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Abstract

This paper studies the Rubinstein bargaining game, in which both agents have reservation

values. Agents are uncertain whether their opponents have high or low reservation values.

Each agent tries to convince the other that he has a high reservation value, resulting in a

unique war of attrition, as in the reputation literature. I analyze the information sensitivity

of delay when agents publicly observe some noisy signal about their opponents’ reservation

values. A bargaining environment is said to be more transparent if the available information

is more precise. I show that information disclosure increases delay, in the sense of first-order

stochastic dominance, if transparency is not sufficiently high. Suppose, a mediator controls this

transparency. Although full transparency is efficient, a bargaining environment is not likely to

be fully transparent. I characterize the optimal transparency when a bargaining environment

can be made transparent only to a limited extent. Also, given any transparency, I show that

a mediator can strictly improve efficiency by disclosing information about an agent iff agents

have sufficiently close bargaining strengths.
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1 Introduction

One of the most basic questions in economic theory is : How will two agents divide an economic

surplus? In his seminal work, Rubinstein (1982) shows that when agents have complete information

about the bargaining environment, they immediately reach an agreement. The exact terms of this

agreement is unique and depends on how agents discount delay. However, when agents have some

private information about themselves, they try to exploit this and convince their opponent that they

should get a higher share of the surplus. This induces a war of attrition (WOA) and causes delay.

Suppose that agents have some noisy information about their opponents and that such information

is public.1 A bargaining environment is more transparent if the information is more precise. Will

disclosing this somewhat accurate information reduce delay? Contrary to popular expectations, this

paper will show that disclosing information will increase delay, in the sense of first-order stochastic

dominance, if the bargaining environment is not sufficiently transparent. This brings to mind the

old saying - ‘A little learning is a dangerous thing’ (Alexander Pope: “An Essay on Criticism”,

1709).

In this paper, I will consider the Rubinstein (1982) bargaining game, which is the benchmark

for non-cooperative bargaining theory. Two agents decide how to split a surplus by making offers

and counteroffers alternately until they agree. Time is valuable and offers can be made frequently.

Furthermore, each agent has some reservation value and will accept nothing below this value. For

example, a buyer is bargaining with a seller over the price of a house. The seller’s valuation is 5,

while the buyer’s valuation is 10 (in million dollar units, say). Thus, transferring the property will

generate a surplus of 5. This is common knowledge, and agents decide how to split this surplus.

Suppose that the seller has a neighbor who has sold a similar house for 6.5. The seller believes that

his own place is slightly better, and so he will not sell the house for anything below 7. Thus, the

seller has a reservation value of 2 while dividing a surplus of 5. Similarly, the buyer may have a

friend who has bought a house last year somewhere nearby for 8.5. But the buyer thinks that this

neighborhood is slightly better and so he is willing pay a little more but not more than 9 - i.e., he

sets a reservation value of 1. If these reservation values are commonly known and compatible - i.e.,

the surplus can be divided in a way that will be agreeable to both agents - as Binmore, Shaked and

1Thus there is no higher-order uncertainty. Feinberg and Skrzypacz (2005) consider a seller who may or may not
know the buyer’s valuation. Basak (2015) considers a simple model in which both the buyer and seller do not know
what their opponents think of them.
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Sutton (1989) show, that there is no delay, and agents get their reservation values if it is binding;

otherwise, they get their Rubinstein shares.

Suppose that agents are uncertain about their opponents’ reservation values. Nature draws

a high or low reservation value for each agent independently from a common prior, and agents

know only their own reservation values. Restricting to only two types, makes the information

sensitivity analysis tractable. However, this is not without loss of generality.2 I show that this

results in a unique war of attrition (WOA). The high reservation type always insists on his high

reservation share, while the low type randomizes between insisting and conceding to his opponent’s

high demand. Concession by either agent stops the game, and in the absence of concession, both

agents become more convinced that their opponent has a high reservation value. In equilibrium,

the beliefs evolve along a particular balanced path. Given the initial belief, whichever agent takes

longer to convince his opponent that he is the high type has less-than-balanced bargaining strength.

This agent is called the weak agent, and the other is the strong agent. The weak agent will concede

immediately with positive probability such that, in the absence of no immediate concession, the

updated belief reaches the balanced path. There is a time T when both agents become absolutely

convinced that their opponent has high reservation value. Reputation building has been studied

extensively in economic theory.3 In the context of reputational bargaining, Abreu and Gul (2000)

(henceforth AG) show that when offers can be made frequently, a unique WOA emerges. They

assume that agents can be of certain behavioral types that always insist on a particular share of

the surplus. Unlike the reputation literature, this paper does not assume behavioral insistent types.

The agents are fully rational and, thus, could be threatened by beliefs in equilibrium. Nonetheless,

I show that insistence is the unique rationalizable strategy for an agent with high reservation value.

This establishes a link between the incomplete information and reputation bargaining literatures.

Agents do not know their opponents’ reservation values. However, they are likely to have noisy

information regarding what their opponents are comparing the house with and how much better or

worse it is. In a more transparent bargaining environment, agents are more likely to get the right

signals. Think of a fictitious mediator who controls this transparency. A mediator is a neutral third

party appointed to facilitate a resolution to the conflict. In many bargaining environments the

2More types will start a step game, but uniqueness is not guaranteed without additional assumptions.
3 The reputation literature started with Milgrom and Roberts (1982) and Kreps and Wilson (1982). We can see

similar WOA in Kreps and Wilson (1982), when an incumbent and an entrant with multiple entry opportunities
engage in a war to build their reputation.
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mediator can be actual rather than fictional.4 The mediator investigates each agent for the actual

reservation value and publicly conveys the result to the other side. Because investigation is not

fully accurate, it generates noisy public information. The mediator commits to the investigation

with some known accuracy and cannot influence the result of her investigation; thus, she works

as an information designer, 5 as defined in Kamenica and Gentzkow (2011). So transparency of

a bargaining environment is equivalent to accuracy of the investigation. There is no delay in a

fully transparent bargaining environment. However, a bargaining environment is usually not fully

transparent and can be made transparent only to a limited extent. We are left with the question :

Given any upper bound on transparency, what is the optimal choice of transparency that will make

the bargaining outcome most efficient?

Suppose that information is available only about the a priori strong agent. I show that there

is a threshold level of transparency such that : if the upper bound is below this threshold, a com-

pletely uninformative bargaining environment is optimal, and beyond this threshold, a maximum

transparent bargaining environment is optimal. If there is public information about the a priori

weak agent as well, then it can both enhance and decrease efficiency. Given the transparency on

the a priori weak side, there are two thresholds of transparency on the a priori strong side (say,

i-side). Below the lower threshold L, a completely uninformative signal on i is optimal, and beyond

the upper threshold H, maximum transparency on the i-side is optimal. Unlike the case in which

there is information leakage only on one side, these two thresholds are not necessarily the same. If

these two thresholds are different, then there is a middle threshold M . When the upper bound is

between L and M , the optimal transparency is maximum transparency, and when the upper bound

is between M and H, the optimal transparency is the middle threshold transparency.

We see that appointing a mediator does not necessarily improve efficiency. So, the natural ques-

tion is : Given the accuracy of the investigation, when should a mediator be appointed? Or, when

does disclosing information about an agent reduce delay? I show that disclosing information about

an agent strictly increases efficiency if and only if agents are sufficiently close in their bargaining

strengths. If agents have close bargaining strength, then no agent gives up easily, and without any

4In the corporate world, a mediator is often hired to resolve conflicts between employees or departments quickly,
so that agents can go back to their daily business. When a trade union is negotiating with management over its share
of surplus, or an environmentalist group is negotiating with developers, a local authority may step in as a mediator.

5As opposed to a conventional mechanism designer. Hörner, Morelli and Squintani (2015) defines a mediator in a
peace negotiation as a mechanism designer who can make only unenforceable recommendations. See the discussion
section for details.
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information disclosure, the negotiation may drag on for a long time.

What drives the above results is ingrained in how agents build their reputations, starting from

the initial beliefs, and how transparency influences the distribution over the initial beliefs. After a

high (low) signal is realized, the posterior belief that the agent is a high type increases (decreases).

The mediator induces a distribution over the posterior beliefs. More accurate investigation or a

more transparent bargaining environment induces more dispersed posterior beliefs. The posterior

beliefs must satisfy Bayesian consistency.

After the signal realization, agents bargain to build reputation, starting with the posterior beliefs.

In the WOA that follows, the strong agent determines how long it takes to build a reputation. Let

us call this T . Accordingly, the weak agent concedes immediately with positive probability - say, µ.

As bargaining continues, agents concede at a particular rate that makes the low types indifferent

between conceding and insisting. These concession rates are independent of the transparency of the

environment. The initial beliefs affect (1) the probability that no agreement will ever be reached;

(2) how long it will take to build the reputation - T ; and (3) the probability of immediate concession

- µ. When agents have balanced strengths, no one gives up immediately - i.e., µ = 0. If the initial

belief that agent j is a high type decreases, or the initial belief that agent i is a high type increases,

the bargaining strengths of the two agents diverge. However, these two changes affect delay quite

differently. Suppose that agent j is less likely to be a high type; then, j has less than balanced

strength. This linearly decreases the probability that agreement will never be reached. This will

not affect T , but will linearly increase µ. All of these together increase efficiency in an affine way.

Suppose that agent i becomes more likely to be a high type; then, i has more than balanced strength.

This will linearly increase the probability that agreement will never be reached and convexly reduce

T and concavely increase µ. All of these together will affect efficiency in a concave way.

To see what this affine-concave relation implies, suppose that information is disclosed about

an a priori strong agent. Further, suppose that the transparency is not sufficiently high, so that

the strong agent remains strong no matter what signal is realized. Since, information disclosure

makes the posterior beliefs more dispersed and efficiency is concave in the posterior beliefs about

the strong agent, the outcome is less efficient.

5



2 The Bargaining Game

N = {1, 2} denotes the set of agents. These two agents bargain over splitting a fixed surplus

1. For interchangeability of the agents’ identity, I will refer to the agents as i and j and i 6= j.

Nature picks a state ω ∈ W = W1 × W2, which specifies a pair of reservation values (ω1, ω2).

Agents share a common prior π ∈ P(W), where P(.) denotes the set of probability distributions.

In this paper, I will assume that the reservation values are drawn independently. A public signal

ω̃ = (ω̃i, ω̃j) ∈ W̃ is realized. I will assume that W̃ = W . The public signals on two agents are

conditionally independent. The public signal on agent i is denoted by the collection of conditional

probability distributions over the signal ω̃i given the state ωi: {qi(.|ω)}ω∈W , i ∈ N . The information

structure is commonly known. Based on the signal that agent i gets, she forms her belief and higher-

order beliefs, and this is captured in the type space Θi, i ∈ N . Θ = Θ1 × Θ2. Since this paper

considers public information only, there is no higher-order uncertainty. So, θi = (ωi, ω̃j) - i.e., agent

i of type θi has a reservation value ωi and a public signal ω̃j about his opponent’s reservation value.

I will assume that one of the agents is picked randomly to make the first offer, and then an

alternate offer bargaining protocol is followed. I will assume that the period length is ∆ and I am

interested in the limiting result when ∆ → 0 - i.e., when offers can be made frequently. Let the

action space at any time period t when agent i gets the chance to make a decision be Ait. Ai0 = [0, 1]

and an agent i taking an action xi ∈ [0, 1] means that he demands xi share of the surplus or offers

(1 − xi) share to agent j. Ait = [0, 1] ∪ {A} for any period t > 0. A stands for agreement, which

means that agent i takes agent j’s offer on the table. Thus, accepting gives an immediate payoff,

while counteroffer leads to delay. For notational convenience, I write the action space for agent i

as Ai, ignoring the fact that the action space is different at time 0. Suppose that no agent agrees

until time period t and the history is H t = [0, 1]t. Let H0 = ∅ be the initial history. A pure

strategy assigns an action to any possible history. Let S = S1 × S2 denote the set of pure strategy.

A behavioral strategy of agent i is denoted by σi : H → P(Ait). Let Σi be the set of behavioral

strategies and Σ = Σ1 × Σ2. σi(h)(θi, Ãi) denotes the probability that θi will play an action in Ãi

after history h.

Let βj[θi] be agent i of type θi’s belief over states, agent j’s type and action at any history.

βj[θi] : H → P(W × Θj × Aj). The marginal distribution αj[θi](h)(Θ̃j) = βj[θi](h)(W × Θ̃j × Aj)

for any Θ̃j ⊆ Θj denotes agent i of type θi’s belief over agent j’s type in Θ̃j, conditional on history
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h. The marginal distribution σ̂j[θi](h)(Ãj) = βj[θi](h)(W×Θj× Ãj) for any Ãj ⊆ Aj denotes agent

i of type θi’s belief that j will take an action in Ãj, conditional on history h. σ̂j[θi](h)(θj, Ãj) =

βj[θi](h)(W × {θj} × Ãj) denotes agent i of type θi’s belief that θj will take an action in Ãj,

conditional on history h. If σ is played in equilibrium then σ̂j[θi](h)(θj, Ãj) = σj(h)(θj, Ãj). Note

that when the available information is public, conditional on the signal realization ω̃, different types

vary only in terms of their reservation values and not their beliefs.

Let C = C1 × C2 be the space of consequence, where (xi, t) ∈ Ci = [0, 1]× [0,∞] means that the

agent gets xi share of the surplus after bargaining for time t. t =∞ corresponds to no agreement.

The payoff function for agent i ∈ N is given by ui : C × Wi → R, where ui(xi, t, ωi) = e−ritxi

if xi ≥ ωi and ui(xi, t, ωi) = −ε, (ε > 0) if xi < ωi. Agent i discounts the share xi that he gets

in the future at a stationary rate ri if the share is above his reservation value. Anything below

the reservation value is not acceptable.6 The reservation values ωi, ωj are said to be compatible if

ωi+ωj ≤ 1. I will assume that agents are expected utility maximizers. Suppose that agent i of type

θi has reservation value ωi. Let φ[θi](σ) be his belief over consequence when the strategy profile is

σ. The expected payoff of θi is Ui(σ, θi) =
´
ui(xi, t, ωi)dφ[θi](σ). Let Ui(σ, θi|h) be the expected

payoff of θi after history h, where σ describes the play thereafter.

Conditional Dominance

Let R̃ = R̃1 × R̃2, where R̃i ∈ Σi, i = 1, 2 is a non-empty set of the strategy profile. Strategy σi

is said to be conditionally dominated (CD) for agent i of type θi with respect to R̃ if ∃ σ′i ∈ Σi

such that Ui(σ
′
i, σj, θi|h) ≥ Ui(σi, σj, θi|h), ∀ σj ∈ Rj and ∀ h ∈ H and there exists some h ∈ H

such that Ui(σ
′
i, σj, θi|h) > Ui(σi, σj, θi|h). A strategy is called undominated if it is not CD. Let

us define UDi(R̃, Θ̃) := {σi ∈ R̃i|σi is undominated w.r.t. R for some θi ∈ Θ̃i}. Let UD(R̃, Θ̃) =

UD1(R̃, Θ̃)× UD2(R̃, Θ̃). Let R = R1 ×R2 be such that UD(R,Θ) = R.

Complete Information

In the standard Rubinstein game, there are no reservation values. Agents agree immediately to

unique terms of trade that give agent i ∈ N , vRi =
rj

ri+rj
. Note that if agents discount delay equally,

6This is not the only way one can model reservation value. Reservation value can be interpreted as the status quo
preference or the no-agreement payoff, which does not generate flow payoff. See the discussion section for alternative
interpretations of reservation value.
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they will divide the surplus equally. As offers can be made frequently, there is no first mover

advantage. Suppose that each agent has some reservation value and will accept nothing below

this value. The following proposition uniquely identifies the equilibrium in which there is complete

information about the reservation values. If the reservation values are compatible, then agreement

is reached immediately, and if they are not compatible, then agreement is never reached. Thus, the

outcome is efficient.

Proposition 1 (Binmore, Shaked and Sutton (1989)) When the reservation values ω are commonly

known and are compatible, there exists a unique SPE. If for any i ∈ N , ωi ≥ vRi , then agents

immediately agree to a settlement that gives ωi to agent i and 1 − ωi to agent j. If for all i ∈ N ,

ωi ≤ vRi , then agents immediately agree to a settlement that gives vRi to any agent i.

In a world with incomplete information, we see agents trying to convince each other that they

should get a higher share of the surplus. They build their reputation by rejecting opponents’ offers

and, thus, cause delay. A more transparent bargaining environment has a distribution over the

posterior beliefs that are more dispersed but the distribution and the posterior beliefs must satisfy

Bayes consistency. After the signal realization, agents bargain to build reputation starting with the

posterior beliefs. To analyze the relation between transparency and delay, I organize the paper in

two parts. In the following section, I analyze the role of initial beliefs in this reputation formation.

In the subsequent sections, I use this ex-post effect of posterior beliefs to characterize the role of

transparency in the ex-ante distribution of delay.

3 Independent and Privately known Reservation Values

Suppose that any agent j ∈ N can have either a high or a low reservation value : Wj := {ω̄j, ωj}.

Nature selects this reservation value for each type independently from a commonly known prior

π ∈ P(Wi)× P(Wj). I will assume the reservation values satisfy the following :

Assumption 1 ω̄j > vRj > ωj for all j ∈ N and for any i, j ∈ N , ω̄i + ωj < 1.

The above assumption says that both agents have two reservation values. The high reservation

value is binding (above Rubinstein share), while the low reservation value is not binding (below

Rubinstein share). As we can see in Proposition 1, the reservation value influences the bargaining
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outcome under complete information only when the reservation value is binding. So the above

assumption says that both agents have some reservation values that will influence the bargaining

outcome under complete information. Thus, if both agents have high reservation values, then there

is no feasible way to divide the surplus that will be agreeable to both agents. I am assuming that

all other reservation values are compatible.

Lemma 1 Any strategy in the set of undominated strategies R must satisfy the following two prop-

erties: 1) Agent i will never offer more than ω̄j to agent j; and 2) agent j will accept any offer

above ω̄j with probability 1 and will never accept an offer below 1− ω̄i with positive probability.

Under complete information, we get a unique threshold below which an agent never accepts with

positive probability and above which he accepts with probability 1. However, under incomplete

information, we get only a bound. The upper bound is the best complete information scenario,

and the lower bound is the worst complete information scenario for agent i. At any history for any

belief, an agent accepts any offer with probability 1 above this upper threshold and never accepts

an offer with positive probability below this lower threshold. Watson (1998) considers incomplete

information about agents’ discount rates and provide a similar result. Although the nature of

incomplete information is different, the basic intuition remains the same.

Recall Myerson’s notion of k insistent strategy for an agent. An agent is said to be k-insistent

if he always demands k share of the surplus and rejects any offer that does not give him at least k.

Let us formally define a k-insistent strategy as follows :

Ii(k) :={σi ∈ Ri : ∀ h ∈ H σi((h, xj)(A) = 1 for xj ≤ 1− k

and σi((h, xj))(A) = 0 for xj > 1− k}.

Note that the above insistent strategy does not specify what agent i demands when he rejects

an offer - i.e., σi((h, xj))(A) = 0. Lemma 1 says any undominated strategy for the high type of

agent i is to accepts any offer above ω̄i with probability 1. Also, by definition, he never accepts an

offer below ω̄i with positive probability. Therefore, Ii(ω̄i) is the unique rationalizable strategy for

the high type of agent i, for any i ∈ N . Unlike the reputation literature, here, this insistence is not

a behavioral assumption. The high types are fully rational and Bayesian optimizers and, thus, can

be threatened by belief. Nonetheless, it is the unique rationalizable strategy for them to insist. I
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will refer to type ω̄j as the ω̄j insistent type. So, if agent i demands less than ω̄i at some history h,

it is revealed that θi 6= ω̄i. Following Myerson (1991), (when offers can be made frequently), we get

the following Coasian result :

Lemma 2 In any sequential equilibrium of the subgame where agent i has revealed that he is not

the high type, but agent j has not done so, agent j gets ω̄j and i gets 1− ω̄j.

The above lemma is more generally referred to as Coase conjecture in the literature. Under

one-sided incomplete information, agreement is reached immediately and the informed agent takes

away all the additional surplus. Note that although both agents are making offers, the informed

agent’s action is essentially an accept or reject decision. Acceptance stops the game, while rejection

means insistence. Only insisting on the high reservation value after rejecting an offer can be thought

of as a serious demand. Lemma 1 shows that any higher demand has no positive chance of getting

accepted. I am implicitly assuming that such non-serious offers do not affect opponent’s belief in

any favorable way. As long as agent i assigns positive probability (however small) that agent j is

a high type, the game cannot continue forever. If it is known that the game is going to end in the

next ε time then any θj would insist like ω̄j. So, i would have preferred to concede now rather than

wait for ε more time. This gives us the above result.

So, θi = ωi can either insist like θi = ω̄i or reveal his type. Insistence will give ω̄i to agent i of

type θi = ωi after some time t, while non-insistence will give her 1 − ω̄j. So, an outside observer

can see that if an agreement is reached after some time t ≥ 0, then it either gives (1) w̄1 to agent 1

and 1− w̄1 to agent 2 or (2) w̄2 to agent 2 and 1− w̄2 to agent 1. Thus, the incomplete information

bargaining problem boils down the reputation formation, as in AG. AG assumes that agent i has

irrational types who insist on a particular share of the surplus. The difference is that this is not an

irrational type; rather, the unique rationalizable strategy for the high reservation value type is to

insist on ω̄i like the irrational type.

AG show that the outcome of the discrete time bargaining problem converges in distribution to

the continuous time unique war of attrition equilibrium. Let us define

Fi[θi](t) := P ({σi(h) ∈ Ii(ω̄i) for any h until time t, σi(h) /∈ Ii(ω̄i) for any h after time t})

Fi[θi](t) denotes the probability that agent i of type θi will insist until time t before she concedes.
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We have Fi[ω̄i](t) = 0 for all t ≥ 0 - i.e., θi = ω̄i never concedes. Let Ti[θi] := {t|Fi[θi](t) =

limt→∞ Fi[θi](t)} be the time by which θi must have conceded. So, Ti[ω̄i] = ∞. Let us define

Ti := maxTi[θi]<∞ Ti[θi]. Therefore, after time Ti, it is revealed that agent i will never concede.

With only two types, Ti = Ti[ωi]. It takes agent i Ti time to build his reputation for being the high

type. Since, in equilibrium, there is only one type of history until there is an agreement, time t is a

sufficient statistic for history h. So, I will abuse notation by replacing h with t in the argument of

belief. Let us define Gj[θi](t) as agent i of type θi’s belief that j will concede by time t. All types

θi have the same belief, Gj[θi](t) = αj[θi](∅)(ωj)Fj[ωj](t) = Gj(t).

Recall that θi = ω̄i will never concede. Following Hendricks, Weiss and Wilson (1988), we know

that Fi[ωi] is continuously increasing for t > 0. There can be mass probability of concession at

t = 0. Agent i takes Ti time to build his reputation of being the high type. Since the low type will

concede immediately if he learns that his opponent is never going to concede, we have Ti = Tj =: T .

Thus, in equilibrium, both agents take the same time T to build their reputation for being the

high type. Although there can be mass probability of concession at t = 0, if αj[θi](∅)(θj) > 0 -i.e.,

θi believes that agent j can be of type θj, then θi and θj both cannot concede immediately with

positive probability -i.e., Fi[θi](0)Fj[θj](0) = 0.

Let Cj(s) be the consequence when j concedes at time s. Suppose agent i of type θi has

reservation value ωi. Let us define ui[θi](t) as the expected utility (abusing notation) of agent i of

type θi who concedes at time t if j has not conceded by then.

ui[θi](t) :=

ˆ t

s=0

ui(Cj(s), ωi)dGj[θi](s) + (1−Gj[θi](t))ui(Ci(t), ωi),

where ui(Cj(s), ωi) = e−risω̄i and ui(Ci(s), ωi) = e−ris(1 − ω̄j). Let Ai[θi] := {t : ui[θi](t) =

maxsui[θi](s)}. So, (Fi[θi]|θi ∈ Θi, i ∈ N) is a sequential equilibrium of the bargaining game if

Supp(Fi[ωi]) ⊆ Ai[ωi] for all i ∈ N .

In equilibrium, agent i of type ωi is randomizing between conceding and insisting. This implies

that ωi must be indifferent between the two options. To keep him indifferent, agent j must be

conceding at a rate

λ̂j :=
ri(1− ω̄j)
ω̄i + ω̄j − 1

(1)

This follows from u′i[ωi](t) = 0. This is the total concession rate of agent j, not just conditional
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on agent j being type ωj. Thus, in the absence of concession, both agents become more convinced

that their opponent is a high type. Since both these beliefs reach 1 at the same time T , we can

solve backwards for the path of belief :

αj[ωi](t)(ω̄j) = e−λ̂j(T−t). (2)

In the absence of concession until time t, the updated belief is such that the relative bargaining

strength of any agent j

Lj(α) =
αj[ωi](ω̄j)

λ̂i

αi[ωj](ω̄i)
λ̂j

(3)

is 1. We will call the path of belief the Balanced Path, which keeps agents’ bargaining strength

balanced - i.e., Lj(α) = 1. Formally,

B(α) := {α|Lj(α) = 1 ∀j ∈ N}. (4)

Let αj(∅) denote the prior belief and αj(0) denote the updated belief at time t = 0 in the absence

of immediate concession. If the initial belief α(∅) is not on the balanced path, then agents concede

immediately with positive mass probability such that, in the absence of immediate concession,

α(0) reaches the balanced path. Recall that only one agent can concede immediately. Thus,

the probability of immediate concession is uniquely identified. Although the types are defined

very differently, the argument for reputation formation remains similar to that in AG. The above

reputation formation equilibrium is formalized in the following preposition :

Proposition 2 There is a unique sequential equilibrium in which any agent i of type ω̄i insists

on ω̄i, while type ωi either mimics type ω̄i or concedes to agent j’s demand ω̄j. In the absence of

concession, the updated beliefs evolve along the balanced path. If the initial belief α(∅) is not on

the balanced path - say, Lj(α(∅)) < 1 - then agent j concedes immediately with positive probability

(cipp) µj = 1− Lj(α(∅))
1

λ̂i , so that in the absence of immediate concession, the updated belief α(0)

reaches the balance path.

Recall that the initial beliefs are denoted by π. Abusing notation, I will assume αi[ωj](∅)(ω̄i) = πi

for all i ∈ N . There is πiπj probability that agents have incompatible reservation values (ω̄i, ω̄j),

and so agreement is never reached. However, they will wait until time T , hoping that the opponent

12



may be a lower reservation value type. Unlike the low type, the high type does not concede if the

game reaches T without concession. If the agents are (ω̄i, ωj) types, then agreement can happen

only at (xi = ω̄i, xj = 1 − ω̄i). There can be immediate agreement if Lj(α(∅)) < 1. By time T ,

agent j will become convinced that the opponent is ω̄i type and will concede. If both agents have

low reservation values, then each agent will try to convince the other that he has a high reservation

value. Agreement happens when either agent concedes to the other agent’s demand. Agreement is

reached by time T . If πi = π

λ̂i
λ̂j

j , then Lj(α(∅)) = 1 - i.e., agents have balanced strength and no one

cipp. If πi > π

λ̂i
λ̂j

j , then agent i is said to be the strong (s) agent and agent j the weak (w) agent.

From equation 2, we can solve for T , the time it takes to build reputation.

T (π) := − 1

λ̂s
ln(πs). (5)

Note that T depends only on the initial belief about the strong agent. The weak agent cipp = µ,

such that he can build reputation in the same T time. Therefore, πw
1−µ = e−λ̂wT (π). This implies that

µ(π) = 1− πwπs
− λ̂w
λ̂s . (6)

Similar to Kambe (1999), when the probability that agents have high reservation value vanishes,

there is no delay.

Corollary 1 Suppose that (πi, πj) ↓ (0, 0), such that max{ πi
πj
,
πj
πi
} ≤ k for some k > 1. If λ̂i > λ̂j

then agent j concedes immediately.

Note that as the probability that agents have high reservation vanishes, the agents do not split the

surplus, as Rubinstein proposes. The strong agent gets his reservation value and the weak agent

takes the rest.

4 Public Information: Transparency and Delay

Agents know their own reservation values but receive some noisy public signals about their oppo-

nent’s reservation values. Based on the signal received, agents update their beliefs. Since the signals

are public, the posterior beliefs are commonly known. Agents bargain to build reputation, starting
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with the posterior beliefs. The previous section characterized the unique equilibrium, given any

initial beliefs.

4.1 The Fundamentals

Public Information

Recall that a high or low reservation value for any agent i ∈ N is drawn independently from a

commonly known prior πi ∈ P(Wi). I will abuse notation and call πi = πi(ωi = ω̄i) - i.e., the

ex-ante probability that agent i has a high reservation value. W̃i = Wi denotes the set of signal

realizations and qi : Wi → P(W̃i) is the noisy signal structure about agent i. Let ω̃ = (ω̃i, ω̃j)

denote the signal realization. Then,q(ω̃ = ω|ω) captures the accuracy of signals. I will assume that

q(ω̃|ω) = qi(ω̃i|ωi)qj(ω̃j|ωj) where qi(ω̃i = ω̄i|ωi) :=

q̄i if ωi = ω̄i

1− q
i

if ωi = ωi

;

i.e., the signals are conditionally independent. For any i ∈ N , q̄i (q
i
) captures the probability

of receiving the right signal when the reservation value is high (low). I will call qi ≡ (q̄i, qi) for

any i ∈ N , the transparency of the i-side and q = (qi, qj) the transparency of the bargaining

environment. Note that, if qi ∈ q0
i := {qi : q̄i + q

i
= 1}, the public signal disclosing i’s reservation

value is completely uninformative. A bargaining environment is said to be fully opaque if the signal

on both sides is completely uninformative. If there is no difference in transparency across states,

then a fully opaque bargaining environment on i-side has q̄i = q
i

= 1
2

- i.e., any signal is equally

likely to be realized for any ωi.

Let us define q′i := πiq̄i+(1−πi)(1−qi) = P (ω̃i = ω̄i) as the probability that a public information

ω̄i is realized. Let us define π̄′i := πiq̄i
q′i

= P (ωi = ω̄i|ω̃i = ω̄i) as the updated probability that agent i’s

reservation value is high when public information says so, and 1 − π′i := πi(1−q̄i)
1−q′i

= P (ωi = ω̄i|ω̃i =

ωi) as the updated probability that agent i’s reservation value is high when public information

says otherwise. After public signal ω̄i( or ωi) is realized, the initial belief αi(∅) is captured by

π̄′i( or (1−π′i)). Abusing notation, I will refer to this posterior belief as π′. π̄′i ≥ πi ≥ 1−π′i, and the

equality holds when the i-side of the bargaining environment is completely opaque. Thus, given the

prior π, a noisy information structure with transparency q, induces a distribution q′ over posterior
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beliefs π′. The posterior beliefs must satisfy the Bayesian consistency

q′iπ̄
′
i + (1− q′i)(1− π′i) = πiq̄i + πi(1− q̄i) = πi. (7)

Increasing transparency of the bargaining environment implies that when the public signal realiza-

tion is ω̄i ( or ωi), the posterior belief that ωi = ω̄i (or ωi = ωi) is higher. So, the posterior belief π̄′i

increases and 1− π′i falls, but equation 7 holds true. Note that the distribution over the posteriors,

denoted by q′i, also changes as transparency changes.

Mediator

Suppose a neutral third-party mediator is appointed to facilitate a resolution to the conflict. The

mediator investigates the agent for his underlying reservation value and conveys the result of her

investigation to the other agent publicly. Because the investigation is not fully accurate, it generates

noisy public information. Let qi denote the accuracy of her investigation on agent i. The accuracy

of her investigation is the transparency of the bargaining environment. If the mediator is actual

rather than fictional, we would like to know if appointing a mediator will always reduce delay. If

not, then when should we appoint a mediator?7

Bargaining Strength

Given the concession rate λ̂i and the initial belief π′, it will take Ti(π
′) := − 1

λ̂i
ln(π′i) time for agent

i to convince his opponent that he has a high reservation value. The less Ti is, the stronger agent

i is. Thus, π′i
1

λ̂i = exp(−Ti(π′)) is a measure of agents i’s strength. The agent with a lower Ti(π
′)

is said to be the strong agent, denoted by s. Suppose that Ti(π
′) < Tj(π

′) - i.e., π′i
1

λ̂i > π′j
1

λ̂j . Then

the relative bargaining strength of agent j, Lj(π
′) < 1 - i.e., agent i is stronger than agent j. So,

agent j cipp= µ(π′) = 1− Lj(π′)
1

λ̂i = 1− πjπ
−
λ̂j

λ̂i
i .

I use s to denote the strong agent in general. Abusing notation, I will use s(ω̃) to denote the

strong agent when the realized public signal is ω̃. Let us define the strength vector s as the vector

7This paper focuses on the role of transparency in delay. In a companion paper, I explore the role of transparency
when the mediator wants to implement a fair solution.
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denoting which agent is strong for which signal realization :

s ≡ (s(ω̃))ω̃∈W̃ ≡ (s(ω̄i, ω̄j), s(ω̄i, ωj), s(ωi, ω̄j), s(ωi, ωj)).

Given the transparency of the bargaining environment q, let s(q) denote the strength vector and

the region of transparency that result in a strength vector s being Ss := {q|s(q) = s}. Given the

signal realization ω̃j, let s(ω̃j) be the sub-strength vector denoting which agent is strong if ω̄i or ωi

is realized (in that order).

Distribution of Delay

In their attempt to convince their opponent that they have high reservation values, agents cause

delay in reaching an agreement. Let D be a random variable denoting delay. Let ψ′(π′) denote the

distribution of delay given the initial belief π′. Further, from Proposition 2, we know that, given

the initial belief π′, there exists a time T (π′) such that if agreement is not reached by time T (π′),

agreement is never reached. Recall that s and w denote the strong and the weak agent, respectively,

and T (π′) := − 1

λ̂s
ln(π′s). Therefore, Supp(ψ′(π′)) = [0, T (π′)] ∪ {∞}, where ∞ denotes the event

that agreement is never reached. Recall from Proposition 2, that the belief about the strong agent s

alone determines T (π′), and only the weak agent w concedes immediately with positive probability

(cipp) µ(π′) = 1− π′wπ′s
− λ̂w
λ̂s . Also, recall that in equilibrium, agent i concedes at a constant hazard

rate
gi(π

′)(t)dt

1−Gi(π′)(t)
= λ̂idt,

where Gi(π
′)(t) denotes agent j’s belief that agent i will concede by time t. Solving this, we get

Gi(π
′)(t) =

1− (1−Gi(π
′)(0))e−λ̂it if t ≤ T (π′)

1− π′i if t =∞
. (8)

The probability that the bargaining will cause, at most, t delay is the probability that at least one

of the agents concedes by time t. Given independence, we have ψ′(π′)(t) = 1− (1−Gi(π
′)(t))(1−
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Gj(π
′)(t)). This implies that

ψ′(π′)(t) =

1− (1− µ(π′))e−(λ̂i+λ̂j)t if t ≤ T (π′)

1− π′iπ′j if t =∞
. (9)

Given the prior π and transparency q, we have a distribution q′ over the posteriors π′. Accordingly,

the distribution of delay before the signal is realized, denoted by ψ(π, q), is defined as8

ψ(π, q)(t) =
∑
w̃,w

P (w̃, w)P (D ≤ t|w̃, w) =
∑
w̃

P (w̃)
∑
w

P (w|w̃)P (D ≤ t|w̃, w)

=
∑
π′

q′(π′) (1− (1−Gi(π
′)(t))(1−Gj(π

′)(t))) =
∑
π′

q′(π′)ψ′(π′)(t).

The question this paper addresses is : How does transparency q affect the distribution of delay,

ψ(π, q)?

Almost Full Transparency

A bargaining environment converges to full transparency as q → 1. In such a bargaining environ-

ment, the right signal will almost surely be realized, and, upon receiving a signal, agents are almost

sure that the state is what the signal says. Suppose that the signal says that the reservation values

are (ω̄i, ωj); then, agent j is weak and cipp= 1. If the signal says that the state is (ω̄i, ω̄j), then

agreement is never reached. The argument is not trivial when the signals says that the state is

(ωi, ωj). The posterior beliefs (1 − π′i, 1 − π′j) ↓ (0, 0). From Corollary 1, we know that9 the weak

agent will concede immediately. However, unlike the complete information case, agents do not split

the surplus, as Rubinstein proposes. The strong agent gets his reservation value and the weak agent

takes the rest. Thus, as the bargaining environment becomes almost fully transparent, if agreement

can be reached, it is reached immediately,. Alternatively, we can say if the mediator can make her

investigation almost fully accurate, she can avoid delay. However, we do not expect a bargaining

environment to be fully transparent or the investigation to be fully accurate.

8To reduce notation burden, I use P (E) to denote the probability of an event E in general, where the underlying
state and Borel algebra are well understood.

9Except for the knife edge case, where agents have balanced strength as (1− π′i, 1− π′j) ↓ (0, 0)
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4.2 Partial Transparency

There can be substantial delay in a partially transparent bargaining environment. The following

lemma shows that if information disclosure reduces the probability of immediate concession, then

it increases delay in the sense of first-order stochastic dominance (FSD).

Lemma 3 ψ(π, q) �FSD ψ′(π) if and only if Eq′|q µ(π′) < µ(π).

This lemma follows from two features of the distribution of delay. First, the concession rate is

constant, and, second, from Bayesian consistency (see equation 7), we know that the probability of

no agreement is πiπj, irrespective of the level of transparency. Given the posterior beliefs π′, from

equation 6, we can say that the probability that the negotiation will end immediately is

µ(π′i, π
′
j) =

1− π′jπ′i
−
λ̂j

λ̂i if π′j
λ̂i ≤ π′i

λ̂j

1− π′iπ′j
− λ̂i
λ̂j if π′j

λ̂i ≥ π′i
λ̂j

. (10)

This relation is shown in Figure 1. The relation between µ(.) and posterior beliefs is like a ‘valley.’

The prior belief is a weighted average of the two posterior beliefs (see equation 7). Since the relation

is not strictly convex, we cannot say that improving transparency will improve Eµ. When the agents

Figure 1: Probability of immediate concession and posterior beliefs

have balanced strength in the WOA, nobody gives up immediately. This can drag the negotiation

on for a long time. As the strengths diverge, the probability of immediate concession increases.
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If a mediator wants to increase the probability of immediate concession, she should try to make

the strong agent stronger and the weak agent weaker. To understand how transparency affects

Eq′|q µ(π′), first, I will consider the case when information is available only on one side. Then, I

will show what changes as information becomes available on both sides.

4.2.1 One-sided Public Information

Suppose that public information is available only regarding agent i. Let us suppose that the prior

belief that j has a high reservation value, πj, is fixed. From equation 10, we can see that given πj,

if agent i is weak - i.e., π′i ≤ πj
λ̂i
λ̂j - then µ(.) increases as π′i decreases and in an affine way. On

the other hand, if i is strong - i.e., π′i ≥ πj
λ̂i
λ̂j - then µ(.) increases as π′i increases and in a concave

fashion. This is shown in Figure 2.

This relation is crucial for understanding the relation between transparency and delay. First,

consider the prior about the a priori weak agent πw. From the reputation formation equilibrium, we

know that this does not affect the time it takes to build the reputation, T . The weak agent cipp = µ

such that he takes the same time to build the reputation, Tw( πw
1−µ) = T . Given that T is independent

of πw, the probability of immediate concession µ is affine in πw. However, the prior belief about

the a priori strong agent πs reduces T (see equation 5) in a convex fashion. Consequently, the weak

agent cipp = µ such that

Tw(
πw

1− µ
) = − 1

λ̂w
ln(

πw
1− µ

) = T = − 1

λ̂s
ln(πs).

This implies that µ increases in a concave fashion with πs. Recall that disclosing information about

agent i will spread the posterior belief π′i around πi. Given transparency qi, one of the following

three situations may arise: (1) 1 − π′i ≥ πj
λ̂i
λ̂j - i.e., s = (s(ω̄i), s(ωi)) = (i, i); (2) π̄′i ≤ πj

λ̂i
λ̂j - i.e.,

s = (j, j); and (3) 1−π′i ≤ πj
λ̂i
λ̂j ≤ π̄′i - i.e., s = (i, j). The following lemma identifies the information

sensitivity of Eq′µ(π′) in the interior of each of these cases.

Lemma 4 If s = (s(ω̄i), s(ωi)) = (i, j), then an increase in transparency will increase Eq′µ(π′). If

s = (j, j), then an increase in transparency has no effect on Eq′µ(π′). If s = (i, i), then an increase

in transparency will reduce Eq′µ(π′).

The relation between Eq′µ(π′) and qi for s = (i, i) follows from concavity, and s = (j, j) fol-
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Figure 2: Probability of immediate concession and π′i given πj

lows from linearity (See Kamenica and Gentzkow (2011)). For s = (i, j), increasing transparency

increases µ for both signal realizations. However, the distribution over the posterior belief also

changes, making the effect ambiguous. Nonetheless, the above lemma shows that increasing trans-

parency increases Eq′µ(π′).

A bargaining environment is said to be insufficiently transparent on the i-side if qi is below

some threshold level. If there is no state-wise difference in transparency - i.e., q̄i = q
i

= qi - then

this means that qi ∈ [1
2
, qLi ], for some boundary qLi . If q̄i 6= q

i
, then this means that qi ∈ {qi :

q̄i + q ≥ 1, and q
i
≤ qLi (q̄i)}. To avoid notational burden, I will denote an insufficiently transparent

bargaining environment simply by qi < qLi .

Corollary 2 Suppose that information is disclosed about the a priori strong agent i; then, there

exists a threshold qLi such that: for qi < qLi , Eq′µ(π′) < µ(π) and for qi ≥ qLi , Eq′µ(π′) is increasing

in qi.

Corollary 3 Suppose that information is disclosed about the a priori weak agent j; then, there

exists a threshold qLj such that: for qj < qLj , Eq′µ(π′) = µ(π) and for qj ≥ qLj , Eq′µ(π′) is increasing

in qj.

Suppose that πi ≥ πj
λ̂i
λ̂j . Under a fully opaque bargaining environment, agent i is strong.

Suppose that for some q, 1 − π′i ≥ πj
λ̂i
λ̂j ; then, s = (i, i) for any transparency less than q. Using
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Lemma 4, we can say that Eq′µ(π′) < µ(π). Suppose that transparency is larger than q such that

1− π′i ≤ πj
λ̂i
λ̂j ; then, from Lemma 4, we know that Eq′µ(π′) is increasing in transparency. However,

Eq′µ(π′) < µ(π) until some threshold level of transparency. If transparency can be beyond this

threshold, then Eq′µ(π′) increases in qi. On the other hand, if πi ≤ πj
λ̂i
λ̂j , then following the same

argument, we can say that if q is not sufficiently high such that π̄′i ≤ πj
λ̂i
λ̂j , then Eq′µ(π′) = µ(π).

However, if q is sufficiently high such that π̄′i ≥ πj
λ̂i
λ̂j , then Eq′µ(π′) is increasing in qi. From Lemma

3 and Corollary 2 and 3, the following proposition follows :

Proposition 3 Given any prior π, there exists a threshold transparency qL such that : if informa-

tion is disclosed about the a priori strong agent i only, then for any qi < qLi , ψ(π, q) �FSD ψ′(π). If

information is disclosed about a priori weak agent j only, for any qj < qLj , the distribution of delay

remains unchanged.

Contrary to popular expectations, we see here that disclosing information about the a priori

strong agent actually increases delay when the bargaining environment is not sufficiently transpar-

ent. Note that the result is very strong. From FSD, it follows that information disclosure not only

increases expected delay (adjusting for no agreement), but it also increases the expected cost of

delay for any bounded non-decreasing cost of delay. This brings to mind the old saying - ‘A little

learning is a dangerous thing’ (Alexander Pope: “An Essay on Criticism,” 1709).

4.2.2 Two-sided Public Information

Disclosing information about the a priori strong agent and the a priori weak agent alone has different

effects. Nonetheless, Eq′µ(π′) is weakly below µ(π) in either case unless the bargaining environment

is sufficiently transparent. Suppose that the mediator has the flexibility to choose whether or

not she would investigate an agent. Then, if transparency on either side exceeds the respective

thresholds, the mediator can guarantee that Eq′µ(π′) > µ(π) by disclosing information about one

of the agents. Having the option of investigating both agents means that the mediator may be

able to make Eq′µ(π′) > µ(π) by disclosing information about both, even when either side is not

sufficiently transparent. However, if the mediator does not have the flexibility and has to investigate

both agents, then it is not necessary that Eq′µ(π′) > µ(π), even when the bargaining environment

is sufficiently transparent.
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Eq′µ(π) :=q′iq
′
jµ(π̄′i, π̄

′
j) + (1− q′i)q′jµ(1− π′i, π̄′j)

+q′i(1− q′j)µ(π̄′i, 1− π′j) + (1− q′i)(1− q′j)µ(1− π′i, 1− π′j)

=q′iEq′jµ(π̄′i, πj) + (1− q′i)Eq′jµ(1− π′i, πj) for any i ∈ N.

Similar to the one-sided information case, given the posterior belief π′j, there are three possible

Figure 3: µ(π′i, π̄
′
j), µ(π′i, 1− π′j) and Eq′jµ(π′i, πj)

situations. Moreover, there are two possible posterior beliefs, π̄′j and 1− π′j. Accordingly, there are

six possible situations that can be categorized in the following three cases:

1. For some i ∈ N, s(ω̃) = i for all ω̃ ∈ W . Let R1
i = S(i,i,i,i) denote the set of transparency

when this is the case.

2. For some i ∈ N , s(ω̄i, ωj) = s(ωi, ωj) = i and s(ωi, ω̄j) = s(ω̄i, ω̄j) = j. Let R2
j = S(i,j,i,j)

denote the set of transparency when this is the case.

3. For some i ∈ N , s(ω̃) = i for all ω̃ ∈ W̃ \ {(ωi, ω̄j)} and s(ωi, ω̄j) = j. Let R3
i = S(i,i,j,i) be

the set of transparency when this is the case.

Given the prior π, we can partition the space of transparency into the above regions. If the

i-side is sufficiently transparent relative to the j side, then the signal about agent i determines the

strength vector - i.e., q ∈ R2
i and vice versa. If transparency on both sides is close, then one agent’s
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signal cannot solely determine the strength vector. Then, q ∈ R3
i for some i. If transparency on

both sides is sufficiently small, then the a priori strong agent, say agent i, remains strong no matter

what signal is realized - i.e., q ∈ R1
i .

Using Lemma 4, we can say how qi, qj will affect Eq′µ(π). For example, suppose that q ∈ R2
i .

Then, s(ω̄j) = (i, j), which implies that increasing qi will increase Eq′iµ(πi, π̄
′
j) = q′iµ(π̄′i, π̄

′
j) + (1−

q′i)µ(1−π′i, π̄′j). Also, s(ωj) = (i, j), which implies that increasing qi will increase Eq′iµ(πi, 1−π′j) =

q′iµ(π̄′i, 1− π′j) + (1− q′i)µ(1− π′i, 1− π′j). Since the weights to Eq′iµ(πi, π̄
′
j) and Eq′iµ(πi, 1− π′j) are

independent of qi, the average of the two will also increase. Such a monotonic relation holds in all

but for qi when q ∈ R3
i . This can be seen nicely in Figure 3. Since s(ω̄j) = (i, j), increasing qi

increases the probability of immediate concession, but if s(ωj) = (i, i), then qi has just the opposite

effect. The combined effect can go either way. I show that Eq′µ(π) is concave in qi when q ∈ R3
i

(See Lemma 9 in the appendix). Suppose that agent i is strong a priori. Using Lemma 3, we get

the following proposition :

Proposition 4 For any qi ≤ qLi , there exists q̃Lj (qi) ∈ (q0
j , q

L
j ] such that for q = (qi, qj) with

qj < q̃Lj (qi), disclosing information about the strong agent or both agents will increase delay, in the

sense of FSD and disclosing information about the weak agent alone does not affect delay.

Figure 4: Transparency on both sides: Assuming q̄i = q
i

= qi for all i ∈ N
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Recall from one-sided public information that if qi < qLi , then disclosing information on agent

i alone makes Eq′µ(π) < µ(π). At q = (qLi , q
0
j ), Eq′µ(π) = µ(π) and agent i’s signal determines

which agent is strong. Hence, (qLi , q
0
j ) ∈ R2

i . Using Lemma 4, we can argue that when q ∈ R2
i ,

disclosing information on j will reduce Eq′µ(π), while disclosing information on i will increase

Eq′µ(π). Suppose that the transparency on i-side is qLi , and the transparency on the j-side is

marginally above q0
j . Therefore, if information is revealed on both sides, Eq′µ(π) < µ(π). So, to

restore the equality, the information on i has to be more precise.

Corollary 4 Given qj < qLj , there exists qi > qLi such that if information is disclosed about the

strong agent alone, delay does not increase, and disclosing information about the weak agent does

not affect delay, but disclosing information about both agents increases delay.

Also, recall that if qj ≤ qLj , then Eq′µ(π) = µ(π). Consider qi marginally above q0
i ; then,

q = (qi, q
L
j ) ∈ R3

i . I will show that for such q, Eq′µ(π) > µ(π). Using Lemma 4, we can show that

Eq′µ(π) is increasing in qj. Therefore, to restore the equality, the transparency on the j side needs

to be lower.

Corollary 5 There is q (qi ≤ qLi ∀i ∈ N) such that although disclosing information about a priori

strong agent alone increases delay, if information is disclosed about both agents, then delay does not

increase.

5 Optimal Transparency

A bargaining environment is not likely to be fully transparent or the mediator’s investigation is not

likely to be fully accurate. It is natural that the bargaining environment can be made transparent

only to a limited extent. This is equivalent to saying that there is an upper bound on the accuracy of

the investigations. Given such an upper bound, should a mediator make the bargaining environment

as transparent as possible? We have learned that, if these upper bounds are sufficiently tight,

disclosing information about one agent will increase delay in the sense of FSD. Disclosing information

may increase the probability of immediate concession. Note that from Lemma 3, we can only say

that if Eq′µ(π) > µ(π), then ψ(π, q) 6�FSD ψ′(π). This does not mean delay increases in the sense of

FSD. Consider disclosing information about an a priori strong agent. If transparency is sufficiently
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high, we saw in the previous section that the probability of immediate concession when information

is disclosed - i.e, Eq′sµ(π′) is higher than when no information is disclosed - i.e., µ(π). However,

when a low signal is realized, the strength of the strong agent falls so much that he becomes the

weak agent. Consequently, the bargaining can drag on longer. Therefore, we cannot rank ψ(π, q)

and ψ′(π) in the sense of FSD.

Suppose that the mediator discounts delay at a stationary rate rM . Let Qi = (Q̄i, Qi
) denote

the feasible set of transparency, where Qi := {qi : q̄i + q
i
≥ 1, q̄i ≤ Q̄i, qi ≤ Q

i
}. So, the mediator’s

objective is to

max
q∈Q

Eψ(π,q)e
−rM t.

Recall that there is positive mass probability πiπj that the bargaining may never be settled and

mass probability Eq′µ(π′) that agreement will be reached immediately. I will normalize rM = 1.

Evaluating the expectation, we can say that the mediator’s objective is equivalent to maximizing

Eq′µ1(π′), where

µ1(π′) = µ(π′) + (λ̂i + λ̂j)ξ(π
′), where ξ(π′) = −π′iπ′je−T (π′) (11)

Let us define q∗i := arg maxqi∈Qi Eq′µ1(π′).

Welfare

Recall that, given any initial beliefs π′, in the WOA, high types on both sides always insist. However,

the low types only pretend to be insistent, and their equilibrium strategy depends on the initial

belief π′. Thus, only the low types are manipulable. In equilibrium, these manipulable agents

are indifferent between conceding at any time between (0, T (π′)]. Since the weak manipulable

agent concedes immediately with positive probability, his equilibrium payoff is V (ωw) = (1 −

ω̄s). The strong manipulable agent, on the other hand, does not concede immediately, but with

probability µ(π′), he is conceded to. After no immediate concession from the weak agent, he

is indifferent between conceding at any time between (0, T (π′)]. Thus, in equilibrium, he gets

V (ωs) = µ(π′)ω̄s + (1 − µ(π′))(1 − ω̄w). Therefore, the aggregate payoff of the two manipulable

agents is (ω̄i + ω̄j − 1)µ(π′) + (1 − ω̄i) + (1 − ω̄j). Taking expectation over all posteriors, we can

then say maximizing Eq′µ(π′) is equivalent to maximizing the aggregate payoff of the manipulable
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agents.

The insistent types also insist until T (π′), but unlike the manipulable types, they cannot give

up when they see no concession until time T (π′). Therefore,

Vi(ω̄i, π
′) =

ˆ T

0

(π′)e−ritω̄idGj(s) = Vi(ωi, π
′)− π′je−riT (π′)(1− ω̄j).

Suppose that the agents have equal discount rates, which are the same as the mediator’s discount

rate (normalized to 1). Substituting the low types’ equilibrium payoff and aggregating the equi-

librium payoff of all types weighted by their ex-ante probability, we can see maximizing welfare,

W (π, q) :=
∑

i,ωi
π′i(ωi)Vi(ωi, π

′), is equivalent to maximizing Eq′µ1(π′).

Figure 5: Optimal Transparency (πi = 0.5, πj = 0.15)

Proposition 5 Suppose that only the a priori strong agent i is investigated. Then, q∗i = q0
i if

Qi < qLi and q∗i = (Q̄i, Qi
), otherwise. If only an a priori weak agent j is investigated, then q∗j = Qj

if Qj < qLj and q∗j = (Q̄j, Qj
), otherwise.

As shown in equation 11, the mediator’s objective µ1 has two parts: 1) the probability of immediate

concession, µ; and 2) ξ = −π′iπ′je−T (π′), where T (π′) is the time it takes to build reputation, and

π′iπ
′
j is the mass probability that agreement will never be reached. In the previous section, we

studied the role of information revelation on µ. The above threshold result is no surprise if the

mediator was maximizing Eq′µ(π′).10 However, the objective is to maximize Eq′µ1(π′). Recall that

10This is equivalent to maximizing the sum of payoff of the manipulable types of agents only.
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the driving force behind this threshold rule for µ is (lemma 4) that µ is affine in π′w and concave

in π′s. T (π′) does not depend on π′w, and ξ is negative and linearly decreasing in π′w. Substituting

T (π′), we get ξ = −π′s
1+ 1

λ̂s π′w. Thus, ξ is decreasing and concave in π′s. Therefore, µ1 is affine in π′w

and concave in π′s. Thus, we can extend Lemma 4 for µ1 (See Lemma 7 in the appendix).

When information is available on both sides, as we have seen before, whether or not disclosing

information about an agent will help reduce delay depends on the transparency of the information

on both sides. The relation may be complementary - i.e., improving transparency on one side

alone, may increase delay but on both sides may reduce delay; or, substitutable - i.e., improving

transparency on both sides may increase delay but only on one side may reduce delay. Thus, the

simple threshold rule from one-sided information does not hold true.

To characterize the optimal transparency when both agents have noisy information about their

opponent, I will simplify notation by assuming that q̄i = q
i

= qi. Let us fix the transparency on the

a priori weak side to some qj and consider the transparency on the a priori strong side, qi ≤ Qi.
11

There are two thresholds, qHi and qLi . As in the one-sided information case, if Qi ≤ qLi , then a

fully opaque environment is most efficient, and if Qi ≥ qHi , a maximum transparent environment is

most efficient. However, the two thresholds may not be equal. As Figure 5 shows, given qj, some

intermediate transparency of qi improves efficiency or welfare because of the complementarity.

Proposition 6 Given qj, there exist qLi , q
M
i , q

H
i , with 1

2
≤ qLi ≤ qMi ≤ qHi ≤ 1, such that

q̄∗i (qj;Qi) =



1
2

if Qi ≤ qLi (qj)

Qi if qLi (qj) ≤ Qi ≤ qMi (qj)

qMi (qj) if qMi (qj) ≤ Qi ≤ qHi (qj)

Qi if qHi (qj, ) ≤ Qi.

6 Appointing a Mediator

We have learned that given any prior belief π, there is a threshold rule for information disclosure

when information is disclosed about one agent. If information can be disclosed about both agents,

we saw that it is possible that disclosing information on both sides may do better or worse (see

11A similar result can be obtained for the opposite case. It is left for the readers.
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Proposition 4). Clearly, appointing a mediator is not always going to improve efficiency. So, the

natural question is : Given the accuracy of the investigation, when should we appoint a mediator?

For simplicity, I will focus on one-sided information disclosure - say, about agent i. Suppose

that the objective is to maximize efficiency or welfare. Given the accuracy of the investigation on

agent i, qi, when can we say that Eq′µ1(π′) > µ1(π)?

Figure 6: Information Disclosure about agent i

Proposition 7 (Information Disclosure) Given qi and πj, there exist πNi (πj, qi) and πIi (πj, qi) sat-

isfying 1 ≥ πNi (πj, qi) ≥ π

λ̂i
λ̂j

j ≥ πIi (πj, qi) ≥ 0, such that (1) if πi ≤ πIi (πj, qi), then disclosure is

ineffective; (2) if πi ∈ [πIi (πj, qi), π
N
i (πj, qi)], then disclosure is optimal; and (3) if πi ≥ πNi (πj, qi)

then no disclosure is optimal.

When agents have sufficiently close bargaining strengths, neither agent gives up easily in the

WOA. The probability of immediate concession µ is small. Given any πj, as πi becomes higher(lower),

i’s bargaining strength becomes relatively larger (smaller). Suppose that πi is sufficiently high, such

that 1 − π′i ≥ π

λ̂i
λ̂j

j . Then, s = (i, i) - i.e., no matter what signal is realized, agent i will remain

the strong agent. From Lemma 7, we know that it is better not to disclose such information. The

above proposition shows that there is a unique threshold such that if agent i’s bargaining strength

is above this threshold, then disclosing information reduces efficiency but otherwise enhances effi-

ciency. Similarly, if πi is sufficiently small such that π̄′i ≤ π

λ̂i
λ̂j

j , then s = (j, j). From Lemma 7,

we know that disclosing information about i will have no effect on efficiency. If πi is below this
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threshold, then s = (i, j), and the concave closure of µ1 is strictly above µ1. This implies that

disclosing information will increase efficiency.

7 Discussion

Reservation Value

The uniqueness result in this paper comes from the specific form of incomplete information. It

is well established that without additional assumptions, there are a vast multiplicity of equilibria

in two-sided incomplete information bargaining. So, surely, this model is with loss of generality.

However, it capture many simple bargaining environments. For example, incomplete information

about the reservation value seems very natural when it comes to buying and selling property such

as housing. Loewenstein, Thompson and Bazerman (1989) have well documented that agents’

preferences are often influenced by how others are doing. Thus, the price that a friend has paid

for a similar property works as a reservation price. Similarly, how much money some less qualified

employees are making elsewhere can be the reservation value for a labor union when it negotiates

with the management over its share of the surplus.

Reservation value works as a status quo, as defined in Masatlioglu and Ok (2005). It makes

some deals unacceptable based on the status quo but does not influence agents’ preferences in any

way. Also, note that reservation value is not a physical outside option that, when taken, stops the

game. Let us suppose that two groups are negotiating over a surplus - e.g., a territorial dispute.

The actual task of bargaining is usually delegated to a representative. The group sets a cutoff. If

the representative fails to deliver a share above the cutoff he will be fired. 12 In territorial disputes,

such cutoffs are probably chosen for some historical or political reasons. In labor dispute problems

they are probably based on how other unions are doing. The opponent’s cutoff is unknown to an

agent, but he can get noisy information regarding the environment that has induced the cutoff.13

One can also think of reservation value as the value an agent assigns to never agreeing to trade.

If such an option does not generate a flow payoff, then it fits our modeling assumptions. However,

12Li (2007) and Compte and Jehiel (2003) consider similar bargaining environment under complete information.
However, the reservation value in these models are endogenous and depends on the past offers. They show delay can
arise even under complete information.

13The cut-offs can also be thought of as a special case of Kőszegi and Rabin (2006)’s reference dependent preference.
This is the case when agents are infinitely loss averse. Basak (2015) treats reservation value as a special case of
psychological preference as in Geanakoplos, Pearce and Stacchetti (1989).
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if such an outside option generates a flow payoff, then agents will discount only the net payoff. The

standard two-sided incomplete information bargaining literature, such as Fudenberg and Tirole

(1983), Cramton (1984), Cramton (1992), Chatterjee and Samuelson (1987) and Chatterjee and

Samuelson (1988) consider this case. This is the crucial difference that drives the uniqueness result.

I assume that it is commonly known that if the buyer buys the house, the trade will generate a $1

surplus, which they decide how to divide. However, these aforementioned models will assume that

the value of the house v is unknown to the seller and that there is some cost c of selling the house

that is unknown to the buyer. This will also give us reservation values - e.g., a high-cost seller will

not sell the house below his cost. However, reservation values also influence agents’ preferences.

Suppose that the seller sells the house at price p after bargaining for time t. Then, his utility is

e−rst(p − c). Thus, he discounts the net payoff. With such a model specification, the equilibrium

under complete information will be quite different from that in Binmore, Shaked and Sutton (1989).

Agents will first take their reservation value and then split the leftovers as Rubinstein proposes.

This will not force the high type to insist on his high reservation value, and so uniqueness fails.

Similar to Watson (1998), suppose that the two types also differ in terms of their discount rates.

In particular, suppose that the high type is also more patient, ri(ω̄i) < ri(ωj). If assumption 1

holds true, then we can say that the patient type will always insist. However, the Rubinstein split

will be different and the assumptions will have to be revised accordingly.

Uniqueness

Suppose, for contradiction, that there is an equilibrium in which the high reservation type of agent

i rejects an offer above ω̄i with positive probability for some i ∈ N . Let Mi be such that there is no

equilibrium in which agent i will reject an offer greater than Mi with positive probability. Hence,

Mi > ω̄i. Also, let mj be such that there is no equilibrium in which agent j will ever take anything

below mj with positive probability. Therefore, Mi ≤ e−ri∆(1 − mj) and mj ≥ e−rj∆(1 − Mi).

Combining these two inequalities and taking ∆ → 0, we get Mi ≤ vRi . Since ω̄i ≥ vRi , this

contradicts the fact that Mi > ω̄i. Thus, in any equilibrium, the high reservation type will always

play the ω̄i insistent strategy - i.e., accepts an offer iff it is weakly better than ω̄i.

If an agent ever plays an action not consistent with the insistent strategy of the high type, he

reveals that he is the low type. If an agent reveals that he is the low type, while his opponent has
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not yet revealed so, following Myerson (1991), as ∆→ 0, agreement is reached almost immediately,

and the agent can get as much as he gets by conceding to his opponent’s insistent demand. This

result is commonly referred to as the Coasian result. 14 Thus, the game becomes a WOA - agents

decide whether or not to concede. Once an agent concedes, the game stops, and by not conceding,

an agent builds his reputation for being the high type. AG shows that equilibrium of the discrete

time game converges in distribution to the unique continuous time equilibrium. Thus, we see that

when incomplete information is about agents’ reservation value, the limiting equilibrium is unique.

With two reservation values on each side, the game can be thought of as a staircase where agents

are one step away. When there are more types, it may create more steps. Unlike AG, in which

rational agents choose one behavioral type to imitate, here, agents choose a high step and gradually

come down to lower steps. On each step, there is positive probability that an agent will not make

any further concession. However, uniqueness is not guaranteed without additional assumption.

Consider a subgame in which it has been revealed that agent i does not have a reservation value

above vRi . Insistence is not the unique rationalizable strategy for this highest reservation value

type left since the maximum he could have gotten had there been complete information, is not his

reservation value (see the proof of lemma 1). We can get the insistence behavior if we assume that

it is a common conjecture that agents never settle for a deal that gives them less than they could

have gotten in the worst case complete information scenario.

Two-sided incomplete information bargaining

This paper does not claim to predict the equilibrium uniquely under any general form of incomplete

information. Fudenberg and Tirole (1983) consider two-sided incomplete information with two pe-

riods, while Cramton (1984) extends this to the infinite horizon. He constructs an equilibrium in

which the seller makes fully revealing offers. Thus, following the seller’s offer, one-sided incomplete

information bargaining ensues, where the uninformed party makes the offers, as in Sobel and Taka-

hashi (1983). For this separating equilibrium, the low type must satisfy the incentive compatibility

14Gul and Sonnenschein (1988) establish that any delay in one-sided incomplete information bargaining is caused
by the significant time interval between offers. If this time between offers vanishes, so does inefficiency. Gul,
Sonnenschein and Wilson (1986) establishes the same result for a durable good monopolist. Also see Grossman
and Perry (1986), Rubinstein (1985) for similar results on one sided incomplete information. The usual Coase
conjecture argument assumes that only the uninformed agent makes the offers. In this model, the one sided incomplete
information case is similar to Myerson (1991), where the informed agent is essentially choosing only whether to accept
or reject (insist on the same demand) an offer made by the uninformed agent. Coase conjecture holds without any
additional assumption.
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of not pretending to be the high type. When reservation value does not influence the agent’s in-

tertemporal comparison, this can not be satisfied. Cramton (1992) extends this work, allowing for

strategic delay. He constructs a separating equilibrium in which the agent’s offer reveals his type.

So, agents choose only when to make the offer. Suppose that the seller makes the offer at some

time revealing his type. Following Admati and Perry (1987), impatient buyers will take the offer

immediately rather than waiting, while patient buyers will wait until some time before they make

the Rubinstein offer. In the absence of concession from either party, agents become more convinced

that the gains from trade are lower. Chatterjee and Samuelson (1987) consider a similar problem,

restricting the strategy space to only two actions, and show that there is a unique war of attrition

equilibrium. Chatterjee and Samuelson (1988) extends this to many actions and show that the

equilibrium can be generalized and uniqueness holds under off-path optimistic conjecture. Given

that insistence is the unique rationalizable strategy, this is trivially satisfied.

Delay in bargaining

Under one-sided incomplete information, Ausubel and Deneckere (1989) show a folk theorem result

when non-stationary equilibrium is considered and when there is no gap between the uninformed

trader’s valuation and the support of the informed trader’s valuation. Admati and Perry (1987)

show that there is a separating equilibrium with delay when the prior probability that the informed

agent is the low type is sufficiently high, and if agents can strategically delay in making a counteroffer

and, by doing so, prevent the opponent from revising his offer. Specific details of the bargaining

environment can provide quite different incentives to agents, and, consequently, different from this

paper, there can be inefficiency even under one-sided incomplete information. Vincent (1989) and

Deneckere and Liang (2006) show that there can be delay when agents have interdependent values.

Fuchs and Skrzypacz (2010) show that there is delay when new traders arrive over time. Board and

Pycia (2014) show that Coase conjecture fails when there are outside options. Daley and Green

(2012) consider a seller trying to sell an asset to an uninformed buyer, and information arrives

stochastically over time. Agents may wait for the information to arrive rather than giving up,

violating the Coase conjecture. The authors show that a higher quality of information may lead to

a more inefficient outcome.
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Reputation and bargaining

After Abreu and Gul (2000), Abreu and Pearce (2007) further develop reputation bargaining, sowing

that the stationary behavioral type is a sufficiently rich class of perturbation to consider in stationary

bargaining games. Compte and Jehiel (2002) show that the outside option can offset insistent

behavior. Abreu, Pearce and Stacchetti (2012) consider a reputation bargaining model in which

there is one-sided incomplete information about agents’ discount rate. They show that non-Coasian

result can occur when patient, rational agents can delay in making their initial demand to separate

themselves from impatient agents.

Mediation

The mediator in the negotiation can commit only to the information structure and not to the

signal realization. This is similar to Brocas and Carrillo (2007) and Kamenica and Gentzkow

(2011), in which a sender tries to persuade a receiver by committing to an information structure.

Hörner, Morelli and Squintani (2015) consider a static conflict game in which two countries decide

whether to split a surplus or go to war. Each country is uncertain whether the other country

is strong or weak. War partly destroys surplus, but a strong country can get a larger share by

going to a war with a weak country. A mediator is defined as a mechanism designer who can only

recommend nonenforceable resolutions - a division of the surplus and a probability of going to war.

The authors show that the mediator does not fully reveal if a country is weak. Since, unmediated

communication precludes such nondisclosure, it cannot achieve the same level of ex-ante welfare. It

will be interesting to study what a mediator can do as an information designer in this conflict.

Information disclosure

The idea that more information can reduce agents’ payoff in a strategic situation was first shown

in Hirshleifer (1971). In auction theory, Milgrom and Weber (1982) show that disclosing public

information that is affiliated to buyers’ valuation reduces the buyers’ fear of overbidding and, thus,

increases revenue. Following their work, several papers focus on the agent’s incentive to gather

information in auction. Bergemann and Pesendorfer (2007) and Eso and Szentes (2007) show that

when an auctioneer commits to an information structure, although more information increases

efficiency, it also increases information rent. Thus, full disclosure is not optimal. Novshek and
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Sonnenschein (1982), Clarke (1983), Vives (1984) and Gal-Or (1985) build the theory of information

sharing in oligopoly. See Vives (1990) and Raith (1993) for a more general treatment. They show

that firms facing a Cournot competition should not share their private information about market

demand. Bergemann and Morris (2013) allow for a more general form of information sharing and

show that disclosing private noisy information about the aggregate helps make the actions more

correlated to the state, and so information disclosure may help.

In this model, the nature of incomplete information is very specific and more information can

be interpreted as an agent having access to a more precise signal about his opponent’s reservation

value. Note that it also means that the opponent knows that the agent has more information.

Blackwell (1951), Blackwell (1953) shows that in a single agent decision problem, more information

is equivalent to higher payoff. A related literature extends Blackwell’s notion of equivalence between

more information and higher payoff in games. Gossner and Mertens (2001) establish the equivalence

of the identity classes of the two relations in a zero sum game. Peski (2008) provides the necessary

and sufficient condition for the equivalence of the relations in a zero sum game. Lehrer, Rosenberg

and Shmaya (2010) consider games of common interest and characterize the situation in which one

information structure is better than another with respect to different solution concepts.

8 Final Remarks

We saw a simple model of bargaining with two-sided incomplete information that results in a

unique equilibrium. The equilibrium is similar to the one that we see in the reputation literature.

The model provides some novel insights into the role of information in a reputation-formation

equilibrium. It raises some follow-up questions, many of which can be answered using the same

model. In a companion paper, I consider the case in which agents privately get noisy information

about their opponent’s reservation value. So, an agent knows his own reservation value but does not

know what his opponent thinks about his reservation value. I also extend this paper to study the

role of interdependence of reservation values in delay. This paper formalizes the idea of a mediator

who has some control over the underlying information structure. To focus only on the role of

transparency in delay, this paper remains silent about whether agents will give consent to appoint

a mediator. Also, efficiency is not the only reasonable objective of the mediator. For example, a

mediator may want to implement a fair division of the surplus. I leave these questions for future
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research.

9 Appendix

9.1 Bargaining with Reservation Values

Proof of lemma 1 Let Zi be the set of offers i rejects with positive probability after some

history while playing a strategy from the undominated set of strategies, Ri i.e.

Zi := {z ∈ [0, 1]|∃h ∈ H, xj ∈ [0, 1] and σi ∈ Ri such that xj = 1− z and σi((h, xj))(A) < 1}

Let us define Mi := supZi. Let Yi be the set of offers i accepts with positive probability after some

history while playing some strategy from Ri i.e.

Yi := {z ∈ [0, 1]|∃h ∈ H, xj ∈ [0, 1] and σi ∈ Ri such that xj = 1− z and σi((h, xj))(A) > 0}

Let us define mi := inf Yi.

Lemma 5 For i ∈ N , ωi ≤ mi and ω̄i ≤Mi.

Proof. Suppose for contradiction ωi > mi. Then by definition of mi, there must exists some

xi ∈ (mi, ωi) such that xi ∈ Yi i.e. after some history if agent j offers xi to agent i, she accepts it

with positive probability. But by definition of ωi, no θi would have ever accepted x with positive

probability. Hence, contradiction.

Suppose for contradiction ω̄i > Mi, then there exists xi ∈ (Mi, ω̄i) such that i will accept xi for

sure after any history for any σi ∈ Ri. But there exists a strategy σi ∈ Ri such that agent i with

reservation value ω̄i does not accept xi. Hence contradiction.

Given lemma 5, and by definition of mi and Mj we get

mi ≥ e−ri∆(1−max{Mj, ω̄j}) (12)

Since any agent i ∈ N , can guarantee himself e−ri∆(1−max{Mj, ω̄j}). If he ever offers max{Mj, ω̄j}+

ε (for ε however small) to agent j, agent j will accept the offer for sure. So, after no history i
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Figure 7: mi(Mi) and Mj(mj)

would ever accept an offer which gives her anything less. To see this formally, suppose there exists

xi < e−ri∆(1−max{Mj, ω̄j}) such that for some strategy σi ∈ Ri, i accepts xi with positive prob-

ability after some history h. Suppose i rather rejects xi and demands x′i =
1−max{Mj ,ω̄j}

2
+ xi

2e−ri∆
.

Since 1 − x′i > max{Mj, ω̄j}, agent j will surely accept this. Also, since e−ri∆x′i > xi, it gives i

higher discounted value. Construct a strategy σ′i such that σ′i(h
′) = σi(h

′) for all h′ ∈ H \ {h} and

at history h, σ′i(h) behaves just like σi(h) except the probability mass is shifted to demanding x′i

from accepting x. Then σi is conditionally dominated by σ′i. Hence, σi /∈ Ri.

Similarly, from Lemma 5, and by definition of mi and Mj we also get

Mj ≤ e−rj∆(1−max{mi, ωi}) (13)

If any agent j ∈ N offers i less than max{mi, ωi}, then i will never accept it. So, j cannot get more

than e−rj∆(1 −max{mi, ωi}). So any strategy of j that rejects more than e−rj∆(1 −max{mi, ωi})

is conditionally dominated by by a strategy that does not do so and otherwise same.

To see what these couple of inequalities 12 and 13 imply, let us first identify (mi,Mj) satisfying

both inequalities and then on the same diagram identify (Mi,mj) that satisfy the two inequalities as

in figure 7. Then we will use Mi ≥ mi for any i ∈ N . When we consider (mi,Mj) the corresponding

reservation values are (ω̄j, ωi) and when we consider (Mi,mj) the corresponding reservation values

are (ωj, ω̄i).
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Note that when there is no reservation values, the same two inequalities give us the unique

Rubinstein solution. As ∆ → 0, the solution converges to (
rj

ri+rj
, ri
ri+rj

). Thus equal discount rate

implies agents will divide the surplus equally. The first mover advantage vanishes when offers can be

made very frequently. Also, if the reservation values are commonly known to be ωi on both sides, we

can see the Rubinstein solution still remains the unique solution. However, if the reservation values

are commonly known to be (ω̄i, ωj), then the solution is unique but different than the Rubinstein

solution. As ∆→ 0, the solution converges to (ω̄i, 1− ω̄i). This proves Proposition 1.

When the reservation values are not commonly known and satisfies assumption 1, the two

inequalities identifies only a range. This shows Mi for agent i cannot be higher that the maximum

of all the complete information payoffs he can get. Therefore, for any undominated strategy agent i

will accept any offer above ω̄i with probability 1. Therefore agent j will never offer agent i anything

above ω̄i. Also, mi cannot be lower than the minimum of all complete information payoff an agent

can get. Therefore, mi ≥ 1− ω̄j.

The high type agent i will always accept anything above ω̄i and will reject any offer below ω̄i

by definition. Thus, insistence in the unique undominated strategy for the high type agents. Note

the role of assumption 1. If ω̄i < vRi , then vRi is the maximum of all complete information payoff

agent i can get. By a similar argument as in this lemma, we get Mi ≤ vRi . Thus, insistence is not

the unique rationalizable strategy for the high type. �

Proof of Lemma 2

Step 1: The game must end in finite time with probability 1.

θj = ω̄j always insists. Suppose, the negotiation has been going on for t1 period. Let h(t1)

denotes the history at t1. If i agrees to j’s demand of ω̄j, then she gets (1 − ω̄j). Suppose agent

i believes that j will behave like θj = ω̄j for another t2 time with probability ψj(t1, t2). If i plays

a strategy that will drag the game for until t2 period with positive probability, then the maximum

she can get is (1− ψj(t1, t2))1 + ψj(t1, t2)e−ri(t2−t1)(1− ω̄j). Therefore, she will drag it only if

(1− ω̄j) ≤ (1− ψj(t1, t2))1 + ψj(t1, t2)e−ri(t2−t1)(1− ω̄j)

⇒ ψj(t1, t2) ≤ 1− (1− ω̄j)
1− e−ri(t2−t1)(1− ω̄j)

=: δ < 1
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Hence, there is K such that δK < αj(h(t1))(ω̄j). Since, we are considering independent and privately

known reservation values, αj[θi](h(t1))(ω̄j) = αj(h(t1))(ω̄j) for all θi ∈ Θi. Repeating the argument

K times we can find a sequence 0 = t1, t2, . . . tK+1 such that i plays a strategy that drags the

game until tK+1 with positive probability only when i believes that j will behave like ω̄j with

probability less than δK . But since i believes that θj = ω̄j with probability αj(h(t1))(ω̄j), we have

a contradiction. So, i cannot possibly wait until tK+1 before she concedes.

Step 2: Agent i must concede immediately.

Suppose not. Let t̄ > 0 be the supremum of the time such that i has not conceded to j’s demand

ω̄j. Consider the last ε time i.e. (t̄− ε, t̄). Let x be the sup of i’s payoff if j agrees to anything less

than ω̄j in (t̄ − ε, t̄ − (1 − b)ε), b ∈ (0, 1). Let y be the sup of i’s payoff if j does not do so. Let ξ

be the probability i assigns to j not agreeing to anything less than ω̄j in (t̄ − ε, t̄ − (1 − b)ε). If i

concedes she gets (1− ω̄j). Since i is dragging it, it must be that

(1− ω̄j) ≤ (1− ξ)x+ ξy

⇒ ξ ≤ x− (1− ω̄j)
x− y

, whenever x− y > 0

At any t, θj can behave like ω̄j and guarantee herself e−rj(t̄−t)ω̄j. So the best i can get is (1 −

e−rj(t̄−t)ω̄j).
15 Therefore,

x ≤ (1− e−rjεω̄j)

y ≤ e−ribε(1− e−rj(1−b)εω̄j)

Therefore, y < (1− ω̄j) whenever

e−ribε(1− e−rj(1−b)εω̄j) < 1− ω̄j.

Or, (rearranging) whenever
ω̄j(e

ribε − e−rj(1−b)ε)
(eribε − 1)

< 1.

Taking limit of LHS as ε→ 0 (using L’Hospital rule) we get
ω̄j(rib+ rj(1− b))

rib
. This is less than 1 if

15 Note that 1− e−rj(t̄−t)ω̄j ≥ ω̄i.
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b ∈ (
ω̄jrj

ω̄jrj + (1− ω̄j)ri
, 1). Therefore, for any b in the above interval and ε small enough (1− ω̄j) ≥ y

and since (1− ω̄j) ≤ (1− ξ)x+ ξy, we have x ≥ (1− ω̄j). Since,
x− (1− ω̄j)

x− y
is increasing in x and

y, we have

ξ ≤ lim
ε→0

ω̄j(1− e−rjε)
1− e−rjεω̄j − e−ribε(1− e−rj(1−b)εω̄j)

=
1

b

ω̄jrj
ω̄jrj + (1− ω̄j)ri

< 1

So, for any b in the above interval and ε small enough, we can find δb < 1 such that i will drag

the negotiation only when she believes j will behave like ω̄j in [t̄− ε, t̄− (1− b)ε) with probability

less than δb. At time t̄− (1− b)ε, we can repeat the same argument for [t̄− (1− b)ε, t̄− (1− b)2ε)

and so on. Therefore, i will drag the negotiation only if she believes j will not behave like ω̄j in

[t̄ − ε, t̄ − (1 − b)kε) with probability less than δkb . Take k such that δkb < αj(h(t̄ − ε))(ω̄j), where

αj(h(t̄ − ε))(ω̄j) is agent i’s belief that θj = ω̄j at history h at time t̄ − ε. Hence, contradiction.

Note that, the result depends on ∆→ 0. Otherwise, i may not have got the chance to make offers

sufficiently close to t̄− (1− b)mε for all m = 1, 2 . . . k. �

Proof of Proposition 2 Since, Fi[ωi](t) is increasing Ai[ωi] is dense in the Supp(Fi[ωi]).

Since Gj[ωi](t) is continuous, we have ui[ωi](t) is constant in Supp(Fi[ωi]). Therefore ui[ωi](t) is

differentiable and hence Gj(t) is differentiable. u′i[ωi](t) = 0 implies that Gj[ωi](t) must have hazard

rate

λj =
gj(t)

1−Gj(t)
= λ̂j

After seeing j has not conceded by time t, θi’s updated belief that agent j is of type θj is

αj[θi](t)(θj) =
αj[θi](∅)(θj)(1− Fj[θj](t))

1−Gj[θi](t)

Take log on both sides and then time derivative to get the continuous time analog of Bayesian

updating as

αj[ωi](t)(ω̄j)
′ = −αj[ωi](t)(ω̄j)(σj[ω̄j](t)− λ̂j)
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where σj[ω̄j](t) :=
fj [ω̄j ](t)

1−Fj [ω̄j ](t) is the hazard rate of concession of type θj = ω̄j. In this information

structure we have σj[ω̄j](t) = 0. So, αj[ωi](t)(ω̄j)
′ = αj[ωi](t)(ω̄j)λ̂j and αj(T ) = 1. Therefore,

αj[ωi](t)(ω̄j) = e−λ̂j(T−t).

Hence, at any t ≤ T , αj[ωi](t)(ω̄j)
λ̂i = αi[ωj](t)(ω̄i)

λ̂j . Thus, at any time α must be on the balanced

path and gradually converges to (1, 1). If initial belief α(∅) is such that Lj(α(∅)) < 1, then we will

say j has less than balanced strength. We know only one of ωj can cipp. When j has less than

balanced strength, ωj will cipp. Let µj be the total probability that agent j cipp such that upon

seeing no concession from j, i’s updated belief that j is of type ω̄j i.e. αj[ωi](0)(ω̄j) is higher. µj is

such that α(0) reaches the balanced path. αj[ωi](0)(ω̄j) =
αj [ωi](t)(∅)(ω̄j)

1−µj is updated belief of i that j

is of type ω̄j. So, if Lj(α(∅)) < 1, then

Lj(α(0)) = (1− µj)−λ̂iLj(α(∅)) = 1⇒ µj = 1− Lj(α(∅))1/λ̂i = 1− αj(∅)(ω̄j)

(αi(∅)(ω̄i))
λ̂j

λ̂i

�

Proof of Corollary 1 If λ̂i > λ̂j, then

Lj(α(∅)) =
πλ̂ij

π
λ̂j
i

=

(
πj
πi

)λ̂i
π

(λ̂i−λ̂j)
i → 0

Therefore, agent j cipp = µ = 1− L
1

λ̂j

j → 1. �

9.2 Transparency and Delay

Proof of Lemma 3 The ‘only if’ direction follows from the definition of FSD. Let us con-

sider the ‘if’ direction. From Bayesian consistency (see equation 7) we know the probability of no

agreement remains unchanged - i.e., ψ(π, q)(maxπ′T (π′)) = 1 − πiπj = ψ′(π)(T (π)). Recall that

ψ(π, q)(t) = Eq′ψ
′(π′). Removing the upper bound on the distribution ψ′(π′), we get for any t

ψ(π, q)(t) ≤ max{1− (1− Eq′µ(π′))e−(λ̂i+λ̂j)t, 1− πiπj}

40



The equality holds for t ≤ minπ′T (π′). If µ > Eq′µ(π′), then

max{1− (1− Eq′µ(π′))e−(λ̂i+λ̂j)t, 1− πiπj} ≤ max{1− (1− µ(π))e−(λ̂i+λ̂j)t, 1− πiπj} = ψ′(π)(t)

Therefore, ψ(π, q) ≥FSD ψ′(π). �

9.2.1 One-Sided Information

Proof of Lemma 4

Case 1: 1− π′i ≥ πj
λ̂i
λ̂j

Agent i is strong no matter what signal is realized. This can happen only when agent i is

strong in a fully opaque bargaining environment i.e. πi ≥ πj
λ̂i
λ̂j . Suppose the transparency is not so

high that 1 − π′i falls below πj
λ̂i
λ̂j . Since µ(π′i) is concave in this region, by spreading the posterior

beliefs, Eq′µ(π′) will be lower. This is equivalent to saying that the concave closure of µ(π′),

denoted by µ̂(π′i), coincide with µ(π′i) (see Kamenica and Gentzkow (2011)). Therefore an increase

in transparency will reduce efficiency. A fully opaque bargaining environment , i.e. π̄′i = 1−π′i = πi

maximizes Eµ.

Case 2: π̄′i ≤ πj
λ̂i
λ̂j

Agent i is weak no matter what signal is realized. This can happen only when agent i is weak

in a fully opaque bargaining environment i.e. πi ≤ πj
λ̂i
λ̂j . Suppose the transparency is not so high

that π̄′i exceeds πj
λ̂i
λ̂j . Since µ(π′i) is affine in this region the upper envelope µ̂(π′i) coincide with

µ(π′i). Notice that for any choice of Bayes possible π̄′i and 1− π′i the welfare remains the same. So,

transparency does not affect efficiency.

Case 3: 1− π′i ≤ πj
λ̂i
λ̂j ≤ π̄′i.

Agent i is strong when ω̃i = ω̄i is realized and i is weak when ω̃i = ωi is realized. This can

happen either (1) when i is strong in a fully opaque bargaining environment but transparency

in high enough to reduce 1 − π′i below πj
λ̂i
λ̂j or (2) when i is weak in a fully opaque bargaining

environment but transparency in high enough to increase π̄′i above πj
λ̂i
λ̂j . Improving transparency

will increase π̄′i and thus increase the strength of the strong agent while reduce 1 − π′i and thus
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reduce the strength of the weak agent. However, the distribution over the posterior i.e. q′i changes

too. When s = (i, j),

Eq′µ(π′) =1−

q′i πj

(π̄′i)
λ̂j

λ̂i

+ (1− q′i)
1− π′i

(πj)
λ̂i
λ̂j


=1− πiπj

 q̄i

(π̄′i)
1+

λ̂j

λ̂i

+
1− q̄i

(πj)
1+

λ̂i
λ̂j

 .

The last equality uses q′iπ̄
′
i = q̄iπi and (1 − q′i)(1 − π′i) = (1 − q̄i)πi. Since, agent i is strong when

ω̃i = ω̄i is realized, (π̄′i)
1+

λ̂j

λ̂i ≥ (πj)
1+

λ̂i
λ̂j . Taking partial derivative w.r.t. q̄i and using this inequality

and the fact that π̄′i is increasing in q̄i, we have Dq̄iEq′µ(π′) > 0. Also, π̄′i is increasing in q
i

and

hence Dq
i
Eq′µ(π′) > 0. �

Proof of Corollary 2 Since agent i is a priori strong, πi ≥ π

λ̂i
λ̂j

j . When qi ∈ q0
i , ω̃i is not

informative and so agent i is strong no matter what signal is realized. As transparency increases

(q̄i and/or q
i
), the posterior belief π̄′i increases and 1 − π′i falls. As long as 1 − π′i ≥ π

λ̂j

λ̂i
j , agent i

remains strong no matter what signal is realized. Therefore, Eq′µ(π′) < µ(π) (from Lemma 4). If

transparency increases further s = (i, j). Form Lemma 4, we can say that Eq′µ(π′) is increasing in

qi. �

Proof of Corollary 3 Since agent i is a priori weak, πi ≤ π

λ̂i
λ̂j

j . As transparency increases but

as long as π̄′i ≤ π

λ̂i
λ̂j

j (note that π̄′i is increasing in qi), Eq′µ(π′) = µ(π). As transparency increases

further s = (i, j) and Lemma 4 says that Eq′µ(π′) is increasing in qi. �

Proof of Proposition 3 Suppose agent i is strong a priori. Let us define qLi to be the lower

boundary of the set {qi|s(q) = (i, j) and Eq′µ(π′) ≥ µ(π)}. s(q) = (i, j) only for sufficiently high qi

and given s = (i, j), Eq′µ(π′) is increasing in qi (from Lemma 4). Given Corollary 2, we can then

say that Eq′µ(π′) < µ(π) for qi < qLi and Eq′µ(π′) ≥ µ(π) for qi ≥ qLi . The FSD then follows from

Lemma 3.
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Suppose agent j is weak a priori. Then let us define qLi as the lower boundary of {qj|s(qj) =

(i, j)}. Note that s(q) = (i, j) only when qj ≥ qLj . Given Corollary 3, we can say that Eq′µ(π′) =

µ(π) for qi ≤ qLi and Eq′µ(π′) ≥ µ(π) for qi ≥ qLi . The FSD then follows from Lemma 3. �

9.2.2 Two-Sided Information

Lemma 6 (1) If q ∈ R1
i for some i ∈ N , then Eq′µ(π′) decreases in qi and not affected by qj. (2)

If q ∈ R2
j for some j ∈ N , then Eq′µ(π′) increases in qj and decreases in qi. (3) If q ∈ R3

i for some

i ∈ N , Eq′µ(π′) increases in qj but may increase or decrease in qi.

Proof.

Case 1: q ∈ R1
i

If agent i is strong at a fully opaque bargaining environment , then agent i will also be strong

when ω̃ = (ω̄i, ωj) is realized. Consequently this case is possible only for agent i and not j. Suppose

sufficiently transparent bargaining environment is not feasible such that 1− π′i ≥ (π̄′j)
λ̂i
λ̂j . Then for

any signal realization agent i is strong and agent j is weak. For agent i, the posterior belief is such

that Eq′jµ(π′i, π
′
j) is concave in π′i (see Figure 3). On the other hand, for agent j, the posterior

beliefs are such that Eq′iµ(π′i, π
′
j) is affine in π′j. Hence, Eq′µ(π′) decreases in qi and not affected by

qj.

Case 2: q ∈ R2
j

This represents the case when agent i is strong for two possible signal realization and so is agent

j. However, agent j’s signal determines which agent will be strong and not agent i’s signal. This

happens when the bargaining environment cannot be made much transparent on i-side but j-side

is sufficiently transparent. Thus π̄′j and 1 − π′j are widely spread while π̄′i and 1 − π′i are close. In

fact, (1− π′j)
λ̂i
λ̂j ≤ 1− π′i ≤ π̄′i ≤ (π̄′j)

λ̂i
λ̂j . Thus for i, µ(π′i, π̄

′
j) is concave while µ(π′i, 1− π′j) is affine.

Therefore, Eq′jµ(π′i, π
′
j) is concave in π′i. Hence, Eq′µ(π′) decreases in qi. For j, on the other hand,

given the posterior π̄′i (or 1− π′i), j is strong if ω̃j = ω̄j and j is weak if ω̃j = ωj. Using Lemma 4,

we can say that increasing transparency on the j-side of the bargaining environment will increase

both Eq′jµ(π̄′i, π
′
j) and Eq′jµ(1− π′i, π′j). Therefore, Eq′µ(π′) increases in qj
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Case 3: q ∈ R3
i

Given qj, qi is neither too low (such that j’s signal determines which agent is strong), nor too

high (such the i’s signal determines which agent is strong), then we have the above. Consider qj

first. Given the posterior belief π̄′i, j is weak no matter what signal is realized. From Lemma 4,

we know that Eq′jµ(π̄′i, π
′
j) remains unchanged as qj changes. On the other hand, given posterior

1 − π′i, j is strong if ω̄j is realized and weak if ωj is realized. So, from Lemma 4, we know that

Eq′jµ(1− π′i, π′j) increases as qj increases. Thus Eq′µ(π′) increases as qj increases. Now consider qi.

Given the posterior belief π̄′i, j is strong no matter what signal is realized. From Lemma 4, we know

that Eq′iµ(π′i, π̄
′
j) decreases as qi increases. On the other hand, given posterior 1− π′j, i is strong if

ω̄i is realized and weak if ωi is realized. So, from Lemma 4, we know that Eq′iµ(π′i, 1− π′j) increases

as qi increases. Thus increase in transparency qi may increase or decrease welfare.

Proof of Proposition 4 Suppose agent i is strong a priori. Recall qLi and qLj as defined in

Proposition 3. We saw disclosing information about the strong agent increases delay for qi ≤ qLi

and disclosing information about the weak agent does not affect delay if qj ≤ qLj .

Case 1: Consider qi ≤ qLi and sufficiently small such that at (qi, q
0
j ), s(ωi) = i.

Consider Figure 3 with π′j in the horizontal axis. This corresponds to the case where πj is in

the left linear portion of Eq′iµ. As qj increases, but not sufficiently high, then s(ωi, ω̄j) = i, which

implies q ∈ R1
i . Therefore qj has no effect on Eq′µ(π′) (from Lemma 6). Since, s(ωi, ω̄j) = j at

q = (q0
i , q

L
j ), we have s(ωi, ω̄j) = j for any (qi, q

L
j ) with qi ≥ q0

i . If qj becomes sufficiently high (but

≤ qLi ) then s(ωi, ω̄j) = j. Note that for such q, s(ωi, ωj) = i = s(ω̄i, ωj). Also, since s(ωi, ω̄j) = i

at q = (q0
i , q

L
j ) (balanced strength), we have s(ω̄i, ω̄j) = j for such q. Hence, q ∈ R3

i and so from

Lemma 6, we know that Eq′µ(π′) increases in qj. Since at (qi, q
0
j ), Eq′µ(π′) > µ(π), there is a

threshold q̃Lj (qi) ∈ (0, qLj ] such that if information is disclosed about the strong agent or the both

agents the immediate probability of concession will be less than µ(π). Using Lemma 3, we get our

result.

Case 2: If qi is sufficiently large but qi ≤ qLi , such that at (qi, q
0
j ), s(ωi) = j.

Then q ∈ R2
i and so from Lemma 6, we know that increase in qj will reduce Eq′µ(π′). Therefore,

if (qi, q
L
j ) ∈ R2

i then q̃Lj (qi) = qLj . If (qi, q
L
j ) ∈ R3

i , then for sufficiently high qj, q ∈ R3
i and hence
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Eq′µ(π′) is increasing in qj. Thus, the same argument applies as in case 1. �

Proof of Corollary 4 Consider qi marginally above qLi and qj = q0
j . By definition of qLi ,

s(ω̄j) = s(ωj) = (i, j) - i.e., q ∈ R2
i . From Lemma 6, we know that Eq′jµ(π′) is decreasing on qj and

decreasing in qi. By definition of qLi , when q = (qLi , q
0
j ), Eq′jµ(π′) = µ(π). Hence for qi marginally

above qLi , there exists qj marginally above q0
j such that Eq′jµ(π′) < µ(π). �

Proof of Corollary 5 When the transparency of information on j is qLj , for π′i marginally

above πi, agent i is strong irrespective of ω̃j. Hence, µ(π′) is concave in π′i, which implies Eq′jµ(π′)

is concave in π′i. For π′i marginally below πi, s(ω̄j, ωj) = (j, i). Therefore, µ(π′) is concave in π′i

when π′j = 1− π′j and affine in π′i when π′j = π̄′j. Therefore, Eq′jµ(π′) is concave in π′i.

Since, the affine relation is negative, and all the other relations are positive, for π′i marginally

below πi the slope of Eq′jµ(π′) is smaller than for π′i marginally above πi.

Let f be piece-wise concave above and below some x. Take x1 < x2 such that for a ∈ (0, 1),

ax1 + (1 − a)x2 = x. Also, f ′(x2) > f ′(x1). Then af(x1) + (1 − a)f(x2) > f(x). Suppose, for

contradiction, af(x1) + (1− a)f(x2) ≤ f(x). Then (1− a)(f(x2)− f(x)) ≤ a(f(x)− f(x1)). Also,

(1− a)(x2 − x) = a(x− x1). After dividing we then get f(x2)−f(x)
x2−x ≤ f(x)−f(x1)

x−x1
. Take x2 → x1, then

x→ x1 (since x ∈ (x1, x2)). Therefore f ′(x2) ≤ f ′(x1). Hence, contraction.

Replacing f by Eq′jµ(π′) we can then conclude that a marginal increase in qi or spreading πi in a

Bayes consistent way, will increase Eq′µ(π′). We have seen in the proof of Proposition 4 that, when

qi is marginally above q0
i and qj = qLj , q ∈ R3

i . From Lemma 6, we know that Eq′jµ(π′) increasing in

qj when q ∈ R3
i . By definition, when q = (q0

i , q
L
j ), Eq′µ(π′) = µ(π). Hence, for qi marginally above

q0
i there exists qj < qLj such that Eq′µ(π′) > µ(π). �

9.3 Optimal Transparency

Proof of Proposition 5 Recall that

µ1(π′) = µ(π′) + (λ̂i + λ̂j)ξ(π
′)

= µ(π′)− (λ̂i + λ̂j)π
′
iπ
′
je
−T (π′)

= 1− π′wπs
− λ̂w
λ̂s − (λ̂i + λ̂j)π

′
wπ
′
s
1+ 1

λ̂s
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Similar to Lemma 4, when there is one sided information, we have

Lemma 7 If s = (s(ω̄i), s(ωi)) = (i, j) then increase in transparency will increase Eq′µ1(π′). If

s = (j, j) then increase in transparency has no effect on Eq′µ1(π′). If s = (i, i) then increase in

transparency will reduce Eq′µ1(π′).

Proof. µ(π′) is linear in π′w and so is ξ(π′). Hence, qi has no effect on Eq′µ1(π′) when s = (j, j).

µ(π′) is concave in π′s and so is ξ(π′). Hence, increasing qi reduces Eq′µ1(π′) when s = (i, i). Suppose

s = (i, j)

Eq′iµ1(π′) = 1− πiπj
(
q̄i(π̄

′
i)
−(1+

λ̂j

λ̂i
)
+ (1− q̄i)π′j

−(1+
λ̂i
λ̂j

)
)
− (λ̂i + λ̂j)πiπj

(
q̄i(π̄

′
i)

1

λ̂i + (1− q̄i)π′j
1

λ̂j

)

Note that

Dlπ̄
′
i =

π̄′i
q′i

(1− πi) and Dhπ̄
′
i =

π̄i
q̄i

(1− π̄′i),

where subscript h and l denote partial derivative w.r.t. q̄i and q
i

respectively. Differentiating

Eq′iµ1(π′) w.r.t q
i

and substituting Dlπ̄
′
i we get

DlEq′iµ1(π′) =

(
λ̂i + λ̂j

λ̂i

)
1− πi
q′i

(
(π̄′i)

−(1+
λ̂j

λ̂i
) − (π̄′i)

1

λ̂j

)
> 0

Differentiating Eq′iµ1(π′) w.r.t q̄i and substituting Dhπ̄
′
i we get

DhEq′iµ1(π′) =

(
λ̂i + λ̂j

λ̂i

)
(1− π̄′i)

(
(π̄′i)

−(1+
λ̂j

λ̂i
) − (π̄′i)

1

λ̂j

)

−

((
(π̄′i)

−(1+
λ̂j

λ̂i
)
+ (λ̂i + λ̂j)(π̄

′
i)

1

λ̂j

)
−

(
π
−(1+

λ̂j

λ̂i
)

j + (λ̂i + λ̂j)π
1

λ̂j

j

))

Define g(x) := x−k + kx, then g′(x) < 0. Take k = (λ̂i + λ̂j) and we can say g((π̄′i)
1

λ̂j ) < g(π
1

λ̂j

j ).

Therefore DhEq′iµ1(π′) > 0.

Given this lemma, same argument applies as in Corollary 2 and Corollary 3. Hence, the threshold

rule applies. �

Lemma 8 (1) If q ∈ R1
i for some i ∈ N , then Eq′µ1(π′) decreases in qi and not affected by qj. (2)
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If q ∈ R2
j for some j ∈ N , then Eq′µ1(π′) increases in qj and decreases in qi. (3) If q ∈ R3

i for some

i ∈ N , Eq′µ1(π′) increases in qj but may increase or decrease in qi.

Proof. This lemma claims that µ1 has the same properties of µ as in Lemma 6. I have already

shown that (Lemma 7) µ1 has the same properties as µ (Lemma 4) under one-sided information.

By the same argument as in Lemma 6 and replacing Lemma 4 by Lemma 7, we get this lemma.

Lemma 9 If q ∈ R3
i for some i ∈ N , then Eq′µ(π′) is concave in qi.

Proof. When q ∈ R3
i , we have have,

Eq′µ(π′) = 1−

q′iq′j π̄′j

(π̄′i)
λ̂j

λ̂i

+ q′i(1− q′j)
1− π′j

(π̄′i)
λ̂j

λ̂i

+ (1− q′i)q′j
1− π′i(
π̄′j
) λ̂i
λ̂j

+ (1− q′i)(1− q′j)
1− π′j

(1− π′i)
λ̂j

λ̂i


Let us define κ : [0, 1]2 × [0, 1]×R→ R as

κ(q̄, q; π, k) := L(q̄, q; π) ·N(q̄, q; π, k) where

L(q̄, q; π) := 1− πq̄ − (1− π)(1− q) and N(q̄, q; π, k) :=

(
π(1− q̄)

1− πq̄ − (1− π)(1− q)

)−k
Then,

Eq′µ(π′) =1−
(
q′jπ̄
′
j + (1− q′j)(1− π̄′j)

)
κ(1− qi; πi,

λ̂j

λ̂i
)−

(1− π′i)(1− q′i)κ(1− qj; πj,
λ̂i

λ̂j
)− (1− π′j)(1− q′j)κ(qi; πi,

λ̂j

λ̂i
)

=1−

(
πjκ(1− qi; πi,

λ̂j

λ̂i
) + πi(1− q̄i)κ(1− qj; πj,

λ̂i

λ̂j
) + πj(1− q̄j)κ(qi; πi,

λ̂j

λ̂i
)

)

Lemma 10 κ(q̄, q; .) satisfies the following properties:

1. (Convexity) D2κ(q̄, q; .) is positive semidefinite

2. κhh(1− qi, .)κll(qi, .) + κhh(qi, .)κll(1− qi, .)− 2κhl(1− qi, .)κhl(qi, .) = 0

where subscript h and l denotes the partial derivatives w.r.t. q̄ and q respectively.
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Proof. Differentiating L(q) = 1− πq̄− (1− π)(1− q) = 1− q′ w.r.t q̄ and q respectively, we get

Lh(q) = −π and Ll(q) = (1− π). Note that N(q)−
1
k =

π(1− q̄)
L(q)

= 1− π′. Therefore,

Nh(q) = k
π(1− (1− π′))
(1− π′)(1− q′)

N(q), Nl(q) = k
(1− π)

(1− q′)
N(q)

Nhh(q) =
π

(1− q′)

(
(1− (1− π′))

1− π′
(k + 1) + 2

)
, Nh(q)Nll(q) = (k − 1)

(1− π)

(1− q′)
Nl(q)

(1− q′)Nhl(q) + Lh(q)Nl(q) + Ll(q)Nh(q) = (k + 1)(1− π)Nh(q)

Therefore,

κh(q) =L(q)Nh(q) + Lh(q)N(q)

=π

(
k

(1− (1− π′))
1− π′

− 1

)
N(q)

κl(q) = (k + 1)(1− π)N(q)

Taking second order partial derivatives we get,

κhh(q) =(1− q′)Nhh(q) + 2Lh(q)Nh(q)

=π

(
(1− (1− π′))

1− π′
(k + 1)

)
Nh(q) > 0

κll(q) =(1− q′)Nll(q) + 2Ll(q)Nl(q)

=(k + 1)(1− π)Nl(q) > 0

κhl = (1− q′)Nhl(q) + Lh(q)Nl(q) + Ll(q)Nh(q) = (k + 1)(1− π)Nh(q)

Therefore,

κhhκll − κ2
hl =(1− π)(1 + k)2Nh(q)

(
π

(1− (1− π′))
1− π′

Nl(q)− (1− π)Nh(q)

)
=(1− π)(1 + k)2Nh(q)

(
π

(1− (1− π′))
1− π′

k
(1− π)

(1− q′)
N(q)− (1− π)k

π(1− (1− π′))
(1− π′)(1− q′)

N(q)

)
=0
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Also,

κhh(q)κll(1− q) + κhh(1− q)κll(q)− 2κhl(q)κhl(1− q)

= (1− π)(1 + k)2Nh(1− q)
(
π

(1− π̄′)
π̄′

Nl(q)− (1− π)Nh(q)

)

+(1− π)(1 + k)2Nh(q)

(
π

(1− (1− π′))
1− π′

Nl(1− q)− (1− π)Nh(1− q)
)

= 0

Taking partial derivatives of Eq′µ(π′) w.r.t q̄i (h) and q
i

(l) we get,

DlEq′µ(π′) =πjκl(1− qi; πi,
λ̂j

λ̂i
)− πj(1− q̄j)κl(qi; πi,

λ̂j

λ̂i
)

=πj

(
κl(1− qi; πi,

λ̂j

λ̂i
)− κl(qi; πi,

λ̂j

λ̂i
)

)
+ πj q̄jκl(qi; πi,

λ̂j

λ̂i
)

DhEq′µ(π′) =πjκh(1− qi; πi,
λ̂j

λ̂i
)− πj(1− q̄j)κh(qi; πi,

λ̂j

λ̂i
) + πiκ(1− qj; πj,

λ̂i

λ̂j
)

=πj

(
κl(1− qi; πi,

λ̂j

λ̂i
)− κl(qi; πi,

λ̂j

λ̂i
)

)
+ πj q̄jκl(qi; πi,

λ̂j

λ̂i
)

+ πiκ(1− qj; πj,
λ̂i

λ̂j
)

Taking the second order derivatives we get,

DllEq′µ(π′) =− πjκll(1− qi; πi,
λ̂j

λ̂i
)− πj(1− q̄j)κll(qi; πi,

λ̂j

λ̂i
) < 0

DhhEq′µ(π′) =− πjκhh(1− qi; πi,
λ̂j

λ̂i
)− πj(1− q̄j)κhh(qi; πi,

λ̂j

λ̂i
) < 0

DlhEq′µ(π′) =− π2
j (κhh(1− qi, .)κll(1− qi, .)− κhl(1− qi, .)2)− π2

j (κhh(qi, .)κll(qi, .)− κhl(qi, .)2)

− π2
j (κhh(1− qi, .)κll(qi, .) + κhh(qi, .)κll(1− qi, .)− 2κhl(1− qi, .)κhl(qi, .)) = 0

The first two inequalities follow from Lemma 10.1. The last equality follows from Lemma 10.1 and

10.2. Therefore Eq′µ(π′) is concave in qi.

Proof of Proposition 6 Let us simplify q̄i = q
i

= qi for all i ∈ N .
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Step 1: If q ∈ R3
i for some i ∈ N , then Eq′µ1(π′) is concave in qi. To see this note that when

q ∈ R3
i ,

Eq′µ1(π′) = Eq′µ(π′)− πiπj
(
qi(π̄

′
i)

1

λ̂j + (1− qi)
[
qj(π̄

′
j)

1

λ̂j + (1− qj)(1− π′i)
1

λ̂i

])
.

We have
∂π̄′i
∂qi

=
π̄′i
q′i

1− πi
qi

and
∂(1− π′i)

∂qi
= −1− π′i

1− q′i
1− πi
1− qi

Taking partial derivatives of qi(π̄
′
i)

1

λ̂j w.r.t. qi and substituting
∂π̄′i
∂qi

we get

∂

∂qi
qi(π̄

′
i)

1

λ̂j =(π̄′i)
1

λ̂j

(
1 +

1− πi
q′i

1

λ̂i

)
∂2

∂q2
i

qi(π̄
′
i)

1

λ̂j =
(π̄′i)

1

λ̂j

(q′i)
2

(1− πi)2

qi

1

λ̂i
(1 +

1

λ̂i
) > 0

Similarly, taking partial derivatives of (1− qi)(1− π′i)
1

λ̂j w.r.t. qi and substituting
∂(1−π′i)
∂qi

we get

∂

∂qi
(1− qi)(1− π′i)

1

λ̂j =− (1− π′i)
1

λ̂j

(
1 +

1− πi
1− q′i

1

λ̂i

)
∂2

∂q2
i

(1− qi)(1− π′i)
1

λ̂j =
(1− π′i)

1

λ̂j

(1− q′i)2

(1− πi)2

1− qi
1

λ̂i
(1 +

1

λ̂i
) > 0

Given that Eq′µ(π′) is concave in qi when q ∈ R3
i (see Lemma 9) we have ∂2

∂q2
i
Eq′µ1(π′) < 0.

Step 2: If qi is sufficiently high such that i’s signal determines which agent is stronger, i.e.,

q ∈ R2
i . Using Lemma 8, we can say that an increase in qi will increase Eq′jµ1(π′). Hence, there

exists qHi (qj) ≤ 1 such that the optimal choice of transparency is maximum transparency when qi

exceeds this threshold.

If qi is sufficiently low, either q ∈ R1
i (if qj is is sufficiently small such that π̄′j ≥ π

λ̂j

λ̂i
i ) or q ∈ R2

j

(is qj is large such that π̄′j ≤ π

λ̂j

λ̂i
i ). In either case Eq′µ1(π′) is decreasing in qi (see Lemma 8). Hence,

there exists a threshold qLi such that below this threshold the optimal choice of transparency is the

minimum transparency.

Recall that under one sided public information or qj = q0
j , Eq′µ1(π′) first falls and then increase
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in qi. Hence these two threshold are the same. However, when there is public information on both

sides these two thresholds may not be the same. If qi is neither too high nor too low, then it is

possible that q ∈ R3
i . From step 1, we know welfare is concave in qi. If Eq′µ1(π′) in decreasing

at the minimum qi, then it is a decreasing function in this region. Consequently, qHi (qj) = qLi (qj).

Similarly if Eq′µ1(π′) in increasing at the maximum qi, then it is an increasing function in this

region. Consequently, qHi (qj) = qLi (qj). However, if Eq′µ1(π′) in increasing in qi at the minimum qi

and decreasing in qi at the maximum qi, then from concavity of Eq′µ1(π′) w.r.t qi (see Lemma 8), we

know there exists an intermediate qi, say qMi (qj), where Eq′µ1(π′) in locally maximum. If Eq′µ1(π′) at

(qMi (qj), qj) exceeds the µ1(π), then qMi (qj) is this intermediate value and qLi (qj) ≤ qMi (qj) ≤ qHi (qj).

Also, if qj is sufficiently high, then it is possible that for the intermediate value of qi, q ∈ R3
j . From

Lemma 8. we know welfare in increasing in qi. Therefore, qHi (qj) = qLi (qj). �

9.4 Appointing a Mediator

Proof of Proposition 7

Case 1: πi ≥ π

λ̂i
λ̂j

j .

When agents have exactly same bargaining strength, πi = π

λ̂i
λ̂j

j , for any qi, s = (i, j). From

Lemma 7 we know that Eq′µ1 is increasing in qi and hence disclosing information about i will

increase Eq′iµ1(π′). Thus, Eq′µ1(π′) > µ1(π) (since the RHS corresponds to qi = q0
i ). Also, when

πi is sufficiently high such that 1 − π′i ≥ π

λ̂i
λ̂j

j , we have s = (i, i). From Lemma 7, we know

Eq′µ1 is decreasing in qi and hence disclosing information about i will decrease Eq′iµ1(π′). Thus,

Eq′µ1(π′) < µ1(π).

The welfare difference of no information disclosure as compared to disclosed information µ1 −

Eµ1, is negative when agents have balanced strength and positive when i has sufficiently high

relative strength. I will show that there is a unique πN ∈ [π

λ̂i
λ̂j

j , 1] such that µ1 − Eµ1 < 0 for

πi ∈ [π

λ̂i
λ̂j

j , πN ] and µ1 − Eµ1 > 0 for πi ∈ [πN , 1]. This follows from the following Lemma.

Lemma 11 Given s = (i, j), if q′i ≥ q̄1+λ̂i
i , then µ1−Eµ1 is increasing in πi and if q′i < q̄1+λ̂i

i , then

µ1 − Eµ1 is concave in πi.
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Proof. As defined in equation 11, µ1 − Eµ1 = (µ− Eµ) + (λ̂i + λ̂j)(ξ − Eξ). For convenience,

I will use

A = −π
−
λ̂j

λ̂i
i πj < 0, B =

(
1− (q̄i)

−
λ̂j

λ̂i (q′i)
1+

λ̂j

λ̂i

)
> 0

C = −π
1+ 1

λ̂i
i πj < 0, D =

(
1− (q̄i)

1+ 1

λ̂i (q′i)
− 1

λ̂i

)
< (>)0

Lµ = (1− q
i
)πiπ

− λ̂i
λ̂j

j , Lξ = (1− q
i
)πiπ

1+ 1

λ̂j

j

Note that if q′i ≥ q̄1+λ̂i
i then D < 0 and vice versa. A′, A′′ will denote the first order and the second

order derivative of A w.r.t. πi and similarly for the other terms. Replacing π̄′i and 1− π′i, we have

µ− Eµ = AB + Lµ and ξ − Eξ = CD + Lξ. Both Lµ and Lξ are linearly increasing in πi.

A′ =

(
λ̂j

λ̂i

)(
−A
πi

)
πj > 0, B′ = −

(
1 +

λ̂j

λ̂i

)
(q̄i)

−
λ̂j

λ̂i (q′i)
λ̂j

λ̂i (q̄i + q
i
− 1) < 0

C ′ =

(
1 +

1

λ̂i

)(
C

πi

)
πj < 0, D′ =

(
1

λ̂i

)
(q̄i)

1+ 1

λ̂i (q′i)
−(1+ 1

λ̂i
)
(q̄i + q

i
− 1) > 0

Therefore (AB)′ = A′B+AB′ > 0, which implies µ−Eµ is increasing. However, C ′D+CD′ is not

necessarily positive. Thus, ξ − Eξ may not be increasing. Note that

AB′ + (λ̂i + λ̂j)CD
′ =

(
λ̂i + λ̂j

λ̂i

)
(q̄i + q

i
− 1)((π̄′i)

−
λ̂j

λ̂i − (π̄′i)
−1+ 1

λ̂i ) > 0

Therefore, when D < 0, µ1 − Eµ1 is increasing in πi. If D > 0, this may not be true. Note that

A′′ =

(
λ̂j

λ̂i

)(
1 +

λ̂j

λ̂i

)(
A

π2
i

)
πj < 0, B′′ = −

(
1 +

λ̂j

λ̂i

)(
λ̂j

λ̂i

)
(q̄i)

−
λ̂j

λ̂i (q′i)
λ̂j

λ̂i
−1

(q̄i + q
i
− 1)2 < 0

C ′′ =

(
1 +

1

λ̂i

)(
1

λ̂i

)(
C

π2
i

)
πj < 0, D′′ = −

(
1

λ̂i

)(
1 +

1

λ̂i

)
(q̄i)

1+ 1

λ̂i (q′i)
−(2+ 1

λ̂i
)
(q̄i + q

i
− 1)2 < 0

Substitute these expressions, one gets (AB)′′ = A′′B + 2A′B′ + AB′′ < 0 and when D > 0,

(CD)′′ = C ′′D+ 2C ′D′+CD′′ < 0. Let us first consider (CD)′′. Replacing C ′, C ′′ and given C < 0,

we get (CD)′′ < 0 iff

π2
iD
′′ + 2

(
1 +

1

λ̂i

)
πiD

′ +

(
1 +

1

λ̂i

)(
1

λ̂i

)
D > 0
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Substituting D,D′, D′′, the condition becomes

(q̄i)
1+ 1

λ̂i (q′i)
− 1

λ̂i

(
1−

π(q̄i + q
i
− 1)

q′i

)2

< 1

(q̄i)
1+ 1

λ̂i (q′i)
− 1

λ̂i

(
1− q

i

q′i

)2

< 1

Since the last term in parentheses is less than 1, a sufficient condition for concavity is D > 0 or

q′i < q̄1+λ̂i
i . Following similar steps we get (AB)′′ < 0 when

(q̄i)
−
λ̂j

λ̂i (q′i)
1+

λ̂j

λ̂i

(
1− q

i

q′i

)2

< 1

which is always true. Therefore, when D > 0, µ1 − Eµ1 is concave in πi.

Suppose, for contradiction there are multiple solutions to µ1−Eµ1 = 0. If µ1−Eµ1 is increasing

then this not possible. Also, even if it is not increasing, from concavity and the fact that µ1−Eµ1 < 0

at balanced strength and µ1 − Eµ1 > 0 when πi is such that 1− π′i = π

λ̂i
λ̂j

j , µ1 − Eµ1 must be first

increasing and then decreasing. If there are multiple solutions then µ1 − Eµ1 ≤ 0 when πi is such

that 1− π′i = π

λ̂i
λ̂j

j . Hence contradiction.

Case 2: πi ≤ π

λ̂j

λ̂i
j .

If πi falls but π̄′i ≥ π

λ̂j

λ̂i
j (note that π̄′i is increasing in πi) then the concave closure of µ1 is always

above µ1. Therefore, disclosing information about i will increase Eq′iµ1(π′). If πi falls further then

such disclosure will have no effect since i will be weak no matter what signal is realized. This gives

us a threshold πIi (πj, qi) such that disclosure is the optimal strategy whenever πi ∈ [πIi (πj, qi), π

λ̂i
λ̂j

j ]

and disclosure is ineffective whenever πi ∈ [0, πIi (πj, qi)]. �
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