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Abstract

We study a dynamic two-sided many-to-one matching market in the context of
universities and students. It is a generalization of the college admissions problem. Our
main solution concept, dynamic stability, involves backward induction and maximin.
A dynamically stable matching always exists, and a weaker version of rural hospitals
theorem also holds. The set of dynamically stable matchings does not form a lattice
with respect to universities’ preferences, but there does exist a university-optimal stable
matching. The generalizations of stability, group stability, and weak core no longer
coincide with each other.
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1 Introduction

In the United States, a typical community college offers two-year college education with
almost no barrier to entry. After that, students who want a bachelor degree will transfer
to a four-year university to continue their education. In a report of the National Center of
Education Statistics by Radford et al. (2010), an estimate of 26.6% of the students started
college in 2003-2004 and obtained a Bachelor’s degree by spring 2009 are transfer students.

We generalize the college admissions problem into a two-period context. In the college
admissions problem, each year, a cohort of high school seniors enter the market and apply
to a bunch of universities. A university will identify a group of acceptable students based
on its criteria and give them offers. A matching outcome then finalizes after each student
accepts an offer (if there is any). We put in a new element: community college.! Students
can go to a community college if they are not matched with a university in the first period.
In the second period, students who want to transfer, either from a university or a college,
will re-enter the matching market. At the same time, universities that have a transfer quota
will enter the market as well.

Community college indeed serves as an institution that stores agents who prefer to match
with the other side of the market in a later period. This kind of institution has different
representations in other dynamic markets. For example, in a dynamic daycare problem, a
child can stay home for one period before he goes to daycare; in a dynamic marriage market,
a man can stay alone for one period before he matches with some woman.?

In a college admissions problem, agents on both sides have preferences over the other
side, while in a school choice problem, students have preferences over school but schools
rank students by priorities. In our model, schools will continue to have preferences over
students, but there are also priorities involved. The first type of priority can also be found
in the dynamic daycare problem of Kennes et al. (2014). In period-2, a student whom was
admitted by some university in the first period is an incumbent to the seat his is possessing.
Note that this priority is not predetermined exogenously as in a school choice problem since
a university will not admit some unacceptable student and grant him this priority. Another
type of priority is new: in period-2, a seat that was unmatched in last period or abandoned
by a student that was admitted last period perishes, that is, the highest priority for that

seat is self-matching.®> When universities consider who to admit in the first period, these

1To avoid confusion, we use “university” for four-year university and use “college” for two-year community
college.

2See Kennes et al. (2014) and Kadam and Kotowski (2016), respectively.

3In other dynamic matching markets, a similar situation happens when the object being allocated is
non-storable or the matching opportunity expired. For example, see Lauermann and Néldeke (2014); Doval
(2016).



priorities together might make them prefer students who will stay for two periods.

This paper provides three solution concepts: dynamically stability, dynamically group
stability, and dynamic weak core, where each of them is a generalization of stability, group
stability, and the weak core in the college admissions problem, respectively. These three
solution concepts will degenerate to their conventional counterpart if the dynamic model
degenerates to the college admissions problem, in which they will coincide with each other.
They resemble three Nash equilibria in a finitely repeated non-cooperative game, where a
stage game Nash equilibrium must be played in the last period. Even though they do not
coincide in the dynamic model, all of them require a static stable matching in the last period.

This paper lies between two strands of literature. One is the classic matching theory.
After the original many-to-one matching problem has been introduced by Gale and Shapley
(1962), it has been studied extensively in the literature; for example, see Roth (1985); Roth
and Sotomayor (1989, 1992); Roth (1986, 1984).

Another is the growing dynamic matching literature. Doval (2016) introduces a stability
concept, which is also called dynamic stability, in dynamic matching markets where matching
opportunities arrive over time, matching is one-to-one, and irreversible. In those environ-
ments, she shows that dynamically stable matchings always exist in one-sided markets but
not always in the allocation of objects with priorities and two-sided markets.* Even though
the dynamic stability in her paper also incorporates a backward induction notion and requires
a stable matching in the second period, it is more similar to our dynamic group stability in
two aspects. First, it is not pairwise and requires no group of agents can find in profitable to
deviate. Second, it does not allow agents to form agreements intertemporally, which is also
similar to the dynamic group stability here. In contrast, our dynamic stability will allow
agents to form binding agreements intertemporally. Kurino (2014) studies dynamic house
allocation with priorities using an overlapping generations model. Damiano and Lam (2005)
and Kurino (2009) study dynamic two-sided one-to-one matching market as well, but they
use different solution concepts other than dynamic stability. The closest work is Kadam and
Kotowski (2016), in which they study a dynamic marriage market with ordinal preference
forms. They introduce a stability concept, which is also called dynamic stability. The major
difference between this paper and Kadam and Kotowski (2016) is preference structure. Uni-
versities in our model adopt the preference structure in the college admissions problem, but
it is unclear how to extend their preference into a many-to-one model. The existence of dy-
namically stable matchings is not guaranteed in their paper without preference restrictions,

while the built in preference structures here guarantee the existence of dynamically stable

4Example for one-sided market: deceased-donor organ allocation. Example for allocation of objects with
priorities: public housing. Examples for one-sided market: marriage market, adoption market.



Table 1: Relationship to Existing Dynamic Matching Literature

One-sided Priority Two-sided
Dynamic Kurino (2014), Kadam and Kotowski (2016),
one-to-one Doval (2016) Doval (2016), etc. Doval (2016), etc.
Dynamic Pereyra (2013), :
many-to-one i Kennes et al. (2014), etc. This paper
matchings.

The existing papers of dynamic many-to-one matching typically adopt an overlapping
generations approach and focus on school choice problems with priorities to certain students
or teachers; for example, see Dur (2012); Pereyra (2013); Kennes et al. (2014).

This paper makes the two contributions. First, to the best of our knowledge, this paper is
the first one that provides a framework to study dynamic two-sided many-to-one matching
markets. Second, it shows many results from the college admissions problem continue to

hold in a dynamic context.

2 The Models

2.1 The Benchmark: College Admissions Problem

We briefly review the original college admissions problem in Gale and Shapley (1962). Tt will
serve as a benchmark in this paper. There is a set of students S = {s1, 52, ..., 59/} and a set
of universities U= {uy, ug, ..., uy|}. Each student can match with at most one university or
remain unmatched (being unmatched is denoted by (). For each university u, it can match

with at most ¢, students, where g, is a positive integer. A matching p is a mapping satisfies
1. Vs €S, u(s) e UU{D} and |u(s)] < 1;
2. Yue U, p(u) C S and |pu(u)| < qu;
3. u(s) =wif and only if s is in p(u).

Each student s has a strict preference relation >, over UU{0}, and a university is acceptable
to student s if u >, (). Each university u has a strict preference relationt>, over SU{@}, and
a student is acceptable to university w if s >, ). We use I>; to mean >; or =. A matching
w is indiwvidually rational if for each student s p(s) >, 0 and for each university v s >, 0 for

all s € p(u). A matching p is stable if it is individually rational and there do not exist a



university u and a student s such that u >, u(s) and s >, o for some o € p(u). Many of the
results for the college admissions problem are derived under an assumption that a university
u’s preference over sets of students, >, is responsive to >,. We will define responsiveness
in section 2.3.

If all ¢, = 1, the model degenerates to the marriage problem.

2.2 A Two-period Model

Now we extend the benchmark model to dynamic college admissions problem. There is a set
of students S = {s1, 59, ..., 55/} and a set of universities U= {uy, us, ..., ujy|}. Each student
can match with at most one university at a time or remain unmatched. For each university
u, it can match with at most ¢, students, where ¢, is a positive integer. It can be viewed as
the maximum number of students that can graduate from u at the end of the second period.
To be more specific, ¢, = (¢, ¢?) is an intertemporal capacity constraint, in the sense that
it comprises the quota of university u for freshmen in the first period, ¢!, and the quota for
transfer students in the second period, ¢2, where each ¢! is a non-negative integer.’® There
is an anonymous community college ¢ which has | S| seats to enroll all students in the market
in the first period, i.e. g. = |5|.

A period-1 matching ;' is a mapping satisfies
1. Vs €S, ut(s) e UU{c} U {0} and |u'(s)| < 1;
2. Yu e U, p*(u) C S and |t (u)] < ¢
3. p!(s) = w if and only if s is in p!(u).

There are four extra requirements that connect a period-2 matching it to its corresponding
period-1 matching. First, a student cannot take a period-1 seat and a period-2 seat from the
same university. Second, a university can not unilaterally drop or replace a student whom
it admitted in the first period. Third, a university can not use an empty period-1 seat to
admit a transfer student. Otherwise, ¢! and ¢2 will not longer be exogenous since a university
might strategically keep a period-1 seat empty to enroll an extra transfer student.” Forth,
if a student transfers, then the occupied seat vanishes. The intuition is that an university
is not informed until it realizes someone is transferred in the second period, so it does not

have sufficient time and thus can not reuse the seat immediately in the second period. For

5We use superscript to indicate time.

6S0 we allow a university to admit student in only one period, that is, it can admit no transfer student
or only transfer students.

"Dur et al. (2015) study a one-period two-sided many-to-one exchange model with endogenous quotas.



instance, a Economics PhD program that experiences attrition in the first-year is unlikely to

go out and search some first-year student from another program to fill the vacancy. These

four restriction correspond to requirement 4 to 7 below, respectively. Let ug be some period-

1 seat of university u in the second period. We denote a binary relation over S U () that

generates the priority ranking for ug given p' by >Z;. In another word, if given p!, student
/

s has a high priority than s’ for ug , then we write s >ﬁ; s'.

A period-2 matching 42 is a mapping satisfies

1. Vs € S, p%(s) € UU{D} and |p?(s)] < 1;

2. Vu € U, p(u) € S and |p?(u) \ p' (u)| < g3

3. p2(s) = w if and only if s is in p?(u);

4. if pt(s) = u then s ¢ p?(u) \ p'(u);

5. if p*(s) = u then Jug such that s >5; o for all o € S U;

6. if As € S such that u'(s) = ugz then ®>5; s’ for all ' € S;

7. if p*(s) = v and p%(s) # u then Jug such that () >ﬁ; s forall s € S.

A matching p is a mapping such that VI € SUU, p(l) = (u*(1), *(1)). A matching specifies
which student goes to which university in both periods. For a set of agents L C SU U, let
(L) be the set of agents that match with some member of L under p. Let MU be the set
of all period-¢ matchings, and let M be the set of all matchings.

2.2.1 Preferences

To make preferences simple, we make two innocuous assumptions. First, we assume a student
in the market plans to graduate from a university at the end; second, a student who does
not go to school in the first period will not be accepted in the second period.® No result
will change without these assumptions.” A student may match with two different schools
in period-1 and period-2. We call such sequence of matches a plan; (¢!, 0?) is a plan for a

student where he is matched with o' € UU{c}U{0} in the first period and with o>€U in the

8We consider the first period matching as general education or as credential/experience in other labor
markets.

%Let s in a student’s plan represents self-matching. Without the first assumption, we need to add
a requirement uu >g us in the definitions of binding agreement, no active student condition, period-1
individual rationality, individual rationality in the related marriage market since we have us plans in students’
preferences; without the second assumption, we need to remove the requirement u!(s) # () in the definition
of period-2 blocking since we have su plans in students’ preferences.



second period. We sometimes write o'c? = (¢!, 0?) if no confusion arises. Each student s

has a strict preference relation =, over the set of plans. As usual, for any two plans (o, 0%),
(o', 02), we write (o', 0%) =; (o}, 0%) if (¢',0%) =; (c!,0%) or (¢',0%) = (0',0?)". Plan
o'o? is acceptable to student s if o'0? =, 0 and unacceptable if ) -, olo?. 19

Each university « has a strict preference relation >, over 2°, all possible subsets of
students. Note that university u only cares about its final outcome, p?(u), which is a subset
of S.! In another word, a university prefers the outcome of y(u) over the outcome of 1/ (u)
when p?(u) >, p?(u). To be consistent with the literature, when defining or referring to some
conventional definition, we sometimes, by an abuse of notation, write p(u) =, #'(u) instead
of p?(u) =, pw?(u). As usual, for any two subsets of students S’, S”, we write S’ =, S” if
S =, S"or S" = S”. Student s is acceptable to university w if s =, 0.'? Preference relation

=y 1S responsive with capacity q, if VS' C S,Vs' € §" and Vs ¢ S
L. '\ dUs >, S8 <= s>,
2. S'Us =, S <= |9 < q, and s =, 0;
318 >q, = 0=, 5.1

Following the literature, we assume the preference of each university is responsive with its
capacity throughout the paper. By extracting all singleton sets from »>,, we will have its
ranking over individual students. We denote this ranking by >, and this is the university’s
preference over individual students in the benchmark model. We say >, is responsive to >,,.
Note that there maybe more than one >, that are responsive to a >,, but only one >, can
be extracted from a >,,.

Let == (>;)iesuv be the preference profile of all students and universities. For conve-
nience, we often only write the acceptable plans (students) to denote a preference relation.
For example,

sl ULUL, UUy

means to student s, uquq is the most preferred plan, usu; follows the second, and no other
plan is acceptable.

(S,U, >) is a dynamic college admissions problem.

0Here () should be (0, ), but by the two assumptions we made, we can abbreviate o'() and o2 to 0.

1In Roth and Sotomayor (1989), an outcome for a university is a set of incoming students, but it will be
natural to say an outcome for a university is a set of graduating students here.

12We use s; to denote the singleton set {s;} if no confusion arises.

13The original definition can be found in Roth (1985), and this version is modified from Kamada and
Kojima (2015).



2.2.2 Dynamic Stability

We define our first solution concept, dynamic stability, recursively by using the idea of
backward induction. For a student s, u =* o' <= (u'(s),u;) = (u'(s),u'), where =#'
is the conditional preference of student s given u'. A period-2 matching p? is period-2
individually rational if for each student s € S, p?(s) =# () , and if for each university
u € U, Vs € p?(u),s =, 0. In word, u? is period-2 individually rational if, conditioning
on the first period matching u', there is no student matched with some unacceptable plan,
and there is no university matched with someone unacceptable. A period-2 matching p?
is period-2 blocked if there exists student s with u!(s) # () and university u such that
u =" 1i2(s) and s =, o for some o € p?(u) \ p'(u). A matching is period-2 stable if it is
period-2 individually rational and it is not period-2 blocked.

We present two examples to shed light on period-1 concepts.
Example 1. Consider the following market. S = {s1,s2}, U = {u,us},

Dyt 81 Guy, = (0,1),

Dyt S1, 82 Guy, = (1,0),

st Uy,

5ot UgUsa.
The set of all matchings M = {0, u, i}, where @) is the empty matching,

Uy us ¢ 0 uy us ¢ 0
o= @ S1 @ So }/1,1 andﬂ = @ S9 Q) S1
S1 (Z) (Z) So }/L2 @ S9 (Z) S1

The matrix p is read as p(u1) = (0, {s1}), p(uz) = ({s1},0), p(s1) = uguy, and u(sy) = (0, 0).
All three matchings in M are period-2 stable. Let’s look through p. The final outcome of
uy is the empty set, so it rather has s, as its final outcome, but s; would not be willing to
match with it in period-2 if he was not admitted in period-1. Anticipating this, us would
not extend offer to s; in the first period. Instead, it would admit ss. Observe that s; >, S,
this implies when a university is contemplating to admit some student, its own preference is
not the only determinant but also the student’s preference.

We now draw connections between period-1 and period-2 matchings. In period-1, a
university and a student can form an agreement on a seat in the second period.!? An
agreement a(s,u) is a contract between s and u signed in period-1 such that university u
holds a seat for s in period-2. A student s can sign at most one agreement, and u can sign

at most ¢ agreements. But such an agreement is not credible if a university reneges when

14One example is “transfer agreement guarantee,” which is generally offered by state universities to transfer
students from in-state community colleges .



there are better alternatives to the university in the second period, so a student may hang
back because of the possibility of being unmatched.
Example 2. Consider the following market. S = {s1,s2}, U = {uy,us},

Dyt 81582 quy = (0,1),

Dust $1 Guo = (1,0),

syt Uglly, CUL,

75t CUT.

Suppose, in a matching y, s, signs an agreement with u; and p'(us) = {s;}. Then at the
beginning of period-2, s; will bump s, out of u;. Anticipating this, so would not sign the
agreement in the first period. This conservatism arises from complementarity. In example
2, when s, goes to ¢ in the first period, going to u; in the second period is a complement
to him because conditional preferences of a student are history dependent. Indeed, going to
uy in the second period is a perfect complement to s, in this case since there is no other
cu plan that is deemed to be acceptable to him. Moreover, since a university would lose a
seat whenever a student transfers, it would rather admit someone who would not transfer,
as shown in example 1. This can also be explained by complementarity: in period-1, a
university considers the presences of a student in both periods as perfect complements.

We say an agreement a(s,u) is credible if s >, () and the ranking of s in >, r,(s), is
less than or equal to ¢2. Tt is easy to see a university has no incentive to deviate from any
credible agreement. We say an agreement a(s,u) is binding under p! if it is credible and
u = o for all u' # u ; let k2 be the remaining quota for transfer students in u if some
positive number of binding agreements have been signed. We denote the set of students who
sign a binding agreement under u! by S{fl cSs.

While period-2 concepts are relatively normative, period-1 concepts rely on the idea of
maximin. An agent will take an action if the worst potential outcome is better than the
current outcome regardless others’ action, and thus this action must only rely on agents’
characteristics. In a dynamic market, it is necessary for an agent to anticipate the future
development of the market, and such anticipation must ground on the contemporaneous
market condition. If an agent is contemplating to match or to block the current matching,
he must conjecture all possible subsequent evolutions induced by his action. This type of
elaboration will be burdensome once the size of market gets large. The inability to track
market evolution might make a university hesitate to admit a student that might transfer
or might make a student hesitate to pursue a better plan. In this sense, the agents in our
model are risk averse. An agent in general cannot be insulated from prophetic reasoning in a
dynamic setting, so we want to have a stability concept that at least minimizes the prophetic

counterfactual reasoning on market evolution.

10



Now we turn to a closer look at the conditional preferences of students. In a Nash equi-
librium of a finitely repeated non-cooperative game, a stage game Nash equilibrium must be
played in the last period. Following the same intuition, when an agent decides to participate
in a period-1 matching, he does not anticipate any period-2 matching to arise, but a stable
one, which is from a subset of stable period-2 matchings given the contemporaneous period-
1 matching. We now construct this subset and then use it to form a student’s conditional
preference.

We say a student is active (given u') in period-2 if (i) s ¢ S{fl; (i) p'(s) # 0 and
Ju € U,u # p'(s) such that u ="' ;'(s) for some u with ¢2 > 0 and s =, 0.'5 We define
the no active student condition for a university u: Vs € p'(u), u >—§”1 u' for all v/ # u
with ¢2 > 0 and s =, 0. Let S¥ C S denote the group of active students given p'. We
say a university is active in period-2 if k2 > 0. Let Ucfjl C U denote the group of active
.1 denote the preference profile that consists the

leS{{luUé .
conditional preferences of all students in S? and the preferences of all universities in UL .

1
universities given p!. Let =*' = (1)

Then A*" = (S#' UM =+ is actually a college admissions problem. Let m/ be a stable
outcome of this problem, and let M*" be the set of stable outcomes. It is well-known that
the set of stable outcome is nonempty.

Returning to period-2 matching. The set of students are now being partitioned into two
groups, S* and S\ S*', where S\ S* is the group of inactive students (given u'). Let
SZHnlactive = S\ S*; note that S{fl - Sfiacme- If an active student is not matched with a
university at a stable matching of A“l, then in period-2, he either continues to match with
his old university or be unmatched if he is matched with the community college without

signing a credible agreement. Formally, Vs € Sf;l,
1. if m* (s) # 0 then p2(s) = m* (s);

2. if m" (s) = 0 and p'(s) # ¢, then p?(s)

pH(s);
3. if m* (s) = 0 and p'(s) = ¢, then p2(s) = 0.

Also, if s € Sfl, then p?(s) = u, where v is the university that signs a binding agreement
with s. Lastly, if s € S*

1 e \SE then pi2(s) = pu'(s). These five cases fully specify 12 (s) for
all students given any p'. Note that a student who was able to sign a credible agreement will
not be unmatched in A*" since he can at least match with the university that signs a credible
agreement with him, i.e., he is in case 1. Recall that, for a university, if a student transfers,
then the period-1 seat vanishes in the second period. Let S{}‘“l be the set of students who are

active in u and are able to matched with some university at a stable matching of A*", that

I5Tf ul(s) = ¢, (ii) is trivially satisfied.

11



is, Vs € S{Z‘“l, s € pt(u) and m*' (s) # 0. Let o (w) = pt(u) \ SITMI be the set of students
that are either not active or active but are not matched with some university at a stable
matching of A*'. For each university u, p%(u) = p o (u)U mt (u) U S{fl(u), where Sfl(u) is
the set of students that sign a binding agreement with u under u'. We say ﬂil € M?is an
achievable period-2 stable matching given the first period matching ut if Vi € SUU, p2(1)
is constructed as above. Fixing any u!, we will have A" and thus a set of stable outcomes
M*'. Then we can construct a /lil for each m*' € M" to obtain a set of stable period-2
matchings give p'; denote it M2 C M?.

Since A*' is fully characterized by u', a student can deduce Mil by following the rules
above. In another word, he knows the set of stable period-2 matchings given pu!.

A period-1 matching p! is period-1 individually rational if for each student s € S,
(1 (s), i1 (s)) = 0, and if for each university u € U, Vs € p'(u), s =, 0 and u =
for all ' # u with ¢2 > 0 and s =, 0.1° In word, u! is period-1 individually rational if
no student is matched with some unacceptable plan under any achievable period-2 stable
matching [Lil, and no university is matched with someone either unacceptable or who will
become an active student after matched with v under u!. By matching with an inactive
student, a university can pledge itself this seat will not vanish at any matching. A period-1
matching ;! is period-1 blocked if there exists student s and university u such that (i)
(c,u) =5 (u'(s), @21 (s)) and 0 < 7ry(s) < gi; or (ii) (u,u) =5 (u'(s), 2 (s)) and s =, o for
some o € p!(u). In (i), the matching is blocked by a credible agreement a(s,u); because of
period-1 individual rationality, it is infeasible for a student s to block with v with a credible
agreement to achieve some plan (v, u) with u’ # u, and the only feasible path is (¢, u). Note
that although a credible agreement a(s,u) can period-1 block !, s is not in p!(u). In (ii),
(u,u) is the worst plan s can pledge himself at any matching if he block u! with u. Note
that a specific y? can be characterized by a bunch of agreements (not necessarily credible)
given the current .

A matching i is dynamically individually rational if it is period-¢ individually ra-
tional for all ¢, and it is dynamically stable if it is dynamically individually rational and
not period-t blocked by any pair. At a dynamically stable matching: (i) no student would
be forced to match with some unacceptable plan in the second period because of period-1
individual rationality; (ii) there is no active student in universities, a student either transfers
to a university from the community college or stay in the same university in both periods.

In example 1, p is period-1 individually irrational for usg, () is period-1 blocked by (us, $2),

161t is also well-known that under strict preferences, the set of students and positions filled in a college
admissions problem is the same at every stable matching by Theorem 9 of Roth (1984). So by checking
whether a student is matched in one stable matching of A“l, we can assert whether his period-1 individual
rationality is satisfied.

12



and [ is the unique dynamically stable matching. In example 2, p is period-1 blocked by
the credible agreement a(sy, uy).

When ¢! = 0 for all u, the model degenerates to the college admissions problem, and even
the solution concept, dynamic stability, would coincide with the benchmark stability. To see
that, note that when ¢! = 0 for all u, only plans of the form cu will be meaningful. Also, if
(s,u) period-1 block a matching via a credible agreement here, then (s,u) can also period-
2 block the matching. Without loss of generality, we exclude the possibility of agreement
here, so every student that has acceptable cu plan will be an active student. We denote
the period-1 matching with only community college on the university side by p¢. Given
1, we construct a period-2 matching 2 by following the rules above. Let m#® be a stable
outcome of A*" = (S* UK, =H), For a student s € S*, if m* (s) # 0 then p2(s) = m**(s)
and p(s) = (e,m* (s)); if m* (s) = 0 then u(s) = (0,0) because of period-1 individual
rationality. For a university u € U, p*(u) = ! (w)Um* (u)USH (u) = m# (u) = mH* (u).
By construction, p = (u¢,m*) is always period-1 individually rational and never period-1
blocked; ;2 satisfies period-2 individual rationality if and only if m*" is individually rational,
and 2 is period-2 blocked if and only if m*" is blocked. Hence, u is dynamically stable if

and only if m* is stable.

3 Properties of Dynamic Stability

3.1 Existence of Dynamically Stable Matchings

To show the existence of dynamically stable matching, we define the student-proposing

plan and agreement deferred acceptance algorithm (S-PA-DA):
1. Begin with the empty matching, namely, a matching p where p(1) = (0,0) for all I.

2. Step 1: (a) For each student s, if wu is his most preferred plan, he proposes a two-
period plan to u; if cu is his most preferred plan, he proposes an agreement to u; if uu/’
with u # u' is his most preferred plan, he goes to the next most preferred plan. (b)
Subject to ¢}, each university u keeps the most preferred students who are proposing
plan if they are acceptable and never become active. Also, subject to ¢, it keeps most
preferred students who are proposing agreement if they are acceptable. Then it rejects

all other students.

3. Step n > 2: (a) For each student s who was rejected in Step (n-1), if uu is his next
most preferred plan, he proposes a two-period plan to u; if cu is his next most preferred

plan, he proposes an agreement to u; if uu’ with u # u’ is his next most preferred plan,
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he goes to the next next most preferred plan. (b) Subject to ¢!, each university u keeps
the most preferred students who are proposing plan if they are acceptable and never
become active. Also, subject to ¢2, it keeps most preferred students who are proposing

agreement if they are acceptable. Then it rejects all other students.

4. Termination: Stops when no more application is made. Students who matched with a

university via an agreement go to the community college in the first period.

This algorithm terminates in finite steps. We call the S-PA-DA matching pg.
Lemma 1: ug is dynamically stable.
Theorem 1: There exists a dynamically stable matching.

Theorem 1 is a direct result of Lemma 1. Following Roth and Sotomayor (1989), we
construct the related marriage market for (5, U, =) to further study the properties of dynamic
stability.

3.2 The Related Marriage Market

Consider a college admission problem with transfer (S, U, ) with student S = {s1, s2, ..., 519/}
and university U = {u1,us, ..., wy|} having quotas (g, ,q2 ), (¢i,. G2, ), - (qim,qiwl). The
preferences of students are given by >, >, ..., =5, and the preferences of universities on
all possible subsets of students are given by >,,, >u,, ..., - Also, we have the extracted
rankings over individual students, D>y, , D>uy, ..., Duy) -

In the related marriage market of benchmark model, a university is divided into ¢, pieces.
Here, we first divide a university into two: one that does not admit transfer student and one
that only admit transfer student; and then divide them into ¢: and ¢2 pieces, respectively.

We now replace u by ¢! period-1 positions of u and ¢> period-2 positions of u; denote them

1

1
u ]27-.

5,1
B < q] and v < < qz. ;. From now on We will keep calling our anonymous university u in the two-

u u; 1 and u?,,u?,, u? 2 respectively, where the subscripts j € {1,2,...,|U|}. Let

period market and call it u; in the related marriage market; when we refer to an anonymous
period-1 or period-2 position of some university, we will call it p. Denote the set of period-1
positions by U' , the set of period-2 positions by U?, and the set of all positions by U.'7
Now each position has a quota of 1, so we do not need to consider preferences over sets of

students but only extracted rankings over individual students Each student’s preference is

1

Uj g1 OF w2, uz,, .. 2 depending on which period it

modified by replacing v by u} 510 Wj9s

Ul
g0 Wy2s -
appears in a plan. However, when we come to modify a umversmy s preference, we need to

consider separately for different periods. For a period-2 position, u2_, it has “preference” 1>,

I

1"We use bar to indicate related marriage market.
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but in a marriage market, we need both sides of the market to have a symmetric preference
form. This means each position should have a preference over plans, so for each element s
in the ranking >, we extend it to us, where u in a position’s plan represents self-matching.
Denote this new “preference over plans” by a2 For a period-1 position, ujl.ﬁ, we extend
each element s in >, to ss, and we denote this new “preference over plans” by "l Let
= = (>1)iesup be the preference profile of all students and university positions.
Remark 1: In Kadam and Kotowski (2016), >, exhibits strong inertia if for s, s', s # ¢/,
then ss >, ss’ and ss > ¢'s. ~ul satisfies this strong inertia requirement since there are only
ss plans in it. '8

The related marriage market of (S,U, =) is described by (S,U,=). Let M be the set
of matchings in (S,U,=). Let i € M be the matching that matches student in ju‘(u) to
the ordered positions of a university according to r,(s). That is, if s is u’s most preferred
student in p'(u), then fi'*(s) = uj,; if s is u’s second most preferred student in p?(u), then
fi*(s) = u3, and so on. We call i the corresponding matching of y; by defining fi as above,
there is a natural bijection between M and M.

A matching fi is individually rational if (i) Vs € S, a(s) =, 0; (ii) Vul, € U,
fi(u; 5) =l 0 and if fi(u;g) = ss, u =% ' for all v/ # u with ¢2, > 0 and s =, 0; (iii)
vui, e U, p(u ) =2 0. A pair (s, ujg) or (s,u?,) can block the matching i if

L ujgu; g = fi(s) and ss = fi(uj z); or
2. cui., 5 it (s) and uj s =2 i(us.).

A matching is stable if it is individually rational and cannot be blocked by any pair.
Lemma 2: A matching p is dynamically stable if and only if its corresponding matching [
is stable.

We define the university-proposing plan and agreement deferred acceptance
algorithm (U-PA-DA) in the related marriage market:

1. Begin with the empty matching, namely, a matching i where (1) = () for all [.

2. Step 1: Each position (of universities) proposes to its most preferred student according
to its individual rationality. Fach student keeps his most preferred plan and rejects all

others.

18Requirement 5 of period-2 implies ss plans exist. Requirement 6 and 7 of a period-2 matching veto us
plans and ss’ plans, respectively. su plans are vetoed since a university u only cares about its final outcome,

w2 (u).

15



3. Step n > 2: (a) Each position that was rejected in Step (n-1) then proposes to its next
most preferred student according to its individual rationality. Each student keeps his

most preferred plan and rejects all others.
4. Termination: Stops when no more proposal is made.

We denote this matching by fig.

Lemma 3: [ is stable.

3.3 Positive Results of the Benchmark Model

As shown in Roth (1985), since the marriage problem is a special case of the college ad-
missions problem, many positive results for the marriage problems do not generalize to the
college admissions problem. We showed at the end of section 2, if ¢} = 0 for all u, the
two-period model degenerates to the college admissions problem, so it inherits all negative
results of the college admissions problem. In this section, we try to extend the relevant
positive results in Gale and Shapley (1962); Roth (1984, 1985, 1986); Roth and Sotomayor
(1989, 1992). Note that some of these results are built on other results from the marriage
market and our related marriage market differs from the marriage market because of the
two-period nature. Therefore, we need to prove all relevant results again in the two-period
context. Surprisingly, when a positive result continue to hold in the two-period context, its
proof only requires slight modification from the original. We continue to assume preferences

are strict, and univerisities’ preferences satisfy responsiveness.

3.3.1 Positive Results That Continue to Hold

A stable matching is student-optimal if each student prefers his assignment in that match-
ing to his assignment in all other stable matchings. A position-optimal stable matching
and a university-optimal stable matching are defined analogously. A student and a po-
sition (or a university) are said to be achievable to each other if they are matched in some
(dynamically) stable matching. Tt is well-known that, in the benchmark model, optimal
stable matchings exist if preferences are strict. This will continue to hold in the dynamic
model.
Theorem 2: (i) ug is student-optimal; (ii) fi;7 is position-optimal.

Let u >g p' denote that all students like p at least as well as ¢/ with at least one student
strictly prefer, that is, u(s) =, p/(s) for all s, and p(s) >, 1/(s) for at least one s. >z and
>y are defined analogously for positions and universities.

Theorem 3: If i and i’ are stable matchings, then g >g i’ if and only if i@’ > f.
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So any stable matching that is better for all student is worse for all positions, and vice
versa. Following from Theorem 2 and Theorem 3, we have the following corollary.
Corollary 1: (i) uy is the worst dynamically stable matching for students; (ii)fis is the
worst stable matching for positions.

Theorem 4: py is university-optimal, and ug is the worst dynamically stable matching for
universities.

Though Theorem 4 is closely related to Theorem 2 and 3, it requires some extra arguments
because >5 and >y are two different partial orders.

Lemma 4 (Decomposition Lemma): Let ji and i’ be stable matching in (S,U, =). Let
S# (U™) be the sets of students (positions) who prefer fi to i/, and let S¥ (U") be those
who prefer ii’. Then i and i/ map S# onto U* and S* onto U*.

If 4 and 1/ are matchings we define

AMu) =pVyp' = plu) if p(u) = p'(u) () = i Ag il = w(s) if 1'(s) = pu(s) |
W (u) otherwise p(s) otherwise

similarly,

v(u) =phup = pw ! u’(u)' ot ,u(s) = p Vs i = He) i) %s 1 (s) ,
w(u) otherwise u(s) otherwise

Again, we write pu(u) =, p'(u) instead of pu*(u) =, p?(u) to keep consistency. If \ is a
matching, then X is the least upper bound for {u,p'} under >y and the greatest lower
bound for {u, ¢/} under >g. In the related marriage market, A(p) = i Vg ', A(s) = i Ag I,
v(p) = i Ag i, and ©(s) = i Vg ii’ are defined analogously. If ) is a matching, then A will be
the least upper bound for {fi, i’} under >; and the greatest lower bound for {f, i’} under
>g.
Theorem 5 (Lattice Theorem): If i and /i’ are stable matchings, then A and v are stable
matchings.
Corollary 2 below follows from Theorem 3 together with Theorem 5.
Corollary 2: The set of stable matchings forms a lattice under >5 and >g, and the lattice
under > is the the dual to the lattice under >g.
Theorem 6 (Weak Pareto Optimality for the Students): There is no dynamically
individually rational matching p (dynamically stable or not) such that pu >4 pg for all s € S.
This result will also hold for ji7 in the related marriage market, but the counterpart for
py has been shown false in Roth (1985).
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Lemma 5 (Blocking Lemma): Let u be any dynamically individually rational matching
under > and let S’ be all students who prefer u to pg. If S’ is nonempty, there is a pair
(s,p) that blocks u such that s € S\ " and p € pu(5").

Again, this result will hold for iz in the related marriage market. But unlike Theorem
6, this result also holds for py. When some university prefers another individual rational
matching to the university-optimal matching py, by responsiveness, it is equivalent to say
some of its positions prefer another individual rational matching to the position-optimal
matching pp7 in the related marriage market.

Theorem 7: The set of students and positions that are matched is the same for all stable
matchings.

The following two results are the extended versions of their original counterpart.
Lemma 6: Let 4 and p/ be dynamically stable matchings in (S, U, ) and let & and g’ be
their corresponding stable matching in (S, U, =), respectively. If u'(u) # u't(u) for some u
such that fi(uj;) =, [i'(uj;) for some uj;,

If g (u) \ p'(u) # p'(u) \ p'* (u) for some u such that fi(u3,) =2 fi'(u?,;) for some u?;, then

then ﬂ(u}’ﬁ) =y ﬂ’(u}ﬁ) for all positions u}”ﬁ of u.
4,02

i(u? ) =1 fi' (u3 ) for all positions u5 of u.

Theorem 8 (Rural Hospitals Theorem): Any university that does not fill its quota in

some period at some dynamically stable matching will match with the same set of students

at every dynamically stable matching for that period.

3.3.2 Positive Results That Fail to Hold

A mechanism ¢ is a function that maps a preference profile to a matching. ¢(>) denotes the
matching outcome of ¢ given the preference profile >, and ¢;(>) denotes the outcomes for
[ € SUU. A mechanism ¢ is said to be stable if it yields a (dynamically) stable matching
for each preference profile. A mechanism ¢ is said to be strategy-proof if there does not
exist a preference profile =, an agent [ € S U U with =; such that ¢;(>;,=_;) = ¢(>). A
mechanism ¢ is said to be strategy-proof for students if there does not exist a preference
profile =, an student s € S with =, such that p,(=,, =_) =, (). We define the S-PA-
DA mechanism to be a mechanism that use S-PA-DA algorithm to produces a matching for
each input. A well-known result in Roth (1982) says there does not exist a stable matching
mechanism that is strategy-proof. Roth (1985) shows the following Theorem.
Theorem 1*: In a college admission problem, a stable mechanism that yields the student-
optimal stable matching is strategy-proof for students.

This result does not hold in the two-period context.
Proposition 3: There does not exist a stable matching mechanism that is strategy-proof

for students.
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Proof: In example 1, the dominant strategy for s; is to state =, : usus instead of his true
preference =, : ugu;. The only dynamically stable matching given (>, , > _,, ) matches s; to
Uy, but s; can then transfer to uq. O

The main results of Roth and Sotomayor (1989) rely on Lemma 6 (its single period
version); nevertheless, in Roth and Sotomayor (1992), they indicate that some further results
of the college admission model also depend critically on Lemma 6. Although Lemma 6 still
holds, it is not strong enough to support those results in the two-period environment. We
now review those theorems and provide counterexamples in the two-period context.
Theorem 2*: In a college admissions problem, if © and y/ are two stable matchings,
and v is a university with ¢, = k such that p(u) # ¢/(u) and p(u) = {s1, s2, ..., Sx} and
w(u) = {s],sh, ..., s}, where the students are listed in order of t>,, that is, Vi, s; =, si11
and s; = s}, . If i is any index such that s; =, si, then s, =, s/ for all v € {1,2,...,k} and
() = 1 (w).

Theorem 2* is an alternative statement for Theorem 3 of Roth and Sotomayor (1989).1
This result is for the college admissions problem while Lemma 6 is for its related marriage
market. They use the following example to illustrate the result: consider a university u with
quota 2 and preference over individual students >,: s1, So, 83, 84. Let p(u) = {s1,s4} and
W (u) = {s2,s3}. Then they can not both be stable because s; =, s but s4 %, s3 and
S3 >u Sa DUt S3 %, 51
Proposition 4: The result of Theorem 2* does not hold in the dynamic college admissions
problem.

Proof: We prove it by an example.
Example 3. Consider the following market. S = {s1, 2, 53,54}, U = {uy, us},

Dyt 51, 82,53, 84 quy = (1,1),

Duy’ 54,83, 82, 51 Guy = (1, 1),

71t UgU2, UL UL,

gt ULUL, UU2,

755+ CUg, Clq,

>‘S4I Cuy, Cuy.

9We take this alternative statement from Roth and Sotomayor (1992). In Roth and Sotomayor (1989),
preferences over individual students are strict, but unlike our setting, preferences over groups of students are
not assumed to be strict. The original theorem states that if universities and students have strict preference
over individuals, then universities have strict preferences over those groups of students that they may be
assigned at stable matchings. Then this implies if ;4 and p’ are two different stable matchings, then there
does not exist responsive preference that is indifferent between u(u) and p'(u).
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In this market,

Ul U9 C @ Uy U9 C @
H= S1 S s3,84 0 cmd;/ = S2 S1 $3,84 0 )
51,84 S2,53 0 0 52,83 851,54 0 0

so both p?(ui) = {s1,s4} and p*(u;) = {sq,s3} are now stable outcome for u;. However,
S1 >uy S2 but sy 7 s3 and s3 =, s4 but sy %, s1, which contradicts to the conclusion of
Theorem 2*. O
Theorem 3*: In a college admissions problem, if u and y’ are both stable matchings and
p(u) =y p'(u) for some u, then s >, s' for all s € p(u) and s" € p/(u) \ p(u).

In words, u prefers every student in p(u) to every student in p/(u) but not in (). This
is Theorem 4 of Roth and Sotomayor (1989). They use the following example to illustrate
the result: consider a university u with quota 2 and preference >,: s1, o, S3, s4. Let p(u) =
{s1,s3} and p'(u) = {s9,s4}. Note than we cannot use Theorem 2* to determine whether
they are both stable or not. Obviously, p(u) >, #'(u) by responsiveness and transitivity. By
Theorem 3*, they can not both be stable since s3 ¥, s5. Corollary 1* follows immediately
from Theorem 3* and responsiveness.

Corollary 1*: In a college admissions problem, if >, and >/ are responsive to >,, then
for every pair of stable matchings p and g/, p(u) =, p/(u) if and only if p(u) >, p/(u).
Proposition 5: The results of Theorem 3* and Corollary 1* do not hold in the dynamic
college admissions problem.

Proof: Consider Example 3 again. In that market,

Ul U9 Cc @ Uy U9 c (Z)
s = S9 s1 s3sq 0 | andpy = 81 Sa s3sa O |,
S2,54 51,83 0 0 S1,83 82,84 0 0

so both p(u1) = {s2,s4} and p# (u1) = {s1,s3} are now stable outcome for u;. However,
S3 ¥, S2, which contradicts to the conclusion of Theorem 3*.

Now consider

>_ul: sy {817 32}7 {817 33}7 {517 84}7 {827 83}7 {SQa 84}7 {537 84}7 51, 82, 83,54

and

*;11 o sty sats {51, 83t {s2, 3}, {51, 84}, {52, 84}, {53, 84}, 51, 52, 83, 5.

Note that both preferences are responsive to their extracted ranking >,,, so both of them
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can be uy’s preference, which contradicts to the conclusion of Corollary 1*. O
The following three theorems and their corollaries can be found in Roth and Sotomayor
(1992).
Theorem 4*: In a college admissions problem, if p and u' are stable matchings, then
u>g i if and only if p/ >y p.
Theorem 4* is a parallel result to Theorem 3 in the related marriage market.
Proposition 6: The result of Theorem 4* does not hold in the dynamic college admissions
problem.

Proof: Consider p and p/ in Example 3 again with

>_u1: sy {817 82}7 {817 83}7 {sla 34}7 {SQa 83}7 {SQa 84}7 {837 84}7 S1, 82, 83,54

and

>_u2: ceey {837 S4}a {827 S4}a {827 33}7 {317 84}7 {517 83}7 {sla 82}7 S4, 83, S2, 51-

Now p >y ¢/ but ¢/ #¢ psince sg and sy prefer p over p/, which contradicts to the conclusion

of Theorem 4*. O

Theorem 5*: In a college admissions problem, if p and ' are stable matchings, then A and

v are stable matchings.

Corollary 2*: In a college admissions problem, the set of stable matchings forms a lattice

under >;; and >g, and the lattice under > is the the dual to the lattice under >g.
Theorem 5* is parallel to Theorem 3 in the related marriage market. Corollary 2* follows

from Theorem 4* and Theorem 5%*.

Proposition 7: The results of Theorem 5* and Corollary 2* do not hold in the dynamic

college admissions problem.

Proof: Consider p and p/ in Example 3 again with

>'u1: “eey {817 82}7 {817 83}7 {827 83}7 {Sl» 84}7 {SQa 34}7 {S?n 84}7 S1, S2, 83, S4.

Notice that A\*(u1) = p?(uy) = {s2,s3} and \(s;) = u(s1) = ujuy, so A is not a matching.
Similarly, v?(u) = p?(uy) = {s1,s4} and v(s;) = p'(s1) = ugug, so v is not a matching,
which contradicts to the conclusions of Theorem 5*.
So Corollary 2* does not hold too. O
Despite the failure of Corollary 2*, Corollary 2 together with Lemma 2 ensure the set

of stable matchings forms a lattice under >g in the two-period market. In Example 3,
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pu = pAs i and pg = p Vg ', but if
ISUTTRIEEES {817 52}7 {817 53}7 {S2a 83}7 {517 84}7 {527 84}7 {537 34}7 81, 52, 83, 54

as in the proof of Proposition 7, and us to have the preference in the proof of Proposition 6

>'u2: L) {837 54}7 {827 54}7 {527 83}7 {517 84}7 {517 83}7 {517 82}7 84, 53, 52, 51

, then u Vy 1/ (3 py) is not a matching since both of them want {so, s3}. Of course, if one
of them prefers {sq,s4} to {s2,s3}, then the set of dynamically stable matchings can be a
lattice under >y, too. Here, since >y and >p are different partial orders, when a university
points to a preferable stable matching, its period-1 positions point to one stable matching,
while its period-2 positions point to another stable matching. This does not happen in the
college admissions problem since > always agrees with > when there is only one period.
Theorem 6*: In a college admissions problem, if ;1 and p' are stable matchings and u =
w(s) or u = p/(s), then if p(u) =, p'(u) then p'(s) =5 u(s) (and if p'(s) =5 p(s) then
pu) =y p (w).
Theorem 6* is an analogue of Decomposition Lemma (Lemma 4).

Proposition 8: The result of Theorem 6* does not hold in the dynamic college admissions
problem.

Proof: Consider p and g’ in Example 3 again with

>'u1: seey {817 82}7 {817 83}7 {827 83}7 {Sl» 84}7 {SQa 84}7 {837 84}7 S1, 52, 83, S4.

{s9,83} = p*(u1) =, p*(u1) = {s1,s4} and p/'(s2) = uyuy =4, pu(s2) = usus, which contra-
dicts to the conclusion of Theorem 6*. O

Even the two-period model reduces to the benchmark model when ¢! = 0 for all u,
Lemma 6 delivers less power in the more general case. In particular, in the single period
market, Lemma 6 enables us to rank the students in a university’s outcome from 1 to g,
but in the two-period market, we can no longer do it. Theorem 2* to 6* concern two stable
matchings. When we consider two dynamically stable outcomes for a university, p(u) and
i (u), one outcome can be from a matching consists of a superior period-1 matching and
an inferior period-2 matching, while another outcome comes from a matching consists of an
inferior period-1 matching and a superior period-2 matching, that is, u'(u) =, p'*(u) and
() \ 't (u) = (u) \ gt (u).

gt = 0 for all u is a strong condition; indeed, Theorem 2* to 6* and their corollaries will

hold in the two-period model under a slightly weaker condition: when ¢l = 0 or ¢> = 0 for
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all u. Under such condition, the power of Lemma 6 is restored. The reader can easily verify
them by modifying their original proofs together with Lemma 6.

Now we consider two other solution concepts for the benchmark model, the core and group
stability. A matching p is dominated by another matching p via a coalition B C SU U if
(i) VI € B, i € p/(1) implies i« € B, and (ii) VI € B, /(1) =; u(l). The set of matchings that
are not dominated by any other matching is the core. A matching i is Pareto dominated
by w"if (i) Vi e SUU, /(1) = pu(l), and (ii)3l € SU U such that p/(1) >=; p(l). A matching
1 is Pareto efficient if it is not Pareto dominated by any other matching, and we call the
set of matchings that are not Pareto dominated by any other matching the Pareto set. A
matching p is weakly dominated by another matching y' via a coalition B C SUU if
(i) VI € B, i € p/(I) implies i € B, (ii) VI € B, /(1) =; p(l), and (iii) 3] € B such that
(1) = p(l). The set of matchings that are not weakly dominated by any other matching is
the weak core. When a matching is not weakly dominated by another matching, it is not
Pareto dominated by any other matching and not dominated by any other matching, that
is, the weak core is inside the core and also inside the Pareto set; yet, there is no logical
relationship between the core and Pareto set.

In a basic one-to-one matching (marriage) problem, the set of stable matchings is equiv-
alent to the core, and under strict preferences, the core is equivalent to the weak core, so in
this case, the matchings in the core are Pareto efficient.?? In a basic many-to-one matching
(college admissions) problem, the set of stable matchings is equivalent to the weak core, while
the core might contain some unstable outcomes.?! That implies the set of stable matchings
is still inside the Pareto set, but the core might not. The following result can be found in
Proposition 5.36 of Roth and Sotomayor (1992).

Proposition 1*: In a college admissions problem, a matching is in the weak core if and
only if it is stable.

Roth and Sotomayor (1989) defines another notion for multilateral blocking, group sta-
bility, that does not require condition (i) in the definition of core or weak core, which requires
the coalition members only match with other members within the coalition after a deviation.
A group deviation from p is a group B C SUU and a matching p' such that (i) Vs € B,
W (s) € B, (ii) Yu € B, 0 € p/(u) = o € BUpu(u), and (iii) VI € B, /(1) =, p(l).2* A
matching  is group stable if it is immune to any group deviation from pu.

Proposition 2*: In a college admissions problem, a matching is group stable if and only if

it is stable.

20The first equivalence can be found in Theorem 3.3 of Roth and Sotomayor (1992).
21Roth and Sotomayor (1992) provide an example for unstable outcomes in the core.
22Konishi and Unver (2006) defines a more general definition for many-to-many matching problems.
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This result is Proposition 1 of Roth and Sotomayor (1989); it says in a college admissions
problem, the set of group stable matchings coincides with the set of stable matchings. There
is no logical relationship between the weak core and the set of group stable matchings. But
in a college admissions problem, they coincide with each other via proposition 1* and 2*.

In the literature of dynamic matching, the core equivalent is sometimes called the “dy-
namic core” (Kadam and Kotowski (2016)) or the “recursive core” (Becker and Chakrabarti
(1995); Damiano and Lam (2005)). A matching p is period-1 dominated by another
matching p/ = (up, u%) via a coalition B C SUU if (i) VI € B, i € ply(l) implies i € B
and [ € pl(i), and (i)VI € B, p/(1) =; p(l). A matching u is period-2 dominated by
another matching p/ = (u', p%) via a coalition B C SUU if (i) Vs € B, pu%(s) = u implies
uw € B and s € pj(u) \ pt(u), (il) Vu € B, s € p%(u) \ p'(u) implies s € B and p%(s) = u,
and (iii) VI € B, /(1) > p(l). The set of matchings that are not period-¢ dominated by
any other matching is the dynamic core. The dynamic core, unlike the core, specifies that
a student might go to different universities in different periods. If a coalition is formed in
period-1, a student can go to different universities within the coalition in different periods.?3
If a coalition is formed in period-2, a student can go to a university in the coalition that
might be different from his period-1 school. A coalition forms in period-2 can not alter the
period-1 matching.

Recall that in a many-to-one matching problem, the core might contain some unstable
outcomes, and this implies the dynamic core might contain some unstable outcomes too since
the dynamic core is equivalent to the core when ¢! = 0 for all u.?

Now we define the weak core equivalent. A matching u is weakly period-1 dominated
by another matching ;' = (uk, u%) via a coalition B C SUU if (i) VI € B, i € pl(l) implies
i€ Bandl € plh(i), (i) VI € B, /(1) = u(l), and (iii) 31 € B such that p/(1) >, p(l).
A matching u is weakly period-2 dominated by another matching p' = (u!, u%) via a
coalition B C SUU if (i) Vs € B, u%(s) = u implies u € B and s € p%(u) \ p'(u), (i)
Vu € B, s € p%(u) \ p'(u) implies s € B and p%(s) = w, (iii) VI € B, p/(1) =; p(l), and (iv)
3l € B such that /(1) >=; p(l). The set of matchings that are not weakly period-¢ dominated
by any other matching is the dynamic weak core. Note that p% must be period-2 stable
since Proposition 1* holds for A#5 and A*'. Tt is also easy to see the dynamic weak core is
inside the Pareto set.

Proposition 9: The dynamic weak core might not coincide with the set of dynamically

stable matchings.

23He can go to c in the first period as well.
24In a dynamic marriage market, Kadam and Kotowski (2016) also show the dynamic core might not be
equivalent to the set of dynamically stable matchings.
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Proof: We prove it by an example.

Example 4. Consider the following market. S = {s1}, U = {uy, us},
=up 81 Quy = (0, 1),
gt S1 Quy = (1,0),
st Uglq.

The unique dynamically stable matching is the empty matching, and

Uy Uy C @
on = (Z) S1 @ @
si 0 00

is the only matching in the dynamic weak core. The empty matching is weakly period-1
dominated by p via the grand coalition B = SUU with u(s1) = uguy =4, 0, p*(u1) = 51 = 0,
and p2(ug) =0 =, 0. O

Example 4 shows that there might be some dynamically individually irrational matching
in the dynamic weak core. Also, a dynamically stable matching might be Pareto dominated
by another matching. In another word, a dynamically stable matching is not necessarily
Pareto efficient.

In a period-1 core deviation, the coalition members only match within the coalition, so
there is no uncertainty. But when a group is contemplating a group deviation in the first
period, the group needs to consider the outsiders who are dropped by its members. Those
dropped agents will trigger evolutions in both periods, and this will make it very demanding
to form a group deviation in the first period. A period-1 group deviation from pu is a
group B C SUU and some matching i = (ﬂ};,ﬂz}g) such that (i) Vs € B, fih(s) € B, (ii)
Vu € B, o € is(u) = o € BUu'(u), and (iii) VI € B, (1) =; u(l).

A student in a core deviation might match with ¢ in the first period. In contrast, condition
(1) here actually says a student in B will match with some university in B in the first period.
The intuition is that if a student wants to sign a credible agreement with some u € B, he
does not need to join the group; if a student wants to sign an incredible agreement with some
u € B, his presence will not affect the evolution in the first period and since the definition
explicitly requires the period-2 matching must be period-2 stable, he is not guaranteed to
match with u, which will potentially violate condition (iii).

A period-2 group deviation from i is a group B C SUU and a matching p/ = (', yu%)
such that (i) Vs € B, p%(s) € B, (ii) Yu € B, 0 € p%(u) = o € BU p*(u) \ p'(u), and
(iii) VI € B, p/(1) = u(l). Again, note that p% must be period-2 stable since Proposition 2*

holds for A% and A*'. A matching  is dynamically group stable if it is immune to any
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period-¢ group deviation from y.%°
Proposition 10: The set of dynamically group stable matchings might not coincide with
the set of dynamically stable matchings.
Proof: We prove it by an example.
Example 5. S = {s1,s2}, U = {u},
Dy 81,82 uy = (1, 1),
st ULU, CUT,
s UTUT.

It is easy to check that there is a unique dynamically stable matching

uy ¢ @
p=1 s1 0 s
S1 Q) S9

Yet, the unique dynamically group stable matching is

U1 C (Z)
p=1 s s 0
81, 82 0 0

There is a period-1 group deviation from p with B = {uy, s} and p/. Note that u' is the
unique period-2 stable matching given u'*, while p'* is not period-1 stable. O

Note that in example 4, the empty matching is in the set of dynamic group stable match-
ings since condition (iii) of period-1 group deviation is never satisfied for uy (Vu € M,
p*(uz) = 0), and in example 5, p is in the dynamic weak core, so these shows there is no
logical relationship between the dynamic weak core and the set of dynamic group stable
matchings.

There are some similar results in different contexts. In many-to-many matching problems,
the set of pairwise-stable matchings is not Pareto efficient (and thus no in the weak core) and
no long equivalent to the set of group stable matchings.?® In a dynamic one-to-one matching
problem, Kadam and Kotowski (2016) show the dynamic core might not be equivalent to
the set of dynamically stable matchings.

25This is a different concept to the dynamic group stability in Kurino (2009), which is defined in a dynamic
marriage market.

26These results can be found in Proposition 5.23 of Roth and Sotomayor (1992). In Example 2.6 of Blair
(1988), the first result is shown with substitutable preferences.
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3.4 Results That Have No Parallel in the Benchmark Model

The following two results try to recondition Theorem 1* and Proposition 1* that we vetoed
in the last section. It turns out if the no active student condition is not a concern, then they
will hold in the two-period model.

Theorem 9: If 3 . that contains uu’ such that u # ', then S-PA-DA is strategy-proof
for students.

As we shown in the proof of Proposition 3, whenever there is a uu’ plan in a student’s
preference, it is a dominant strategy to hide it. The major reason is that a wu’ plan is never
an equilibrium plan for the solution concept dynamic stability, so without any preference
restriction, Theorem 9 and Proposition 11 below can not hold. In contrast, uu’ plan can be
an equilibrium plan in a matching within the dynamic weak core as we show in Example
4. Indeed, uu’ can be an equilibrium plan in a dynamic group stable matching by a similar
example.

Example 6. Consider the following market. S = {s1,s2}, U = {uy, us},

Dyt S1, 82 Guy, = (1,1),

Duyt S15 52 Quy = (1,1),

st UgUq,

st U Ua.

Again, the unique dynamically stable matching is the empty matching, and

Uy U C @
=1 s9 s 0 0
s1 s9 0 0

is in the unique dynamically group stable matching. There is a period-1 group deviation
from the empty matching with B = {uy, us, 51, s2} and p.
Proposition 11: If 3 =, that contains uu’ such that u # «’, then a matching is in the
dynamic weak core if and only if it is dynamically stable.

This proposition also says under the this preference restriction, the dynamically stable
matchings are Pareto efficient. When a coalition is formed in period-1, the coalition mem-
bers always match with its members in both periods, so they are exempted from market
evolutions. This is true since by definition they can enforce some period-2 stable p% from
the first period. Of course, there might be more than one such p% in the second period
as long as all conditions of weakly period-1 domination are respected. However, a period-1
group deviation will induce the market to evolve twice, one in each period, so when we try

to recondition Proposition 2*, the two layers of uncertainty make it very difficult to tackle.
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We show that the sets of achievable students for period-1 and period-2 positions of a
university do not need to be disjoint.
Claim 1: Suppose p is a dynamically stable matching and s € u'(u) for some u, there could
be another dynamically stable matching u/ such that s € p/?(u) \ p'*(u).
Proof: We prove it by an example.
Example 7. Consider the following market. S = {s1, s2, s3}, U = {uy,us},

Dyt S1, 82,83 quy = (1, 1),

Dyt S3, 81 Quy, = (1,0),

71 UgU2, UrUY,

5ot ULU, CUT,

755t CUT, UgUg.

In this market,

up  us ¢ 0 up  us ¢ 0
ns = S9 S1 83 @ and,uU = S1 S3 S @ )
0

52,83 S1 0 51,82 53 0 0

SO So is an achievable student for both period-1 and period-2 positions of wu. O
Theorem 10: If  and i/ are dynamically stable matchings, then p?(u) = p/?(u) if and only
if p(u) = ().

That is, there do not exists two period-1 matchings such that they would give u the
same final outcome at two different dynamically stable matchings. The intuition behind
this theorem is very simple. Consider a university u; with 1 position in both periods and
preference >=,: s1. If p?(u) = {s;} and p/?(u) = {s1} but p'(uy) = 0 # s; = p*(uy), then
they can not be both stable because s; would have strict preference over plans cu; and uquq.
Theorem 11: Suppose p and ' are dynamically stable matchings with s € p'(u) and
s' € p*(u) \ p!(u) for some u. If u(s) =4 p/(s) and p(s') =y p/'(s') then p'(u) =, p(u). If
pi(u) =y p/(u), then 1/ (s) =y pu(s) or p/(s") =o p(s').

Theorem 11 says there is no Pareto improvement between two dynamically stable match-
ings. It delivers a message similar to the Decomposition Lemma, yet it is not comparable

with Theorem 6* since it concerns two students while Theorem 6* only concerns one.

4 Conclusion

In this paper, we propose a dynamic two-sided many-to-one matching model that is general-

ized from the college admissions problem. We show that many of the results from the college
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admission problem carry over to our model, yet some of them fail because of the two-period
nature. Our solution concepts are all natural generalizations of their single period coun-
terpart. However, even the two-period model is an extension of the many-to-one matching
model, it is also similar to the many-to-many model in the sense that each student might
match with two schools, one for each period. Dynamic stability requires at a dynamically
stable matching, each student only matches with one university. But neither dynamically
group stability nor dynamic weak core requires this.

Multilateral blocking is rarely observed in admissions markets. While both dynamic weak
core and dynamic group stability require large scale of prophetic reasoning, they might work
in a small market, but it will be difficult to track evolutions in a large market. Dynamic
stability is more conservative and prophetic reasoning minimizing. Yet it does not exhibit
all fine properties of the single period stability, it remains the best option among the three
solution concepts to approach the problem with moderate or large market size given its

tractability.
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A Omitted Proofs

Proof of Lemma 1: pug is dynamically individually rational since at each step of the
algorithm, no university keeps an unacceptable or active student, and no student proposes
an unacceptable plan; also, (uk(s), p4(s)) = (uk(s), ﬁi}g(s)) = 0 for all students since there
is no active student.

s is not period-1 blocked by any pair with a two-period plan. Suppose uu >4 ps(s) for
some u and s. This means that s applied to v with a two-period plan and was rejected at
some step n of S-PA-DA. Denote a tentative matching of u at step n by pd(u). p%(u) only
improves weakly as n goes up, i.e., et (u) =, pe(u), so u will not block with s.

its is not period-1 blocked by any credible agreement. We show a stronger result that
s is not period-1 blocked by any agreement. Suppose cu > pg(s) for some v and s. This
means that s applied to u with an agreement and was rejected at some step n of S-PA-DA.
Again, p%(u) only improves weakly as n goes up, so u will not block with s.

ts is not period-2 blocked by any pair. Suppose u >f§15 1%(s) for some u and s. Notice
that pk(s) = ¢; otherwise, say ps(s) = «/. But @/ will not admit s in the first period since
1 is dynamically individually rational. Now we go back to the case above. O
Proof of Lemma 2: ( = ) Suppose /i is unstable.

Suppose [i is not individually rational for some agent. If 3s such that 0 =, (i*(s), z(s)),
then this implies 0 = (1" (s), i’ (s)) = (' (s), #*(s)). 1f Fuj 5 such that 0 =1 (U g), then
this implies () =, s for some s € pu!(u); if there is some active student in fi, then there must
be some in p. If Ju5 such that () = fi(u? ), then this implies §) >, s for some s € p*(u).
Period-1 individual rationality fails in the first three cases, and period-2 individual rationality
fails in the last case. Hence, i is not dynamically individually rational.

Suppose fi is blocked by a pair. If 3(s,u; 5) such that uj gu; 5 = fi(s) and s =ul fi(uj 5),
then this implies (u,u) =, (1'(s), @2 (s)) = (1'(s), 4*(s)) and s =, o for some o € p'(u).

If 3(s,u3 ) such that cu? >, i'(s) and u? s =2 fi(u ), then this implies either (c,u) >,

(1! (s), 121 (s)) = (u'(s), *(s5)) with 0 < 7,(s) < g2 or u =+ p2(s) and s =, o for some

o € p?(u) \ p'(u). In the first two cases, p is period-1 blocked, and it is period-2 blocked in
the last case.

So, p is dynamically unstable.

( <) Suppose u is dynamically unstable.

Suppose p is not dynamically individually rational. If 3s such that 0 =, (u'(s), u?(s)),
then this implies @ =, (1'(s), z1*(s)) for some s. If ) =, s for some s € u'(u), then this
implies Elujl-ﬁ such that () =l ﬁ(u}ﬂ); if there is some active student in p, then there must

be some in fi. If ) =, s for some s € p?(u), then this implies Ju7  such that () =2 (v ).
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Hence, [ is not individually rational.

Suppose p is blocked by a pair. If p is period-1 blocked by a plan, i.e., ds and u such
that (u,u) = (u'(s),fi2:(s)) = (u'(s), 4*(s)) and s >, o for some o € p'(u), then this
implies 3(s, u; ) such that uj suj, =, fi(s) and s =l fi(uj 5). If p is period-1 blocked by
a credible agreement, i.e., 3s and u such that (c,u) =, (u'(s), fiZ.(s)) = (u'(s), 4*(s)) with
0 < ry(s) < g, then this implies 3(s, u? ) such that cu3., =, i'(s) and u s =2 a(us.). If
is period-2 blocked, i.e., 3s and u such that u =*" 1%(s) and s -, o for some o € p?(u)\p* (u),
and this implies 3(s, u ;) such that cuf =, fi'(s) and u s =2 fi(u3 ).

So, fi is unstable. O
Proof of Lemma 3: [y is individually rational since at each step of the algorithm, no
position proposes an unacceptable or active student, and no student keeps an unacceptable
plan.

fii is not blocked by any pair. Suppose ss =l ﬂg(u}ﬁ) for some ujl-ﬁ and s. This
means that ujl-ﬁ proposed to s and was rejected at some step n of U-PA-DA. Denote a
tentative matching of s at step n by g (s). fg(s) only improves weakly as n goes up, i.e.
fig ™ (s) = it (s), so s will not block with u} ;. Suppose u?_s =2 fig:(u? ) for some u3_ and
s. This means that ujzw proposed to s and was rejected at some step n of U-PA-DA. Again,
it (s) only improves weakly as n goes up, so s will not block with u?w O
Proof of Theorem 2: We prove (ii) here, and (i) can be proved in a symmetric way. We
will show that in one of the deferred acceptance algorithms, no one on the proposing side is
rejected by an achievable agent.

The proof is by inductions. Assume that up to a given step in the algorithm no position
has been rejected by a student who is achievable for it so far. At this step, suppose s rejects
p-

If p is unacceptable, then p is unachievable for s.

If s rejects p because he is proposed a preferable plan p’. We must show p is not achievable
for s. We know p’ prefers s to any student except those who have previously rejected it
(so those students by assumption are unachievable for it). For contradiction, consider a
hypothetical matching p that matches p to s and everyone else to an achievable match such
that if p is achievable for s, then p is one of the stable matching. But p’ prefers s to his
match at u, so p’ and s will form a blocking pair. Hence, there is no stable matching that
matches s and p, so p is unachievable for s. O
Proof of Theorem 3: Suppose it is not true such that i >g i’ and g >7 f’. Then 3s such
that fi(s) =, [i'(s), wherefi(s) > () by strict preferences. Then the position p = fi(s) must
match with someone else. Since p also has strict preferences and i > . p and s will form

a blocking pair at @’. So i’ is not stable, a contradiction. O
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Proof of Theorem 4: Let ;1 be some stable matching other than py. By Theorem 2 (ii),
fig is position-optimal, that is, Vp € U, jig(p) =, p(p) and Ip € U such that jig(p) =, u(p).
By responsiveness, Yu € U, pj(u) =, p'(u) and pd(u) \ pi(u) =, @?(u) \ p*(u), and
Ju € U such that p};(u) =, p'(u) or pZ(u) \ py(u) =, p*(u) \ p'(u). By construction,
pi(u) and p?(u) \ pis(u) are disjoint subsets of S, so are p'(u) and p?(u) \ pi;(u). Then
by responsiveness again, Yu € U, uy(u) =, p(u) and Ju € U, py(u) =, p(u). That is,
Hu >u -

The second part follows from a symmetric argument together with Corollary 1, which
says jig is the worst stable matching for positions. O
Proof of Lemma 4: Suppose for some s, p = fi(s) =5 i'(s) = p’. Then since y' is
stable, this implies 7i'(p) =, fi(p) = s. Hence, ji(S*) is contained in U¥, so |S*| < |UF].
Symmetrically, Z(U") is contained in S%, so |S%| > |U|. Since fiand [’ are one-to-one and
SP and U” are finite, both i and fi’ are onto. O
Proof of Theorem 5: By definition, (1) = i'({) VI € S¥UU* and \(I) = (l) VI € SFUU .
By Lemma 4, ) is therefore a matching. Suppose (s,p) blocks A. Then s =, A(p) and
p =5 A(s). Hence (s, p) blocks fi if A(p) = ju(p) or i’ if A(p) = i’(p). In either case we have
a contradiction.

By a symmetric argument, v is also a stable matching. O
Proof of Theorem 6: Using the S-PA-DA in the related marriage market. Let g and
fis be the corresponding matchings of y and pg in (S, U, =), respectively. The matching i
would match every student s to some position that rejected him in the algorithm because a
preferable student s’ proposed to it (even s satisfies its individual rationality). So all those
positions i(S) have been matched under fig, this implies fis(f(S)) = S. Hence, all students
would have been matched under fig and fig(S) = f(S). But since all students are matched
under fig, any position which gets a proposal in the last step of the algorithm at which
proposals were issued has not rejected any acceptable student, i.e. the algorithm stops as
soon as every position in jig(S) has an acceptable proposal. So such a position must be
unmatched at p since every student prefers fi to fig, which contradicts ig(S) = (S). O
Proof of Lemma 5: Let ji and fig be the corresponding matchings of y and ug in (S, U, =),
respectively.

Case 1: u(S") # fug(S’) . Pickapin a(S")\fs(S’), thatis, i(p) = s’ € S"and ig(p) = s ¢ S".
For fis to be stable, s =, s’. But s ¢ S’, so he does not prefer i to fig and by strictness of
preferences, we have fig(s) = p > fi(s). So (s,p) blocks p.

Case 2: ji(S') = jis(S’) = U’. Let p be the last position of university in U’ to receives a

proposal from a student in S’ that satisfies its individual rationality in the S-PA-DA. Under

fi, since p € U’, it matches with some student in S’. Let us denote him s’. We show that s’
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is rejected before p gets this last proposal. Since p >4 fig(s’), s’ must proposed to p and get
rejected in S-PA-DA and then ends up matching with fig(s’). But if p only rejects s when
it gets its last proposal from a student in S’ that satisfies its individual rationality, then the
proposal of s’ to fis(s’") would have came later, which contradicts how we pick p. So p rejects
s’ before it got its last proposal from a student in S’ that satisfies its individual rationality,
that implies it holds a proposal from some other student. Let us denote him s. So this s
would prefers p to fig(s) since he proposed to fis(s) after p rejected him. Since s satisfies p’s
individual rationality but later proposed to fis(s) and p is the last position of university in
U’ to receives a proposal from a student in S’ that satisfies its individual rationality, s ¢ S'.
That implies p =, fis(s) =5 i(s).p rejects s’ because of s. So (s, p) block fi. O
Proof of Theorem 7: |is(U)| = |fis(S)| > |ag(5)| = |ag(U)] > |us(T)]- O
Proof of Lemma 6: We show that fi(u; 4) =l fi' (uj 5) for all > i. Suppose not. 34 such
that fi(u; ) =ul il (u ) and i/ (uj g, ) Zul fi(ujz,,). Note that uj 5 is matched under i (we
cannot have () = fi(uj 4) =l fi'(uj5)), so Theorem 7 implies fi'(ujz) € S. Let s = fi'(u] ).
By Lemma 4, ujz = f/'(s') >, fi(s'), and since s’ = fi'(u; 5) =ul (U] 501) =l (] 541),
s' # f(uj ,,). Since by construction uj 4, is the next most preferred plan in the preference
of s, uj 5,1 = fi(s'). So 8" and uj 4, will block fi’, which contradicts the stability of u. Since
1 is arbitrary, the first part follows.

The second part can be proved by the same argument. O
Proof of Theorem 8: Suppose not. Then Ju;; such that fi(uj,) =ul [’ (uj,;), then from
the proof of Lemma 6 we know that fi(uj ,) =ul fi'(uj g) for all § > i. But we know by
Theorem 7, if a period-1 position is unmatched in some stable matching, then it is unmatched
under all stable matchings. That means the ﬁ(u]1 o) = [z’(u]l.? o) = () for the last period-1
position in u, and this contradicts f(u; ) =l fi'(uj 1) So such uj; does not exists, that is,
fi(uj 5) = fi' (u] 5) for all 3.

The same result can be proved for period-2 by the same argument. O
Proof of Theorem 9: Note that 3 >, that contains uu’ such that u # u/, so a student will
not misstate any uu’ preference as uu. Suppose a student s can misstate his preference as
~, , along with whatever preferences everyone else is reporting, we have a new preference
profile = such that fi5(s) =, us(s), where ug is the student-optimal matching under the
true preference. Since S-PA-DA is used, fig will be individually rational, apply the Lemma
5 to the true preferences, S the set of students who prefer fis to g is not empty (s will be
in S since jig(s) = pug(s), and there maybe more students) , a pair (s',p) blocks fig under
the true preference such that s’ € S\ S and p € jig(S). a
Proof of Proposition 11: Note that # =, that contains uu’ such that u # u', so a university

does not need to care its no active student condition that embeds in its period-1 individual
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rationality.

( = ) If p is dynamically unstable via a single agent because p is not dynamically indi-
vidually rational, then it is clearly not in the dynamic weak core since it is weakly period-1
dominated via a coalition B = {s} by any matching p' with p/(s) =0 or B =uU p?*(u) \ s
for some s that () =, s by any matching g/ with p/?(u) = p%(u) \ s.

If p is dynamically unstable via a pair of student and university (s,u) such that pu is
period-1 blocked, then it is weakly period-1 dominated via a coalition B = uUsUp?(u)\ o by
any matching g/ with p/(s) = vu, p'* (u) = sUp'(u)\o, and p?(u)\ @ (u) = p?(u)\p'(uw) or 1/
with p/(s) = cu, p'*(u) = p*(u), and p?(u)\p'(u) = sUp?(u)\p'(u)\o . Similarly, if pis p is
period-2 blocked, then it is weakly period-2 dominated via coalition B = uUsUp?(u)\p! (u)\o
by any matching g/ with p?(s) = u and p?(u) \ p'(u) = s U p?(u) \ p'(u) \ o.

( <) Suppose p is not in the dynamic weak core. Then p is period-1 or period-2 weakly
dominated by some matching p via some coalition B, and hence some student or university
prefer i/ to p. If 41 is not dynamically individually rational, then it is not dynamically stable.

Suppose u satisfies dynamically individual rationality.

Suppose also p is period-2 weakly dominated by some matching p/ = (u', u%) via some
coalition B.

Suppose pu4(u) \ pt(u) =, p?(u) \ p'(u) for some u € B. There must exists s € u%(u) \
pt(u) \ p?(u) and o € p?(u) \ p(u) \ p%(u) such that s =, o; otherwise, o =, s Vs €
pa(u) \ pt(u) \ g% (u) implies p2(u) \ p(w) =, p%(uw)\ p'(u) by responsiveness. By definition,
s € p%(u) \ p'(u) implies s € B, so u = p/(s) =, p(s); furthermore, s ¢ p?(u) \ p'(u) and
s € pp(u)\p' (u), so i'(s) = (' (s), nis(s)) # (' (s), 4?(s)) = p(s). Therefore, y/(s) =, p(s).
Hence, p it is period-2 blocked by (s, u).

Suppose some s € B with p%(s) = u with p/(s) =, pu(s), this implies u € B, so u%(u) \
pl(u) =y p?(u) \ pt(u). pi(s) = u with @/(s) =, p(s) also implies p?(s) # u (a student
can not switch between cu and wu given p'), so p%(u) \ p'(u) # p?(u) \ p'(u). Hence,
pa(u) \ pt(u) =, p?(u) \ p'(u). This implies that there is a student s’ € p%(u) \ p'(u) \ p*(u)
(possibly different from s) and o € p?(u)\ p'(u) \ p%(u) such that s’ =, . Then u is blocked
by (s, u).

Suppose also p is period-1 weakly dominated by some matching p/ = (u}, u%) via some
coalition B.

Suppose u%(u) =, p*(u) for some u € B. There must exists s € p%(u) \ p?(u) and
o € p*(u) \ p%(u) such that s =, o; otherwise, o =, s Vs € p%(u) \ p?(u) implies p?(u) =,
p%(u) by responsiveness. By definition, s € p%(u) implies s € B, so u = p/(s) =, u(s);
furthermore, s ¢ p?(u) and s € p%(u), so p'(s) # u(s). Therefore, p'(s) =4 p(s). Hence, p
it is period-2 blocked by (s, u).
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Suppose some s € B with p%(s) = u with p/(s) =, u(s), this implies u € B, so u%(u) =,
1 (w).

If p%(u) # p?(u), then pi(u) =, p?(u). This in turn implies there is a student s’ €
w3 (u) \ p?(u) (possibly different from s) and o € p?(u) \ p%(u) such that s’ >, o. Then p
is blocked by (s',u).

If 4% (u) = p?(u), then it means s switches between cu and uu. Without loss of generality,
assume uu >4 cu. So p'(s) = wu, then either there is an unmatched period-1 seat under
1, or there is no unmatched period-1 seat under p but there exists some student s’ such
that 1/(s') = cu =y wu = p(s’) and he switches his seat with s (note that s € B, so
W (s") =g u(s'), since there is no more period-1 seat for s under u, given p%(u) = p?(u), s’
has to move to cu under g/, this implies p/(s') = cu »=¢ wu = p(s')). In either case, u is
blocked by (s, u). O
Proof of Theorem 10: Suppose u fills all its quota under p and g’ in both periods;
otherwise by Theorem 7, p!(u) = p/*(u) or p?(u) \ p(u) = p?(u) \ @ (u).

( <= ) This direction is by definition of .

(=) If p(u) # p'(u) but p?(u) = p?(u). Then (without loss of generality) u'(u) =,
) and () \ ) sy g2(0) \ (). 35 € pl(u) and s = F(e2,) € p2(u) \ ().
Js’ € p*(u) and s" € p®(u) \ p'(u). Since preferences are strict, without loss of generality,
suppose s >, s and cu =, uu. Then u?ﬁ and s will block u, a contradiction. O
Proof of Theorem 11: Suppose v fills all its quota under p and g’ in both periods for the
first part; otherwise, by Theorem 7, u'(u) = p'*(u) or p?(u) \ p'(uw) = p?(u) \ p'*(u). This
will imply pu(s) = p/(s) or p/(s) = u(s’). For the second part, u has to fill all its period-1
positions or period-2 positions under p and p'; otherwise, by Theorem 7, p(u) = p/(u).

Let i and ji’ be the corresponding matchings of 4 and g in (S,U, =), respectively.

2

Elujl-ﬁ,um such that ﬂ(u}ﬁ) = s and ﬁ,(ujz,y) = s

Suppose i(s) = p/(s) and p(s’) =g p/'(s'). Since p' is stable, 3s” = fi'(u; ) >, s and
1

35" = (u3,) >y s'. By Lemma 6, fi(uj,) ) fi'(uj,;) for all positions uj, of u with uj,

strictly prefers, and fi(u3,) =1 [ (u?,) for all positions u3 ., of u with with w3 strictly prefers.
So by responsiveness, p'* (u) =, p'(u) and p?(u)\ 't (u) =, p?(u)\ u*(u). By responsiveness
again, p'(u) =y pu(u).

Suppose p(u) =, p'(u), then either p'(u) =, p'"(u) or p(u) \ p'(u) =, p?(u) \ @ (u).
Define U" = {p € Ula(p) = i'(p)} and S = {s € S|f/(s) =, fils)}.

If p(u) = p'*(u), then by Lemma 6, fi(uj,) =, i'(uj;) for all period-1 position of w,
so either f(uj,) = i'(uj,) or uj, € UF. Note that fi(u}4) = s, together with Lemma 4,
fi(s) = fi'(s) or s € S*. That is, yi/'(s) = u(s) (note that it is possible that s is just moving

to a “worse” period-1 position at u).
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If p2(u) \ pt(u) =y p(u) \ @' (u) , by the same argument, p'(s") =, u(s').
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