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Abstract

We study a dynamic two-sided many-to-one matching market in the context of

universities and students. It is a generalization of the college admissions problem. Our

main solution concept, dynamic stability, involves backward induction and maximin.

A dynamically stable matching always exists, and a weaker version of rural hospitals

theorem also holds. The set of dynamically stable matchings does not form a lattice

with respect to universities' preferences, but there does exist a university-optimal stable

matching. The generalizations of stability, group stability, and weak core no longer

coincide with each other.
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1 Introduction

In the United States, a typical community college o�ers two-year college education with

almost no barrier to entry. After that, students who want a bachelor degree will transfer

to a four-year university to continue their education. In a report of the National Center of

Education Statistics by Radford et al. (2010), an estimate of 26.6% of the students started

college in 2003-2004 and obtained a Bachelor's degree by spring 2009 are transfer students.

We generalize the college admissions problem into a two-period context. In the college

admissions problem, each year, a cohort of high school seniors enter the market and apply

to a bunch of universities. A university will identify a group of acceptable students based

on its criteria and give them o�ers. A matching outcome then �nalizes after each student

accepts an o�er (if there is any). We put in a new element: community college.1 Students

can go to a community college if they are not matched with a university in the �rst period.

In the second period, students who want to transfer, either from a university or a college,

will re-enter the matching market. At the same time, universities that have a transfer quota

will enter the market as well.

Community college indeed serves as an institution that stores agents who prefer to match

with the other side of the market in a later period. This kind of institution has di�erent

representations in other dynamic markets. For example, in a dynamic daycare problem, a

child can stay home for one period before he goes to daycare; in a dynamic marriage market,

a man can stay alone for one period before he matches with some woman.2

In a college admissions problem, agents on both sides have preferences over the other

side, while in a school choice problem, students have preferences over school but schools

rank students by priorities. In our model, schools will continue to have preferences over

students, but there are also priorities involved. The �rst type of priority can also be found

in the dynamic daycare problem of Kennes et al. (2014). In period-2, a student whom was

admitted by some university in the �rst period is an incumbent to the seat his is possessing.

Note that this priority is not predetermined exogenously as in a school choice problem since

a university will not admit some unacceptable student and grant him this priority. Another

type of priority is new: in period-2, a seat that was unmatched in last period or abandoned

by a student that was admitted last period perishes, that is, the highest priority for that

seat is self-matching.3 When universities consider who to admit in the �rst period, these

1To avoid confusion, we use �university� for four-year university and use �college� for two-year community
college.

2See Kennes et al. (2014) and Kadam and Kotowski (2016), respectively.
3In other dynamic matching markets, a similar situation happens when the object being allocated is

non-storable or the matching opportunity expired. For example, see Lauermann and Nöldeke (2014); Doval
(2016).
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priorities together might make them prefer students who will stay for two periods.

This paper provides three solution concepts: dynamically stability, dynamically group

stability, and dynamic weak core, where each of them is a generalization of stability, group

stability, and the weak core in the college admissions problem, respectively. These three

solution concepts will degenerate to their conventional counterpart if the dynamic model

degenerates to the college admissions problem, in which they will coincide with each other.

They resemble three Nash equilibria in a �nitely repeated non-cooperative game, where a

stage game Nash equilibrium must be played in the last period. Even though they do not

coincide in the dynamic model, all of them require a static stable matching in the last period.

This paper lies between two strands of literature. One is the classic matching theory.

After the original many-to-one matching problem has been introduced by Gale and Shapley

(1962), it has been studied extensively in the literature; for example, see Roth (1985); Roth

and Sotomayor (1989, 1992); Roth (1986, 1984).

Another is the growing dynamic matching literature. Doval (2016) introduces a stability

concept, which is also called dynamic stability, in dynamic matching markets where matching

opportunities arrive over time, matching is one-to-one, and irreversible. In those environ-

ments, she shows that dynamically stable matchings always exist in one-sided markets but

not always in the allocation of objects with priorities and two-sided markets.4 Even though

the dynamic stability in her paper also incorporates a backward induction notion and requires

a stable matching in the second period, it is more similar to our dynamic group stability in

two aspects. First, it is not pairwise and requires no group of agents can �nd in pro�table to

deviate. Second, it does not allow agents to form agreements intertemporally, which is also

similar to the dynamic group stability here. In contrast, our dynamic stability will allow

agents to form binding agreements intertemporally. Kurino (2014) studies dynamic house

allocation with priorities using an overlapping generations model. Damiano and Lam (2005)

and Kurino (2009) study dynamic two-sided one-to-one matching market as well, but they

use di�erent solution concepts other than dynamic stability. The closest work is Kadam and

Kotowski (2016), in which they study a dynamic marriage market with ordinal preference

forms. They introduce a stability concept, which is also called dynamic stability. The major

di�erence between this paper and Kadam and Kotowski (2016) is preference structure. Uni-

versities in our model adopt the preference structure in the college admissions problem, but

it is unclear how to extend their preference into a many-to-one model. The existence of dy-

namically stable matchings is not guaranteed in their paper without preference restrictions,

while the built in preference structures here guarantee the existence of dynamically stable

4Example for one-sided market: deceased-donor organ allocation. Example for allocation of objects with
priorities: public housing. Examples for one-sided market: marriage market, adoption market.
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Table 1: Relationship to Existing Dynamic Matching Literature

One-sided Priority Two-sided
Dynamic

Doval (2016)
Kurino (2014), Kadam and Kotowski (2016),

one-to-one Doval (2016), etc. Doval (2016), etc.

Dynamic
-

Pereyra (2013),
This paper

many-to-one Kennes et al. (2014), etc.

matchings.

The existing papers of dynamic many-to-one matching typically adopt an overlapping

generations approach and focus on school choice problems with priorities to certain students

or teachers; for example, see Dur (2012); Pereyra (2013); Kennes et al. (2014).

This paper makes the two contributions. First, to the best of our knowledge, this paper is

the �rst one that provides a framework to study dynamic two-sided many-to-one matching

markets. Second, it shows many results from the college admissions problem continue to

hold in a dynamic context.

2 The Models

2.1 The Benchmark: College Admissions Problem

We brie�y review the original college admissions problem in Gale and Shapley (1962). It will

serve as a benchmark in this paper. There is a set of students S = {s1, s2, ..., s|S|} and a set

of universities U= {u1, u2, ..., u|U |}. Each student can match with at most one university or

remain unmatched (being unmatched is denoted by ∅). For each university u, it can match

with at most qu students, where qu is a positive integer. A matching µ is a mapping satis�es

1. ∀s ∈ S, µ(s) ∈ U ∪ {∅} and |µ(s)| ≤ 1;

2. ∀u ∈ U, µ(u) ⊆ S and |µ(u)| ≤ qu;

3. µ(s) = u if and only if s is in µ(u).

Each student s has a strict preference relation Bs over U ∪{∅}, and a university is acceptable

to student s if u Bs ∅. Each university u has a strict preference relationBu over S ∪{∅}, and
a student is acceptable to university u if s Bu ∅. We use Dl to mean Bl or =. A matching

µ is individually rational if for each student s µ(s) Ds ∅ and for each university u s Bu ∅ for
all s ∈ µ(u). A matching µ is stable if it is individually rational and there do not exist a
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university u and a student s such that u Bs µ(s) and s Bu σ for some σ ∈ µ(u). Many of the

results for the college admissions problem are derived under an assumption that a university

u's preference over sets of students, �u, is responsive to Bu. We will de�ne responsiveness

in section 2.3.

If all qu = 1, the model degenerates to the marriage problem.

2.2 A Two-period Model

Now we extend the benchmark model to dynamic college admissions problem. There is a set

of students S = {s1, s2, ..., s|S|} and a set of universities U= {u1, u2, ..., u|U |}. Each student

can match with at most one university at a time or remain unmatched. For each university

u, it can match with at most qu students, where qu is a positive integer. It can be viewed as

the maximum number of students that can graduate from u at the end of the second period.

To be more speci�c, qu = (q1
u, q

2
u) is an intertemporal capacity constraint, in the sense that

it comprises the quota of university u for freshmen in the �rst period, q1
u, and the quota for

transfer students in the second period, q2
u, where each q

t
u is a non-negative integer.56 There

is an anonymous community college c which has |S| seats to enroll all students in the market

in the �rst period, i.e. qc = |S|.
A period-1 matching µ1 is a mapping satis�es

1. ∀s ∈ S, µ1(s) ∈ U ∪ {c} ∪ {∅} and |µ1(s)| ≤ 1;

2. ∀u ∈ U, µ1(u) ⊆ S and |µ1(u)| ≤ q1
u;

3. µ1(s) = u if and only if s is in µ1(u).

There are four extra requirements that connect a period-2 matching it to its corresponding

period-1 matching. First, a student cannot take a period-1 seat and a period-2 seat from the

same university. Second, a university can not unilaterally drop or replace a student whom

it admitted in the �rst period. Third, a university can not use an empty period-1 seat to

admit a transfer student. Otherwise, q1
u and q

2
u will not longer be exogenous since a university

might strategically keep a period-1 seat empty to enroll an extra transfer student.7 Forth,

if a student transfers, then the occupied seat vanishes. The intuition is that an university

is not informed until it realizes someone is transferred in the second period, so it does not

have su�cient time and thus can not reuse the seat immediately in the second period. For

5We use superscript to indicate time.
6So we allow a university to admit student in only one period, that is, it can admit no transfer student

or only transfer students.
7Dur et al. (2015) study a one-period two-sided many-to-one exchange model with endogenous quotas.
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instance, a Economics PhD program that experiences attrition in the �rst-year is unlikely to

go out and search some �rst-year student from another program to �ll the vacancy. These

four restriction correspond to requirement 4 to 7 below, respectively. Let uβ be some period-

1 seat of university u in the second period. We denote a binary relation over S ∪ ∅ that
generates the priority ranking for uβ given µ1 by mµ1

uβ
. In another word, if given µ1, student

s has a high priority than s′ for uβ , then we write smµ1

uβ
s′.

A period-2 matching µ2 is a mapping satis�es

1. ∀s ∈ S, µ2(s) ∈ U ∪ {∅} and |µ2(s)| ≤ 1;

2. ∀u ∈ U, µ2(u) ⊆ S and |µ2(u) \ µ1(u)| ≤ q2
u;

3. µ2(s) = u if and only if s is in µ2(u);

4. if µ1(s) = u then s /∈ µ2(u) \ µ1(u);

5. if µ1(s) = u then ∃uβ such that smµ1

uβ
σ for all σ ∈ S ∪ ∅;

6. if @s ∈ S such that µ1(s) = uβ then ∅mµ1

uβ
s′ for all s′ ∈ S;

7. if µ1(s) = u and µ2(s) 6= u then ∃uβ such that ∅mµ1

uβ
s′ for all s′ ∈ S.

Amatching µ is a mapping such that ∀l ∈ S∪U , µ(l) = (µ1(l), µ2(l)). A matching speci�es

which student goes to which university in both periods. For a set of agents L ⊆ S ∪ U , let
µ(L) be the set of agents that match with some member of L under µ. LetMt be the set

of all period-t matchings, and letM be the set of all matchings.

2.2.1 Preferences

To make preferences simple, we make two innocuous assumptions. First, we assume a student

in the market plans to graduate from a university at the end; second, a student who does

not go to school in the �rst period will not be accepted in the second period.8 No result

will change without these assumptions.9 A student may match with two di�erent schools

in period-1 and period-2. We call such sequence of matches a plan; (σ1, σ2) is a plan for a

student where he is matched with σ1 ∈ U ∪{c}∪{∅} in the �rst period and with σ2∈U in the

8We consider the �rst period matching as general education or as credential/experience in other labor
markets.

9Let s in a student's plan represents self-matching. Without the �rst assumption, we need to add
a requirement uu �s us in the de�nitions of binding agreement, no active student condition, period-1
individual rationality, individual rationality in the related marriage market since we have us plans in students'
preferences; without the second assumption, we need to remove the requirement µ1(s) 6= ∅ in the de�nition
of period-2 blocking since we have su plans in students' preferences.
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second period. We sometimes write σ1σ2 ≡ (σ1, σ2) if no confusion arises. Each student s

has a strict preference relation �s over the set of plans. As usual, for any two plans (σ1, σ2),

(σ1, σ2)′, we write (σ1, σ2) �l (σ1, σ2)′ if (σ1, σ2) �l (σ1, σ2)′ or (σ1, σ2) = (σ1, σ2)′. Plan

σ1σ2 is acceptable to student s if σ1σ2 �s ∅ and unacceptable if ∅ �s σ1σ2. 10

Each university u has a strict preference relation �u over 2S, all possible subsets of

students. Note that university u only cares about its �nal outcome, µ2(u), which is a subset

of S.11 In another word, a university prefers the outcome of µ(u) over the outcome of µ′(u)

when µ2(u) �u µ′2(u). To be consistent with the literature, when de�ning or referring to some

conventional de�nition, we sometimes, by an abuse of notation, write µ(u) �u µ′(u) instead

of µ2(u) �u µ′2(u). As usual, for any two subsets of students S ′, S ′′, we write S ′ �u S ′′ if
S ′ �u S ′′ or S ′ = S ′′. Student s is acceptable to university u if s �u ∅.12 Preference relation

�u is responsive with capacity qu if ∀S ′ ⊆ S,∀s′ ∈ S ′ and ∀s /∈ S ′

1. S ′ \ s′ ∪ s �u S ′ ⇐⇒ s �u s′;

2. S ′ ∪ s �u S ′ ⇐⇒ |S ′| < qu and s �u ∅;

3. |S ′| > qu =⇒ ∅ �u S ′.13

Following the literature, we assume the preference of each university is responsive with its

capacity throughout the paper. By extracting all singleton sets from �u, we will have its

ranking over individual students. We denote this ranking by Bu, and this is the university's

preference over individual students in the benchmark model. We say �u is responsive to Bu.

Note that there maybe more than one �u that are responsive to a Bu, but only one Bu can

be extracted from a �u.
Let �= (�l)l∈S∪U be the preference pro�le of all students and universities. For conve-

nience, we often only write the acceptable plans (students) to denote a preference relation.

For example,

�s: u1u1, u2u1

means to student s, u1u1 is the most preferred plan, u2u1 follows the second, and no other

plan is acceptable.

(S, U,�) is a dynamic college admissions problem.

10Here ∅ should be (∅, ∅), but by the two assumptions we made, we can abbreviate σ1∅ and ∅σ2 to ∅.
11In Roth and Sotomayor (1989), an outcome for a university is a set of incoming students, but it will be

natural to say an outcome for a university is a set of graduating students here.
12We use si to denote the singleton set {si} if no confusion arises.
13The original de�nition can be found in Roth (1985), and this version is modi�ed from Kamada and

Kojima (2015).
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2.2.2 Dynamic Stability

We de�ne our �rst solution concept, dynamic stability, recursively by using the idea of

backward induction. For a student s, u �µ1s u′ ⇐⇒ (µ1(s), uj) �s (µ1(s), u′), where �µ1s
is the conditional preference of student s given µ1. A period-2 matching µ2 is period-2

individually rational if for each student s ∈ S, µ2(s) �µ1s ∅ , and if for each university

u ∈ U , ∀s ∈ µ2(u), s �u ∅. In word, µ2 is period-2 individually rational if, conditioning

on the �rst period matching µ1, there is no student matched with some unacceptable plan,

and there is no university matched with someone unacceptable. A period-2 matching µ2

is period-2 blocked if there exists student s with µ1(s) 6= ∅ and university u such that

u �µ1s µ2(s) and s �u σ for some σ ∈ µ2(u) \ µ1(u). A matching is period-2 stable if it is

period-2 individually rational and it is not period-2 blocked.

We present two examples to shed light on period-1 concepts.

Example 1. Consider the following market. S = {s1, s2}, U = {u1, u2},
Bu1 : s1 qu1 = (0, 1),

Bu2 : s1, s2 qu2 = (1, 0),

�s1 : u2u1,

�s2 : u2u2.

The set of all matchingsM = {∅, µ, µ̂}, where ∅ is the empty matching,

µ =

 u1 u2 c ∅
∅ s1 ∅ s2

s1 ∅ ∅ s2

 }µ1

}µ2

and µ̂ =

 u1 u2 c ∅
∅ s2 ∅ s1

∅ s2 ∅ s1

 .

The matrix µ is read as µ(u1) = (∅, {s1}), µ(u2) = ({s1}, ∅), µ(s1) = u2u1, and µ(s2) = (∅, ∅).
All three matchings inM are period-2 stable. Let's look through µ. The �nal outcome of

u2 is the empty set, so it rather has s2 as its �nal outcome, but s2 would not be willing to

match with it in period-2 if he was not admitted in period-1. Anticipating this, u2 would

not extend o�er to s1 in the �rst period. Instead, it would admit s2. Observe that s1 �u2 s2,

this implies when a university is contemplating to admit some student, its own preference is

not the only determinant but also the student's preference.

We now draw connections between period-1 and period-2 matchings. In period-1, a

university and a student can form an agreement on a seat in the second period.14 An

agreement a(s, u) is a contract between s and u signed in period-1 such that university u

holds a seat for s in period-2. A student s can sign at most one agreement, and u can sign

at most q2
u agreements. But such an agreement is not credible if a university reneges when

14One example is �transfer agreement guarantee,� which is generally o�ered by state universities to transfer
students from in-state community colleges .
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there are better alternatives to the university in the second period, so a student may hang

back because of the possibility of being unmatched.

Example 2. Consider the following market. S = {s1, s2}, U = {u1, u2},
Bu1 : s1, s2 qu1 = (0, 1),

Bu2 : s1 qu2 = (1, 0),

�s1 : u2u1, cu1,

�s2 : cu1.

Suppose, in a matching µ, s2 signs an agreement with u1 and µ
1(u2) = {s1}. Then at the

beginning of period-2, s1 will bump s2 out of u1. Anticipating this, s2 would not sign the

agreement in the �rst period. This conservatism arises from complementarity. In example

2, when s2 goes to c in the �rst period, going to u1 in the second period is a complement

to him because conditional preferences of a student are history dependent. Indeed, going to

u1 in the second period is a perfect complement to s2 in this case since there is no other

cu plan that is deemed to be acceptable to him. Moreover, since a university would lose a

seat whenever a student transfers, it would rather admit someone who would not transfer,

as shown in example 1. This can also be explained by complementarity: in period-1, a

university considers the presences of a student in both periods as perfect complements.

We say an agreement a(s, u) is credible if s �u ∅ and the ranking of s in Bu, ru(s), is

less than or equal to q2
u. It is easy to see a university has no incentive to deviate from any

credible agreement. We say an agreement a(s, u) is binding under µ1 if it is credible and

u �µ1s u′ for all u′ 6= u ; let k2
u be the remaining quota for transfer students in u if some

positive number of binding agreements have been signed. We denote the set of students who

sign a binding agreement under µ1 by Sµ
1

b ⊆ S.

While period-2 concepts are relatively normative, period-1 concepts rely on the idea of

maximin. An agent will take an action if the worst potential outcome is better than the

current outcome regardless others' action, and thus this action must only rely on agents'

characteristics. In a dynamic market, it is necessary for an agent to anticipate the future

development of the market, and such anticipation must ground on the contemporaneous

market condition. If an agent is contemplating to match or to block the current matching,

he must conjecture all possible subsequent evolutions induced by his action. This type of

elaboration will be burdensome once the size of market gets large. The inability to track

market evolution might make a university hesitate to admit a student that might transfer

or might make a student hesitate to pursue a better plan. In this sense, the agents in our

model are risk averse. An agent in general cannot be insulated from prophetic reasoning in a

dynamic setting, so we want to have a stability concept that at least minimizes the prophetic

counterfactual reasoning on market evolution.
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Now we turn to a closer look at the conditional preferences of students. In a Nash equi-

librium of a �nitely repeated non-cooperative game, a stage game Nash equilibrium must be

played in the last period. Following the same intuition, when an agent decides to participate

in a period-1 matching, he does not anticipate any period-2 matching to arise, but a stable

one, which is from a subset of stable period-2 matchings given the contemporaneous period-

1 matching. We now construct this subset and then use it to form a student's conditional

preference.

We say a student is active (given µ1) in period-2 if (i) s /∈ Sµ
1

b ; (ii) µ1(s) 6= ∅ and

∃u ∈ U, u 6= µ1(s) such that u �µ1s µ1(s) for some u with q2
u > 0 and s �u ∅.15 We de�ne

the no active student condition for a university u: ∀s ∈ µ1(u), u �µ1s u′ for all u′ 6= u

with q2
u′ > 0 and s �u′ ∅. Let Sµ

1

a ⊆ S denote the group of active students given µ1. We

say a university is active in period-2 if k2
u > 0. Let Uµ1

a ⊆ U denote the group of active

universities given µ1. Let �µ1= (�µ
1

l )
l∈Sµ

1
a ∪Uµ

1
a

denote the preference pro�le that consists the

conditional preferences of all students in Sµ
1

a and the preferences of all universities in Uµ1

a .

Then Aµ
1 ≡ (Sµ

1

a , U
µ1

a ,�µ1) is actually a college admissions problem. Let mµ1 be a stable

outcome of this problem, and let Mµ1 be the set of stable outcomes. It is well-known that

the set of stable outcome is nonempty.

Returning to period-2 matching. The set of students are now being partitioned into two

groups, Sµ
1

a and S \ Sµ1a , where S \ Sµ1a is the group of inactive students (given µ1). Let

Sµ
1

inactive ≡ S \ Sµ1a ; note that Sµ
1

b ⊆ Sµ
1

inactive. If an active student is not matched with a

university at a stable matching of Aµ
1
, then in period-2, he either continues to match with

his old university or be unmatched if he is matched with the community college without

signing a credible agreement. Formally, ∀s ∈ Sµ1a ,

1. if mµ1(s) 6= ∅ then µ2(s) = mµ1(s);

2. if mµ1(s) = ∅ and µ1(s) 6= c, then µ2(s) = µ1(s);

3. if mµ1(s) = ∅ and µ1(s) = c, then µ2(s) = ∅.

Also, if s ∈ Sµ
1

b , then µ2(s) = u, where u is the university that signs a binding agreement

with s. Lastly, if s ∈ Sµ
1

inactive\S
µ1

b , then µ2(s) = µ1(s). These �ve cases fully specify µ2(s) for

all students given any µ1. Note that a student who was able to sign a credible agreement will

not be unmatched in Aµ
1
since he can at least match with the university that signs a credible

agreement with him, i.e., he is in case 1. Recall that, for a university, if a student transfers,

then the period-1 seat vanishes in the second period. Let Sm
µ1

u be the set of students who are

active in u and are able to matched with some university at a stable matching of Aµ
1
, that

15If µ1(s) = c, (ii) is trivially satis�ed.
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is, ∀s ∈ Smµ
1

u , s ∈ µ1(u) and mµ1(s) 6= ∅. Let µ1
mµ1

(u) = µ1(u) \ Smµ
1

u be the set of students

that are either not active or active but are not matched with some university at a stable

matching of Aµ
1
. For each university u, µ2(u) = µ1

mµ1
(u)∪mµ1(u)∪ Sµ

1

b (u), where Sµ
1

b (u) is

the set of students that sign a binding agreement with u under µ1. We say µ̃2
µ1 ∈ M2 is an

achievable period-2 stable matching given the �rst period matching µ1 if ∀l ∈ S ∪U , µ2(l)

is constructed as above. Fixing any µ1, we will have Aµ
1
and thus a set of stable outcomes

Mµ1 . Then we can construct a µ̃2
µ1 for each mµ1 ∈ Mµ1 to obtain a set of stable period-2

matchings give µ1; denote itM2
µ1
⊆M2.

Since Aµ
1
is fully characterized by µ1, a student can deduceM2

µ1 by following the rules

above. In another word, he knows the set of stable period-2 matchings given µ1.

A period-1 matching µ1 is period-1 individually rational if for each student s ∈ S,
(µ1(s), µ̃2

µ1(s)) �s ∅, and if for each university u ∈ U , ∀s ∈ µ1(u), s �u ∅ and u �µ1s u′

for all u′ 6= u with q2
u′ > 0 and s �u′ ∅.16 In word, µ1 is period-1 individually rational if

no student is matched with some unacceptable plan under any achievable period-2 stable

matching µ̃2
µ1 , and no university is matched with someone either unacceptable or who will

become an active student after matched with u under µ1. By matching with an inactive

student, a university can pledge itself this seat will not vanish at any matching. A period-1

matching µ1 is period-1 blocked if there exists student s and university u such that (i)

(c, u) �s (µ1(s), µ̃2
µ1(s)) and 0 < ru(s) ≤ q2

u; or (ii) (u, u) �s (µ1(s), µ̃2
µ1(s)) and s �u σ for

some σ ∈ µ1(u). In (i), the matching is blocked by a credible agreement a(s, u); because of

period-1 individual rationality, it is infeasible for a student s to block with u with a credible

agreement to achieve some plan (u′, u) with u′ 6= u, and the only feasible path is (c, u). Note

that although a credible agreement a(s, u) can period-1 block µ1, s is not in µ1(u). In (ii),

(u, u) is the worst plan s can pledge himself at any matching if he block µ1 with u. Note

that a speci�c µ2 can be characterized by a bunch of agreements (not necessarily credible)

given the current µ1.

A matching µ is dynamically individually rational if it is period-t individually ra-

tional for all t, and it is dynamically stable if it is dynamically individually rational and

not period-t blocked by any pair. At a dynamically stable matching: (i) no student would

be forced to match with some unacceptable plan in the second period because of period-1

individual rationality; (ii) there is no active student in universities, a student either transfers

to a university from the community college or stay in the same university in both periods.

In example 1, µ is period-1 individually irrational for u2, ∅ is period-1 blocked by (u2, s2),

16It is also well-known that under strict preferences, the set of students and positions �lled in a college
admissions problem is the same at every stable matching by Theorem 9 of Roth (1984). So by checking
whether a student is matched in one stable matching of Aµ

1

, we can assert whether his period-1 individual
rationality is satis�ed.
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and µ̂ is the unique dynamically stable matching. In example 2, µ is period-1 blocked by

the credible agreement a(s1, u1).

When q1
u = 0 for all u, the model degenerates to the college admissions problem, and even

the solution concept, dynamic stability, would coincide with the benchmark stability. To see

that, note that when q1
u = 0 for all u, only plans of the form cu will be meaningful. Also, if

(s, u) period-1 block a matching via a credible agreement here, then (s, u) can also period-

2 block the matching. Without loss of generality, we exclude the possibility of agreement

here, so every student that has acceptable cu plan will be an active student. We denote

the period-1 matching with only community college on the university side by µc. Given

µc, we construct a period-2 matching µ2 by following the rules above. Let mµc be a stable

outcome of Aµ
c ≡ (Sµ

c

a , U
µc

a ,�µ
c
). For a student s ∈ Sµca , if mµc(s) 6= ∅ then µ2(s) = mµc(s)

and µ(s) = (c,mµc(s)); if mµc(s) = ∅ then µ(s) = (∅, ∅) because of period-1 individual

rationality. For a university u ∈ Uµc

a , µ2(u) = µ1
mµ1

(u)∪mµ1(u)∪Sµ
1

b (u) = mµ1(u) = mµc(u).

By construction, µ = (µc,mµc) is always period-1 individually rational and never period-1

blocked; µ2 satis�es period-2 individual rationality if and only if mµc is individually rational,

and µ2 is period-2 blocked if and only if mµc is blocked. Hence, µ is dynamically stable if

and only if mµc is stable.

3 Properties of Dynamic Stability

3.1 Existence of Dynamically Stable Matchings

To show the existence of dynamically stable matching, we de�ne the student-proposing

plan and agreement deferred acceptance algorithm (S-PA-DA):

1. Begin with the empty matching, namely, a matching µ where µ(l) = (∅, ∅) for all l.

2. Step 1: (a) For each student s, if uu is his most preferred plan, he proposes a two-

period plan to u; if cu is his most preferred plan, he proposes an agreement to u; if uu′

with u 6= u′ is his most preferred plan, he goes to the next most preferred plan. (b)

Subject to q1
u, each university u keeps the most preferred students who are proposing

plan if they are acceptable and never become active. Also, subject to q2
u, it keeps most

preferred students who are proposing agreement if they are acceptable. Then it rejects

all other students.

3. Step n ≥ 2: (a) For each student s who was rejected in Step (n-1), if uu is his next

most preferred plan, he proposes a two-period plan to u; if cu is his next most preferred

plan, he proposes an agreement to u; if uu′ with u 6= u′ is his next most preferred plan,

13



he goes to the next next most preferred plan. (b) Subject to q1
u, each university u keeps

the most preferred students who are proposing plan if they are acceptable and never

become active. Also, subject to q2
u, it keeps most preferred students who are proposing

agreement if they are acceptable. Then it rejects all other students.

4. Termination: Stops when no more application is made. Students who matched with a

university via an agreement go to the community college in the �rst period.

This algorithm terminates in �nite steps. We call the S-PA-DA matching µS.

Lemma 1: µS is dynamically stable.

Theorem 1: There exists a dynamically stable matching.

Theorem 1 is a direct result of Lemma 1. Following Roth and Sotomayor (1989), we

construct the related marriage market for (S, U,�) to further study the properties of dynamic

stability.

3.2 The Related Marriage Market

Consider a college admission problem with transfer (S, U,�) with student S = {s1, s2, ..., s|S|}
and university U = {u1, u2, ..., u|U |} having quotas (q1

u1
, q2
u1

), (q1
u2
, q2
u2

), ..., (q1
u|U|

, q2
u|U|

). The

preferences of students are given by �s1 ,�s2 , ...,�s|S| , and the preferences of universities on

all possible subsets of students are given by �u1 ,�u2 , ...,�u|U| . Also, we have the extracted

rankings over individual students, Bu1 ,Bu2 , ...,Bu|U| .

In the related marriage market of benchmark model, a university is divided into qu pieces.

Here, we �rst divide a university into two: one that does not admit transfer student and one

that only admit transfer student; and then divide them into q1
u and q2

u pieces, respectively.

We now replace u by q1
u period-1 positions of u and q2

u period-2 positions of u; denote them

u1
j,1, u

1
j,2, ...u

1
j,q1j

and u2
j,1, u

2
j,2, ...u

2
j,q2j

, respectively, where the subscripts j ∈ {1, 2, ..., |U |}. Let
β ≤ q1

j and γ ≤ q2
j . From now on we will keep calling our anonymous university u in the two-

period market and call it uj in the related marriage market; when we refer to an anonymous

period-1 or period-2 position of some university, we will call it p. Denote the set of period-1

positions by U1 , the set of period-2 positions by U2, and the set of all positions by Ū .17

Now each position has a quota of 1, so we do not need to consider preferences over sets of

students but only extracted rankings over individual students. Each student's preference is

modi�ed by replacing u by u1
j,1, u

1
j,2, ...u

1
j,q1j

or u2
j,1, u

2
j,2, ...u

2
j,q2j

depending on which period it

appears in a plan. However, when we come to modify a university's preference, we need to

consider separately for di�erent periods. For a period-2 position, u2
j,γ, it has �preference� Bu,

17We use bar to indicate related marriage market.
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but in a marriage market, we need both sides of the market to have a symmetric preference

form. This means each position should have a preference over plans, so for each element s

in the ranking Bu, we extend it to us, where u in a position's plan represents self-matching.

Denote this new �preference over plans� by �u2j . For a period-1 position, u1
j,β, we extend

each element s in Bu to ss, and we denote this new �preference over plans� by �u1j . Let

�̄ = (�l)l∈S∪Ū be the preference pro�le of all students and university positions.

Remark 1: In Kadam and Kotowski (2016), �u exhibits strong inertia if for s, s′, s 6= s′,

then ss �u ss′ and ss � s′s. �u1j satis�es this strong inertia requirement since there are only

ss plans in it. 18

The related marriage market of (S, U,�) is described by (S, Ū , �̄). Let M̄ be the set

of matchings in (S, Ū , �̄). Let µ̄ ∈ M̄ be the matching that matches student in µt(u) to

the ordered positions of a university according to ru(s). That is, if s is u's most preferred

student in µ1(u), then µ̄1(s) = u1
j,1; if s is u's second most preferred student in µ2(u), then

µ̄2(s) = u2
j,2 and so on. We call µ̄ the corresponding matching of µ; by de�ning µ̄ as above,

there is a natural bijection betweenM and M̄.

A matching µ̄ is individually rational if (i) ∀s ∈ S, µ̄(s) �s ∅; (ii) ∀u1
j,β ∈ Ū ,

µ̄(u1
j,β) �u1j ∅ and if µ̄(u1

j,β) = ss, u �us u′ for all u′ 6= u with q2
u′ > 0 and s �u′ ∅; (iii)

∀u2
j,γ ∈ Ū , µ̄(u2

j,γ) �u2j ∅. A pair (s, u1
j,β) or (s, u2

j,γ) can block the matching µ̄ if

1. u1
j,βu

1
j,β �s µ̄(s) and ss �u1j µ̄(u1

j,β); or

2. cu2
j,γ �s µ̄1(s) and u2

j,γs �u2j µ̄(u2
j,γ).

A matching is stable if it is individually rational and cannot be blocked by any pair.

Lemma 2: A matching µ is dynamically stable if and only if its corresponding matching µ̄

is stable.

We de�ne the university-proposing plan and agreement deferred acceptance

algorithm (U-PA-DA) in the related marriage market:

1. Begin with the empty matching, namely, a matching µ̄ where µ̄(l) = ∅ for all l.

2. Step 1: Each position (of universities) proposes to its most preferred student according

to its individual rationality. Each student keeps his most preferred plan and rejects all

others.

18Requirement 5 of period-2 implies ss plans exist. Requirement 6 and 7 of a period-2 matching veto us
plans and ss′ plans, respectively. su plans are vetoed since a university u only cares about its �nal outcome,
µ2(u).
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3. Step n ≥ 2: (a) Each position that was rejected in Step (n-1) then proposes to its next

most preferred student according to its individual rationality. Each student keeps his

most preferred plan and rejects all others.

4. Termination: Stops when no more proposal is made.

We denote this matching by µ̄Ū .

Lemma 3: µ̄Ū is stable.

3.3 Positive Results of the Benchmark Model

As shown in Roth (1985), since the marriage problem is a special case of the college ad-

missions problem, many positive results for the marriage problems do not generalize to the

college admissions problem. We showed at the end of section 2, if q1
u = 0 for all u, the

two-period model degenerates to the college admissions problem, so it inherits all negative

results of the college admissions problem. In this section, we try to extend the relevant

positive results in Gale and Shapley (1962); Roth (1984, 1985, 1986); Roth and Sotomayor

(1989, 1992). Note that some of these results are built on other results from the marriage

market and our related marriage market di�ers from the marriage market because of the

two-period nature. Therefore, we need to prove all relevant results again in the two-period

context. Surprisingly, when a positive result continue to hold in the two-period context, its

proof only requires slight modi�cation from the original. We continue to assume preferences

are strict, and univerisities' preferences satisfy responsiveness.

3.3.1 Positive Results That Continue to Hold

A stable matching is student-optimal if each student prefers his assignment in that match-

ing to his assignment in all other stable matchings. A position-optimal stable matching

and a university-optimal stable matching are de�ned analogously. A student and a po-

sition (or a university) are said to be achievable to each other if they are matched in some

(dynamically) stable matching. It is well-known that, in the benchmark model, optimal

stable matchings exist if preferences are strict. This will continue to hold in the dynamic

model.

Theorem 2: (i) µS is student-optimal; (ii) µ̄Ū is position-optimal.

Let µ >S µ
′ denote that all students like µ at least as well as µ′ with at least one student

strictly prefer, that is, µ(s) �s µ′(s) for all s, and µ(s) �s µ′(s) for at least one s. >Ū and

>U are de�ned analogously for positions and universities.

Theorem 3: If µ̄ and µ̄′ are stable matchings, then µ̄ >S µ̄
′ if and only if µ̄′ >Ū µ̄.
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So any stable matching that is better for all student is worse for all positions, and vice

versa. Following from Theorem 2 and Theorem 3, we have the following corollary.

Corollary 1: (i) µU is the worst dynamically stable matching for students; (ii)µ̄S is the

worst stable matching for positions.

Theorem 4: µU is university-optimal, and µS is the worst dynamically stable matching for

universities.

Though Theorem 4 is closely related to Theorem 2 and 3, it requires some extra arguments

because >Ū and >U are two di�erent partial orders.

Lemma 4 (Decomposition Lemma): Let µ̄ and µ̄′ be stable matching in (S, Ū , �̄). Let

Sµ̄ (Ū µ̄) be the sets of students (positions) who prefer µ̄ to µ̄′, and let Sµ̄
′
(Ū µ̄′) be those

who prefer µ̄′. Then µ̄ and µ̄′ map Sµ̄ onto Ū µ̄′and Sµ̄
′
onto Ū µ̄.

If µ and µ′ are matchings we de�ne

λ(u) = µ ∨U µ′ =

µ(u) if µ(u) �u µ′(u)

µ′(u) otherwise
, λ(s) = µ ∧S µ′ =

µ(s) if µ′(s) �s µ(s)

µ(s) otherwise
;

similarly,

v(u) = µ ∧U µ′ =

µ(u) if µ′(u) �u µ(u)

µ′(u) otherwise
, v(s) = µ ∨S µ′ =

µ(s) if µ(s) �s µ′(s)

µ(s) otherwise
.

Again, we write µ(u) �u µ′(u) instead of µ2(u) �u µ′2(u) to keep consistency. If λ is a

matching, then λ is the least upper bound for {µ, µ′} under >U and the greatest lower

bound for {µ, µ′} under >S. In the related marriage market, λ̄(p) = µ̄∨Ū µ̄′, λ̄(s) = µ̄∧S µ̄′,
v̄(p) = µ̄∧Ū µ̄′, and v̄(s) = µ̄∨S µ̄′ are de�ned analogously. If λ̄ is a matching, then λ̄ will be

the least upper bound for {µ̄, µ̄′} under >Ū and the greatest lower bound for {µ̄, µ̄′} under
>S.

Theorem 5 (Lattice Theorem): If µ̄ and µ̄′ are stable matchings, then λ̄ and v̄ are stable

matchings.

Corollary 2 below follows from Theorem 3 together with Theorem 5.

Corollary 2: The set of stable matchings forms a lattice under >Ū and >S, and the lattice

under >Ū is the the dual to the lattice under >S.

Theorem 6 (Weak Pareto Optimality for the Students): There is no dynamically

individually rational matching µ (dynamically stable or not) such that µ �s µS for all s ∈ S.
This result will also hold for µ̄Ū in the related marriage market, but the counterpart for

µU has been shown false in Roth (1985).
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Lemma 5 (Blocking Lemma): Let µ be any dynamically individually rational matching

under � and let S ′ be all students who prefer µ to µS. If S ′ is nonempty, there is a pair

(s, p) that blocks µ such that s ∈ S \ S ′ and p ∈ µ(S ′).

Again, this result will hold for µ̄Ū in the related marriage market. But unlike Theorem

6, this result also holds for µU . When some university prefers another individual rational

matching to the university-optimal matching µU , by responsiveness, it is equivalent to say

some of its positions prefer another individual rational matching to the position-optimal

matching µŪ in the related marriage market.

Theorem 7: The set of students and positions that are matched is the same for all stable

matchings.

The following two results are the extended versions of their original counterpart.

Lemma 6: Let µ and µ′ be dynamically stable matchings in (S, U,�) and let µ̄ and µ̄′ be

their corresponding stable matching in (S, Ū , �̄), respectively. If µ1(u) 6= µ′1(u) for some u

such that µ̄(u1
j,i) �u1j µ̄

′(u1
j,i) for some u1

j,i, then µ̄(u1
j,β) �u1j µ̄

′(u1
j,β) for all positions u1

j,β of u.

If µ2(u) \ µ1(u) 6= µ′(u) \ µ′1(u) for some u such that µ̄(u2
j,i) �u2j µ̄

′(u2
j,i) for some u2

j,i, then

µ̄(u2
j,γ) �u1j µ̄

′(u2
j,γ) for all positions u

2
j,γ of u.

Theorem 8 (Rural Hospitals Theorem): Any university that does not �ll its quota in

some period at some dynamically stable matching will match with the same set of students

at every dynamically stable matching for that period.

3.3.2 Positive Results That Fail to Hold

A mechanism ϕ is a function that maps a preference pro�le to a matching. ϕ(�) denotes the

matching outcome of ϕ given the preference pro�le �, and ϕl(�) denotes the outcomes for

l ∈ S ∪ U . A mechanism ϕ is said to be stable if it yields a (dynamically) stable matching

for each preference pro�le. A mechanism ϕ is said to be strategy-proof if there does not

exist a preference pro�le �, an agent l ∈ S ∪ U with �̂l such that ϕl(�̂l,�−l) �l ϕ(�). A

mechanism ϕ is said to be strategy-proof for students if there does not exist a preference

pro�le �, an student s ∈ S with �̂s such that ϕs(�̂s,�−s) �s ϕ(�). We de�ne the S-PA-

DA mechanism to be a mechanism that use S-PA-DA algorithm to produces a matching for

each input. A well-known result in Roth (1982) says there does not exist a stable matching

mechanism that is strategy-proof. Roth (1985) shows the following Theorem.

Theorem 1*: In a college admission problem, a stable mechanism that yields the student-

optimal stable matching is strategy-proof for students.

This result does not hold in the two-period context.

Proposition 3: There does not exist a stable matching mechanism that is strategy-proof

for students.
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Proof: In example 1, the dominant strategy for s1 is to state �̂s1 : u2u2 instead of his true

preference �s1 : u2u1. The only dynamically stable matching given (�̂s1 ,�−s1) matches s1 to

u2u2, but s1 can then transfer to u1. �
The main results of Roth and Sotomayor (1989) rely on Lemma 6 (its single period

version); nevertheless, in Roth and Sotomayor (1992), they indicate that some further results

of the college admission model also depend critically on Lemma 6. Although Lemma 6 still

holds, it is not strong enough to support those results in the two-period environment. We

now review those theorems and provide counterexamples in the two-period context.

Theorem 2*: In a college admissions problem, if µ and µ′ are two stable matchings,

and u is a university with qu = k such that µ(u) 6= µ′(u) and µ(u) = {s1, s2, ..., sk} and
µ′(u) = {s′1, s′2, ..., s′k}, where the students are listed in order of Bu, that is, ∀i, si �u si+1

and s′i � s′i+1. If i is any index such that si �u s′i, then sγ �u s′γ for all γ ∈ {1, 2, ..., k} and
µ(u) �u µ′(u).

Theorem 2* is an alternative statement for Theorem 3 of Roth and Sotomayor (1989).19

This result is for the college admissions problem while Lemma 6 is for its related marriage

market. They use the following example to illustrate the result: consider a university u with

quota 2 and preference over individual students Bu: s1, s2, s3, s4. Let µ(u) = {s1, s4} and
µ′(u) = {s2, s3}. Then they can not both be stable because s1 �u s2 but s4 �u s3 and

s3 �u s4 but s2 �u s1.

Proposition 4: The result of Theorem 2* does not hold in the dynamic college admissions

problem.

Proof: We prove it by an example.

Example 3. Consider the following market. S = {s1, s2, s3, s4}, U = {u1, u2},
Bu1 : s1, s2, s3, s4 qu1 = (1, 1),

Bu2 : s4, s3, s2, s1 qu2 = (1, 1),

�s1 : u2u2, u1u1,

�s2 : u1u1, u2u2,

�s3 : cu2, cu1,

�s4 : cu1, cu2.

19We take this alternative statement from Roth and Sotomayor (1992). In Roth and Sotomayor (1989),
preferences over individual students are strict, but unlike our setting, preferences over groups of students are
not assumed to be strict. The original theorem states that if universities and students have strict preference
over individuals, then universities have strict preferences over those groups of students that they may be
assigned at stable matchings. Then this implies if µ and µ′ are two di�erent stable matchings, then there
does not exist responsive preference that is indi�erent between µ(u) and µ′(u).
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In this market,

µ =

 u1 u2 c ∅
s1 s2 s3, s4 ∅

s1, s4 s2, s3 ∅ ∅

 andµ′ =

 u1 u2 c ∅
s2 s1 s3, s4 ∅

s2, s3 s1, s4 ∅ ∅

 ,

so both µ2(u1) = {s1, s4} and µ′2(u1) = {s2, s3} are now stable outcome for u1. However,

s1 �u1 s2 but s4 � s3 and s3 �u1 s4 but s2 �u s1, which contradicts to the conclusion of

Theorem 2*. �
Theorem 3*: In a college admissions problem, if µ and µ′ are both stable matchings and

µ(u) �u µ′(u) for some u, then s �u s′ for all s ∈ µ(u) and s′ ∈ µ′(u) \ µ(u).

In words, u prefers every student in µ(u) to every student in µ′(u) but not in µ(u). This

is Theorem 4 of Roth and Sotomayor (1989). They use the following example to illustrate

the result: consider a university u with quota 2 and preference Bu: s1, s2, s3, s4. Let µ(u) =

{s1, s3} and µ′(u) = {s2, s4}. Note than we cannot use Theorem 2* to determine whether

they are both stable or not. Obviously, µ(u) �u µ′(u) by responsiveness and transitivity. By

Theorem 3*, they can not both be stable since s3 �u s2. Corollary 1* follows immediately

from Theorem 3* and responsiveness.

Corollary 1*: In a college admissions problem, if �u and �′u are responsive to Bu, then

for every pair of stable matchings µ and µ′, µ(u) �u µ′(u) if and only if µ(u) �′u µ′(u).

Proposition 5: The results of Theorem 3* and Corollary 1* do not hold in the dynamic

college admissions problem.

Proof: Consider Example 3 again. In that market,

µS =

 u1 u2 c ∅
s2 s1 s3,s4 ∅

s2, s4 s1, s3 ∅ ∅

 andµU =

 u1 u2 c ∅
s1 s2 s3,s4 ∅

s1, s3 s2, s4 ∅ ∅

 ,

so both µ2
S(u1) = {s2, s4} and µ2

U(u1) = {s1, s3} are now stable outcome for u1. However,

s3 �u1 s2, which contradicts to the conclusion of Theorem 3*.

Now consider

�u1 : ..., {s1, s2}, {s1, s3}, {s1, s4}, {s2, s3}, {s2, s4}, {s3, s4}, s1, s2, s3,s4

and

�′u1 : ..., {s1, s2}, {s1, s3}, {s2, s3}, {s1, s4}, {s2, s4}, {s3, s4}, s1, s2, s3, s4.

Note that both preferences are responsive to their extracted ranking Bu1 , so both of them
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can be u1's preference, which contradicts to the conclusion of Corollary 1*. �
The following three theorems and their corollaries can be found in Roth and Sotomayor

(1992).

Theorem 4*: In a college admissions problem, if µ and µ′ are stable matchings, then

µ >S µ
′ if and only if µ′ >U µ.

Theorem 4* is a parallel result to Theorem 3 in the related marriage market.

Proposition 6: The result of Theorem 4* does not hold in the dynamic college admissions

problem.

Proof: Consider µ and µ′ in Example 3 again with

�u1 : ..., {s1, s2}, {s1, s3}, {s1, s4}, {s2, s3}, {s2, s4}, {s3, s4}, s1, s2, s3,s4

and

�u2 : ..., {s3, s4}, {s2, s4}, {s2, s3}, {s1, s4}, {s1, s3}, {s1, s2}, s4, s3, s2, s1.

Now µ >U µ
′ but µ′ ≯S µ since s3 and s4 prefer µ over µ′, which contradicts to the conclusion

of Theorem 4*. �
Theorem 5*: In a college admissions problem, if µ and µ′ are stable matchings, then λ and

v are stable matchings.

Corollary 2*: In a college admissions problem, the set of stable matchings forms a lattice

under >U and >S, and the lattice under >U is the the dual to the lattice under >S.

Theorem 5* is parallel to Theorem 3 in the related marriage market. Corollary 2* follows

from Theorem 4* and Theorem 5*.

Proposition 7: The results of Theorem 5* and Corollary 2* do not hold in the dynamic

college admissions problem.

Proof: Consider µ and µ′ in Example 3 again with

�u1 : ..., {s1, s2}, {s1, s3}, {s2, s3}, {s1, s4}, {s2, s4}, {s3, s4}, s1, s2, s3, s4.

Notice that λ2(u1) = µ′2(u1) = {s2, s3} and λ(s1) = µ(s1) = u1u1, so λ is not a matching.

Similarly, v2(u1) = µ2(u1) = {s1, s4} and v(s1) = µ′(s1) = u2u2, so v is not a matching,

which contradicts to the conclusions of Theorem 5*.

So Corollary 2* does not hold too. �
Despite the failure of Corollary 2*, Corollary 2 together with Lemma 2 ensure the set

of stable matchings forms a lattice under >S in the two-period market. In Example 3,
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µU = µ ∧S µ′ and µS = µ ∨S µ′, but if

�u1 : ..., {s1, s2}, {s1, s3}, {s2, s3}, {s1, s4}, {s2, s4}, {s3, s4}, s1, s2, s3, s4

as in the proof of Proposition 7, and u2 to have the preference in the proof of Proposition 6

�u2 : ..., {s3, s4}, {s2, s4}, {s2, s3}, {s1, s4}, {s1, s3}, {s1, s2}, s4, s3, s2, s1

, then µ ∨U µ′ (6= µU) is not a matching since both of them want {s2, s3}. Of course, if one
of them prefers {s1, s4} to {s2, s3}, then the set of dynamically stable matchings can be a

lattice under >U , too. Here, since >U and >Ū are di�erent partial orders, when a university

points to a preferable stable matching, its period-1 positions point to one stable matching,

while its period-2 positions point to another stable matching. This does not happen in the

college admissions problem since >Ū always agrees with >U when there is only one period.

Theorem 6*: In a college admissions problem, if µ and µ′ are stable matchings and u =

µ(s) or u = µ′(s), then if µ(u) �u µ′(u) then µ′(s) �s µ(s) (and if µ′(s) �s µ(s) then

µ(u) �u µ′(u)).

Theorem 6* is an analogue of Decomposition Lemma (Lemma 4).

Proposition 8: The result of Theorem 6* does not hold in the dynamic college admissions

problem.

Proof: Consider µ and µ' in Example 3 again with

�u1 : ..., {s1, s2}, {s1, s3}, {s2, s3}, {s1, s4}, {s2, s4}, {s3, s4}, s1, s2, s3, s4.

{s2, s3} = µ′2(u1) �u1 µ2(u1) = {s1, s4} and µ′(s2) = u1u1 �s2 µ(s2) = u2u2, which contra-

dicts to the conclusion of Theorem 6*. �
Even the two-period model reduces to the benchmark model when q1

u = 0 for all u,

Lemma 6 delivers less power in the more general case. In particular, in the single period

market, Lemma 6 enables us to rank the students in a university's outcome from 1 to qu,

but in the two-period market, we can no longer do it. Theorem 2* to 6* concern two stable

matchings. When we consider two dynamically stable outcomes for a university, µ(u) and

µ′(u), one outcome can be from a matching consists of a superior period-1 matching and

an inferior period-2 matching, while another outcome comes from a matching consists of an

inferior period-1 matching and a superior period-2 matching, that is, µ1(u) �u µ′1(u) and

µ′2(u) \ µ′1(u) �u µ2(u) \ µ1(u).

q1
u = 0 for all u is a strong condition; indeed, Theorem 2* to 6* and their corollaries will

hold in the two-period model under a slightly weaker condition: when q1
u = 0 or q2

u = 0 for
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all u. Under such condition, the power of Lemma 6 is restored. The reader can easily verify

them by modifying their original proofs together with Lemma 6.

Now we consider two other solution concepts for the benchmark model, the core and group

stability. A matching µ is dominated by another matching µ′ via a coalition B ⊆ S ∪ U if

(i) ∀l ∈ B, i ∈ µ′(l) implies i ∈ B, and (ii) ∀l ∈ B, µ′(l) �l µ(l). The set of matchings that

are not dominated by any other matching is the core. A matching µ is Pareto dominated

by µ′ if (i) ∀l ∈ S ∪ U , µ′(l) �l µ(l), and (ii)∃l ∈ S ∪ U such that µ′(l) �l µ(l). A matching

µ is Pareto e�cient if it is not Pareto dominated by any other matching, and we call the

set of matchings that are not Pareto dominated by any other matching the Pareto set. A

matching µ is weakly dominated by another matching µ′ via a coalition B ⊆ S ∪ U if

(i) ∀l ∈ B, i ∈ µ′(l) implies i ∈ B, (ii) ∀l ∈ B, µ′(l) �l µ(l), and (iii) ∃l ∈ B such that

µ′(l) �l µ(l). The set of matchings that are not weakly dominated by any other matching is

the weak core. When a matching is not weakly dominated by another matching, it is not

Pareto dominated by any other matching and not dominated by any other matching, that

is, the weak core is inside the core and also inside the Pareto set; yet, there is no logical

relationship between the core and Pareto set.

In a basic one-to-one matching (marriage) problem, the set of stable matchings is equiv-

alent to the core, and under strict preferences, the core is equivalent to the weak core, so in

this case, the matchings in the core are Pareto e�cient.20 In a basic many-to-one matching

(college admissions) problem, the set of stable matchings is equivalent to the weak core, while

the core might contain some unstable outcomes.21 That implies the set of stable matchings

is still inside the Pareto set, but the core might not. The following result can be found in

Proposition 5.36 of Roth and Sotomayor (1992).

Proposition 1*: In a college admissions problem, a matching is in the weak core if and

only if it is stable.

Roth and Sotomayor (1989) de�nes another notion for multilateral blocking, group sta-

bility, that does not require condition (i) in the de�nition of core or weak core, which requires

the coalition members only match with other members within the coalition after a deviation.

A group deviation from µ is a group B ⊆ S ∪ U and a matching µ′ such that (i) ∀s ∈ B,
µ′(s) ∈ B, (ii) ∀u ∈ B, σ ∈ µ′(u) =⇒ σ ∈ B ∪ µ(u), and (iii) ∀l ∈ B, µ′(l) �l µ(l).22 A

matching µ is group stable if it is immune to any group deviation from µ.

Proposition 2*: In a college admissions problem, a matching is group stable if and only if

it is stable.

20The �rst equivalence can be found in Theorem 3.3 of Roth and Sotomayor (1992).
21Roth and Sotomayor (1992) provide an example for unstable outcomes in the core.
22Konishi and Ünver (2006) de�nes a more general de�nition for many-to-many matching problems.
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This result is Proposition 1 of Roth and Sotomayor (1989); it says in a college admissions

problem, the set of group stable matchings coincides with the set of stable matchings. There

is no logical relationship between the weak core and the set of group stable matchings. But

in a college admissions problem, they coincide with each other via proposition 1* and 2*.

In the literature of dynamic matching, the core equivalent is sometimes called the �dy-

namic core� (Kadam and Kotowski (2016)) or the �recursive core� (Becker and Chakrabarti

(1995); Damiano and Lam (2005)). A matching µ is period-1 dominated by another

matching µ′ = (µ1
B, µ

2
B) via a coalition B ⊆ S ∪ U if (i) ∀l ∈ B, i ∈ µtB(l) implies i ∈ B

and l ∈ µtB(i), and (ii)∀l ∈ B, µ′(l) �l µ(l). A matching µ is period-2 dominated by

another matching µ′ = (µ1, µ2
B) via a coalition B ⊆ S ∪ U if (i) ∀s ∈ B, µ2

B(s) = u implies

u ∈ B and s ∈ µ2
B(u) \ µ1(u), (ii) ∀u ∈ B, s ∈ µ2

B(u) \ µ1(u) implies s ∈ B and µ2
B(s) = u,

and (iii) ∀l ∈ B, µ′(l) �l µ(l). The set of matchings that are not period-t dominated by

any other matching is the dynamic core. The dynamic core, unlike the core, speci�es that

a student might go to di�erent universities in di�erent periods. If a coalition is formed in

period-1, a student can go to di�erent universities within the coalition in di�erent periods.23

If a coalition is formed in period-2, a student can go to a university in the coalition that

might be di�erent from his period-1 school. A coalition forms in period-2 can not alter the

period-1 matching.

Recall that in a many-to-one matching problem, the core might contain some unstable

outcomes, and this implies the dynamic core might contain some unstable outcomes too since

the dynamic core is equivalent to the core when q1
u = 0 for all u.24

Now we de�ne the weak core equivalent. A matching µ is weakly period-1 dominated

by another matching µ′ = (µ1
B, µ

2
B) via a coalition B ⊆ S ∪U if (i) ∀l ∈ B, i ∈ µtB(l) implies

i ∈ B and l ∈ µtB(i), (ii) ∀l ∈ B, µ′(l) �l µ(l), and (iii) ∃l ∈ B such that µ′(l) �l µ(l).

A matching µ is weakly period-2 dominated by another matching µ′ = (µ1, µ2
B) via a

coalition B ⊆ S ∪ U if (i) ∀s ∈ B, µ2
B(s) = u implies u ∈ B and s ∈ µ2

B(u) \ µ1(u), (ii)

∀u ∈ B, s ∈ µ2
B(u) \ µ1(u) implies s ∈ B and µ2

B(s) = u, (iii) ∀l ∈ B, µ′(l) �l µ(l), and (iv)

∃l ∈ B such that µ′(l) �l µ(l). The set of matchings that are not weakly period-t dominated

by any other matching is the dynamic weak core. Note that µ2
B must be period-2 stable

since Proposition 1* holds for Aµ
1
B and Aµ

1
. It is also easy to see the dynamic weak core is

inside the Pareto set.

Proposition 9: The dynamic weak core might not coincide with the set of dynamically

stable matchings.

23He can go to c in the �rst period as well.
24In a dynamic marriage market, Kadam and Kotowski (2016) also show the dynamic core might not be

equivalent to the set of dynamically stable matchings.
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Proof: We prove it by an example.

Example 4. Consider the following market. S = {s1}, U = {u1, u2},
�u1 : s1 qu1 = (0, 1),

�u2 : s1 qu2 = (1, 0),

�s1 : u2u1.

The unique dynamically stable matching is the empty matching, and

µ =

 u1 u2 c ∅
∅ s1 ∅ ∅
s1 ∅ ∅ ∅


is the only matching in the dynamic weak core. The empty matching is weakly period-1

dominated by µ via the grand coalition B = S∪U with µ(s1) = u2u1 �s1 ∅, µ2(u1) = s1 �u ∅,
and µ2(u2) = ∅ �u2 ∅. �

Example 4 shows that there might be some dynamically individually irrational matching

in the dynamic weak core. Also, a dynamically stable matching might be Pareto dominated

by another matching. In another word, a dynamically stable matching is not necessarily

Pareto e�cient.

In a period-1 core deviation, the coalition members only match within the coalition, so

there is no uncertainty. But when a group is contemplating a group deviation in the �rst

period, the group needs to consider the outsiders who are dropped by its members. Those

dropped agents will trigger evolutions in both periods, and this will make it very demanding

to form a group deviation in the �rst period. A period-1 group deviation from µ is a

group B ⊆ S ∪ U and some matching µ̃ = (µ̃1
B, µ̃

2
µ̃1B

) such that (i) ∀s ∈ B, µ̃1
B(s) ∈ B, (ii)

∀u ∈ B, σ ∈ µ̃1
B(u) =⇒ σ ∈ B ∪ µ1(u), and (iii) ∀l ∈ B, µ̃(l) �l µ(l).

A student in a core deviation might match with c in the �rst period. In contrast, condition

(i) here actually says a student in B will match with some university in B in the �rst period.

The intuition is that if a student wants to sign a credible agreement with some u ∈ B, he
does not need to join the group; if a student wants to sign an incredible agreement with some

u ∈ B, his presence will not a�ect the evolution in the �rst period and since the de�nition

explicitly requires the period-2 matching must be period-2 stable, he is not guaranteed to

match with u, which will potentially violate condition (iii).

A period-2 group deviation from µ is a group B ⊆ S∪U and a matching µ′ = (µ1, µ2
B)

such that (i) ∀s ∈ B, µ2
B(s) ∈ B, (ii) ∀u ∈ B, σ ∈ µ2

B(u) =⇒ σ ∈ B ∪ µ2(u) \ µ1(u), and

(iii) ∀l ∈ B, µ′(l) �l µ(l). Again, note that µ2
B must be period-2 stable since Proposition 2*

holds for Aµ̃
1
B and Aµ

1
. A matching µ is dynamically group stable if it is immune to any
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period-t group deviation from µ.25

Proposition 10: The set of dynamically group stable matchings might not coincide with

the set of dynamically stable matchings.

Proof: We prove it by an example.

Example 5. S = {s1, s2}, U = {u1},
Bu1 : s1, s2 qu1 = (1, 1),

�s1 : u1u1, cu1,

�s2: u1u1.

It is easy to check that there is a unique dynamically stable matching

µ =

 u1 c ∅
s1 ∅ s2

s1 ∅ s2

 .

Yet, the unique dynamically group stable matching is

µ′ =

 u1 c ∅
s2 s1 ∅

s1, s2 ∅ ∅

 .

There is a period-1 group deviation from µ with B = {u1, s2} and µ′. Note that µ′2 is the

unique period-2 stable matching given µ′1, while µ′1 is not period-1 stable. �
Note that in example 4, the empty matching is in the set of dynamic group stable match-

ings since condition (iii) of period-1 group deviation is never satis�ed for u2 (∀µ ∈ M,

µ2(u2) = ∅), and in example 5, µ is in the dynamic weak core, so these shows there is no

logical relationship between the dynamic weak core and the set of dynamic group stable

matchings.

There are some similar results in di�erent contexts. In many-to-many matching problems,

the set of pairwise-stable matchings is not Pareto e�cient (and thus no in the weak core) and

no long equivalent to the set of group stable matchings.26 In a dynamic one-to-one matching

problem, Kadam and Kotowski (2016) show the dynamic core might not be equivalent to

the set of dynamically stable matchings.

25This is a di�erent concept to the dynamic group stability in Kurino (2009), which is de�ned in a dynamic
marriage market.

26These results can be found in Proposition 5.23 of Roth and Sotomayor (1992). In Example 2.6 of Blair
(1988), the �rst result is shown with substitutable preferences.
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3.4 Results That Have No Parallel in the Benchmark Model

The following two results try to recondition Theorem 1* and Proposition 1* that we vetoed

in the last section. It turns out if the no active student condition is not a concern, then they

will hold in the two-period model.

Theorem 9: If @ �s that contains uu′ such that u 6= u′, then S-PA-DA is strategy-proof

for students.

As we shown in the proof of Proposition 3, whenever there is a uu′ plan in a student's

preference, it is a dominant strategy to hide it. The major reason is that a uu′ plan is never

an equilibrium plan for the solution concept dynamic stability, so without any preference

restriction, Theorem 9 and Proposition 11 below can not hold. In contrast, uu′ plan can be

an equilibrium plan in a matching within the dynamic weak core as we show in Example

4. Indeed, uu′ can be an equilibrium plan in a dynamic group stable matching by a similar

example.

Example 6. Consider the following market. S = {s1, s2}, U = {u1, u2},
Bu1 : s1, s2 qu1 = (1, 1),

Bu2 : s1, s2 qu2 = (1, 1),

�s1 : u2u1,

�s1 : u1u2.

Again, the unique dynamically stable matching is the empty matching, and

µ =

 u1 u2 c ∅
s2 s1 ∅ ∅
s1 s2 ∅ ∅


is in the unique dynamically group stable matching. There is a period-1 group deviation

from the empty matching with B = {u1, u2, s1, s2} and µ.
Proposition 11: If @ �s that contains uu′ such that u 6= u′, then a matching is in the

dynamic weak core if and only if it is dynamically stable.

This proposition also says under the this preference restriction, the dynamically stable

matchings are Pareto e�cient. When a coalition is formed in period-1, the coalition mem-

bers always match with its members in both periods, so they are exempted from market

evolutions. This is true since by de�nition they can enforce some period-2 stable µ2
B from

the �rst period. Of course, there might be more than one such µ2
B in the second period

as long as all conditions of weakly period-1 domination are respected. However, a period-1

group deviation will induce the market to evolve twice, one in each period, so when we try

to recondition Proposition 2*, the two layers of uncertainty make it very di�cult to tackle.
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We show that the sets of achievable students for period-1 and period-2 positions of a

university do not need to be disjoint.

Claim 1: Suppose µ is a dynamically stable matching and s ∈ µ1(u) for some u, there could

be another dynamically stable matching µ′ such that s ∈ µ′2(u) \ µ′1(u).

Proof: We prove it by an example.

Example 7. Consider the following market. S = {s1, s2, s3}, U = {u1, u2},
Bu1 : s1, s2, s3 qu1 = (1, 1),

Bu2 : s3, s1 qu2 = (1, 0),

�s1 : u2u2, u1u1,

�s2 : u1u1, cu1,

�s3 : cu1, u2u2.

In this market,

µS =

 u1 u2 c ∅
s2 s1 s3 ∅

s2, s3 s1 ∅ ∅

 andµU =

 u1 u2 c ∅
s1 s3 s2 ∅

s1, s2 s3 ∅ ∅

 ,

so s2 is an achievable student for both period-1 and period-2 positions of u. �
Theorem 10: If µ and µ′ are dynamically stable matchings, then µ2(u) = µ′2(u) if and only

if µ(u) = µ′(u).

That is, there do not exists two period-1 matchings such that they would give u the

same �nal outcome at two di�erent dynamically stable matchings. The intuition behind

this theorem is very simple. Consider a university u1 with 1 position in both periods and

preference �u: s1. If µ2(u) = {s1} and µ′2(u) = {s1} but µ1(u1) = ∅ 6= s1 = µ′1(u1), then

they can not be both stable because s1 would have strict preference over plans cu1 and u1u1.

Theorem 11: Suppose µ and µ′ are dynamically stable matchings with s ∈ µ1(u) and

s′ ∈ µ2(u) \ µ1(u) for some u. If µ(s) �s µ′(s) and µ(s′) �s′ µ′(s′) then µ′(u) �u µ(u). If

µ(u) �u µ′(u), then µ′(s) �s µ(s) or µ′(s′) �s′ µ(s′).

Theorem 11 says there is no Pareto improvement between two dynamically stable match-

ings. It delivers a message similar to the Decomposition Lemma, yet it is not comparable

with Theorem 6* since it concerns two students while Theorem 6* only concerns one.

4 Conclusion

In this paper, we propose a dynamic two-sided many-to-one matching model that is general-

ized from the college admissions problem. We show that many of the results from the college
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admission problem carry over to our model, yet some of them fail because of the two-period

nature. Our solution concepts are all natural generalizations of their single period coun-

terpart. However, even the two-period model is an extension of the many-to-one matching

model, it is also similar to the many-to-many model in the sense that each student might

match with two schools, one for each period. Dynamic stability requires at a dynamically

stable matching, each student only matches with one university. But neither dynamically

group stability nor dynamic weak core requires this.

Multilateral blocking is rarely observed in admissions markets. While both dynamic weak

core and dynamic group stability require large scale of prophetic reasoning, they might work

in a small market, but it will be di�cult to track evolutions in a large market. Dynamic

stability is more conservative and prophetic reasoning minimizing. Yet it does not exhibit

all �ne properties of the single period stability, it remains the best option among the three

solution concepts to approach the problem with moderate or large market size given its

tractability.
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A Omitted Proofs

Proof of Lemma 1: µS is dynamically individually rational since at each step of the

algorithm, no university keeps an unacceptable or active student, and no student proposes

an unacceptable plan; also, (µ1
S(s), µ2

S(s)) = (µ1
S(s), µ̃2

µ1S
(s)) �s ∅ for all students since there

is no active student.

µS is not period-1 blocked by any pair with a two-period plan. Suppose uu �s µS(s) for

some u and s. This means that s applied to u with a two-period plan and was rejected at

some step n of S-PA-DA. Denote a tentative matching of u at step n by µnS(u). µnS(u) only

improves weakly as n goes up, i.e., µn+1
S (u) �u µnS(u), so u will not block with s.

µS is not period-1 blocked by any credible agreement. We show a stronger result that

µS is not period-1 blocked by any agreement. Suppose cu �s µS(s) for some u and s. This

means that s applied to u with an agreement and was rejected at some step n of S-PA-DA.

Again, µnS(u) only improves weakly as n goes up, so u will not block with s.

µS is not period-2 blocked by any pair. Suppose u �µ
1
S
s µ2

S(s) for some u and s. Notice

that µ1
S(s) = c; otherwise, say µ1

S(s) = u′. But u′ will not admit s in the �rst period since

µs is dynamically individually rational. Now we go back to the case above. �
Proof of Lemma 2: ( =⇒ ) Suppose µ̄ is unstable.

Suppose µ̄ is not individually rational for some agent. If ∃s such that ∅ �s (µ̄1(s), µ̄2(s)),

then this implies ∅ �s (µ1(s), µ̃2
µ1(s)) = (µ1(s), µ2(s)). If ∃u1

j,β such that ∅ �u1j µ̄(u1
j,β), then

this implies ∅ �u s for some s ∈ µ1(u); if there is some active student in µ̄, then there must

be some in µ. If ∃u2
j,γ such that ∅ �u2j µ̄(u2

j,γ), then this implies ∅ �u s for some s ∈ µ2(u).

Period-1 individual rationality fails in the �rst three cases, and period-2 individual rationality

fails in the last case. Hence, µ is not dynamically individually rational.

Suppose µ̄ is blocked by a pair. If ∃(s, u1
j,β) such that u1

j,βu
1
j,β �s µ̄(s) and s �u1j µ̄(u1

j,β),

then this implies (u, u) �s (µ1(s), µ̃2
µ1(s)) = (µ1(s), µ2(s)) and s �u σ for some σ ∈ µ1(u).

If ∃(s, u2
j,γ) such that cu2

j,γ �s µ̄1(s) and u2
j,γs �u2j µ̄(u2

j,γ), then this implies either (c, u) �s
(µ1(s), µ̃2

µ1(s)) = (µ1(s), µ2(s)) with 0 < ru(s) ≤ q2
u or u �µ1s µ2(s) and s �u σ for some

σ ∈ µ2(u) \ µ1(u). In the �rst two cases, µ is period-1 blocked, and it is period-2 blocked in

the last case.

So, µ is dynamically unstable.

(⇐= ) Suppose µ is dynamically unstable.

Suppose µ is not dynamically individually rational. If ∃s such that ∅ �s (µ1(s), µ2(s)),

then this implies ∅ �s (µ̄1(s), µ̄2(s)) for some s. If ∅ �u s for some s ∈ µ1(u), then this

implies ∃u1
j,β such that ∅ �u1j µ̄(u1

j,β); if there is some active student in µ, then there must

be some in µ̄. If ∅ �u s for some s ∈ µ2(u), then this implies ∃u2
j,γ such that ∅ �u2j µ̄(u2

j,γ).
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Hence, µ̄ is not individually rational.

Suppose µ is blocked by a pair. If µ is period-1 blocked by a plan, i.e., ∃s and u such

that (u, u) �s (µ1(s), µ̃2
µ1(s)) = (µ1(s), µ2(s)) and s �u σ for some σ ∈ µ1(u), then this

implies ∃(s, u1
j,β) such that u1

j,βu
1
j,β �s µ̄(s) and s �u1j µ̄(u1

j,β). If µ is period-1 blocked by

a credible agreement, i.e., ∃s and u such that (c, u) �s (µ1(s), µ̃2
µ1(s)) = (µ1(s), µ2(s)) with

0 < ru(s) ≤ q2
u, then this implies ∃(s, u2

j,γ) such that cu2
j,γ �s µ̄1(s) and u2

j,γs �u2j µ̄(u2
j,γ). If µ

is period-2 blocked, i.e., ∃s and u such that u �µ1s µ2(s) and s �u σ for some σ ∈ µ2(u)\µ1(u),

and this implies ∃(s, u2
j,γ) such that cu2

j,γ �s µ̄1(s) and u2
j,γs �u2j µ̄(u2

j,γ).

So, µ̄ is unstable. �
Proof of Lemma 3: µ̄Ū is individually rational since at each step of the algorithm, no

position proposes an unacceptable or active student, and no student keeps an unacceptable

plan.

µ̄Ū is not blocked by any pair. Suppose ss �u1j µ̄Ū(u1
j,β) for some u1

j,β and s. This

means that u1
j,β proposed to s and was rejected at some step n of U-PA-DA. Denote a

tentative matching of s at step n by µ̄n
Ū

(s). µ̄n
Ū

(s) only improves weakly as n goes up, i.e.

µ̄n+1
Ū

(s) �s µ̄nŪ(s), so s will not block with u1
j,β. Suppose u

2
j,γs �u2j µ̄Ū(u2

j,γ) for some u2
j,γ and

s. This means that u2
j,γ proposed to s and was rejected at some step n of U-PA-DA. Again,

µ̄n
Ū

(s) only improves weakly as n goes up, so s will not block with u2
j,γ. �

Proof of Theorem 2: We prove (ii) here, and (i) can be proved in a symmetric way. We

will show that in one of the deferred acceptance algorithms, no one on the proposing side is

rejected by an achievable agent.

The proof is by inductions. Assume that up to a given step in the algorithm no position

has been rejected by a student who is achievable for it so far. At this step, suppose s rejects

p.

If p is unacceptable, then p is unachievable for s.

If s rejects p because he is proposed a preferable plan p′. We must show p is not achievable

for s. We know p′ prefers s to any student except those who have previously rejected it

(so those students by assumption are unachievable for it). For contradiction, consider a

hypothetical matching µ that matches p to s and everyone else to an achievable match such

that if p is achievable for s, then µ is one of the stable matching. But p′ prefers s to his

match at µ, so p′ and s will form a blocking pair. Hence, there is no stable matching that

matches s and p, so p is unachievable for s. �
Proof of Theorem 3: Suppose it is not true such that µ̄ >S µ̄

′ and µ̄ >Ū µ̄
′. Then ∃s such

that µ̄(s) �s µ̄′(s), whereµ̄(s) �s ∅ by strict preferences. Then the position p = µ̄(s) must

match with someone else. Since p also has strict preferences and µ̄ >Ū µ̄
′. p and s will form

a blocking pair at µ̄′. So µ̄′ is not stable, a contradiction. �
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Proof of Theorem 4: Let µ be some stable matching other than µU . By Theorem 2 (ii),

µ̄Ū is position-optimal, that is, ∀p ∈ Ū , µ̄Ū(p) �p µ(p) and ∃p ∈ Ū such that µ̄Ū(p) �p µ(p).

By responsiveness, ∀u ∈ U , µ1
U(u) �u µ1(u) and µ2

U(u) \ µ1
U(u) �u µ′2(u) \ µ′1(u), and

∃u ∈ U such that µ1
U(u) �u µ1(u) or µ2

U(u) \ µ1
U(u) �u µ2(u) \ µ1(u). By construction,

µ1
U(u) and µ2

U(u) \ µ1
U(u) are disjoint subsets of S, so are µ1(u) and µ2(u) \ µ1

U(u). Then

by responsiveness again, ∀u ∈ U , µU(u) �u µ(u) and ∃u ∈ U , µU(u) �u µ(u). That is,

µU >U µ.

The second part follows from a symmetric argument together with Corollary 1, which

says µ̄S is the worst stable matching for positions. �
Proof of Lemma 4: Suppose for some s, p = µ̄(s) �s µ̄′(s) = p′. Then since µ′ is

stable, this implies µ̄′(p) �p µ̄(p) = s. Hence, µ̄(Sµ̄) is contained in Ū µ̄′ , so |Sµ̄| ≤ |Ū µ̄′|.
Symmetrically, µ̄(Ū µ̄′) is contained in Sµ̄, so |Sµ̄| ≥ |Ū µ̄′|. Since µ̄and µ̄′ are one-to-one and
Sµ̄ and Ū µ̄′ are �nite, both µ̄ and µ̄′ are onto. �
Proof of Theorem 5: By de�nition, λ̄(l) = µ̄′(l) ∀l ∈ Sµ̄′∪Ū µ̄ and λ̄(l) = µ̄(l) ∀l ∈ Sµ̄∪Ū µ̄′ .

By Lemma 4, λ is therefore a matching. Suppose (s, p) blocks λ̄. Then s �p λ̄(p) and

p �s λ̄(s). Hence (s, p) blocks µ̄ if λ̄(p) = µ̄(p) or µ̄' if λ̄(p) = µ̄′(p). In either case we have

a contradiction.

By a symmetric argument, v̄ is also a stable matching. �
Proof of Theorem 6: Using the S-PA-DA in the related marriage market. Let µ̄ and

µ̄S be the corresponding matchings of µ and µS in (S, Ū , �̄), respectively. The matching µ̄

would match every student s to some position that rejected him in the algorithm because a

preferable student s′ proposed to it (even s satis�es its individual rationality). So all those

positions µ̄(S) have been matched under µ̄S, this implies µ̄S(µ̄(S)) = S. Hence, all students

would have been matched under µ̄S and µ̄S(S) = µ̄(S). But since all students are matched

under µ̄S, any position which gets a proposal in the last step of the algorithm at which

proposals were issued has not rejected any acceptable student, i.e. the algorithm stops as

soon as every position in µ̄S(S) has an acceptable proposal. So such a position must be

unmatched at µ since every student prefers µ̄ to µ̄S, which contradicts µ̄S(S) = µ̄(S). �
Proof of Lemma 5: Let µ̄ and µ̄S be the corresponding matchings of µ and µS in (S, Ū , �̄),

respectively.

Case 1: µ̄(S ′) 6= µ̄S(S ′) . Pick a p in µ̄(S ′)\µ̄S(S ′), that is, µ̄(p) = s′ ∈ S ′ and µ̄S(p) = s /∈ S ′.
For µ̄S to be stable, s �p s′. But s /∈ S ′, so he does not prefer µ̄ to µ̄S and by strictness of

preferences, we have µ̄S(s) = p �s µ̄(s). So (s, p) blocks µ.

Case 2: µ̄(S ′) = µ̄S(S ′) = Ū ′. Let p be the last position of university in Ū ′ to receives a

proposal from a student in S ′ that satis�es its individual rationality in the S-PA-DA. Under

µ̄, since p ∈ Ū ′, it matches with some student in S ′. Let us denote him s'. We show that s′
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is rejected before p gets this last proposal. Since p �s′ µ̄S(s′), s′ must proposed to p and get

rejected in S-PA-DA and then ends up matching with µ̄S(s′). But if p only rejects s′ when

it gets its last proposal from a student in S ′ that satis�es its individual rationality, then the

proposal of s′ to µ̄S(s′) would have came later, which contradicts how we pick p. So p rejects

s′ before it got its last proposal from a student in S ′ that satis�es its individual rationality,

that implies it holds a proposal from some other student. Let us denote him s. So this s

would prefers p to µ̄S(s) since he proposed to µ̄S(s) after p rejected him. Since s satis�es p's

individual rationality but later proposed to µ̄S(s) and p is the last position of university in

Ū ′ to receives a proposal from a student in S ′ that satis�es its individual rationality, s /∈ S ′.
That implies p �s µ̄S(s) �s µ̄(s).p rejects s′ because of s. So (s, p) block µ̄. �
Proof of Theorem 7: |µ̄S(Ū)| = |µ̄S(S)| ≥ |µ̄Ū(S)| = |µ̄Ū(Ū)| ≥ |µ̄S(Ū)|. �
Proof of Lemma 6: We show that µ̄(u1

j,β) �u1j µ̄
′(u1

j,β) for all β > i. Suppose not. ∃β such

that µ̄(u1
j,β) �u1j µ̄

′(u1
j,β) and µ̄′(u1

j,β+1) �u1j µ̄(u1
j,β+1). Note that u1

j,β is matched under µ̄ (we

cannot have ∅ = µ̄(u1
j,β) �u1j µ̄

′(u1
j,β)), so Theorem 7 implies µ̄′(u1

j,β) ∈ S. Let s′ ≡ µ̄′(u1
j,β).

By Lemma 4, u1
j,β ≡ µ̄′(s′) �s µ̄(s′), and since s′ ≡ µ̄′(u1

j,β) �u1j µ̄
′(u1

j,β+1) �u1j µ̄(u1
j,β+1),

s′ 6= µ̄(u1
j,β+1). Since by construction u1

j,β+1 is the next most preferred plan in the preference

of s′, u1
j,β+1 �s µ̄(s′). So s′ and u1

j,β+1 will block µ̄
′, which contradicts the stability of µ. Since

i is arbitrary, the �rst part follows.

The second part can be proved by the same argument. �
Proof of Theorem 8: Suppose not. Then ∃u1

j,i such that µ̄(u1
j,i) �u1j µ̄

′(u1
j,i), then from

the proof of Lemma 6 we know that µ̄(u1
j,β) �u1j µ̄

′(u1
j,β) for all β > i. But we know by

Theorem 7, if a period-1 position is unmatched in some stable matching, then it is unmatched

under all stable matchings. That means the µ̄(u1
j,q1u

) = µ̄′(u1
j,q1u

) = ∅ for the last period-1

position in u, and this contradicts µ̄(u1
j,q1u

) �u1j µ̄
′(u1

j,q1u
). So such u1

j,i does not exists, that is,

µ̄(u1
j,β) = µ̄′(u1

j,β) for all β.

The same result can be proved for period-2 by the same argument. �
Proof of Theorem 9: Note that @ �s that contains uu′ such that u 6= u′, so a student will

not misstate any uu′ preference as uu. Suppose a student s can misstate his preference as

�̂s , along with whatever preferences everyone else is reporting, we have a new preference

pro�le �̂ such that µ̂S(s) �s µS(s), where µS is the student-optimal matching under the

true preference. Since S-PA-DA is used, µ̂S will be individually rational, apply the Lemma

5 to the true preference�, Ŝ the set of students who prefer µ̂S to µS is not empty (s will be

in Ŝ since µ̂S(s) �s µS(s), and there maybe more students) , a pair (s′, p) blocks µ̂S under

the true preference such that s′ ∈ S \ Ŝ and p ∈ µ̂S(Ŝ). �
Proof of Proposition 11: Note that @ �s that contains uu′ such that u 6= u′, so a university

does not need to care its no active student condition that embeds in its period-1 individual
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rationality.

( =⇒ ) If µ is dynamically unstable via a single agent because µ is not dynamically indi-

vidually rational, then it is clearly not in the dynamic weak core since it is weakly period-1

dominated via a coalition B = {s} by any matching µ′ with µ′(s) = ∅ or B = u ∪ µ2(u) \ s
for some s that ∅ �u s by any matching µ′ with µ′2(u) = µ2(u) \ s.

If µ is dynamically unstable via a pair of student and university (s, u) such that µ is

period-1 blocked, then it is weakly period-1 dominated via a coalition B = u∪s∪µ2(u)\σ by

any matching µ′ with µ′(s) = uu, µ′1(u) = s∪µ1(u)\σ, and µ′2(u)\µ′1(u) = µ2(u)\µ1(u) or µ′

with µ′(s) = cu, µ′1(u) = µ1(u), and µ′2(u)\µ1(u) = s∪µ2(u)\µ1(u)\σ . Similarly, if µ is µ is

period-2 blocked, then it is weakly period-2 dominated via coalition B = u∪s∪µ2(u)\µ1(u)\σ
by any matching µ′ with µ′2(s) = u and µ′2(u) \ µ1(u) = s ∪ µ2(u) \ µ1(u) \ σ.

(⇐= ) Suppose µ is not in the dynamic weak core. Then µ is period-1 or period-2 weakly

dominated by some matching µ′ via some coalition B, and hence some student or university

prefer µ′ to µ. If µ is not dynamically individually rational, then it is not dynamically stable.

Suppose µ satis�es dynamically individual rationality.

Suppose also µ is period-2 weakly dominated by some matching µ′ = (µ1, µ2
B) via some

coalition B.

Suppose µ2
B(u) \ µ1(u) �u µ2(u) \ µ1(u) for some u ∈ B. There must exists s ∈ µ2

B(u) \
µ1(u) \ µ2(u) and σ ∈ µ2(u) \ µ1(u) \ µ2

B(u) such that s �u σ; otherwise, σ �u s ∀s ∈
µ2
B(u)\µ1(u)\µ2(u) implies µ2(u)\µ1(u) �u µ2

B(u)\µ1(u) by responsiveness. By de�nition,

s ∈ µ2
B(u) \ µ1(u) implies s ∈ B, so u = µ′(s) �s µ(s); furthermore, s /∈ µ2(u) \ µ1(u) and

s ∈ µ2
B(u)\µ1(u), so µ′(s) = (µ1(s), µ2

B(s)) 6= (µ1(s), µ2(s)) = µ(s). Therefore, µ′(s) �s µ(s).

Hence, µ it is period-2 blocked by (s, u).

Suppose some s ∈ B with µ2
B(s) = u with µ′(s) �s µ(s), this implies u ∈ B, so µ2

B(u) \
µ1(u) �u µ2(u) \ µ1(u). µ2

B(s) = u with µ′(s) �s µ(s) also implies µ2(s) 6= u (a student

can not switch between cu and uu given µ1), so µ2
B(u) \ µ1(u) 6= µ2(u) \ µ1(u). Hence,

µ2
B(u)\µ1(u) �u µ2(u)\µ1(u). This implies that there is a student s′ ∈ µ2

B(u)\µ1(u)\µ2(u)

(possibly di�erent from s) and σ ∈ µ2(u)\µ1(u)\µ2
B(u) such that s′ �u σ. Then µ is blocked

by (s′, u).

Suppose also µ is period-1 weakly dominated by some matching µ′ = (µ1
B, µ

2
B) via some

coalition B.

Suppose µ2
B(u) �u µ2(u) for some u ∈ B. There must exists s ∈ µ2

B(u) \ µ2(u) and

σ ∈ µ2(u) \ µ2
B(u) such that s �u σ; otherwise, σ �u s ∀s ∈ µ2

B(u) \ µ2(u) implies µ2(u) �u
µ2
B(u) by responsiveness. By de�nition, s ∈ µ2

B(u) implies s ∈ B, so u = µ′(s) �s µ(s);

furthermore, s /∈ µ2(u) and s ∈ µ2
B(u), so µ′(s) 6= µ(s). Therefore, µ′(s) �s µ(s). Hence, µ

it is period-2 blocked by (s, u).
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Suppose some s ∈ B with µ2
B(s) = u with µ′(s) �s µ(s), this implies u ∈ B, so µ2

B(u) �u
µ2(u).

If µ2
B(u) 6= µ2(u), then µ2

B(u) �u µ2(u). This in turn implies there is a student s′ ∈
µ2
B(u) \ µ2(u) (possibly di�erent from s) and σ ∈ µ2(u) \ µ2

B(u) such that s′ �u σ. Then µ
is blocked by (s′, u).

If µ2
B(u) = µ2(u), then it means s switches between cu and uu. Without loss of generality,

assume uu �s cu. So µ′(s) = uu, then either there is an unmatched period-1 seat under

µ, or there is no unmatched period-1 seat under µ but there exists some student s′ such

that µ′(s′) = cu �s′ uu = µ(s′) and he switches his seat with s (note that s′ ∈ B, so

µ′(s′) �s′ µ(s′), since there is no more period-1 seat for s under µ, given µ2
B(u) = µ2(u), s′

has to move to cu under µ′, this implies µ′(s′) = cu �s′ uu = µ(s′)). In either case, µ is

blocked by (s, u). �
Proof of Theorem 10: Suppose u �lls all its quota under µ and µ′ in both periods;

otherwise by Theorem 7, µ1(u) = µ′1(u) or µ2(u) \ µ1(u) = µ′2(u) \ µ′1(u).

(⇐= ) This direction is by de�nition of µ.

( =⇒ ) If µ(u) 6= µ′(u) but µ2(u) = µ′2(u). Then (without loss of generality) µ1(u) �u
µ′1(u) and µ2(u) \ µ1(u) �u µ′2(u) \ µ′1(u). ∃s ∈ µ1(u) and s = µ̄′(u2

j,γ) ∈ µ′2(u) \ µ′1(u).

∃s′ ∈ µ′1(u) and s′ ∈ µ2(u) \ µ1(u). Since preferences are strict, without loss of generality,

suppose s Bu s
′ and cu �s uu. Then u2

j,γ and s will block µ, a contradiction. �
Proof of Theorem 11: Suppose u �lls all its quota under µ and µ′ in both periods for the

�rst part; otherwise, by Theorem 7, µ1(u) = µ′1(u) or µ2(u) \ µ1(u) = µ′2(u) \ µ′1(u). This

will imply µ(s) = µ′(s) or µ′(s) = µ(s′). For the second part, u has to �ll all its period-1

positions or period-2 positions under µ and µ′; otherwise, by Theorem 7, µ(u) = µ′(u).

Let µ̄ and µ̄′ be the corresponding matchings of µ and µ′ in (S, Ū , �̄), respectively.

∃u1
j,β, u

2
j,γ such that µ̄(u1

j,β) = s and µ̄′(u2
j,γ) = s′.

Suppose µ(s) �s µ′(s) and µ(s′) �s′ µ′(s′). Since µ′ is stable, ∃s′′ = µ̄′(u1
j,β) �u s and

∃s′′′ = µ̄(u2
j,γ) �u s′. By Lemma 6, µ̄(u1

j,i) �u1j µ̄
′(u1

j,i) for all positions u1
j,i of u with u1

j,β

strictly prefers, and µ̄(u2
j,i) �u1j µ̄

′(u2
j,i) for all positions u

2
j,γ of u with with u

2
j,γ strictly prefers.

So by responsiveness, µ′1(u) �u µ1(u) and µ′2(u)\µ′1(u) �u µ2(u)\µ1(u). By responsiveness

again, µ′(u) �u µ(u).

Suppose µ(u) �u µ′(u), then either µ1(u) �u µ′1(u) or µ2(u) \ µ1(u) �u µ′2(u) \ µ′1(u).

De�ne Ū µ̄ = {p ∈ Ū |µ̄(p) �p µ̄′(p)} and Sµ̄
′
= {s ∈ S|µ̄′(s) �s µ̄(s)}.

If µ1(u) �u µ′1(u), then by Lemma 6, µ̄(u1
j,i) �u µ̄′(u1

j,i) for all period-1 position of u,

so either µ̄(u1
j,i) = µ̄′(u1

j,i) or u1
j,i ∈ Ū µ̄. Note that µ̄(u1

j,β) = s, together with Lemma 4,

µ̄(s) = µ̄′(s) or s ∈ Sµ̄′ . That is, µ′(s) �s µ(s) (note that it is possible that s is just moving

to a �worse� period-1 position at u).
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If µ2(u) \ µ1(u) �u µ′2(u) \ µ′1(u) , by the same argument, µ′(s′) �s µ(s′). �
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