K2 − K(t) selfish then play

(D, {c}, c), otherwise play (D, {d}, d).

If I am normative, then choose {c, d} at stage 0 if I am the first K normative

and K ≤ K(t) < K2, and choose {c} otherwise. At stage 2, if i am holding
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{c, d} then play c only if the number of selfish agents who holds {c} and

normative agents is at least K2.

Definition 9. A NMF equilibrium is a renegotiation-proof equilibrium where

everyone plays the Normative-move-first strategy.

In NMF equilibrium all the selfishs delay their menu choice at stage 0 to

see whether enough number of normative agents are really choosing {c, d}
at stage 0 so that selfish agents are supposed to be punished if they do not

‘well behave.’

I define a Separating equilibrium as a combination of a SMF equilibrium

and NMF equilibrium 2.

Definition 10. A Separating equilibrium is a renegotiation-proof equilibrium

where there exists T1 ⊂ T such that everyone plays the SMF strategy if t ∈ T1
and everyone plays the NMF strategy if t ∈ T\T1.

Proposition 2. If K2 −K1 < K then any separating equilibrium is Pareto

optimal in ERPE. If K2 − K1 ≥ K then a separating equilibrium is Pareto

optimal in ERPE if any t ∈ T1 satisfies K(t) > K2 −K.

Proposition 2 says that a separating equilibrium is Pareto optimal in

ERPE under a circumstance. Separating equilibrim, obviously, is not the only

renegotiation-proof equilibrium concept in G(S1). However, the following

proposition shows that if we care of efficiency, or Pareto optimality, then the

set of separating equilibria is enough to deal with. In other words, all the

equilibrium outcome achieved by separating equilibria covers all the Pareto

optimal allocations of renegotiation-proof equilibria

Proposition 3. Any Pareto optimal outcome of renegotiation-proof equilib-

rim can be achieved by a separating equilibrium.
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3.4 Partial cooperation or defect

I now assume that each agent can pick the degree of cooperation or de-

fect. To be specific, letting 0 represent c and 1 represent d, a ∈ (0, 1)

means partial cooperation and defect. If a ∈ [0, 1] is close to 0 it repre-

sents a cooperating behavior with a tiny amount of defect. Formally, define

S2 = {A ⊆ [0, 1] : A is compact } a set of menus. The timeline is as follows:

Stage 0: Nature picks t ∈ T and π ∈ Π. Each agent i learns t1, its own

position, and then chooses its menu ∈ [0, 1] or delays menu choice.

Stage 1: Agents learn all the agents’ stage 0 menu choice, and then those

who delayed the menu choice choose their menu ⊆ [0, 1].

Stage 2: Agents learn all the others’ menu choice, and choose an alternative

from their own menu.

Let’s focus on ‘symmetric equilibria’: all selfish agents share the same

strategy as well as all normative agents.

I start with simplifying the menu choice for normative agents.

Lemma 3. For any compact A ⊂ [0, 1], any z ∈ A, and any K, U((A, z);K) ≤
U([0,maxa∈Aa];K).

Lemma 4. For any K, if A ∈ S maximizes maxz∈A U((A, z);K), then

maxz∈A U((A, z);K) = maxz∈A U([0,maxa∈Aa];K)

By lemma 3 and 4, we can assume that normative agents choose their

menu in a form of [0, a] with a ∈ [0, 1].

I show that there exist symmetric equilibria in G(S2) corresponding to

those in G(S1).

The symmetric defecting strategy:

If I am selfish, then play

(
{Kg −K(t)

n−K(t)
}, {Kg −K(t)

n−K(t)
}, Kg −K(t)

n−K(t)

)
ifK(t) =
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K1 − 1, play ({d}, {d}, d) otherwise.

If I am normative, then delay at stage 0, and at stage 1 if the collective

cooperation of selfish and the number of normative is at least K1 then play

(D, {0}, 0), otherwise (D, [0, 1], 1).

Definition 11. The Symmetric worst equilibrium is an equilibrium in G(S2)

where everyone plays the symmetric defecting strategy.

Selfish-move-first (SMF) strategy:

If I am selfish and i)m ≤ K(t) < Kg then play

(
{Kg −K(t)

n−K(t)
}, {Kg −K(t)

n−K(t)
}, Kg −K(t)

n−K(t)

)
,

ii) otherwise play ({1}, {1}, 1).

If I am normative then play the defecting strategy.

Definition 12. A SMF equilibrium is an equilibrium where everyone plays

the Selfish-move-first strategy.

Normative-move-first (NMF) strategy:

If I am selfish, then delay at stage 0, and at stage 1 if the maximum of

punishment normatives can collectively perform is at least m then play(
D, {Kh −K(t)

n−K(t)
}, Kh −K(t)

n−K(t)

)
, otherwise play (D, {1}, 1).

If I am normative, then choose

[
0,

m

K(t)

]
at stage 0 if m ≤ K(t) < Kh, and

choose {0} otherwise. At stage 2, play 0 only if the number of collective

cooperation by selfish agents and normative agents is at least Kh, and play
m

Kh

otherwise.

Definition 13. A NMF equilibrium is an equilibrium where everyone plays

the Normative-move-first strategy.

18



References

S. Bowles and H. Gintis. The evolution of strong reciprocity. mimeo, Uni-

versity of Massachusetts, 2000.

E. Fehr and K. Schmidt. A theory of fairness, competition, and cooperation.

Quarterly Journal of Economics, 114:817–868, 1999.

F. Gul and W. Pesendorfer. Temptation and self-control. Econometrica, 69:6:

1403–1435, 2001.

C. Keser and F. Winden. Conditional cooperation and voluntary contribu-

tions to public goods. Scandinavian Journal of Economics, 102(1):23–39,

2000.

D. Levine. Modeling altruism and spitefulness in experiments. Review of

Economic Dynamics, 1:593–622, 1998.

D. Pearce. Renegotiation-proof equilibria: Collective rationality and in-

tertemporal cooperation (cowles foundation discussion paper no. 855).

Cowles Foundation for Research in Economics, Yale University, 1989.

M. Rabin. Incorporating fairness into game theory and economics. American

Economic Review, 83:5:1281–1302, 1993.

D. Ray. Internally renegotiation-proof equilibrium sets: Limit behavior with

low discounting. Games and Economic Behavior, 6:162177, 1994.

R. Sugden. Reciprocity: The supply of public goods through voluntary con-

tributions. Economic Journal, 84:772–787, 1984.

19


