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1 Introduction

It is well known that the private optimal does not coincide with the social optimal for a wide

class of economic problems, often referred to as social dilemmas. A rare positive result is due

to Varian (1994) who shows that, in theory, for the case of two players, the problem can be

solved by a mechanism that takes form of a two-stage game. However, Andreoni and Varian

(1999) found that this mechanism did not perform well when tested in laboratory settings.

In a seminal paper, Fehr and Gächter (2000) found when costly punishments are introduced

full cooperation can be achieved in experiments after several rounds. Fehr and Gächter

(2000) results not only remained very robust in many subsequent studies (for example,

Gürerk et al. (2006), Sefton et al. (2007), Carpenter (2007), Nikiforakis and Normann (2008),

Egas and Riedl (2008) but also led to some theoretical studies that incorporate behavioral

considerations in utility functions (for example, see Fehr and Schmidt (1999), Bolton and

Ockenfels (2000), Charness and Rabin (2002), Dufwenberg and Kirchsteiger (2004), Cox

et al. (2007), Cox et al. (2008)). In this paper we show that a simple mechanism that

does not depend explicitly on costly punishments can work well in laboratory settings in

sustaining cooperation. Moreover, the mechanism performs well in theory within with an

infinitesimally small behavioral parameter.

The idea behind our mechanism comes from John Kenneth Galbraith who described

a profit-sharing scheme used by the National City Bank (now Citibank) in the US in the

1920s where each officer would sign a ballot giving an estimation towards each of the other

eligible officers, himself/herself excluded. The average of these estimations would guide the

Executive Committee in the final allocation of funds to the officers. Our mechanism uses

the idea of the profit-sharing scheme described by Galbraith and it can be applied to many

economic problems including games with positive externalities and principal-agents problems

in which the principal needs to decide on the distribution of some common resource among

the agents.1 Another real life example in which our mechanism fits well is on the division

of tasks in university level group assignments. While professors typically will not be able

to know the individual student’s input, they will only observe the final output. In such a

situation, our mechanism can be described by a two stage game in which students choose

how much effort to exert in the first stage and in the second stage after observing each

other’s effort, each student proposes a fraction of the total marks (sum of marks given to all

students in the group) to be given to each of the remaining students in his group.

1An important assumption is that while the principal does not observe the agents effort levels, agents
observe each other’s effort. This is common in certain kind of workplace. For example, Freeman (2008)
reports that 80% of employees observe their co-workers’ effort levels in the factory production line.
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Chaudhuri (2010), in a literature survey on laboratory experiments identified three main

drivers of a cooperative outcome: 1) conditional cooperation, 2) costly punishments and

3) non-monetary punishments. While conditional cooperation theories and non-monetary

mechanisms often depend on assumptions about the players’ beliefs and non-standard the-

ories, punitive mechanisms remain robust in many settings. However, it has been argued

that from a welfare view point costly punishments might be inefficient as players need to

destroy some of their own payoffs in order to punish others and that perverse “anti-social”

punishment are often observed in experiments. Moreover, such mechanisms have also been

criticized on the grounds of practicality as they cannot be implemented in many real life

settings like organizations. The mechanism we propose is based on some endogenous payoff

allocation in which players can freely decide on some fraction of the counter-players payoff.

Players are free to punish to reward or even always allocate evenly to the remaining players

while no costs are incurred by the players in the allocation exercise.

While we find that our mechanism performs well in laboratory settings, we also give

some theoretical results to show that our mechanism implements effort in subgame perfect

equilibrium. These relate to results by Varian (1994) who introduced a class of mechanisms

where the unique subgame perfect Nash equilibrium coincides with the pareto-optimal out-

come. One merit of his result relative to the literature on optimal tax design by Mirrlees

(1971) is that it is a pure market result in which no third party intervention is needed to

solve the externality problem.However, in Varian’s mechanism players need to first decide on

some side payments before playing the contribution game. One can argue that it is not very

natural for players to discuss about side payments before playing the effort game especially

when the number of players is large and therefore Varian’s mechanism may not work in many

real life settings. Our mechanism is a simpler mechanism that solves the same problem with-

out requiring the players to make side payments before playing the game. Instead, we let

the players propose a division of the pie among the remaining players at a second stage after

observing the first stage history. Under some mild behavioral assumptions, our mechanism

implements full cooperation in both SPNE and strong NE.

A more recent mechanism similar to that of Varian’s is given by Masuda et al. (2014)

who propose a simple mechanism of pre-play commitment. For the two-player case, their

mechanism is a two stage game which they call the minimum approval mechanism (MAM).

Under this mechanism a Pareto-efficient contribution level is guaranteed as it is a weakly

dominant strategy for each player. However, implementing this mechanism demands an in-

stitution with strong regulations to enforce the announced contribution levels whereas our

mechanism does not have this requirement. Our mechanism also distinguishes from mecha-
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nisms that require the intervention of a third party. For example, Falkinger (1996) proposed

a mechanism in which a central planner chooses a single parameter to reward and penalize

agents for deviations from the average contributions to the public good whereas Stoddard

et al. (2014) designed an experiment that achieves cooperation in laboratory settings. How-

ever, while in their experiment, there is one additional player who acts as an allocator after

observing group members’ effort decisions, our mechanism can achieve the full cooperation

result without relying on the central planner and an “external” allocator.

One important theoretical implication of Fehr and Gächter (2000)’s result is that stan-

dard theory cannot explain why players are willing to incur a cost to punish, but one has to

assume certain fairness rules. Our results show that with some infinitesimally small behav-

ioral parameter, cooperation can be achieved in subgame perfect equilibrium. While Cox

et al. (2007) give a representation of preferences that capture some elements of altruism,

in this paper we use the notion of distributive justice. This concept was first explored by

sociologists (Homans (1958); Adams (1965)) and later adopted by behavioral economists

(Gächter and Riedl (2005),Konow (2000)). Distributive justice is often defined by the prin-

ciple by which a player’s entitlement towards some group outcome should be proportional to

his/her investment. Konow (2000) adds a cost component in the player’s utility function to

capture the cognitive dissonance suffered whenever the player himself does not abide by the

distributive justice principle towards other players. In one of Konow (2000)’s experimental

treatments, participants were divided into groups of two and were asked to fold envelopes as

a task. A piece rate per envelope was paid to each group. A disinterested third party was

then asked to divide each group’s earnings between the group members. It was found that

more than 90% of third parties used a division rule whereby each member was allocated a

share that is proportional to the member’s effort, i.e., the number of envelopes they fold.

We explicitly incorporate Know’s notion of fairness in our model.

The remainder of the paper is organized as follows. Section 2 presents our mecha-

nism and its assumptions. Section 3 describes the experimental design and our hypotheses.

Experimental results are discussed in section 4 and section 5 concludes.
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2 Galbraith’s Mechanism

2.1 Effort Game Setting

We consider a standard voluntary contribution (or effort) game, with N = {1, ..., n} players,

in which each player i has endowment of ē unit of effort and chooses whether or not to

contribute effort to some task. In particular, the player chooses some ei ∈ E = {0, ē}. As

usual, we let e = (e1, e2, ...en) ∈ E =
∏n

i=1Ei, e−i = (e1, ..., ei−1, ei+1, ...en) and e = (ei, e−i).

Players’ actions determine a joint monetary outcome of Π(e) : E → R which must be

allocated among the players. The transformation of effort to the monetary outcome is

described by a production function in which inputs are perfect substitutes. More formally,

we let Π(e) = β
∑n

i ei. If we let qi be the share of total outcome Π(e) that accrues to player

i and we assume that Π(e) will be fully allocated, that is,
∑n

i=1 qi = 1, then player i’s payoff

function is given as follows:

πi(qi, e(ei, e−i)) = (ē− ei) + qiΠ(e) (1)

We first consider an equal division sharing rule (i.e., standard voluntary contribution

mechanism) in the following result.

Proposition 1 (Equal Division Rule). Assume qi = 1/n for all i, then ei = 1 is a dominant

strategy if and only if β > n.

2.2 The Mechanism

Our mechanism is inspired by J.K. Galbraith’s famous volume “The Great Crash of 1929”, in

which he outlined a profit-sharing scheme used by the National City Bank (now Citibank) in

the US in the 1920s. The scheme as described by Galbraith is as follows: “After a deduction

of eight precent, twenty percent of the profits of the bank...were paid into a management

fund. This was divided twice a year between the principal officers by an arrangement which

must have made for an interesting half-hour. Each officer first dropped in a hat an unsigned

ballot suggesting the share of the fund that [the CEO] should have. Then each signed a

ballot giving his estimate of the worth of each of the other eligible officers, himself excluded.

The average of these estimates guided the Executive Committee of the bank in fixing the

percentages of the fund each officer was to have.”

4



We formally model this procedure in the following two stage game. In the first stage,

each player will choose an effort ei (contribution level) just as in the effort game described

in the previous section. The second stage can be described as follows. Let aij denote the

proportion of Π(e) proposed by player i to player j such thataii = 0, aij ∈ [0, 1]∀i 6= j and∑n
i=1 aij=1. In other words, each player proposes a fraction of Π(e) to be received by each

of the other players. The final share qi of Π(e) that each player i receives is given by the

following formula.

qi =

∑n
i=1 aji

n
(2)

2.3 Equity Theory and Cognitive Dissonance

One interesting aspect of the second stage game described by the Galbraith’s is that how

players allocate do not affect their own payoff. Indeed, they may allocate in a random

manner without any consequences to themselves. But what is “fair” distribution of the

pie among a group of players when the size of the pie is determined by the sum of the

individuals’ effort? As pioneered by some sociologists (for example, Homans (1958), Adams

(1965)), this is related to the concept of “equity”. Distributive justice is obtained when

the profits of each party are proportional to their investment. Recent experimental studies

suggest that discretionary variables like the effort level (in our case) are used to justify a

participant’s entitlement of a share of the total outcome Konow (1996), Gächter and Riedl

(2006), Stoddard et al. (2014)). Adams (1965) argues that when distributive justice is not

achieved, people may either suffer from anger (feeling that they get less than what they

deserve) or guilt (feeling that they get more than they deserve). Konow (2000) adds this

element of emotion into player’s utility function. In particular, whenever there is a difference

between the actual share that the player allocate to others and the share that the player

ought to allocate according to the proportional rule, the player will incur some psychological

cost .2

In the same spirit of the Konow’s approach, we consider Galbraith mechanism with a

cost component that captures the idea of distributive injustice in the player’s payoff function.

2In Konow (2000), people’ adoption of distributive justice is modelled by some exogenous cost to reduce
their cognitive dissonance. This method has also been used by Rabin (1994) and Oxoby (2003,2004). The
“dissonance reduction” cost can be modelled endogenously in one’s utility function in Benabou and Tirole
(2011)’s model.
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According to the equity theory, the fair proportion of player j ’s share of the total outcome

should be qi =
ei∑n
i=1 ei

.

Under Galbraith’s mechanism, perfect implementation of proportional rule cannot al-

ways be achieved. This is because the highest proportion one player can get is (n − 1)/n.

Suppose player i deserves more than (n−1)/n under proportional rule, i.e., qi = ei/
∑n

i=1 ei >

(n− 1)/n, then this cannot be implemented under Galbraith’s mechanism. But we can still

construct a fair allocation rule in the context of Gaibraith’s mechanism that player i shall

allocate to player j:

ηij=


ej∑
j 6=i ej

1
n−1

if

if

∑
j 6=i ej 6= 0∑
j 6=i ej = 0

We describe the cost of unfairness that player i incurs when he proposes an allocation

aij that is not consistent with the above rule. More formally, let dij = aij − ηij, we let

function f(dij) be the cost that player i incurs if he is unfair to player j. We assume that

fsatisfies the following. (i) f(0) = 0, (ii) f(d) is positive and is strictly increasing for all

d > 0 and (iii) f(d) is positive and strictly decreasing for all d < 0. An example of a simple

function that satisfies (i)-(iii) is f(dij) = θ|dij|, where θ >0. With this specification, in the

second stage, the optimal allocation for player i will always be a∗ij = ηij.

2.4 Equilibrium with three players and Hypotheses

In this section, we will present the equilibrium situation with three players if they follow the

fair allocation rule outlined in section 2.3.

Proposition 2 (Galbraith’s Mechanism with fair allocation). Suppose player i’s modified

payoff function is given by πi(e, qi)−
∑

j 6=i f(aij − ηij) and β > 1.5, then the strategy profile

in which ei = ē for each i in the first stage and aij = ηij for all i, j in the second stage is

the unique subgame perfect Nash equilibrium of Galbraith’s Mechanism with three players. If

β < 1.5, then multiple Nash equilibria exist in the game.

Directly from Proposition 2, we develop the following hypotheses to be tested experi-

mentally:

Hypothesis 1. Under the Galbraith’s mechanism, players use the proportional rule to allo-

cate in the second stage.
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Hypothesis 2. Under the Galbraith’s mechanism, if β > 1.5 , players contribute the full

endowment to the public account.

As is standard in this literature (for example,Andreoni and Varian (1999); Fehr and

Gächter (2000); Falkinger et al. (2000); Bracht et al. (2008); Masuda et al. (2014)), we will

compare our mechanism with the Voluntary Contribution Mechanism (VCM) which is the

same contribution game with an equal division of payoffs for all possible effort combinations.

Thus, in each set of experiments, subjects will play the standard VCM for the first 10 rounds

followed by 10 rounds of GM. We will be particularly interested in changes in patterns of

behavior as far as 1) and 2) are concerned. In the GM experiment, we will consider a high

β (that is, some β greater than 1.5 – in fact, we will consider the case where β = 1.8)

and a low (that is, some β less than 1.5 – in fact, we will consider the case where β = 1.2).

Therefore, based on these values of β, in theory, we should observe that the VCM always fails

to implement effort (as in Proposition 1) while GM succeeds if β = 1.8 and is inconclusive

if β = 1.2. In later sections, we will show that results from our experiments corroborate the

theory.

3 Experimental Design

Each participant only takes part in one of the three treatments (HighGM, LowGM or Con-

trol) listed in Table 1. Each treatment contains 20 rounds of decision making tasks that can

be divided into two blocks of ten rounds. Participants will only be informed about the task

in the second block once the first ten rounds are completed. In each round, the computer

program randomly draws three participants to form a group. The group composition reshuf-

fles every round in a nine-people matching group. In this way, we have ten independent

matching groups for each experimental treatments (labelled as HighGM and LowGM) and

four independent matching groups for control treatments (labelled as Control).

In the first ten rounds, we will only consider the standard voluntary contribution mech-

anism discussed above for the case where n = 3. We use neutral terminology in the ex-

periment and the contribution question formulated on the computer screen is “Tokens you

want to add to the Group Fund: .”Players choose an integer from 0 to 10. The integer

hence represents the contribution chosen by the participant. The production function is

Π(e1, e2, e3) = β(e1 + e2 + e3). Each player’s payoff function is πi = 10− ei + 1
3
Π. These ten
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Table 1: Experiment Design

Sessions
Round1-10 Round11-20

β
Number

Treatment Treatment of subjects

HighGM VCM1.8 GM1.8 1.8 90

LowGM VCM1.2 GM1.2 1.2 90

Control VCM1.8 VCM1.8 1.8 36

Total 216

rounds are identical across all treatments except for different βs (i.e., 1.8 and 1.2). 3

In round 11-20, there are two decision stages in each round of HighGM and LowGM

treaments. The first stage decision is the same as in VCM, that is, each player voluntarily

chooses an integer from 0 to 10. In the second stage, the computer screen displays each

group members’ contribution decisions in the first stage and the value of the group fund,

i.e., Π(e1, e2, e3) = β(e1 + e2 + e3). Each player’s task is to divide 1
3

of Π between the other

two group members. For example, player 1 divides 1
3
Π between player 2 and player 3. This

occurs because in the Galbraith’s mechanism sharing rule, the sum of the vector of all players

proposed allocation will be divided by the total number of groups. In the control treatment,

players simply repeat the same decision ask in round 1-10 for another ten rounds.4

All experimental sessions were conducted in the CeDEx laboratory in Feburary 2015 at

the University of Nottingham, United Kingdom. The experiment was computerized using

z-Tree (Fischbacher, 2007) and subjects were recruited with ORSEE (Greiner, 2004). In

total, 216 university students from various fields of study took part in over 12 sessions,

with 18 participants in each session. We ensure the recruited subjects had not participated

in a similar experiment before. Upon arrival, participants were asked to randomly draw a

number from a bag and they were seated according to that number. Participants were seated

at a computer terminal in a cubicle and could not communicate with other participants.

Participants received the relevant instructions at the beginning of each ten-round block, and

the (same) experimenter then read the instructions aloud in front of laboratory in every

3We set β = 1.2 in the first ten rounds of LowGM treatment to minimize the variable changes during
the experiment, so the treatment will be more comparable. As will be shown in section 4.1, the first ten
rounds of all three treatments yields similar results.

4To make the procedure strictly comparable between the control and the experimental treatments, par-
ticipants in the control treatment would receive a copy of instructions detailing the same information as in
round 1-10. In this way, the time break between the first ten and the second ten rounds are similar for the
control and the experimental treatments.
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session.

Before the beginning of each ten-round block, participants were required to answer sev-

eral computerized quiz questions regarding the payoff function and the procedure details.

The experiment only started when all participants had provided the correct answers to the

quiz. Questions were taken privately if any difficulties arose in understanding the instruc-

tions. At the end of a session, subjects were paid in private the amount they earned. The

conversion rate is 30 experimental points = 1 pound. The quiz, 20 rounds of decision- mak-

ing, and the questionnaire lasted for approximately one hour; participants earned on average

GBP8.34.5

4 Experimental Results

The experiment is motivated by two questions: 1) how much do players contribute and 2)

how do players allocate under the Galbraith’s mechanism. We shall proceed with the analysis

of the experimental results in the following way. Section 4.1 looks at the difference of the

contribution decisions across treatments. Section 4.2 analyzes the participants’ allocation

decisions, and Section 4.3 studies how do allocation choices affect the players’ contribution

decisions.

4.1 Contributions

Figure 1 displays the time-path of the average contributions over all 20 iterations for each

treatment. The first ten rounds are where standard voluntary contribution mechanism is

used. We observe a decline in the level of contribution over time. Participants start with an

average contribution level of 3.4 and end up with 0.4 in round 10. This finding is consistent

with results from other studies. For example, Fehr and Gächter (2000) found only 1% of

cooperative moves after 10 rounds of random matching with four players.

Since all participants face the same dilemma in round 1-10 (despite different β value),

a priori one should not expect significant differences in contribution across these different

treatments. Indeed, we find no significant difference in the contribution levels from round 6

to 10 among all three treatments (the Kruskal-Wallis test fails to reject the null hypothesis

5At the time of the experiment, the exchange rates were as follow: 1 GBP = 1.55 USD and 1.40 Euro.
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Figure 1: Time-path of the average contribution by treatment

of equal average contribution of the three treatments for each round, the smallest p = 0.237).

Given this history of declining average contribution and almost zero contribution in

round 10, at the beginning of round 11, we introduce Galbraith’s mechanism in both the

GM1.8 and the GM1.2 treatments. This introduction triggers a dramatic increase in contri-

bution level in round 11: about two fifth of the players increase their contribution (43.3% in

the GM1.8 and 42.2% in the GM1.2) and the average contribution level is 5.17 in the GM1.8

and 4.03 in the GM1.2. On the contrary, in the control treatment, only a quarter of players

increase their contributions and the average contribution level is 1.33.

In the GM1.8 treatment, the average contribution is 8.0 and the final round contribution

reaches an average of 9.16. Eight out of ten independent groups in the GM1.8 treatment

achieves full contribution in later rounds. The GM1.2 treatment achieves a mild but also

clear increase in the average contribution level as shown in Figure 1. The average is 6.3

and the average last round contribution is 6.42. The difference between the GM1.8 and the

GM1.2 treatment is significant as Mann-Whitney test rejects the null hypothesis of equal

average contribution at 0.1% level for round-by-round comparison for round 11-20 between

these two treatments. On the other hand, both the GM1.8 and the GM1.2 treatments differ
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Table 2: Summary of the contribution decisions for round 11-20

GM1.8 GM1.2 VCM1.8
Round Mean S.D. Mean S.D. Mean S.D

11 5.2 3.6 4.0 3.4 1.3 3.0
12 6.2 3.2 4.7 3.1 0.4 1.2
13 7.3 3.0 5.4 3.5 0.1 0.5
14 8.1 2.7 5.7 3.5 0.1 0.7
15 8.6 2.3 6.2 3.4 0.2 1.0
16 8.9 2.1 6.1 3.4 0.3 1.7
17 9.0 2.5 6.2 3.4 0.0 0.2
18 8.9 2.4 6.1 3.5 0.0 0.0
19 9.1 2.2 6.4 3.5 0.0 0.0
20 9.2 2.2 6.4 3.6 0.1 0.3

significantly from the control treatment (i.e., VCM mechanism in rounds 11-20). In fact,

almost all groups in the control treatment has zero contribution in later rounds.

Result 1. While round 1-10 display similar patterns of failure to promote contribution across

all three treatments when the standard voluntary contribution mechanism is used (the average

contribution is almost zero in round 10) , round 11-20 show different patterns of contribution

across the three treatments (we observe 80% cooperation in the GM1.8 treatment and 57%

contribution in the GM1.2 treatment).

What causes these sharp differences across three treatments? Will pure imitations of

strategies from those who earn higher payoffs explain the pattern? Note that by design,

in the VCM treatment, those who contribute more will necessarily result in a lower payoff

compared to those of the free-riders’. Under Galbraith’s mechanism, however, one’s profit

depends on other player’s allocation decisions in the second stage of the game. In the

GM1.8 treatment, players who contribute more than a median player in round 11 results in

significantly higher profit (mean = 15.3) as compared to players who contribute less than

a median player (mean = 12.3) (Mann-Whitney test, z = −4.18, p < 0.001, two-sided).

However, the profit gap between high contributors and low contributors is smaller and not

significantly different in the GM1.2 treatment especially in the early two rounds (Mann-

Whitney test, z = −0.77, p = 0.44, two-sided).

To better understand the dynamics of the changes in contribution decisions and the

reasons behind payoff differences, we proceed in the next section to study players’ allocation

decisions.
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4.2 Allocation Decisions

For each round in the second sequence of the experiment, participants need to decide on

how to allocate between the other two group members. The allocation must sum up to one

third of the group fund, that is, ãij + ãik ≡ Π
3
.6 In the following analysis, we only consider

each player i’s allocation to player j, ãij, because the allocation to each k is automatically

determined by ãij ≡ Π
3
− ãij. Repeated entries are hence eliminated: if ã12, ã23, ã31 are

counted, ã13, ã21, ã32 will not be counted.

Following to the discussion in section 2.3, proportional rule predicts an allocation to

be entirely depend a player’s entitlement. The results from the experiment confirm this

prediction. We observe the mean fractional allocations,
ãij

ãij+ãik
, are not significantly differ-

ent from player’s entitlement,
ej

ej+ek
. (t-test, p = 0.66 in GM1.8 and p = 0.98 in GM1.2,

two sided). The following least-squares (OLS) regressions clustered on independent groups

present additional support for the theory. The regression equation is:

ãij
ãij + ãik

= β0 + β1
ej

ej + ek
+ εi (3)

where εi is an error term. Proportional rule predicts that the intercept of this equation

equals 0 and that the slope equals 1. OLS estimates of these parameters are consistent with

the hypothesis: the intercept of 0.044 (for GM1.8) and 0.034 (for GM1.2) are not significantly

different from 0 but the slope of 0.917(for GM1.8) and 0.933(for GM1.2) are. Moreover, using

an F -test, the slope turns out not to be significantly different from 1 (FGM1.8 = 1.53, pGM1.8 =

0.25;FGM1.2 = 1.43, pGM1.2 = 0.26, two-sided).

A useful way to represent the allocation choices is to plot allocation decisions according

to the regression equation. Figure 2 includes all allocation decisions of both the GM1.8 and

the GM1.2 treatments.7 The horizontal axis indicates the fraction player j deserves from

player i if proportional rule is implemented, that is,
ej

ej+ek
. The vertical axis shows the actual

fraction i allocates to player j, that is,
ãij

ãij+ãik
. All observations on the 45 degree line (dashed

6In section 2, aij is defined as the proportion player i allocates to player j, and aij +aik = 1. To calculate
player’s final profit, this proportion will be normalized by dividing the group number and multiply the joint

profit, i.e., πi = 10 − ei +
∑

aji

n Π. In the experiment, for the ease of explanation, the quantity each player

is entitled to allocate is directly given as Π
3 , therefore, ãij = Π

3 aij .
7Players are randomly matched and they are informed that they will never be in the same group again

with the other two group members. Therefore, each round can be seen as an independent observation with
no direct consequences of later rounds.
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Figure 2: Allocation decisions in Galbraith’s Mechanism

on Figure 2) depicts the set of players who allocate exactly as the proportional rule dictates.

A linear fitted line of ̂̃aij
ãij+ãik

= β̂0
ej

ej+ek
is depicted as a solid line inFigure 2. That this fitted

line almost coincides with the 45-degree line confirmed the result that majority observations

are proportional allocations.

Except for those dots gathered close on 45-degree line, a closer visual investigation in

Figure 2 shows some other interesting patterns of allocation choices. For example, if player

j deserves less than 0.5, most dots are gathered below 45-degree line. On the other hand,

if player j is entitled more than 0.5, those dots are clustered above 45 degree line. In the

mean time, we also observe substantial amount of dots lie horizontally on
ãij

ãij+ãik
= 0.5. We

therefore categorize allocators into four different types as shown in Figure 2.

Extreme proportionists are those who allocate exactly based on others’ merit, i.e.,
ãij

ãij+ãik
=

ej
ej+ek

. Due to the experimental design,
ej

ej+ek
may not always be a fraction of

ten. We therefore relax the equality condition and use the following condition instead. De-

fine player i as a Proportionists when | aij
aij+aik

− ej
ej+ek

|≤ 0.1 (see the category highlighted

as Proportionists in Figure 2). In around 80.1% of instances, players adopt the proportional

13



rule in the allocation stage.8 The proportional rule also remains the most popular rule in

any round of the second sequence.

Egalitarians are those who desire an equal division regardless of other concerns. Under

the Galbraith’s mechanism, those are the players who equally allocate half of 1
3
Π to the other

two. In our experimental settings, the exact egalitarian rule is always feasible since 1
3
Π is a

multiplier of 0.2. To be comparable with the definition of proportionists, we define player i

as an egalitarian when | aij
aij+aik

− 1
2
|≤ 0.025 (see the category highlighted as Egalitarians in

Figure 2). Note that proportionists and egalitarians are not mutually exclusive. For example,

if the other two counter-players contribute the same amount, both the proportionist and the

egalitarian rules will predict
aij

aij+aik
= 0.5. This is not a rare case as about 40% of instances

fall under this category.

There is an interesting type of players that we call “super-proportionists”. If player

j contributes less than player k, player i, under the “super-proportionists” category, re-

wards player j with no more than what he/she deserves under the extreme proportional

rule. The other player, player k may consequently be over-compensated. On the other

hand, when an equal contribution is observed, an equal division is implemented. There-

fore, super-proportionists tend to “punish” players who contribute less than the others and

over-compensate players who contribute more than the others (see the category highlighted

as super-proportionist in Figure 2). Note that the possibility allowed by the Galbraith’s

mechanism to “punish” other players is different from the “punishment mechanism” in Fehr

and Gächter (2000). Under Fehr and Gächter’s setting, players can choose to incur a cost to

destroy part of the other players’ payoff. One critique of such a mechanism is that efficiency

is wasted by punishing others. Note that in our results, there are still 5.8% of observations

that cannot be captured by any of the three above types (see the last panel of Figure 2).

A reader may be interested in what factors can help to explain players’ allocation deci-

sions. In this paper, we hypothesize that a player’s allocation decision aij,r in time r can be

explained by the following variables in the regression equation:

ãij,r = α1Contributioni,r+α2OtherContributioni,r+α3η̃ij+α4GM1.8I +α5Roundi+εi (4)

8Overall, 48.6% of the instance fall exactly on the 45 degree line, i.e., they are extreme proportionists.
When considering the case where the reminder of

ej
ej+ek

× Π
3 divided by 0.1 is 0, 78.7% of the instance fall

under extreme proportional allocation rule.

14



Logit Regression: Dependent Variables
(1) (2) (3) (4)

Proportional Random Super-proportional Egalitarian

Contributioni 0.110∗∗∗ -0.138∗∗∗ 0.098∗∗ -0.573∗∗∗

(3.49) (-3.72) (2.30) (-5.80)

Others′Contributioni 0.046 0.077 -0.056 0.027
(0.97) (0.97) (-1.13) (0.50)

Entitlement:ηij -0.300 1.049 -0.169 0.110
(-1.44) (1.23) (-1.12) (0.25)

GM18i -0.012 0.437 -0.293 0.544
(-0.06) (1.18) (-1.27) (1.33)

Roundi 0.033 0.017 0.026 -0.047
(1.27) (0.29) (0.60) (-0.78)

Constant 0.049 -3.451∗∗∗ -2.082∗∗∗ -0.296
(0.15) (-3.07) (-3.63) (-0.31)

N 1800 1800 1088 1088

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Determinants of allocation decisions

In this model, ãij,r is a binary variable taking the value of 1 if player i is using a certain

allocation rule to allocate to player j in round r, and zero otherwise. We use the allocation

rules defined in Figure 2 to classify ãij,r. That is, in model (1)-(4), ãij,r indicates whether or

not player i is using proportional rule, random rule, super-proportional rule and egalitarian

rule to allocate respectively. Contributioni is player i’s own contribution in round r. The

variable OtherContributioni,r is the sum of other two group members contribution in round

r. ηij is the proportion player j entitled from player i, which equals ej/(ej + ek). In other

words, η̃ij is player j’s entitled allocation from player i if proportional rule is implemented.

GM1.8i is an experimental treatment dummy variable, taking the value of one if player i

belongs to treatment GM1.8 and zero if she belongs to treatment GM1.2. Roundi represents

the round variable and is included to capture the time trend. Last, εi,r is assumed to have

zero mean and be independently distributed from the explanatory variables. The estimation

method is Logit with robust standard error clustered on matching groups as the independent

units of observation. Table 3 presents the estimated parameters for the model. The estimated

coefficients of Contributei are significantly different from zero for all four allocation rules.

This suggests a strong correlation between one’s contribution and allocation decision in the

same round. For instance, the positive coefficient estimates of Contributioni in model (1)
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shows that the more one player contribute, the more likely he would adopt proportional rule

to allocate. In contrast, the coefficient estimate of Contributioni in model (2) is negative; it

suggests that the more one player contributes, the less likely she would use a random rule

to allocate. In terms of model (3) and (4), we eliminate the cases where players observe the

equal contributions from the other two group members.9 The results indicate the more a

player contribute, the more likely he uses super-proportional rule to allocate, and the less

likely he uses egalitarian rule to allocate. Indeed, the average contribution of egalitarian

allocators is less than 2 (out of 10), which are the lowest among four categories.

The marginal effects of the other explanatory variables are not significantly different

from zero. It means, first of all, the other group members’ total contribution in that round

does not affect the allocator’s allocation rules, given other things equal. Secondly, other

player’s entitlement does not affect allocator’s rule either. Furthermore, allocators’ decisions

do not differ significantly across time and treatment.

4.3 How do the allocation choices affect contribution decisions?

Section 4.2 analyses the rules players use to allocate Π/3. The objective of this section is

to look at the relation between the contribution at time t and the allocation choices at time

t − 1. In order to do that we need to develop a measure of fairness in t − 1. This measure

can be constructed in a similar manner as the measure developed in the previous section on

how player j treats player i. In particular, this measure will compare the share that player

i actually receives to the share that she deserves using the proportional rule.

Figure 3 reports the result on how players are treated in the allocation stages in all

rounds. The horizontal axis qfi represents the fair share player i should get under Galbraith’s

mechanism.10 The vertical axis is the fraction that player i actually gets, i.e., qi =
aji+aki

3
.

Observations on the 45-degree line indicate that player i is treated using proportional rule by

the other two group members. In a similar fashion as in section 4.2, the six panels in figure

9In our definitions, a player can use “super-proportional” rule to allocate only if inequality of contribu-
tions arises between the other two group members. In terms of egalitarian rule, about 40% of the observations
coincide with the proportional rule in which the other two group members contribute the same amount. We
hence eliminate those observations of equal contributions among group members in this regression.

10That is,

qfi =


( ei
ei+ek

+ ei
ei+ej

)/3

1/6

1/3

if

if

if

ei 6= 0

ei = 0,max{ej , ek} 6= 0,min{ej , ek} = 0∑
ei = 0

16



0
.2

.4
.6

i i
s 

al
lo

ca
te

d

0 .2 .4 .6
i deserves under GM

Treated prop-ly (72.7%)

0
.2

.4
.6

i i
s 

al
lo

ca
te

d

0 .2 .4 .6
i deserves under GM

Treated equally (39%)

0
.2

.4
.6

i i
s 

al
lo

ca
te

d

0 .2 .4 .6
i deserves under GM

Treated prop&equ (35.3%)

0
.2

.4
.6

i i
s 

al
lo

ca
te

d

0 .2 .4 .6
i deserves under GM

Be punished (7.6%)

0
.2

.4
.6

i i
s 

al
lo

ca
te

d

0 .2 .4 .6
i deserves under GM

Be over-compensated (9.4%)

0
.2

.4
.6

i i
s 

al
lo

ca
te

d

0 .2 .4 .6
i deserves under GM

Treated randomly (6.7%)

Figure 3: How players have been treated in the allocation stage

3 classify how players are treated in each round11 . Most players are treated proportionally

under most circumstances (72.7%); this corresponds to the fact that in around 80% of the

incidences, players use the proportional rule to allocate.In around 39% incidences, players

are treated by egalitarian rules. However, in only less than 4% of the observations players

are treated by egalitarian rules when their contribution is significantly different from their

counter-part. There are around 17% of the incidence players are either being punished from

contributing less than their counterparts, or being over-compensated from contributing more

than their counterparts. The remaining 6.7% of the players are treated by random rules.

We hypothesize that players’ decisions to increase or decrease their contribution in

the subsequent rounds may be affected by how they were treated in the previous rounds.

For example, if players were treated fairly (proportionally) in the previous rounds, they

are more likely to increase their contribution. Players’s contribution decisions may also be

11We define how players are treated in the allocation stage using the following criteria to be consistent with
the allocation rule proposed in section 4.2. Player i is treated by proportional rule if |aji+aki

3 − ei
ei+ek

− ei
ei+ej

| ≤
5%. We say player i is treated by egalitarian rule if |aji+aki

3 − 1
3 | ≤ 2.5%. When ei

ei+ek
+ ei

ei+ej
< 1

3

and ei
ei+ek

+ ei
ei+ej

− aji+aki

3 > 5%, we say player i is being punished. When ei
ei+ek

+ ei
ei+ej

> 1
3 and

aji+aki

3 − ei
ei+ek

− ei
ei+ej

> 5%, we say player i is being over-compensated. If player i’s received allocations

cannot be justified by the rules outlined above, we say player i is treated by random rules.
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affected by their believes about other group member’ss contribution. For instance, if a player

believes the other players are going to contribute high in the subsequent round, they may

also wish to match this high contribution in the next round. This behavioural regulation

of condtional cooperation has been well documented in Fischbacher et al. (2001). We did

not elicit player’s believe in the experiment, instead, in our model, we use the other two

group members’s contribution from the previous round to serve as a proxy. Specifically, our

behavioural model of the change in contribution for player i in round r, ∆ei,r is given by:

∆ei,r = γ0 + Bi,r−1θ + γ1OtherContributioni,r−1 + γ2GM1.8I + γ3Roundi + εi

In this model, Bi,r−1 is a set of dummy variables indicating how the player is treated in

allocation stage from the previous round. To be precise, it includes five variables: BPROP
i,r−1 =1

means player i is treated by proportional rule in round r; the notation BEGA
i,r−1, BPUNISH

i,r−1 ,

BOV ERCOMP
i,r−1 , BRANDOM

i,r−1 are equivalent dummy variables in the case of the player being

treated by egalitarian rule, being punished, being over-compensated, or being treated by

random rules respectively in the previous round. The variable OtherContributioni,r−1 rep-

resents the average contribution of the other two group members in player i’ss group in round

r − 1. GM1.8 is a dummy variable that takes a value of 1 if player i belongs to treatment

GM1.8 and zero if GM1.2. Round i captures the time trend. Last, εi,r is an unobservable

variable that is assumed to have mean zero and is uncorrelated with other explanatory vari-

ables. The estimation method is OLS with robust standard errors clustered on matching

groups as the independent units of observation. Table 4 presents the estimated parameters

for the model. Figure 4 shows the classification of how players are treated in the previous

round and their average change of the contribution level in the current round.

The result from model 1, which includes only variable BPROP
i,r−1 , shows that when a player

is treated by proportional rule in the last round, she is likely to increase her contribution.

However, the magnitude of the estimation is small. It may be caused by the fact that

around 85% of the participants are treated using the proportional rule in the experiment.

Model 2 includes the dummy variables BEGA
i,r−1, BPUNISH

i,r−1 , BOV ERCOMP
i,r−1 , BRANDOM

i,r−1 as well

as other controlling variables. The variable BPROP
i,r−1 is removed to avoid multicollinearity.

The positive estimated coefficient of BPUNISH
i,r−1 , which is significantly different from zero

(two-sided p = 0.03), indicates a strong positive impact on contribution for players who are

punished in the previous round. Reflecting the estimate on Figure 5, holding other things

constant, being punished increases one’ss contribution by 0.62 on average. On the other

hand, being treated by random rules have large negative impacts on contributions. The

estimated coefficient ofBRANDOM
i,r−1 is negative and significantly different from zero (two-sided
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Dep. Variable: One-round Change in Contribution
Model (1) (2) (3a) (3b) (3c)
Round used 12-20 12-20 12 12-15 16-20
B − propt−1 0.301∗

(1.79)

B − egat−1 -0.438 -0.133 -0.421 -0.369
(-0.98) (-0.12) (-0.68) (-1.15)

B − punisht−1 0.617∗∗ 4.068∗∗∗ 1.662∗∗∗ 0.0623
(2.28) (14.80) (3.76) (0.16)

B − overcompt−1 -0.215 1.249∗∗∗ -0.420 -0.0760
(-1.55) (3.87) (-1.39) (-1.09)

B − randomt−1 -0.832∗∗∗ -0.474 -0.878∗∗∗ -0.548
(-4.25) (-0.74) (-2.94) (-1.72)

Others′Contributiont−1 0.103∗∗∗ 0.456∗∗∗ 0.250∗∗∗ 0.0188
(4.99) (4.55) (6.33) (1.06)

GM1.8 -0.0797 -0.138 -0.146 -0.00412
(-0.74) (-0.39) (-0.70) (-0.05)

Round -0.161∗∗∗ -0.363∗∗∗ -0.0111
(-5.10) (-4.07) (-0.32)

Constant 0.0961 2.295∗∗∗ -1.208** 4.234∗∗∗ 0.165
(0.59) (5.04) (-2.77) (3.71) (0.25)

N 1620 1620 180 720 900

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Determinants of Contribution Change

19



-.5

0

.5

1

Av
er

ag
e 

O
ne

-r
ou

nd
 C

ha
ng

e 
in

 C
on

tri
bu

tio
ns

Be Punished Be Treated
Proporitonally

Be Over-
Compensated

Be Treated by
Egalitarian Rule

Be Treated by
Random Rules

Allocation rules received by the player in previous round

Yes
No

Figure 4: The Determinants of Contribution Change

p < 0.001). Compare to those who have not been treated by random rules, the victims

tend to decrease contribution by 0.83 on average. When players are treated by egalitarian

rules or being over-compensated, they seem to decrease their contribution, but the effect

is not significantly different from zero. Model 3a,3b,3c are the same as Model 2, but show

estimations from different rounds of the experiment. In particular, Model 4a only looks

at round 12. Note that round 12 is the first round in which a player’ss contribution may

be affected by the allocation decision. The estimated coefficients of both BPUNISH
i,r−1 and

BOV ERCOMP
i,r−1 are large and significantly different from zero (two-sided pPUNISH < 0.001 and

pOV ERCOMP = 0.001). This suggests that, keeping other things equal, being punished or

being over-compensated in round 11 on average increase players’s contribution by 4.07 and

1.25 respectively in round 12. Model 3b only includes the data from round 12-15, while model

3c only uses data from round 16-20. Chow-test rejects the hypothesis that the coefficients

are the same for model 3b and 3c. This is because that the contribution level has been

stabilized in the second half of the mechanism. The variation of ∆ei,r is small in round 16-20

compared to the first half of the mechanism.
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5 Conclusion

We study a mechanism for a class of public good games studied by Fehr and Gächter (2000),

Andreoni and Varian (1999) as well as many others. Our mechanism does not rely on any

costly punishments and can be very naturally implemented in many real life settings. Our

mechanism takes the form of a two stage game in which players make contributions in the

first stage and propose an allocation to each of the remaining players in the second stage.

With the behavioural assumption that each player value fairness based merit, we find that

the players uniquely allocate according to the proportional rule in the second stage which in

turn induces the maximal contribution in the first stage. Our laboratory experimental results

support our theory. Indeed, we observe that 90% of cooperation (players play the pareto

optimal outcome) among the participants in the experiment, which is significantly higher

than other previous studies using different mechanisms. In view of both of our experimental

results, we believe that our mechanism improves on many of the existing results and is

applicable to many real world situations.
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Appendix A. Proofs

Proof of Proposition 1. First observe that ei = ē is a dominant strategy if and only
if πi(e(ē, e−i),

1
n
) > πi(e(ei, e−i),

1
n
)∀e−i. Using the payoff function, this can be rewritten as

0 + 1
n
β(1 +

∑
j 6=i ej) > 1 + 1

n
β(
∑

j 6=i ej) for all
∑

j 6=i ej, which is true if and only if 1
n
> 1

β
.

Finally taking summation on both sides we get 1 > n
β
.

Proof of Proposition 2. Suppose each player allocates according to the fair allocation

rules outlined in section 2.3, each player will receive a fraction of qi =
∑

j 6=i a
∗
ji

n
from the Π(e).

Their payoff can be written as follows:

πi =


ē− ei +

β
∑3

i=1 ei
3

( ei
ei+ej

+ ei
ei+ek

)

ē+ βek
6

10

10

if

if

if

if

ei 6= 0

ei = 0

ei = 0∑3
i=1 ei = 0

and

and

∑3
i=1 ei = ek∑3
i=1 ei > ek

(1)
(2)
(3)
(4)

We first check at the case where β > 1.5 and check the payoff function one by one:

(1) Suppose ei 6= 0. Taking the first order derivative of the payoff function with regard
to ei, we have ∂πi

∂ei
> 0 if β > 1.5. This means πi(ē, e−i) > π(ei, e−i) where ei 6= 0 and ei 6= ē.

(2) Suppose
∑3

i=1 ei = ek. If β > 1.5, we have πi(ei, e−i) > πi(0, e−i), where ei 6= 0.

(3) Suppose
∑3

i=1 ei > ek. If β > 1.5, we have πi(ei, e−i) > πi(0, e−i), where ei 6= 0.

(4) Suppose ek + ej = 0. If β > 1.5, we have πi(ei, e−i) > πi(0, e−i), where ei 6= 0.

To summarize, in all four cases, player i’s best response in the contribution stage is
e∗i = ē when β > 1.5. This is true for all three players, we conclude that e∗ = (ē, ē, ē) is the
dominant strategy equilibrium in the contribution stage.

Next, we consider the case where β < 1.5. There are at least two Nash equilibria. We
first prove that e = (0, 0, 0) is a Nash equilibrium. Suppose ej = ek = 0, ei = 0 is the
best response strategy if and only if πi(0, 0, 0) > πi(ẽi, 0, 0) where ẽi 6= 0. Using the payoff
function, this can be rewritten as 10 > 10−ei+ 2

3
×ei×β, which is true if and only if β < 1.5.

Since players i, j, k are symmetric, the above proof is also true for player j and k. Therefore
e = (0, 0, 0) is a Nash equilibrium. We then prove that e = (ē, ē, ē) is a Nash equilibrium.
Suppose ej = ek = ē, ei = ē is the best response strategy if and only if πi(ē, ē, ē) > πi(ẽi, ē, ē)

where ẽi 6= ē. The first order derivative of ∂πi(ẽi,ē,ē)
∂ẽi

> 0. This is true for all three players,
therefore e = (ē, ē, ē) is a Nash equilibrium.
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Appendix B. Experimental Instructions

We present the experimental instructions for the VCM1.8-GM1.8 treatment. Instructions
for other treatments are similar and can be requested from the authors. Each treatment has
two parts. Part 2 instruction is distributed only after the completion of Part 1 decisions.

Part 1

Welcome!

You are taking part in a decision making experiment. Now that the experiment has
begun, we ask that you do not talk. The instructions are simple. If you follow them
carefully and make good decisions, you can earn a considerable amount of money. If you
have questions after we finish reading the instructions, please raise your hand and one of the
experimenters will approach you and answer your questions in private.

This experiment consists of two sequences of decision rounds. Each sequence contains
ten decision rounds. In each round, you will be in a group with two other people, but you
will not know which of the other two people in this room are in your group. The people in
your group will change from round to round, and in particular you will never be matched
with the same set of two other participants twice during the whole experiment.

The decisions made by you and the other people in your group will determine your
earnings in that round. Your earnings in this experiment are expressed in EXPERIMENTAL
CURRENCY UNITS, which we will refer to as ECUs. At the end of the experiment you
will be paid in cash using a conversion rate of £1 of every 30 ECUs of earnings from
the experiment. Under no circumstance will we expose your identity. In other words, your
decisions and earnings will remain anonymous with us.

This set of instructions details Sequence 1. An additional set of instructions detailing
sequence 2 will be provided after sequence 1 is completed.

SEQUENCE 1 (Decision round 1-10)

Sequence 1 consists of ten decision rounds. At the beginning of each round, you will be
randomly allocated a participant identification letter, either A, B, or C. (Thus, your identi-
fication letter may change from round to round).

Decision Task in Each Round

Each individual begins EACH ROUND with an endowment of 10 tokens in their Indi-
vidual Fund. Tokens in Individual Fund worth 1 ECU each.
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Each three-person group begins with a Group Fund of 0 ECUs each round. Each person
will decide independently and privately whether or not to contribute any of his/her tokens
from his/her own Individual Fund into the Group Fund. Tokens in Group Fund worth
1.8 ECU each.

In other words, each token that a person adds to the Group Fund reduces the value
of his/her Individual Fund by 1 ECU. Each token added to the Group Fund by a group
member increases the value of the Group Fund by 1.8 ECUs.

Each person can contribute up to a maximum of 10 tokens to the Group Fund. Decisions
must be made in whole tokens. That is, each person can add 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10
tokens to the Group Fund (see screenshot 1).

Three examples illustrate how the tokens moved to the Group Fund relate to the value
of your Individual and Group Funds.

• If you add 0 tokens to the Group Fund, it means you add 0 (0× 1.8 = 0) ECUs to the
Group Fund and 10 ECUs remain in your Individual Fund.

• If you add 5 tokens to the Group Fund, it means you add 9 (5× 1.8 = 9) ECUs to the
Group Fund and 5 ECUs remain in your Individual Fund.

• If you add 10 tokens to the Group Fund, it means you add 18 (5× 1.8 = 18) ECUs to
the Group Fund and 0 ECUs remain in your Individual Fund.

Feedback and Earnings

After all participants have made their decisions for the round, the computer will tabulate
the results.

ECUs in Group Fund = 1.8 × (Sum of tokens in the Group Fund).

ECUs in the Group Fund will be divided equally among all individuals in
the group. That is, each group member will receive one-third of ECUs in the Group Fund.
Your earning in one round equals ECUs in your Individual Fund plus one-third of ECUs in
the Group Fund.

Your Earnings =ECUs in Individual Fund + 1
3

ECUs in Group Fund

At the end of each round, you will receive information on your Group Fund earnings
and your total earnings for that round. You will also be informed of all group members’
contribution to the Group Fund and their earnings in ECUs

Total Earnings for the experiment will be the sum of the earnings in all rounds of the
experiment.
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This completes the instructions for Sequence 1.

Before we begin the experiment, to make sure that every participant understands the
instructions, please answer several review questions on your screen.

SEQUENCE 2 (Decision round 11-20)

Sequence 2 consists of ten decision rounds. In each round, you will be in a group with two
other people, but you will not know which of the other two people in this room are in your
group. The people in your group will change from round to round, and in particular you
will never be matched with the same set of two other participants twice during the whole
experiment.

At the beginning of each round, you will be randomly allocated a participant identifi-
cation letter, either A, B, or C. (Thus, your identification letter may change from round to
round).

Decision Task in Each Round

Each individual begins EACH ROUND with an endowment of 10 tokens in their Indi-
vidual Fund. Tokens in Individual Fund worth 1 ECU each.

Each decision round will have two phases.

Phase 1: Decision Choice

Decision choice will be the same as in Sequence 1. Each three-person group begins with
a Group Fund of 0 ECUs each round. Each person will decide independently and privately
whether or not to contribute any of his/her tokens from his/her own Individual Fund into
the Group Fund. Tokens in Group Fund worth 1.8 ECU each.

In other words, each token that a person adds to the Group Fund reduces the value
of his/her Individual Fund by 1 ECU. Each token added to the Group Fund by a group
member increases the value of the Group Fund by 1.8 ECUs.

Each person can contribute up to a maximum of 10 tokens to the Group Fund. Decisions
must be made in whole tokens. That is, each person can add 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10
tokens to the Group Fund.

Phase 2: Allocation Choice

After all individuals have made their decisions in Phase 1, you will be informed of the
other two group members’ contribution to the Group Fund, the total number of tokens and
ECUs in the Group Fund.
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ECUs in Group Fund = 1.8 × (Sum of tokens in the Group Fund)

You decide how to allocate ONE-THIRD of the ECUs in the Group Fund between the
other two group members.In other words, the sum of your allocation between the other two
group members will be one-third of ECUs in the Group Fund. Each person can only divide
one-third of ECUs in the Group Fund for the other two group members, their own share
of the Group Fund will be determined by the allocation decisions of the other two group
members. Specifically,

• Person A will divide one-third of ECUs in the Group Fund between Person B and
Person C.

• Person B will divide one-third of ECUs in the Group Fund between Person A and
Person C.

• Person C will divide one-third of ECUs in the Group Fund between Person A and
Person B.

You may change your choice as often as you like. But once you click Submit, the decision
will be final. Click the calculator button on the lower-right corner if you need the assistance
of calculation.

Feedback and Earnings

After all individuals have made their decisions for the round, the computer will tabulate
the results. A person’s share of the Group Fund will be determined at the end of phase 2.
His/her earnings from Group Fund will be the sum of ECUs that the other two group
members allocate towards him/her.

Your earnings in a round will equal ECUs in your Individual Fund plus ECUs the other
two group members allocated to you (i.e., your share of ECUs in the Group Fund).

Your Earnings=ECUs in Individual Fund + Your share of ECUs in Group Fund

At the end of each round, you will receive information on your Group Fund earnings
and your total earnings for that round. You will also be informed of all group members’
contribution to the Group Fund, their allocation decisions in phase 2 and their earnings in
ECUs for that round.

Total Earnings for the experiment will be the sum of the earnings in all rounds of the
experiment.

This completes the instructions.

Before we resume the experiment, to make sure that every participant understands the
instructions, please answer several review questions on your screen.

29


	Introduction 
	Galbraith's Mechanism 
	Effort Game Setting 
	The Mechanism 
	Equity Theory and Cognitive Dissonance 
	Equilibrium with three players and Hypotheses 

	Experimental Design
	Experimental Results 
	Contributions
	Allocation Decisions
	How do the allocation choices affect contribution decisions? 

	Conclusion

