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Abstract

This paper studies the Rubinstein bargaining game, in which both agents have reservation
values. Agents are uncertain whether their opponents have high or low reservation values.
Each agent tries to convince the other that he has a high reservation value, resulting in a
unique war of attrition, as in the reputation literature. I analyze the information sensitivity
of delay when agents publicly observe some noisy signal about their opponents’ reservation
values. A bargaining environment is said to be more transparent if the available information
is more precise. I show that information disclosure increases delay, in the sense of first-order
stochastic dominance, if transparency is not sufficiently high. Suppose, a mediator controls this
transparency. Although full transparency is efficient, a bargaining environment is not likely to
be fully transparent. I characterize the optimal transparency when a bargaining environment
can be made transparent only to a limited extent. Also, given any transparency, I show that
a mediator can strictly improve efficiency by disclosing information about an agent iff agents

have sufficiently close bargaining strengths.
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1 Introduction

One of the most basic questions in economic theory is : How will two agents divide an economic
surplus? In his seminal work, Rubinstein (1982) shows that when agents have complete information
about the bargaining environment, they immediately reach an agreement. The exact terms of this
agreement is unique and depends on how agents discount delay. However, when agents have some
private information about themselves, they try to exploit this and convince their opponent that they
should get a higher share of the surplus. This induces a war of attrition (WOA) and causes delay.
Suppose that agents have some noisy information about their opponents and that such information
is public.! A bargaining environment is more transparent if the information is more precise. Will
disclosing this somewhat accurate information reduce delay? Contrary to popular expectations, this
paper will show that disclosing information will increase delay, in the sense of first-order stochastic
dominance, if the bargaining environment is not sufficiently transparent. This brings to mind the
old saying - ‘A little learning is a dangerous thing’ (Alexander Pope: “An Essay on Criticism”,
1709).

In this paper, I will consider the Rubinstein (1982) bargaining game, which is the benchmark
for non-cooperative bargaining theory. Two agents decide how to split a surplus by making offers
and counteroffers alternately until they agree. Time is valuable and offers can be made frequently.
Furthermore, each agent has some reservation value and will accept nothing below this value. For
example, a buyer is bargaining with a seller over the price of a house. The seller’s valuation is 5,
while the buyer’s valuation is 10 (in million dollar units, say). Thus, transferring the property will
generate a surplus of 5. This is common knowledge, and agents decide how to split this surplus.
Suppose that the seller has a neighbor who has sold a similar house for 6.5. The seller believes that
his own place is slightly better, and so he will not sell the house for anything below 7. Thus, the
seller has a reservation value of 2 while dividing a surplus of 5. Similarly, the buyer may have a
friend who has bought a house last year somewhere nearby for 8.5. But the buyer thinks that this
neighborhood is slightly better and so he is willing pay a little more but not more than 9 - i.e., he
sets a reservation value of 1. If these reservation values are commonly known and compatible - i.e.,

the surplus can be divided in a way that will be agreeable to both agents - as Binmore, Shaked and

IThus there is no higher-order uncertainty. Feinberg and Skrzypacz (2005) consider a seller who may or may not
know the buyer’s valuation. Basak (2015) considers a simple model in which both the buyer and seller do not know
what their opponents think of them.



Sutton (1989) show, that there is no delay, and agents get their reservation values if it is binding;
otherwise, they get their Rubinstein shares.

Suppose that agents are uncertain about their opponents’ reservation values. Nature draws
a high or low reservation value for each agent independently from a common prior, and agents
know only their own reservation values. Restricting to only two types, makes the information
sensitivity analysis tractable. However, this is not without loss of generality.? I show that this
results in a unique war of attrition (WOA). The high reservation type always insists on his high
reservation share, while the low type randomizes between insisting and conceding to his opponent’s
high demand. Concession by either agent stops the game, and in the absence of concession, both
agents become more convinced that their opponent has a high reservation value. In equilibrium,
the beliefs evolve along a particular balanced path. Given the initial belief, whichever agent takes
longer to convince his opponent that he is the high type has less-than-balanced bargaining strength.
This agent is called the weak agent, and the other is the strong agent. The weak agent will concede
immediately with positive probability such that, in the absence of no immediate concession, the
updated belief reaches the balanced path. There is a time T" when both agents become absolutely
convinced that their opponent has high reservation value. Reputation building has been studied
extensively in economic theory.® In the context of reputational bargaining, Abreu and Gul (2000)
(henceforth AG) show that when offers can be made frequently, a unique WOA emerges. They
assume that agents can be of certain behavioral types that always insist on a particular share of
the surplus. Unlike the reputation literature, this paper does not assume behavioral insistent types.
The agents are fully rational and, thus, could be threatened by beliefs in equilibrium. Nonetheless,
I show that insistence is the unique rationalizable strategy for an agent with high reservation value.
This establishes a link between the incomplete information and reputation bargaining literatures.

Agents do not know their opponents’ reservation values. However, they are likely to have noisy
information regarding what their opponents are comparing the house with and how much better or
worse it is. In a more transparent bargaining environment, agents are more likely to get the right
signals. Think of a fictitious mediator who controls this transparency. A mediator is a neutral third

party appointed to facilitate a resolution to the conflict. In many bargaining environments the

2More types will start a step game, but uniqueness is not guaranteed without additional assumptions.

3 The reputation literature started with Milgrom and Roberts (1982) and Kreps and Wilson (1982). We can see
similar WOA in Kreps and Wilson (1982), when an incumbent and an entrant with multiple entry opportunities
engage in a war to build their reputation.



mediator can be actual rather than fictional.* The mediator investigates each agent for the actual
reservation value and publicly conveys the result to the other side. Because investigation is not
fully accurate, it generates noisy public information. The mediator commits to the investigation
with some known accuracy and cannot influence the result of her investigation; thus, she works

° as defined in Kamenica and Gentzkow (2011). So transparency of

as an information designer,
a bargaining environment is equivalent to accuracy of the investigation. There is no delay in a
fully transparent bargaining environment. However, a bargaining environment is usually not fully
transparent and can be made transparent only to a limited extent. We are left with the question :
Given any upper bound on transparency, what is the optimal choice of transparency that will make
the bargaining outcome most efficient?

Suppose that information is available only about the a priori strong agent. I show that there
is a threshold level of transparency such that : if the upper bound is below this threshold, a com-
pletely uninformative bargaining environment is optimal, and beyond this threshold, a maximum
transparent bargaining environment is optimal. If there is public information about the a priori
weak agent as well, then it can both enhance and decrease efficiency. Given the transparency on
the a priori weak side, there are two thresholds of transparency on the a priori strong side (say,
i-side). Below the lower threshold L, a completely uninformative signal on ¢ is optimal, and beyond
the upper threshold H, maximum transparency on the i-side is optimal. Unlike the case in which
there is information leakage only on one side, these two thresholds are not necessarily the same. If
these two thresholds are different, then there is a middle threshold M. When the upper bound is
between L and M, the optimal transparency is maximum transparency, and when the upper bound
is between M and H, the optimal transparency is the middle threshold transparency.

We see that appointing a mediator does not necessarily improve efficiency. So, the natural ques-
tion is : Given the accuracy of the investigation, when should a mediator be appointed? Or, when
does disclosing information about an agent reduce delay? I show that disclosing information about
an agent strictly increases efficiency if and only if agents are sufficiently close in their bargaining

strengths. If agents have close bargaining strength, then no agent gives up easily, and without any

4In the corporate world, a mediator is often hired to resolve conflicts between employees or departments quickly,
so that agents can go back to their daily business. When a trade union is negotiating with management over its share
of surplus, or an environmentalist group is negotiating with developers, a local authority may step in as a mediator.

5As opposed to a conventional mechanism designer. Hérner, Morelli and Squintani (2015) defines a mediator in a
peace negotiation as a mechanism designer who can make only unenforceable recommendations. See the discussion
section for details.



information disclosure, the negotiation may drag on for a long time.

What drives the above results is ingrained in how agents build their reputations, starting from
the initial beliefs, and how transparency influences the distribution over the initial beliefs. After a
high (low) signal is realized, the posterior belief that the agent is a high type increases (decreases).
The mediator induces a distribution over the posterior beliefs. More accurate investigation or a
more transparent bargaining environment induces more dispersed posterior beliefs. The posterior
beliefs must satisfy Bayesian consistency.

After the signal realization, agents bargain to build reputation, starting with the posterior beliefs.
In the WOA that follows, the strong agent determines how long it takes to build a reputation. Let
us call this T. Accordingly, the weak agent concedes immediately with positive probability - say, pu.
As bargaining continues, agents concede at a particular rate that makes the low types indifferent
between conceding and insisting. These concession rates are independent of the transparency of the
environment. The initial beliefs affect (1) the probability that no agreement will ever be reached;
(2) how long it will take to build the reputation - 7'; and (3) the probability of immediate concession
- ;. When agents have balanced strengths, no one gives up immediately - i.e., = 0. If the initial
belief that agent j is a high type decreases, or the initial belief that agent 7 is a high type increases,
the bargaining strengths of the two agents diverge. However, these two changes affect delay quite
differently. Suppose that agent j is less likely to be a high type; then, j has less than balanced
strength. This linearly decreases the probability that agreement will never be reached. This will
not affect 7', but will linearly increase p. All of these together increase efficiency in an affine way.
Suppose that agent ¢ becomes more likely to be a high type; then, ¢ has more than balanced strength.
This will linearly increase the probability that agreement will never be reached and convexly reduce
T and concavely increase p. All of these together will affect efficiency in a concave way.

To see what this affine-concave relation implies, suppose that information is disclosed about
an a priori strong agent. Further, suppose that the transparency is not sufficiently high, so that
the strong agent remains strong no matter what signal is realized. Since, information disclosure
makes the posterior beliefs more dispersed and efficiency is concave in the posterior beliefs about

the strong agent, the outcome is less efficient.



2 The Bargaining (Game

N = {1,2} denotes the set of agents. These two agents bargain over splitting a fixed surplus
1. For interchangeability of the agents’ identity, I will refer to the agents as ¢ and j and 7 # j.
Nature picks a state w € W = W; x W,, which specifies a pair of reservation values (wy,ws).
Agents share a common prior 7 € P(W), where P(.) denotes the set of probability distributions.
In this paper, I will assume that the reservation values are drawn independently. A public signal
0 = (@;,w;) € W is realized. I will assume that W = W. The public signals on two agents are
conditionally independent. The public signal on agent ¢ is denoted by the collection of conditional
probability distributions over the signal @; given the state w;: {¢;(.|w)}wew, ¢ € N. The information
structure is commonly known. Based on the signal that agent ¢ gets, she forms her belief and higher-
order beliefs, and this is captured in the type space ©;, 1 € N. © = O; X ©,. Since this paper
considers public information only, there is no higher-order uncertainty. So, 8; = (w;, @;) - i.e., agent
i of type 6; has a reservation value w; and a public signal w; about his opponent’s reservation value.

I will assume that one of the agents is picked randomly to make the first offer, and then an
alternate offer bargaining protocol is followed. I will assume that the period length is A and I am
interested in the limiting result when A — 0 - i.e., when offers can be made frequently. Let the
action space at any time period ¢ when agent ¢ gets the chance to make a decision be A;;. A;p = [0, 1]
and an agent 7 taking an action z; € [0, 1] means that he demands z; share of the surplus or offers
(1 — ;) share to agent j. A; = [0,1] U {A} for any period ¢ > 0. A stands for agreement, which
means that agent ¢ takes agent j’s offer on the table. Thus, accepting gives an immediate payoft,
while counteroffer leads to delay. For notational convenience, I write the action space for agent ¢
as A;, ignoring the fact that the action space is different at time 0. Suppose that no agent agrees
until time period ¢ and the history is H' = [0,1]*. Let H° = ) be the initial history. A pure
strategy assigns an action to any possible history. Let S = 57 x S5 denote the set of pure strategy.
A behavioral strategy of agent i is denoted by o; : H — P(A;). Let 3; be the set of behavioral
strategies and ¥ = ¥; x X9, o;(h)(6;, fll) denotes the probability that 6; will play an action in A,
after history h.

Let B;[0;] be agent i of type 6;’s belief over states, agent j’s type and action at any history.
B;16:] - H — P(W x ©; x A;). The marginal distribution o;[6;](h)(0;) = 5;[0:](h)(W x ©; x A))

for any (:)j C ©; denotes agent 7 of type 0;’s belief over agent j’s type in (:)]-, conditional on history



h. The marginal distribution ,[0;](h)(A;) = B,[0:](h)(W x ©, x A;) for any A; C A; denotes agent
i of type 6;’s belief that j will take an action in A;, conditional on history h. &;[6;](h)(;, A;) =
B,16:](h)(W x {8;} x A;) denotes agent i of type 6;’s belief that 6; will take an action in A;,
conditional on history h. If ¢ is played in equilibrium then ;[0;](R)(0;, A;) = o;(h)(6;, A;). Note
that when the available information is public, conditional on the signal realization @, different types
vary only in terms of their reservation values and not their beliefs.

Let C = C; x Cy be the space of consequence, where (x;,t) € C; = [0, 1] x [0, oo] means that the
agent gets x; share of the surplus after bargaining for time ¢. ¢ = co corresponds to no agreement.

rit

The payoff function for agent i € N is given by w; : C x W; — R, where u;(x;,t,w;) = e "'x;
if z; > w; and w;(z;,t,w;) = —¢, (€ > 0) if 2; < w;. Agent i discounts the share z; that he gets
in the future at a stationary rate r; if the share is above his reservation value. Anything below
the reservation value is not acceptable.® The reservation values w;, w; are said to be compatible if
w; +w; < 1. I'will assume that agents are expected utility maximizers. Suppose that agent ¢ of type
0; has reservation value w;. Let ¢[0;](c) be his belief over consequence when the strategy profile is

o. The expected payoff of 0; is U;(0,0;) = [ wi(z;,t,w;)dp[0;](0). Let Us(o,6;|h) be the expected
payoff of 6; after history h, where o describes the play thereafter.

Conditional Dominance

Let R = Ry X Ry, where R; € &;, i = 1,2 is a non-empty set of the strategy profile. Strategy o;
is said to be conditionally dominated (CD) for agent i of type 6; with respect to R if 3 o/ € %
such that U;(o},0;,0;|h) > Ui(0i,0;,6;|h), V 0; € R; and V h € H and there exists some h € H
such that U;(o},0;,0;|h) > U;(04,05,0;|h). A strategy is called undominated if it is not CD. Let
us define UD;(R,0) := {0, € R;|o; is undominated w.r.t. R for some 6; € 6,}. Let UD(R,©) =
UDy(R,0) x UDy(R,0). Let R = Ry x Ry be such that UD(R, ©) = R.

Complete Information

In the standard Rubinstein game, there are no reservation values. Agents agree immediately to

unique terms of trade that give agent i € N, vt = % Note that if agents discount delay equally,
iTT

6This is not the only way one can model reservation value. Reservation value can be interpreted as the status quo
preference or the no-agreement payoff, which does not generate flow payoff. See the discussion section for alternative
interpretations of reservation value.



they will divide the surplus equally. As offers can be made frequently, there is no first mover
advantage. Suppose that each agent has some reservation value and will accept nothing below
this value. The following proposition uniquely identifies the equilibrium in which there is complete
information about the reservation values. If the reservation values are compatible, then agreement
is reached immediately, and if they are not compatible, then agreement is never reached. Thus, the

outcome is efficient.

Proposition 1 (Binmore, Shaked and Sutton (1989)) When the reservation values w are commonly
known and are compatible, there exists a unique SPE. If for any i € N, w; > vl*, then agents
immediately agree to a settlement that gives w; to agent i and 1 — w; to agent j. If for all i € N,

w; < vl then agents immediately agree to a settlement that gives v? to any agent i.

In a world with incomplete information, we see agents trying to convince each other that they
should get a higher share of the surplus. They build their reputation by rejecting opponents’ offers
and, thus, cause delay. A more transparent bargaining environment has a distribution over the
posterior beliefs that are more dispersed but the distribution and the posterior beliefs must satisfy
Bayes consistency. After the signal realization, agents bargain to build reputation starting with the
posterior beliefs. To analyze the relation between transparency and delay, I organize the paper in
two parts. In the following section, I analyze the role of initial beliefs in this reputation formation.
In the subsequent sections, I use this ex-post effect of posterior beliefs to characterize the role of

transparency in the ex-ante distribution of delay.

3 Independent and Privately known Reservation Values

Suppose that any agent j € N can have either a high or a low reservation value : W; 1= {@;, w;}.
Nature selects this reservation value for each type independently from a commonly known prior

m e POWV;) x P(W;). 1 will assume the reservation values satisfy the following :

Assumption 1 w; > Uf >w; forall j € N and for anyi,j € N, w; + w; < 1.

The above assumption says that both agents have two reservation values. The high reservation
value is binding (above Rubinstein share), while the low reservation value is not binding (below

Rubinstein share). As we can see in Proposition 1, the reservation value influences the bargaining



outcome under complete information only when the reservation value is binding. So the above
assumption says that both agents have some reservation values that will influence the bargaining
outcome under complete information. Thus, if both agents have high reservation values, then there
is no feasible way to divide the surplus that will be agreeable to both agents. I am assuming that

all other reservation values are compatible.

Lemma 1 Any strategy in the set of undominated strategies R must satisfy the following two prop-
erties: 1) Agent i will never offer more than @; to agent j; and 2) agent j will accept any offer

above w; with probability 1 and will never accept an offer below 1 — w; with positive probability.

Under complete information, we get a unique threshold below which an agent never accepts with
positive probability and above which he accepts with probability 1. However, under incomplete
information, we get only a bound. The upper bound is the best complete information scenario,
and the lower bound is the worst complete information scenario for agent i. At any history for any
belief, an agent accepts any offer with probability 1 above this upper threshold and never accepts
an offer with positive probability below this lower threshold. Watson (1998) considers incomplete
information about agents’ discount rates and provide a similar result. Although the nature of
incomplete information is different, the basic intuition remains the same.

Recall Myerson’s notion of k insistent strategy for an agent. An agent is said to be k-insistent
if he always demands k share of the surplus and rejects any offer that does not give him at least k.

Let us formally define a k-insistent strategy as follows :

Ii(k) :={o; € Ri: Y he Hoj((h,z;)(A) =1forz; <1—Fk
and o;((h,z;))(A) =0 for x; > 1 — k}.

Note that the above insistent strategy does not specify what agent ¢ demands when he rejects
an offer - ie., 0;((h,z;))(A) = 0. Lemma 1 says any undominated strategy for the high type of
agent ¢ is to accepts any offer above w; with probability 1. Also, by definition, he never accepts an
offer below w; with positive probability. Therefore, I;(w;) is the unique rationalizable strategy for
the high type of agent i, for any ¢ € N. Unlike the reputation literature, here, this insistence is not
a behavioral assumption. The high types are fully rational and Bayesian optimizers and, thus, can

be threatened by belief. Nonetheless, it is the unique rationalizable strategy for them to insist. I



will refer to type @; as the w; insistent type. So, if agent ¢ demands less than @; at some history h,
it is revealed that 6; # @;. Following Myerson (1991), (when offers can be made frequently), we get

the following Coasian result :

Lemma 2 In any sequential equilibrium of the subgame where agent i has revealed that he is not

the high type, but agent j has not done so, agent j gets w; and t gets 1 — ;.

The above lemma is more generally referred to as Coase conjecture in the literature. Under
one-sided incomplete information, agreement is reached immediately and the informed agent takes
away all the additional surplus. Note that although both agents are making offers, the informed
agent’s action is essentially an accept or reject decision. Acceptance stops the game, while rejection
means insistence. Only insisting on the high reservation value after rejecting an offer can be thought
of as a serious demand. Lemma 1 shows that any higher demand has no positive chance of getting
accepted. I am implicitly assuming that such non-serious offers do not affect opponent’s belief in
any favorable way. As long as agent 7 assigns positive probability (however small) that agent j is
a high type, the game cannot continue forever. If it is known that the game is going to end in the
next e time then any 6; would insist like w;. So, 7 would have preferred to concede now rather than
wait for € more time. This gives us the above result.

S0, 0; = w, can either insist like §; = ; or reveal his type. Insistence will give @; to agent i of
type 0; = w; after some time ¢, while non-insistence will give her 1 — ;. So, an outside observer
can see that if an agreement is reached after some time ¢ > 0, then it either gives (1) w; to agent 1
and 1 —w; to agent 2 or (2) ws to agent 2 and 1 — ws to agent 1. Thus, the incomplete information
bargaining problem boils down the reputation formation, as in AG. AG assumes that agent i has
irrational types who insist on a particular share of the surplus. The difference is that this is not an
irrational type; rather, the unique rationalizable strategy for the high reservation value type is to
insist on w; like the irrational type.

AG show that the outcome of the discrete time bargaining problem converges in distribution to

the continuous time unique war of attrition equilibrium. Let us define

F;[0;](t) :== P({o:;(h) € I;(&;) for any h until time ¢, o;(h) ¢ I;(%;) for any h after time ¢})

F;[0;](t) denotes the probability that agent i of type ; will insist until time ¢ before she concedes.

10



We have Fjlw;](t) = 0 for all ¢ > 0 - i.e., 0; = @; never concedes. Let T;[0;] := {t|F;[0:](t) =
limy oo F;[0;](t)} be the time by which 6; must have conceded. So, T;[w;] = oo. Let us define
T, = maxTi[gi]@oTi[Hi]. Therefore, after time T;, it is revealed that agent ¢ will never concede.
With only two types, T; = T;[w;]. It takes agent i T; time to build his reputation for being the high
type. Since, in equilibrium, there is only one type of history until there is an agreement, time ¢ is a
sufficient statistic for history h. So, I will abuse notation by replacing A with ¢ in the argument of
belief. Let us define G,[6;](t) as agent ¢ of type 6;’s belief that j will concede by time ¢. All types
0; have the same belief, G;[0;](t) = a;[0;](0)(w;) Fjw;](t) = G;(t).

Recall that 6; = w; will never concede. Following Hendricks, Weiss and Wilson (1988), we know
that Fjw,] is continuously increasing for ¢ > 0. There can be mass probability of concession at
t = 0. Agent i takes T; time to build his reputation of being the high type. Since the low type will
concede immediately if he learns that his opponent is never going to concede, we have T; =T =: T'.
Thus, in equilibrium, both agents take the same time T to build their reputation for being the
high type. Although there can be mass probability of concession at ¢ = 0, if «;[6;](0)(6;) > 0 -i.e.,
0; believes that agent j can be of type 0;, then 8; and 6; both cannot concede immediately with
positive probability -i.e., F;[6;](0)F};[6,](0) = 0.

Let Cj(s) be the consequence when j concedes at time s. Suppose agent i of type 6; has
reservation value w;. Let us define u;[0;](t) as the expected utility (abusing notation) of agent i of

type 0; who concedes at time t if j has not conceded by then.

W) = [ (C5(s).)dGl01(5) + (1 = G Clt). ).

where u;(Cj(s),w;) = e "*w; and u;(Ci(s),w;) = e (1 — w;). Let A;[0;] = {t : w;[0;](t) =
maxsu;[0;](s)}. So, (Fi[6i]|0; € ©;,i € N) is a sequential equilibrium of the bargaining game if
Supp(Filw;]) C A;w,] for all i € N.

In equilibrium, agent ¢ of type w, is randomizing between conceding and insisting. This implies
that w, must be indifferent between the two options. To keep him indifferent, agent j must be
conceding at a rate

S\j — ’I“Z(l —a}j)

(1)

0+ @ —1

This follows from w}[w,](t) = 0. This is the total concession rate of agent j, not just conditional

11



on agent j being type w;. Thus, in the absence of concession, both agents become more convinced
that their opponent is a high type. Since both these beliefs reach 1 at the same time 7', we can
solve backwards for the path of belief :

alw)(t)(@w;) = e (2)

In the absence of concession until time ¢, the updated belief is such that the relative bargaining

strength of any agent j .
Lj(a) = _—_ (3)

is 1. We will call the path of belief the Balanced Path, which keeps agents’ bargaining strength
balanced - i.e., L;(a) = 1. Formally,

B(a) :=={a|Lj(0) =1Vj € N}. (4)

Let a;(0) denote the prior belief and «;(0) denote the updated belief at time ¢ = 0 in the absence
of immediate concession. If the initial belief a(() is not on the balanced path, then agents concede
immediately with positive mass probability such that, in the absence of immediate concession,
a(0) reaches the balanced path. Recall that only one agent can concede immediately. Thus,
the probability of immediate concession is uniquely identified. Although the types are defined
very differently, the argument for reputation formation remains similar to that in AG. The above

reputation formation equilibrium is formalized in the following preposition :

Proposition 2 There is a unique sequential equilibrium in which any agent © of type w; insists
on w;, while type w; either mimics type w; or concedes to agent j’s demand w;. In the absence of
concession, the updated beliefs evolve along the balanced path. If the initial belief a(D) is not on
the balanced path - say, Lj(a(D)) < 1 - then agent j concedes immediately with positive probability
(cipp) pj =1 — Lj(oz(@))%i, so that in the absence of immediate concession, the updated belief o (0)

reaches the balance path.

Recall that the initial beliefs are denoted by . Abusing notation, I will assume o[w,](0)(@;) = m;
for all ¢ € N. There is m;m; probability that agents have incompatible reservation values (w;, w;),

and so agreement is never reached. However, they will wait until time 7", hoping that the opponent

12



may be a lower reservation value type. Unlike the low type, the high type does not concede if the
game reaches T" without concession. If the agents are (w;,w;) types, then agreement can happen
only at (r; = @;,x; = 1 — @;). There can be immediate agreement if L;(a(()) < 1. By time T,
agent j will become convinced that the opponent is @w; type and will concede. If both agents have
low reservation values, then each agent will try to convince the other that he has a high reservation

value. Agreement happens when either agent concedes to the other agent’s demand. Agreement is

i

reached by time 7. If m; = W]-Tj, then L;(«(0)) =1 - i.e., agents have balanced strength and no one

i

cipp. If m; > 7T;j , then agent ¢ is said to be the strong (s) agent and agent j the weak (w) agent.

From equation 2, we can solve for 7', the time it takes to build reputation.
1
T(m) := —S\—Zn(ﬂs). (5)

Note that T depends only on the initial belief about the strong agent. The weak agent cipp = pu,

such that he can build reputation in the same T time. Therefore, 1”_—“’# = ¢~ T(™ | This implies that

w(m) =1 —myms As. (6)

Similar to Kambe (1999), when the probability that agents have high reservation value vanishes,

there is no delay.

Corollary 1 Suppose that (m;,m;) | (0,0), such that max{Z™ 22} < k for some k > 1. If N > j\j

then agent j concedes immediately.

Note that as the probability that agents have high reservation vanishes, the agents do not split the
surplus, as Rubinstein proposes. The strong agent gets his reservation value and the weak agent

takes the rest.

4 Public Information: Transparency and Delay

Agents know their own reservation values but receive some noisy public signals about their oppo-
nent’s reservation values. Based on the signal received, agents update their beliefs. Since the signals

are public, the posterior beliefs are commonly known. Agents bargain to build reputation, starting
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with the posterior beliefs. The previous section characterized the unique equilibrium, given any

initial beliefs.

4.1 The Fundamentals

Public Information

Recall that a high or low reservation value for any agent i € N is drawn independently from a
commonly known prior m; € P(W;). 1 will abuse notation and call m; = m(w; = @;) - i.e., the
ex-ante probability that agent ¢ has a high reservation value. W; = W; denotes the set of signal

realizations and ¢; : W; — P(W;) is the noisy signal structure about agent i. Let @ = (&5, ;)

denote the signal realization. Then,q(@ = w|w) captures the accuracy of signals. T will assume that

B B B B 3 (L if W; = (Di
q(®lw) = gi(@ilw;)q;(@;lw;) where ¢;(@; = wilw;) = ;

1—gq, fw=uw,

i.e., the signals are conditionally independent. For any ¢ € N, ¢; (gz) captures the probability
of receiving the right signal when the reservation value is high (low). I will call ¢; = (g, gi) for
any ¢ € N, the transparency of the i-side and ¢ = (g;,¢;) the transparency of the bargaining
environment. Note that, if ¢; € ¢¥ := {q; : ¢ + q, = 1}, the public signal disclosing i’s reservation
value is completely uninformative. A bargaining environment is said to be fully opaque if the signal
on both sides is completely uninformative. If there is no difference in transparency across states,
then a fully opaque bargaining environment on ¢-side has q; = q, = % - i.e., any signal is equally
likely to be realized for any w;.

Let us define ¢; := m;g;+(1—m;)(1—q,) = P(&; = &;) as the probability that a public information
w; is realized. Let us define 7] := ”;—?i = P(w; = w;|@; = @;) as the updated probability that agent i’s

7

. . . .. . (1—a: o~
reservation value is high when public information says so, and 1 — x, := %q?l) = P(w; = w;|w; =
[3

w,) as the updated probability that agent ¢’s reservation value is high when public information
says otherwise. After public signal @;( or w,) is realized, the initial belief «;(0) is captured by
7i(or (1—m)). Abusing notation, I will refer to this posterior belief as 7’. 7, > m; > 1 —x}, and the
equality holds when the ¢-side of the bargaining environment is completely opaque. Thus, given the

prior 7, a noisy information structure with transparency ¢, induces a distribution ¢’ over posterior
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beliefs 7’. The posterior beliefs must satisfy the Bayesian consistency

g+ (1= q)(1 — o) = mgi + mi(1 — G) = . (7)

Increasing transparency of the bargaining environment implies that when the public signal realiza-
tion is w; (or w;), the posterior belief that w; = @; (or w; = w;) is higher. So, the posterior belief 7/
increases and 1 — 7} falls, but equation 7 holds true. Note that the distribution over the posteriors,

denoted by ¢/, also changes as transparency changes.

Mediator

Suppose a neutral third-party mediator is appointed to facilitate a resolution to the conflict. The
mediator investigates the agent for his underlying reservation value and conveys the result of her
investigation to the other agent publicly. Because the investigation is not fully accurate, it generates
noisy public information. Let ¢; denote the accuracy of her investigation on agent ¢. The accuracy
of her investigation is the transparency of the bargaining environment. If the mediator is actual
rather than fictional, we would like to know if appointing a mediator will always reduce delay. If

not, then when should we appoint a mediator?”

Bargaining Strength

Given the concession rate \; and the initial belief 7, it will take Tj(7') := —%ln(ﬂg) time for agent
1 to convince his opponent that he has a high reservation value. The less T; is, the stronger agent

Ai
i is. Thus, 7% = exp(—T;(n')) is a measure of agents ¢’s strength. The agent with a lower T;(7")
1 1

is said to be the strong agent, denoted by s. Suppose that T;(7') < Tj(x’) - i.e., m}% > m}% . Then

the relative bargaining strength of agent j, L;(n") < 1 - i.e., agent ¢ is stronger than agent j. So,
agent j cipp= pu(r') =1 — L;(7")% =1 —mm,

7
I use s to denote the strong agent in general. Abusing notation, I will use s(@) to denote the

strong agent when the realized public signal is @. Let us define the strength vector s as the vector

"This paper focuses on the role of transparency in delay. In a companion paper, I explore the role of transparency
when the mediator wants to implement a fair solution.
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denoting which agent is strong for which signal realization :

s = (5(@))gew = (5(@i,@;), s(@5, wy), 5(w;, 05), s(wy, w;))-

Given the transparency of the bargaining environment ¢, let s(q) denote the strength vector and
the region of transparency that result in a strength vector s being Sy := {¢|s(q) = s}. Given the
signal realization @;, let s(@;) be the sub-strength vector denoting which agent is strong if @; or w,

is realized (in that order).

Distribution of Delay

In their attempt to convince their opponent that they have high reservation values, agents cause
delay in reaching an agreement. Let D be a random variable denoting delay. Let ¢/(7’) denote the
distribution of delay given the initial belief 7/. Further, from Proposition 2, we know that, given
the initial belief 7/, there exists a time T'(7") such that if agreement is not reached by time T'(7'),
agreement is never reached. Recall that s and w denote the strong and the weak agent, respectively,
and T'(7') := —;\isln(ﬂg). Therefore, Supp(y)'(n’)) = [0,T(7")] U {oo}, where oo denotes the event
that agreement is never reached. Recall from Proposition 2, that the belief about the strong agent s
alone determines 7'(7’), and only the weak agent w concedes immediately with positive probability
/

i
(cipp) p(n') =1 —m) w3 . Also, recall that in equilibrium, agent ¢ concedes at a constant hazard

rate
G(®)(dt
1 Gy ~

where G;(7")(t) denotes agent j’s belief that agent i will concede by time ¢. Solving this, we get

1— (1= Gy(x")(0))e Nt ift < T(x'
G (t) = ( (7')(0)) t<T( )‘ ®)

1—mn ift =00

The probability that the bargaining will cause, at most, ¢t delay is the probability that at least one
of the agents concedes by time ¢. Given independence, we have ¢'(7')(t) =1 — (1 — Gi(7")(t))(1 —
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G,(n")(t)). This implies that

1— (1 — p(r))e~ Q)b if ¢ < T(n
) () = (1 = (7)) T o)

1 — mn ift =00

Given the prior 7 and transparency ¢, we have a distribution ¢’ over the posteriors 7’. Accordingly,

the distribution of delay before the signal is realized, denoted by (7, ¢), is defined as®

W(m,q)(t) = Z P, w)P(D < thio,w) = > P() Y P(w|@)P(D < t[i,w)

w w

= (@) (1= (1= Gi(x) (1)1 = G;(x")(1)) = Y_ ¢ (") (') 2).

7.rl

The question this paper addresses is : How does transparency ¢ affect the distribution of delay,

Y(m, q)?

Almost Full Transparency

A bargaining environment converges to full transparency as ¢ — 1. In such a bargaining environ-
ment, the right signal will almost surely be realized, and, upon receiving a signal, agents are almost
sure that the state is what the signal says. Suppose that the signal says that the reservation values
are (w;,w,); then, agent j is weak and cipp= 1. If the signal says that the state is (w;,@;), then
agreement is never reached. The argument is not trivial when the signals says that the state is
(w;,w;). The posterior beliefs (1 —zj, 1 — ;) | (0,0). From Corollary 1, we know that” the weak
agent will concede immediately. However, unlike the complete information case, agents do not split
the surplus, as Rubinstein proposes. The strong agent gets his reservation value and the weak agent
takes the rest. Thus, as the bargaining environment becomes almost fully transparent, if agreement
can be reached, it is reached immediately,. Alternatively, we can say if the mediator can make her
investigation almost fully accurate, she can avoid delay. However, we do not expect a bargaining

environment to be fully transparent or the investigation to be fully accurate.

8To reduce notation burden, I use P(E) to denote the probability of an event E in general, where the underlying
state and Borel algebra are well understood.
9Except for the knife edge case, where agents have balanced strength as (1 — }, 1 — ) 1 (0,0)
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4.2 Partial Transparency

There can be substantial delay in a partially transparent bargaining environment. The following
lemma shows that if information disclosure reduces the probability of immediate concession, then

it increases delay in the sense of first-order stochastic dominance (FSD).

Lemma 3 (7, q) =psp ¥'(7) if and only if Eyq p(7") < p(m).

This lemma follows from two features of the distribution of delay. First, the concession rate is
constant, and, second, from Bayesian consistency (see equation 7), we know that the probability of
no agreement is 7;7;, irrespective of the level of transparency. Given the posterior beliefs 7', from

equation 6, we can say that the probability that the negotiation will end immediately is

3, ) )
Noif M <t

1 —nlm!
roN it j =
M(ﬂ—i?ﬂ-j) = Y N S (10)
1L —mm, N if ™ >

This relation is shown in Figure 1. The relation between p(.) and posterior beliefs is like a ‘valley.’
The prior belief is a weighted average of the two posterior beliefs (see equation 7). Since the relation

is not strictly convex, we cannot say that improving transparency will improve En. When the agents

Figure 1: Probability of immediate concession and posterior beliefs

have balanced strength in the WOA, nobody gives up immediately. This can drag the negotiation

on for a long time. As the strengths diverge, the probability of immediate concession increases.
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If a mediator wants to increase the probability of immediate concession, she should try to make
the strong agent stronger and the weak agent weaker. To understand how transparency affects
Eqq p(7"), first, I will consider the case when information is available only on one side. Then, I

will show what changes as information becomes available on both sides.

4.2.1 One-sided Public Information

Suppose that public information is available only regarding agent 7. Let us suppose that the prior

belief that j has a high reservation value, 7;, is fixed. From equation 10, we can see that given 7,
A

if agent ¢ is weak - i.e., m; < m;% - then p(.) increases as 7, decreases and in an affine way. On

&

>

the other hand, if ¢ is strong - i.e., m} > ;% - then pu(.) increases as 7 increases and in a concave
fashion. This is shown in Figure 2.

This relation is crucial for understanding the relation between transparency and delay. First,
consider the prior about the a priori weak agent m,,. From the reputation formation equilibrium, we
know that this does not affect the time it takes to build the reputation, T'. The weak agent cipp = u
such that he takes the same time to build the reputation, Tw(lﬂ_—wu) =T. Given that T is independent
of m,, the probability of immediate concession y is affine in m,. However, the prior belief about

the a priori strong agent 7, reduces T (see equation 5) in a convex fashion. Consequently, the weak

agent cipp = p such that

This implies that p increases in a concave fashion with 7s. Recall that disclosing information about

agent ¢ will spread the posterior belief 7} around ;. Given transparency g;, one of the following
A 5

three situations may arise: (1) 1 — 1, > m;% - ie., s = (s(@), s(w;)) = (i,1); (2) 7T < w5 - ie.,

i

s=1(j,j);and (3) 1—x; < m;% <@ -ie., s=(i7). The following lemma identifies the information

sensitivity of E,p(7’) in the interior of each of these cases.

Lemma 4 If s = (s(&;), s(w;)) = (i,7), then an increase in transparency will increase Eqyu(n’). If

s = (J,7), then an increase in transparency has no effect on Eyu(n’). If s = (i,4), then an increase

in transparency will reduce Eyu(n').

The relation between Ey,u(n’) and ¢; for s = (4,4) follows from concavity, and s = (3, j) fol-
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Figure 2: Probability of immediate concession and 7} given m;

lows from linearity (See Kamenica and Gentzkow (2011)). For s = (7, ), increasing transparency
increases p for both signal realizations. However, the distribution over the posterior belief also
changes, making the effect ambiguous. Nonetheless, the above lemma shows that increasing trans-
parency increases Eypu(n’).

A bargaining environment is said to be insufficiently transparent on the i-side if ¢; is below
some threshold level. If there is no state-wise difference in transparency - i.e., ¢; = 4, =G - then
this means that ¢; € [%,qﬂ, for some boundary ¢F. If ¢ # 4 then this means that ¢; € {¢; :
¢i+q=>1, and q;, < qX(@)}. To avoid notational burden, I will denote an insufficiently transparent

bargaining environment simply by ¢; < ¢F.

Corollary 2 Suppose that information is disclosed about the a priori strong agent i; then, there
exists a threshold qF such that: for ¢ < qF, Eyu(n') < p(m) and for ¢; > qF, Eyu(n') is increasing

Corollary 3 Suppose that information is disclosed about the a priori weak agent j; then, there
exists a threshold qu such that: for q; < qu, Eyu(n') = p(m) and for ¢; > qu, Eyu(n') is increasing

X
Suppose that m; > 7;% . Under a fully opaque bargaining environment, agent 7 is strong.
Xi

Suppose that for some ¢, 1 — 7} > WjTj; then, s = (i,7) for any transparency less than ¢. Using
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Lemma 4, we can say that Eyu(n’) < p(m). Suppose that transparency is larger than ¢ such that

Ai

1 —x; < m;%; then, from Lemma 4, we know that E,u(7’) is increasing in transparency. However,

Eyu(r") < p(r) until some threshold level of transparency. If transparency can be beyond this

i

threshold, then E,pu(7’) increases in ¢;. On the other hand, if m; < ijJ‘, then following the same

>

argument, we can say that if ¢ is not sufficiently high such that 7, < m;%, then Eyu(n’) = p(r).

A

i

However, if ¢ is sufficiently high such that 7@, > WjTj, then E,p(7') is increasing in ¢;. From Lemma

3 and Corollary 2 and 3, the following proposition follows :

Proposition 3 Given any prior w, there exists a threshold transparency q* such that : if informa-
tion is disclosed about the a priori strong agent i only, then for any q; < qF, ¥(7,q) =rsp ' (7). If
information is disclosed about a priori weak agent j only, for any q; < q]’-:, the distribution of delay

remains unchanged.

Contrary to popular expectations, we see here that disclosing information about the a priori
strong agent actually increases delay when the bargaining environment is not sufficiently transpar-
ent. Note that the result is very strong. From FSD, it follows that information disclosure not only
increases expected delay (adjusting for no agreement), but it also increases the expected cost of
delay for any bounded non-decreasing cost of delay. This brings to mind the old saying - ‘A little

learning is a dangerous thing’ (Alexander Pope: “An Essay on Criticism,” 1709).

4.2.2 Two-sided Public Information

Disclosing information about the a priori strong agent and the a priori weak agent alone has different
effects. Nonetheless, E,u(n') is weakly below p(7) in either case unless the bargaining environment
is sufficiently transparent. Suppose that the mediator has the flexibility to choose whether or
not she would investigate an agent. Then, if transparency on either side exceeds the respective
thresholds, the mediator can guarantee that E,u(n’) > p(m) by disclosing information about one
of the agents. Having the option of investigating both agents means that the mediator may be
able to make Eypu(n’) > p(r) by disclosing information about both, even when either side is not
sufficiently transparent. However, if the mediator does not have the flexibility and has to investigate
both agents, then it is not necessary that E,u(n’) > pu(m), even when the bargaining environment

is sufficiently transparent.
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Eyp(n) :=qq;u(7, 7;) + (1 — ¢)qu(l — =, 7))
+q;(1 = )pu(r 1 — ) + (1= ¢)(1 — gj)p(l — =, 1 — o))

=q; Eq (7, m5) + (1 — i) Eg (1 — mj, ;) for any i € N.

1°7q

Similar to the one-sided information case, given the posterior belief 7%, there are three possible

U
AN

Ty

Figure 3: /A(Wg, 7?;')7 M(Wz{7 1— E;) and Eq}:u(’]rga 7Tj)

situations. Moreover, there are two possible posterior beliefs, 7% and 1 —x;. Accordingly, there are

six possible situations that can be categorized in the following three cases:

1. For some i € N, s(w) =i for all @ € W. Let R} = S(;;:; denote the set of transparency

when this is the case.
2. For some i € N, s(w;,w;) = s(w;,w;) = @ and s(w;, @;) = s(w;, @;) = j. Let R? = S(iji)
denote the set of transparency when this is the case.

3. For some i € N, s(&) =i for all @ € W\ {(w;,@;)} and s(w;,@;) = j. Let R? = S be

the set of transparency when this is the case.

Given the prior 7, we can partition the space of transparency into the above regions. If the
1-side is sufficiently transparent relative to the j side, then the signal about agent 7 determines the

strength vector - i.e., ¢ € R? and vice versa. If transparency on both sides is close, then one agent’s
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signal cannot solely determine the strength vector. Then, ¢ € R? for some 4. If transparency on
both sides is sufficiently small, then the a priori strong agent, say agent ¢, remains strong no matter
what signal is realized - i.e., ¢ € R}.

Using Lemma 4, we can say how ¢;, q; will affect Eyu(m). For example, suppose that ¢ € RZ.

Then, s(@w;) = (i,7), which implies that increasing ¢; will increase Eyu(m;, 7)) = ¢;u(7, 7;) + (1 —

q;)p(1 =i, 7). Also, s(w;) = (i, ), which implies that increasing ¢; will increase Eq pu(m;, 1 — 1)) =
qip(mi, 1 =) + (1 — q)pu(l — m}, 1 — x). Since the weights to Eq u(m, 7;) and Eyp(m;, 1 — ) are
independent of g;, the average of the two will also increase. Such a monotonic relation holds in all
but for ¢; when ¢ € R}. This can be seen nicely in Figure 3. Since s(w;) = (i,7), increasing ¢;
increases the probability of immediate concession, but if s(w;) = (4,4), then ¢; has just the opposite
effect. The combined effect can go either way. I show that E,u(7) is concave in ¢; when ¢ € R?
(See Lemma 9 in the appendix). Suppose that agent i is strong a priori. Using Lemma 3, we get

the following proposition :

Proposition 4 For any q; < q, there exists cij(qi) € (q?,q]’-:] such that for ¢ = (q;,q;) with
q; < (ij(qi), disclosing information about the strong agent or both agents will increase delay, in the

sense of FSD and disclosing information about the weak agent alone does not affect delay.
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Figure 4: Transparency on both sides: Assuming ¢; = 4, =4 forall: € N
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Recall from one-sided public information that if ¢; < ¢, then disclosing information on agent
i alone makes Egu(m) < p(m). At ¢ = (¢f,qY), Equ(m) = p(m) and agent i’s signal determines
which agent is strong. Hence, (¢/,q)) € R?. Using Lemma 4, we can argue that when ¢ € R?,
disclosing information on j will reduce E,pu(m), while disclosing information on ¢ will increase
E u(r). Suppose that the transparency on i-side is ¢, and the transparency on the j-side is
marginally above ¢J. Therefore, if information is revealed on both sides, Eyu(r) < p(w). So, to

restore the equality, the information on ¢ has to be more precise.

Corollary 4 Given q; < qu, there exists q; > qF such that if information is disclosed about the
strong agent alone, delay does not increase, and disclosing information about the weak agent does

not affect delay, but disclosing information about both agents increases delay.

Also, recall that if ¢; < qu, then Eypu(m) = p(r). Consider ¢; marginally above ¢; then,
q = (¢:,q)) € R}. Twill show that for such ¢, Egpu(m) > p(m). Using Lemma 4, we can show that
E,p(m) is increasing in g;. Therefore, to restore the equality, the transparency on the j side needs

to be lower.

Corollary 5 There is q (q; < qF Vi € N) such that although disclosing information about a priori
strong agent alone increases delay, if information is disclosed about both agents, then delay does not

mecerease.

5 Optimal Transparency

A bargaining environment is not likely to be fully transparent or the mediator’s investigation is not
likely to be fully accurate. It is natural that the bargaining environment can be made transparent
only to a limited extent. This is equivalent to saying that there is an upper bound on the accuracy of
the investigations. Given such an upper bound, should a mediator make the bargaining environment
as transparent as possible? We have learned that, if these upper bounds are sufficiently tight,
disclosing information about one agent will increase delay in the sense of FSD. Disclosing information
may increase the probability of immediate concession. Note that from Lemma 3, we can only say
that if Eyu(m) > p(m), then (7, q) #rsp (7). This does not mean delay increases in the sense of

FSD. Consider disclosing information about an a priori strong agent. If transparency is sufficiently
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high, we saw in the previous section that the probability of immediate concession when information
is disclosed - i.e, Eyu(n') is higher than when no information is disclosed - i.e., u(m). However,
when a low signal is realized, the strength of the strong agent falls so much that he becomes the
weak agent. Consequently, the bargaining can drag on longer. Therefore, we cannot rank ¢ (m, q)
and ¢/ (m) in the sense of FSD.

Suppose that the mediator discounts delay at a stationary rate ry,. Let Q; = (Q;, QZ) denote

the feasible set of transparency, where Q; 1= {¢; : ¢; + g, >1,¢4 < Q;, q, < Qz} So, the mediator’s

objective is to

max F, e Mt
e0 Y(m,q)

Recall that there is positive mass probability m;m; that the bargaining may never be settled and
mass probability E,u(n’) that agreement will be reached immediately. I will normalize r); = 1.
Evaluating the expectation, we can say that the mediator’s objective is equivalent to maximizing

Eypy(7"), where

Let us define ¢ := arg max,,cq, Ey 1 (7).

Welfare

Recall that, given any initial beliefs 7/, in the WOA, high types on both sides always insist. However,
the low types only pretend to be insistent, and their equilibrium strategy depends on the initial
belief 7’. Thus, only the low types are manipulable. In equilibrium, these manipulable agents
are indifferent between conceding at any time between (0,7'(7)]. Since the weak manipulable
agent concedes immediately with positive probability, his equilibrium payoff is V(w,) = (1 —
ws). The strong manipulable agent, on the other hand, does not concede immediately, but with
probability u(7’), he is conceded to. After no immediate concession from the weak agent, he
is indifferent between conceding at any time between (0,7'(n’)]. Thus, in equilibrium, he gets
V(w,) = p(m)ws + (1 — pu(7))(1 — @,). Therefore, the aggregate payoff of the two manipulable
agents is (w; + w; — Dp(n') + (1 — ;) + (1 — w;). Taking expectation over all posteriors, we can

then say maximizing E,pu(n') is equivalent to maximizing the aggregate payoff of the manipulable
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agents.
The insistent types also insist until 7'(7’), but unlike the manipulable types, they cannot give

up when they see no concession until time 7'(7’). Therefore,
T /
V}((Di, ’/T/) = / (W')e_”t@ide(s) = V;(gz, ’/T/) — 7T;~€_riT(7r )(1 — C:Jj).
0

Suppose that the agents have equal discount rates, which are the same as the mediator’s discount
rate (normalized to 1). Substituting the low types’ equilibrium payoff and aggregating the equi-
librium payoff of all types weighted by their ex-ante probability, we can see maximizing welfare,

Wi(m, q) =3, Ti(wi)Vi(wi, 7'), is equivalent to maximizing Ey (7).

Welfare

Figure 5: Optimal Transparency (m; = 0.5, m; = 0.15)

Proposition 5 Suppose that only the a priori strong agent i is investigated. Then, ¢f = ¢ if
Qi < qF and g = (Q“Qz)’ otherwise. If only an a priori weak agent j is investigated, then q; = Q);

if Q5 < qu and q; = (@j,Qj), otherwise.

As shown in equation 11, the mediator’s objective p; has two parts: 1) the probability of immediate
concession, p; and 2) & = —miwie ™) where T(7) is the time it takes to build reputation, and
7r§7r} is the mass probability that agreement will never be reached. In the previous section, we

studied the role of information revelation on p. The above threshold result is no surprise if the

mediator was maximizing E,u(7’).'% However, the objective is to maximize E, (7). Recall that

10This is equivalent to maximizing the sum of payoff of the manipulable types of agents only.
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the driving force behind this threshold rule for p is (lemma 4) that u is affine in 7/, and concave

/
w?

in 7,. T'(n") does not depend on 7, and ¢ is negative and linearly decreasing in 7. Substituting

1
r1t5;
S

T(7'), we get £ = —7 ml,. Thus, £ is decreasing and concave in 7. Therefore, y; is affine in 7/,
and concave in 7. Thus, we can extend Lemma 4 for p; (See Lemma 7 in the appendix).

When information is available on both sides, as we have seen before, whether or not disclosing
information about an agent will help reduce delay depends on the transparency of the information
on both sides. The relation may be complementary - i.e., improving transparency on one side
alone, may increase delay but on both sides may reduce delay; or, substitutable - i.e., improving
transparency on both sides may increase delay but only on one side may reduce delay. Thus, the
simple threshold rule from one-sided information does not hold true.

To characterize the optimal transparency when both agents have noisy information about their
opponent, I will simplify notation by assuming that q; = 4= G- Let us fix the transparency on the
a priori weak side to some ¢; and consider the transparency on the a priori strong side, ¢; < @;."
There are two thresholds, ¢ and ¢F. As in the one-sided information case, if Q; < ¢, then a
fully opaque environment is most efficient, and if Q; > ¢, a maximum transparent environment is

most efficient. However, the two thresholds may not be equal. As Figure 5 shows, given ¢;, some

intermediate transparency of ¢; improves efficiency or welfare because of the complementarity.

Proposition 6 Given q;, there exist at g™ g, with % <qF <¢M <qf' <1, such that

;

: if Qi < qF(g))
Qi if af (q;) < Qi < ¢ (q)
4" (4;) if ¢"(q;) < Qi < ¢f'(q;)

Qi if ¢'(qj,) < Qi

3 (q5;Qs) =

\

6 Appointing a Mediator

We have learned that given any prior belief m, there is a threshold rule for information disclosure
when information is disclosed about one agent. If information can be disclosed about both agents,

we saw that it is possible that disclosing information on both sides may do better or worse (see

A similar result can be obtained for the opposite case. It is left for the readers.
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Proposition 4). Clearly, appointing a mediator is not always going to improve efficiency. So, the
natural question is : Given the accuracy of the investigation, when should we appoint a mediator?

For simplicity, I will focus on one-sided information disclosure - say, about agent 7. Suppose
that the objective is to maximize efficiency or welfare. Given the accuracy of the investigation on
agent i, ¢;, when can we say that Eyp(n’) > pp(m)?

1o

osl. Ineffective Disclosure /,~ _ _
T e ;l’”ﬁ 4 ] <l
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Figure 6: Information Disclosure about agent ¢

Proposition 7 (Information Disclosure) Given q; and ;, there exist 7 (7;,q;) and ] (7}, q;) sat-
A

isfying 1 > 7¥ (75, ;) > 7r;j > wl(mj,q;) > 0, such that (1) if m < wl(m;,q), then disclosure is

ineffective; (2) if m; € (7} (7, q), 7 (7}, q:)], then disclosure is optimal; and (3) if mi > © (7;, ¢;)

%

then no disclosure is optimal.

When agents have sufficiently close bargaining strengths, neither agent gives up easily in the
WOA. The probability of immediate concession p is small. Given any 7}, as m; becomes higher(lower),

i’s bargaining strength becomes relatively larger (smaller). Suppose that m; is sufficiently high, such
A

g

that 1 — «, > T

. Then, s = (i,7) - i.e., no matter what signal is realized, agent i will remain
the strong agent. From Lemma 7, we know that it is better not to disclose such information. The
above proposition shows that there is a unique threshold such that if agent ¢’s bargaining strength

is above this threshold, then disclosing information reduces efficiency but otherwise enhances effi-

i

ciency. Similarly, if m; is sufficiently small such that 7, < 7r;j , then s = (4,7). From Lemma 7,

we know that disclosing information about ¢ will have no effect on efficiency. If 7; is below this
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threshold, then s = (i,7), and the concave closure of y; is strictly above p;. This implies that

disclosing information will increase efficiency.

7 Discussion

Reservation Value

The uniqueness result in this paper comes from the specific form of incomplete information. It
is well established that without additional assumptions, there are a vast multiplicity of equilibria
in two-sided incomplete information bargaining. So, surely, this model is with loss of generality.
However, it capture many simple bargaining environments. For example, incomplete information
about the reservation value seems very natural when it comes to buying and selling property such
as housing. Loewenstein, Thompson and Bazerman (1989) have well documented that agents’
preferences are often influenced by how others are doing. Thus, the price that a friend has paid
for a similar property works as a reservation price. Similarly, how much money some less qualified
employees are making elsewhere can be the reservation value for a labor union when it negotiates
with the management over its share of the surplus.

Reservation value works as a status quo, as defined in Masatlioglu and Ok (2005). It makes
some deals unacceptable based on the status quo but does not influence agents’ preferences in any
way. Also, note that reservation value is not a physical outside option that, when taken, stops the
game. Let us suppose that two groups are negotiating over a surplus - e.g., a territorial dispute.
The actual task of bargaining is usually delegated to a representative. The group sets a cutoff. If
the representative fails to deliver a share above the cutoff he will be fired. '? In territorial disputes,
such cutoffs are probably chosen for some historical or political reasons. In labor dispute problems
they are probably based on how other unions are doing. The opponent’s cutoff is unknown to an
agent, but he can get noisy information regarding the environment that has induced the cutoff.!3

One can also think of reservation value as the value an agent assigns to never agreeing to trade.

If such an option does not generate a flow payoff, then it fits our modeling assumptions. However,

121,i (2007) and Compte and Jehiel (2003) consider similar bargaining environment under complete information.
However, the reservation value in these models are endogenous and depends on the past offers. They show delay can
arise even under complete information.

13The cut-offs can also be thought of as a special case of Készegi and Rabin (2006)’s reference dependent preference.
This is the case when agents are infinitely loss averse. Basak (2015) treats reservation value as a special case of
psychological preference as in Geanakoplos, Pearce and Stacchetti (1989).
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if such an outside option generates a flow payoff, then agents will discount only the net payoff. The
standard two-sided incomplete information bargaining literature, such as Fudenberg and Tirole
(1983), Cramton (1984), Cramton (1992), Chatterjee and Samuelson (1987) and Chatterjee and
Samuelson (1988) consider this case. This is the crucial difference that drives the uniqueness result.
I assume that it is commonly known that if the buyer buys the house, the trade will generate a $1
surplus, which they decide how to divide. However, these aforementioned models will assume that
the value of the house v is unknown to the seller and that there is some cost ¢ of selling the house
that is unknown to the buyer. This will also give us reservation values - e.g., a high-cost seller will
not sell the house below his cost. However, reservation values also influence agents’ preferences.
Suppose that the seller sells the house at price p after bargaining for time ¢. Then, his utility is
e "'(p — ¢). Thus, he discounts the net payoff. With such a model specification, the equilibrium
under complete information will be quite different from that in Binmore, Shaked and Sutton (1989).
Agents will first take their reservation value and then split the leftovers as Rubinstein proposes.
This will not force the high type to insist on his high reservation value, and so uniqueness fails.
Similar to Watson (1998), suppose that the two types also differ in terms of their discount rates.
In particular, suppose that the high type is also more patient, r;(w;) < ri(w;). If assumption 1
holds true, then we can say that the patient type will always insist. However, the Rubinstein split

will be different and the assumptions will have to be revised accordingly.

Uniqueness

Suppose, for contradiction, that there is an equilibrium in which the high reservation type of agent
1 rejects an offer above w; with positive probability for some i € N. Let M; be such that there is no
equilibrium in which agent ¢ will reject an offer greater than M, with positive probability. Hence,
M; > @;. Also, let m; be such that there is no equilibrium in which agent j will ever take anything

below m; with positive probability. Therefore, M; < e "*(1 — m;) and m; > e "%(1 — M,).
R

Combining these two inequalities and taking A — 0, we get M; < v2. Since w; > vf, this
contradicts the fact that M; > @;. Thus, in any equilibrium, the high reservation type will always
play the w; insistent strategy - i.e., accepts an offer iff it is weakly better than w;.

If an agent ever plays an action not consistent with the insistent strategy of the high type, he

reveals that he is the low type. If an agent reveals that he is the low type, while his opponent has
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not yet revealed so, following Myerson (1991), as A — 0, agreement is reached almost immediately,
and the agent can get as much as he gets by conceding to his opponent’s insistent demand. This
result is commonly referred to as the Coasian result. '* Thus, the game becomes a WOA - agents
decide whether or not to concede. Once an agent concedes, the game stops, and by not conceding,
an agent builds his reputation for being the high type. AG shows that equilibrium of the discrete
time game converges in distribution to the unique continuous time equilibrium. Thus, we see that
when incomplete information is about agents’ reservation value, the limiting equilibrium is unique.

With two reservation values on each side, the game can be thought of as a staircase where agents
are one step away. When there are more types, it may create more steps. Unlike AG, in which
rational agents choose one behavioral type to imitate, here, agents choose a high step and gradually
come down to lower steps. On each step, there is positive probability that an agent will not make
any further concession. However, uniqueness is not guaranteed without additional assumption.

Consider a subgame in which it has been revealed that agent ¢ does not have a reservation value
R

above v;'. Insistence is not the unique rationalizable strategy for this highest reservation value
type left since the maximum he could have gotten had there been complete information, is not his
reservation value (see the proof of lemma 1). We can get the insistence behavior if we assume that
it is a common conjecture that agents never settle for a deal that gives them less than they could

have gotten in the worst case complete information scenario.

Two-sided incomplete information bargaining

This paper does not claim to predict the equilibrium uniquely under any general form of incomplete
information. Fudenberg and Tirole (1983) consider two-sided incomplete information with two pe-
riods, while Cramton (1984) extends this to the infinite horizon. He constructs an equilibrium in
which the seller makes fully revealing offers. Thus, following the seller’s offer, one-sided incomplete
information bargaining ensues, where the uninformed party makes the offers, as in Sobel and Taka-

hashi (1983). For this separating equilibrium, the low type must satisfy the incentive compatibility

14Gul and Sonnenschein (1988) establish that any delay in one-sided incomplete information bargaining is caused
by the significant time interval between offers. If this time between offers vanishes, so does inefficiency. Gul,
Sonnenschein and Wilson (1986) establishes the same result for a durable good monopolist. Also see Grossman
and Perry (1986), Rubinstein (1985) for similar results on one sided incomplete information. The usual Coase
conjecture argument assumes that only the uninformed agent makes the offers. In this model, the one sided incomplete
information case is similar to Myerson (1991), where the informed agent is essentially choosing only whether to accept
or reject (insist on the same demand) an offer made by the uninformed agent. Coase conjecture holds without any
additional assumption.
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of not pretending to be the high type. When reservation value does not influence the agent’s in-
tertemporal comparison, this can not be satisfied. Cramton (1992) extends this work, allowing for
strategic delay. He constructs a separating equilibrium in which the agent’s offer reveals his type.
So, agents choose only when to make the offer. Suppose that the seller makes the offer at some
time revealing his type. Following Admati and Perry (1987), impatient buyers will take the offer
immediately rather than waiting, while patient buyers will wait until some time before they make
the Rubinstein offer. In the absence of concession from either party, agents become more convinced
that the gains from trade are lower. Chatterjee and Samuelson (1987) consider a similar problem,
restricting the strategy space to only two actions, and show that there is a unique war of attrition
equilibrium. Chatterjee and Samuelson (1988) extends this to many actions and show that the
equilibrium can be generalized and uniqueness holds under off-path optimistic conjecture. Given

that insistence is the unique rationalizable strategy, this is trivially satisfied.

Delay in bargaining

Under one-sided incomplete information, Ausubel and Deneckere (1989) show a folk theorem result
when non-stationary equilibrium is considered and when there is no gap between the uninformed
trader’s valuation and the support of the informed trader’s valuation. Admati and Perry (1987)
show that there is a separating equilibrium with delay when the prior probability that the informed
agent is the low type is sufficiently high, and if agents can strategically delay in making a counteroffer
and, by doing so, prevent the opponent from revising his offer. Specific details of the bargaining
environment can provide quite different incentives to agents, and, consequently, different from this
paper, there can be inefficiency even under one-sided incomplete information. Vincent (1989) and
Deneckere and Liang (2006) show that there can be delay when agents have interdependent values.
Fuchs and Skrzypacz (2010) show that there is delay when new traders arrive over time. Board and
Pycia (2014) show that Coase conjecture fails when there are outside options. Daley and Green
(2012) consider a seller trying to sell an asset to an uninformed buyer, and information arrives
stochastically over time. Agents may wait for the information to arrive rather than giving up,
violating the Coase conjecture. The authors show that a higher quality of information may lead to

a more ineflicient outcome.
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Reputation and bargaining

After Abreu and Gul (2000), Abreu and Pearce (2007) further develop reputation bargaining, sowing
that the stationary behavioral type is a sufficiently rich class of perturbation to consider in stationary
bargaining games. Compte and Jehiel (2002) show that the outside option can offset insistent
behavior. Abreu, Pearce and Stacchetti (2012) consider a reputation bargaining model in which
there is one-sided incomplete information about agents’ discount rate. They show that non-Coasian
result can occur when patient, rational agents can delay in making their initial demand to separate

themselves from impatient agents.

Mediation

The mediator in the negotiation can commit only to the information structure and not to the
signal realization. This is similar to Brocas and Carrillo (2007) and Kamenica and Gentzkow
(2011), in which a sender tries to persuade a receiver by committing to an information structure.
Horner, Morelli and Squintani (2015) consider a static conflict game in which two countries decide
whether to split a surplus or go to war. Each country is uncertain whether the other country
is strong or weak. War partly destroys surplus, but a strong country can get a larger share by
going to a war with a weak country. A mediator is defined as a mechanism designer who can only
recommend nonenforceable resolutions - a division of the surplus and a probability of going to war.
The authors show that the mediator does not fully reveal if a country is weak. Since, unmediated
communication precludes such nondisclosure, it cannot achieve the same level of ex-ante welfare. It

will be interesting to study what a mediator can do as an information designer in this conflict.

Information disclosure

The idea that more information can reduce agents’ payoff in a strategic situation was first shown
in Hirshleifer (1971). In auction theory, Milgrom and Weber (1982) show that disclosing public
information that is affiliated to buyers’ valuation reduces the buyers’ fear of overbidding and, thus,
increases revenue. Following their work, several papers focus on the agent’s incentive to gather
information in auction. Bergemann and Pesendorfer (2007) and Eso and Szentes (2007) show that
when an auctioneer commits to an information structure, although more information increases

efficiency, it also increases information rent. Thus, full disclosure is not optimal. Novshek and
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Sonnenschein (1982), Clarke (1983), Vives (1984) and Gal-Or (1985) build the theory of information
sharing in oligopoly. See Vives (1990) and Raith (1993) for a more general treatment. They show
that firms facing a Cournot competition should not share their private information about market
demand. Bergemann and Morris (2013) allow for a more general form of information sharing and
show that disclosing private noisy information about the aggregate helps make the actions more
correlated to the state, and so information disclosure may help.

In this model, the nature of incomplete information is very specific and more information can
be interpreted as an agent having access to a more precise signal about his opponent’s reservation
value. Note that it also means that the opponent knows that the agent has more information.
Blackwell (1951), Blackwell (1953) shows that in a single agent decision problem, more information
is equivalent to higher payoff. A related literature extends Blackwell’s notion of equivalence between
more information and higher payoff in games. Gossner and Mertens (2001) establish the equivalence
of the identity classes of the two relations in a zero sum game. Peski (2008) provides the necessary
and sufficient condition for the equivalence of the relations in a zero sum game. Lehrer, Rosenberg
and Shmaya (2010) consider games of common interest and characterize the situation in which one

information structure is better than another with respect to different solution concepts.

8 Final Remarks

We saw a simple model of bargaining with two-sided incomplete information that results in a
unique equilibrium. The equilibrium is similar to the one that we see in the reputation literature.
The model provides some novel insights into the role of information in a reputation-formation
equilibrium. It raises some follow-up questions, many of which can be answered using the same
model. In a companion paper, I consider the case in which agents privately get noisy information
about their opponent’s reservation value. So, an agent knows his own reservation value but does not
know what his opponent thinks about his reservation value. I also extend this paper to study the
role of interdependence of reservation values in delay. This paper formalizes the idea of a mediator
who has some control over the underlying information structure. To focus only on the role of
transparency in delay, this paper remains silent about whether agents will give consent to appoint
a mediator. Also, efficiency is not the only reasonable objective of the mediator. For example, a

mediator may want to implement a fair division of the surplus. I leave these questions for future
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research.

9 Appendix

9.1 Bargaining with Reservation Values

Proof of lemma 1 Let Z; be the set of offers i rejects with positive probability after some

history while playing a strategy from the undominated set of strategies, R; i.e.
Z;={z€[0,1]|3h € H,z; € [0,1] and 0; € R; such that z; =1 — z and o;((h, z;))(A) < 1}

Let us define M; :=sup Z;. Let Y; be the set of offers ¢ accepts with positive probability after some

history while playing some strategy from R; i.e.
Y; :={2€[0,1]|3h € H,z; € [0,1] and o; € R; such that z; =1 — z and o;((h, z;))(A) > 0}

Let us define m; := inf Y.

Lemma 5 Fori e N, w, <m; and w; < M,.

Proof. Suppose for contradiction w, > m;. Then by definition of m,;, there must exists some
x; € (m;,w,;) such that x; € Y; i.e. after some history if agent j offers x; to agent 7, she accepts it
with positive probability. But by definition of w,, no ; would have ever accepted x with positive
probability. Hence, contradiction.

Suppose for contradiction w; > M;, then there exists z; € (M;, ;) such that i will accept x; for
sure after any history for any o; € R;. But there exists a strategy o; € R; such that agent ¢ with
reservation value w; does not accept x;. Hence contradiction. m

Given lemma 5, and by definition of m; and M; we get
m; > e "8 (1 — max{M;,&;}) (12)

Since any agent i € N, can guarantee himself e =" (1—max{M;,&;}). If he ever offers max{M;, @; }+

e (for € however small) to agent j, agent j will accept the offer for sure. So, after no history i

35



Lofs

oRl

0.6

[;r: L1 L 1 1 1 1
0.0 02 0.4 06 03 0

Figure 7: m;(M;) and M;(m;)

would ever accept an offer which gives her anything less. To see this formally, suppose there exists

z; < e"2(1 — max{M;,w;}) such that for some strategy o; € R;, i accepts x; with positive prob-

l—max{Mj,J)j} + xT;
2 2T

ability after some history h. Suppose i rather rejects z; and demands x} =
Since 1 — z} > max{M;,®;}, agent j will surely accept this. Also, since e "®z} > x;, it gives i
higher discounted value. Construct a strategy o} such that o}(h’') = o;(R) for all B’ € H \ {h} and
at history h, o/(h) behaves just like o;(h) except the probability mass is shifted to demanding 2
from accepting z. Then o; is conditionally dominated by o.. Hence, o; ¢ R;.

Similarly, from Lemma 5, and by definition of m; and M; we also get
M; < e_”A(l — max{m;,w, }) (13)

If any agent j € N offers i less than max{m;,w,}, then ¢ will never accept it. So, j cannot get more

—T‘jA( —T‘jA(

than e 1 — max{m;,w,}). So any strategy of j that rejects more than e 1 — max{m;, w,})
is conditionally dominated by by a strategy that does not do so and otherwise same.

To see what these couple of inequalities 12 and 13 imply, let us first identify (m;, M;) satisfying
both inequalities and then on the same diagram identify (M;, m;) that satisfy the two inequalities as
in figure 7. Then we will use M; > m, for any ¢ € N. When we consider (m;, M;) the corresponding
reservation values are (w;,w;) and when we consider (M;, m;) the corresponding reservation values

are (w;, ;).
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Note that when there is no reservation values, the same two inequalities give us the unique

Rubinstein solution. As A — 0, the solution converges to (—2 i), Thus equal discount rate

ritry Tt
implies agents will divide the surplus equally. The first mover advantage vanishes when offers can be
made very frequently. Also, if the reservation values are commonly known to be w, on both sides, we
can see the Rubinstein solution still remains the unique solution. However, if the reservation values
are commonly known to be (w;,w;), then the solution is unique but different than the Rubinstein
solution. As A — 0, the solution converges to (w;, 1 — @;). This proves Proposition 1.

When the reservation values are not commonly known and satisfies assumption 1, the two
inequalities identifies only a range. This shows M; for agent i cannot be higher that the maximum
of all the complete information payoffs he can get. Therefore, for any undominated strategy agent ¢
will accept any offer above w; with probability 1. Therefore agent j will never offer agent ¢ anything
above ;. Also, m; cannot be lower than the minimum of all complete information payoff an agent
can get. Therefore, m; > 1 — ;.

The high type agent ¢ will always accept anything above w; and will reject any offer below @;
by definition. Thus, insistence in the unique undominated strategy for the high type agents. Note
the role of assumption 1. If ©; < vF, then v is the maximum of all complete information payoff
agent i can get. By a similar argument as in this lemma, we get M; < vf*. Thus, insistence is not

the unique rationalizable strategy for the high type. [

Proof of Lemma 2

Step 1: The game must end in finite time with probability 1.

0, = w; always insists. Suppose, the negotiation has been going on for t¢; period. Let h(t)
denotes the history at ¢;. If i agrees to j’s demand of @w;, then she gets (1 — ;). Suppose agent
i believes that j will behave like 6; = w; for another ¢, time with probability v,(t1,t3). If i plays
a strategy that will drag the game for until ¢, period with positive probability, then the maximum

she can get is (1 — ¥;(ty,t2))1 + 1;(t1, t2)e " 2=1) (1 — @;). Therefore, she will drag it only if

(1 —@;) < (1 —h;(ty, t2))1 4 abj(t, to)e 271 (1 — @)

1—(1-w)

=0<1
1-— G_T’i(tQ_tl)(]_ — (I)j)

= (1, t2) <
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Hence, there is K such that 6% < a;(h(t1))(w;). Since, we are considering independent and privately
known reservation values, a;[0;](h(t1))(@;) = a;(h(t1))(w;) for all 6; € O,. Repeating the argument
K times we can find a sequence 0 = ty,ts,...tx+1 such that ¢ plays a strategy that drags the
game until {54, with positive probability only when 7 believes that j will behave like w; with
probability less than 6%. But since i believes that §; = @w; with probability a;(h(t1))(&;), we have

a contradiction. So, ¢ cannot possibly wait until ¢, ., before she concedes.

Step 2: Agent ¢ must concede immediately.

Suppose not. Let ¢ > 0 be the supremum of the time such that 7 has not conceded to j’s demand
@;. Consider the last € time i.e. (f —¢,1). Let « be the sup of i’s payoff if j agrees to anything less
than @; in (t —e,t — (1 —b)e), b € (0,1). Let y be the sup of ’s payoff if j does not do so. Let &
be the probability i assigns to j not agreeing to anything less than w; in (t — €, — (1 — b)e). If 4

concedes she gets (1 — ;). Since 7 is dragging it, it must be that

(1 -y <1 =&z +&y

l'—(l—@j)

r—y

=< , Whenever z —y > 0

At any t, 0, can behave like w; and guarantee herself e_rj(t__t)@j. So the best i can get is (1 —
e "1=0g;). 15 Therefore,

r<(1—e"w,))
y < e—ribe<1 . 6—7'j(1—b)ea)j)

Therefore, y < (1 — w;) whenever
et (1 — 707Gy < 1 — @,

Or, (rearranging) whenever
(I}‘(@Tibe _ efrj(lfb)e)

J < 1.
(embs _ 1)

@j<rib+rj<1 — b))

. This is less than 1 if
Tib

Taking limit of LHS as € — 0 (using L.’Hospital rule) we get

15 Note that 1 — e_”({_t)&)j > @;.
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WjTs

w;ry + (1 —@;
)

be( ,1). Therefore, for any b in the above interval and e small enough (1—w;) >y

r—(1—w))

§)Ti
< (1—-¢&)x+ &y, we have x > (1 — ;). Since,
r—Yy

and since (1 —@; is increasing in x and

Yy, we have
wj(1—e™°)

1
<l S
6 El_f}f(l) l1—e¢ TJECU — e sze(]_ — Gfrj(lfb)ea)]) b (Djrj + (1 — (I)j)?“i

So, for any b in the above interval and e small enough, we can find §, < 1 such that ¢ will drag
the negotiation only when she believes j will behave like @; in [t — ¢, — (1 — b)e) with probability
less than d,. At time ¢ — (1 — b)e, we can repeat the same argument for [t — (1 — b)e, & — (1 — b)%)
and so on. Therefore, ¢ will drag the negotiation only if she believes j will not behave like @, in
[t — €, — (1 — b)¥e) with probability less than df. Take k such that 6F < a;(h(f — €))(@;), where
a;j(h(t — €))(w;) is agent i’s belief that §; = @w; at history h at time ¢ — e. Hence, contradiction.
Note that, the result depends on A — 0. Otherwise, i may not have got the chance to make offers
sufficiently close to ¢t — (1 —b)™e for all m =1,2... k. O

Proof of Proposition 2 Since, F;[w;](t) is increasing A;[w,] is dense in the Supp(F;[w;]).
Since G|w,](t) is continuous, we have u;[w,](t) is constant in Supp(F;lw,]). Therefore w;w;]|(t) is
differentiable and hence G;(t) is differentiable. u}[w,](t) = 0 implies that G;|w;|(t) must have hazard

rate
g9;(t) N
= — 21
S €1 () N

After seeing j has not conceded by time ¢, §;’s updated belief that agent j is of type 6, is

a;[0:)(0)(6,) (1 — F3[6,](¢))

a;[0:)(¢)(0;) = 1—Gyl6:](t)

Take log on both sides and then time derivative to get the continuous time analog of Bayesian
updating as
ajlw](8)(@;)" = —ay[w;] (8) (@) (o5 [w;](t) — Aj)
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filw;1(0)
1-Fj[@;](?)

structure we have o;[w;](t) = 0. So, o;[w,](t)(@;) = a;[w;](t)(@;)A; and a;(T) = 1. Therefore,

where 0;[w,|(t) == is the hazard rate of concession of type 6; = w;. In this information

0l )(1)@) = M)
Hence, at any ¢t < T, o |w;](?) (@j)j‘i = a;lw,](t) (@;)%. Thus, at any time o must be on the balanced
path and gradually converges to (1,1). If initial belief a(() is such that L;(«(0)) < 1, then we will
say j has less than balanced strength. We know only one of w; can cipp. When j has less than
balanced strength, w; will cipp. Let p; be the total probability that agent j cipp such that upon
seeing no concession from j, ¢’s updated belief that j is of type w; i.e. a;w,;](0)(w;) is higher. f; is
such that «(0) reaches the balanced path. a;[w,;](0)(w;) = 2l WOE) 55 ypdated belief of i that j

T—py
is of type w;. So, if L;(a(0)) < 1, then

L(@(0)) = (1= i) > Li(a(0) = 1 = s = 1 = Lya(@) — 1 - D)

Proof of Corollary 1 If i > S\j, then

Therefore, agent j cipp=pu=1—-L

9.2 Transparency and Delay

Proof of Lemma 3 The ‘only if’ direction follows from the definition of FSD. Let us con-
sider the ‘if” direction. From Bayesian consistency (see equation 7) we know the probability of no
agreement remains unchanged - i.e., ¢¥(m, ¢)(mazT (7)) = 1 — mm; = ' (7)(T(7)). Recall that
P(m,q)(t) = Egy)'(n'). Removing the upper bound on the distribution ¢’(7’), we get for any ¢

¥, q)(t) < max{l — (1 = Eyp(r'))e M1 — iy}
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The equality holds for t < min.T(7'). If p > Eyp(n’), then
max{l — (1 = Byp(r')e” 31— mmy} < max{l — (1= p(r))e” OB 1 = mmy = o/ (7) (1)

Therefore, ¥(m,q) >rsp V(7). O

9.2.1 One-Sided Information

Proof of Lemma 4

A

Case 1: 1—7} >7r]T

Agent 7 is strong no matter what signal is realized. This can happen only when agent 7 is

>‘z

strong in a fully opaque bargaining environment i.e. m; > ;% . Suppose the transparency is not so
>\.

high that 1 — x} falls below 7;% . Since p(w}) is concave in this region, by spreading the posterior
beliefs, Eyp(n') will be lower. This is equivalent to saying that the concave closure of u(n’),
denoted by fi(7}), coincide with pu(w]) (see Kamenica and Gentzkow (2011)). Therefore an increase
in transparency will reduce efficiency. A fully opaque bargaining environment , i.e. 7, =1 —x, = m;

maximizes Epu.

Case 2: 7

Agent 7 is weak no matter what signal is realized. This can happen only when agent i is weak

Ag

in a fully opaque bargaining environment i.e. 7; < 7;%. Suppose the transparency is not so high
A

that 7/ exceeds 7;% . Since u(n}) is affine in this region the upper envelope fi(7}) coincide with
w(ml). Notice that for any choice of Bayes possible 7} and 1 — x, the welfare remains the same. So,

transparency does not affect efficiency.

3

Case 3: 1—n <m% <.
Agent i is strong when @w; = @; is realized and ¢ is weak when @; = w; is realized. This can

happen either (1) when 7 is strong in a fully opaque bargaining environment but transparency
A

in high enough to reduce 1 — x} below 7;% or (2) when 7 is weak in a fully opaque bargaining
)\.

7,

environment but transparency in high enough to increase 7, above 7;% . Improving transparency

will increase 7, and thus increase the strength of the strong agent while reduce 1 — 7} and thus
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reduce the strength of the weak agent. However, the distribution over the posterior i.e. ¢; changes

too. When s = (1, j),

j 1—n
Egp(r') =1 = | g—5 + (1 —g)—=
(7)) % (75)%
; 1—g
:1 — 7TZ"7T]‘ q 3 + qi‘
N I+
()~ (m)

The last equality uses ¢;7; = g;m; and (1 — ¢;)(1 — m}) = (1 — ¢;)m;. Since, agent i is strong when

by 5

~ . . << I+ . . . . . .. .
w; = w; is realized, (7‘r§)1+ Y > (m;) . Taking partial derivative w.r.t. ¢; and using this inequality
and the fact that 7 is increasing in ¢;, we have Dg Eypu(r') > 0. Also, 7} is increasing in ¢, and

hence Dy Eypu(n’) > 0. O

by,

Proof of Corollary 2 Since agent ¢ is a priori strong, m; > 7r;j. When ¢; € ¢°, @; is not

informative and so agent ¢ is strong no matter what signal is realized. As transparency increases

Aj

(¢; and/or ¢,), the posterior belief 7; increases and 1 — m; falls. As long as 1 —m; > WF , agent i
remains strong no matter what signal is realized. Therefore, E,pu(n’) < p(m) (from Lemma 4). If

transparency increases further s = (i, j). Form Lemma 4, we can say that E,u(n’) is increasing in
q- U

Aj
"

Proof of Corollary 3 Since agent i is a priori weak, m; < 7;”. As transparency increases but
A

as long as 7} < W]-Aj (note that 7} is increasing in ¢;), Eypu(n’) = u(m). As transparency increases

further s = (¢, j) and Lemma 4 says that E,p(n’) is increasing in ¢;. O

Proof of Proposition 3 Suppose agent i is strong a priori. Let us define ¢* to be the lower
boundary of the set {¢;|s(q) = (¢, /) and Eyu(n’) > p(m)}. s(q) = (4, ) only for sufficiently high g;
and given s = (i,7), Eyp(n’) is increasing in ¢; (from Lemma 4). Given Corollary 2, we can then
say that E,u(n') < p(m) for ¢; < ¢F and Eyp(n’) > u(w) for ¢; > ¢F. The FSD then follows from

Lemma 3.
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Suppose agent j is weak a priori. Then let us define ¢” as the lower boundary of {g;|s(¢;) =

(,7)}. Note that s(¢) = (4,j) only when ¢; > qu. Given Corollary 3, we can say that E,u(n’)
p(m) for ¢; < ¢ and Eyu(r') > p(r) for ¢; > ¢F. The FSD then follows from Lemma 3. [J

9.2.2 Two-Sided Information

Lemma 6 (1) If g € R} for some i € N, then Eyu(n’) decreases in q; and not affected by q;. (2)
If g € R for some j € N, then Equ(n') increases in q; and decreases in q;. (3) If ¢ € R} for some

: N : . .
i€ N, Eyu(n') increases in q; but may increase or decrease in g;.

Proof.

Case 1: ¢ € R}
If agent i is strong at a fully opaque bargaining environment , then agent ¢ will also be strong

when & = (w;, w;) is realized. Consequently this case is possible only for agent 7 and not j. Suppose

Ai
sufficiently transparent bargaining environment is not feasible such that 1 — a7} > (/)% . Then for

any signal realization agent 7 is strong and agent j is weak. For agent ¢, the posterior belief is such
that Ey p(m,7}) is concave in m; (see Figure 3). On the other hand, for agent j, the posterior

beliefs are such that E, pu(7,

i,7;) is affine in 7. Hence, Eyu(n’) decreases in ¢; and not affected by

qj-

. 2
Case 2: ¢ € R;
This represents the case when agent ¢ is strong for two possible signal realization and so is agent
7. However, agent j’s signal determines which agent will be strong and not agent i’s signal. This
happens when the bargaining environment cannot be made much transparent on ¢-side but j-side

is sufficiently transparent. Thus 77 and 1 — «; are widely spread while 7} and 1 — 7; are close. In

5, A
fact, (1 —x))% <1 —m; <) < (@)% . Thus for i, u(mj, 7)) is concave while p(n}, 1 — ) is affine.

Therefore, Ey p(, 7;) is concave in 7. Hence, Eypu(n') decreases in g;. For j, on the other hand,
given the posterior 7; (or 1 — ), j is strong if @; = w; and j is weak if ©; = w;. Using Lemma 4,
we can say that increasing transparency on the j-side of the bargaining environment will increase

both Ey pu(7;, 7}) and Equ(1 — xj, 7). Therefore, Eyu(n’) increases in g;
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Case 3: ¢ € R}

Given ¢;, ¢; is neither too low (such that j’s signal determines which agent is strong), nor too
high (such the 4’s signal determines which agent is strong), then we have the above. Consider g;
first. Given the posterior belief 7}, j is weak no matter what signal is realized. From Lemma 4,
we know that Eq, p(7;, ;) remains unchanged as ¢; changes. On the other hand, given posterior
1 — m;, j is strong if @; is realized and weak if w, is realized. So, from Lemma 4, we know that

;N . N . .
Eq;_u(l — m;, ;) increases as g; increases. Thus Eyu(7n') increases as ¢; increases. Now consider g;.

L My
Given the posterior belief 7, j is strong no matter what signal is realized. From Lemma 4, we know
that Eyu(m;, ;) decreases as g; increases. On the other hand, given posterior 1 — x’, i is strong if
t; is realized and weak if w; is realized. So, from Lemma 4, we know that Fu(m}, 1 —x;) increases

as ¢; increases. Thus increase in transparency ¢; may increase or decrease welfare. m

Proof of Proposition 4 Suppose agent i is strong a priori. Recall ¢~ and qu as defined in
Proposition 3. We saw disclosing information about the strong agent increases delay for ¢; < ¢F

and disclosing information about the weak agent does not affect delay if ¢; < qu.

Case 1: Consider ¢; < ¢/ and sufficiently small such that at (g, q)), s(w;) = i.

Consider Figure 3 with 77 in the horizontal axis. This corresponds to the case where 7; is in
the left linear portion of E,u. As g; increases, but not sufficiently high, then s(w;,@;) = 4, which
implies ¢ € R;. Therefore g; has no effect on Eyu(7’) (from Lemma 6). Since, s(w;,@;) = j at
q=(q, qu), we have s(w;,w;) = j for any (¢, q]L) with ¢; > ¢?. If ¢; becomes sufficiently high (but
< ¢F) then s(w;, @;) = j. Note that for such ¢, s(w;,w;) = i = s(@;,w;). Also, since s(w;,@;) =i
at ¢ = (q,q) (balanced strength), we have s(@;,@;) = j for such ¢. Hence, ¢ € R? and so from
Lemma 6, we know that Egpu(n’) increases in g;. Since at (gi,q;), Eyu(n') > p(n), there is a
threshold ¢ (q;) € (0,¢F] such that if information is disclosed about the strong agent or the both
agents the immediate probability of concession will be less than u(w). Using Lemma 3, we get our

result.

Case 2: 1If ¢; is sufficiently large but ¢; < ¢, such that at (g, q?), s(w;) = 7.
Then g € R? and so from Lemma 6, we know that increase in ¢; will reduce Ey u(7’). Therefore,
if (¢:,q7) € R} then ¢7(¢;) = qf. If (¢:,q)) € R}, then for sufficiently high ¢;, ¢ € R} and hence

-
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Eyp(n') is increasing in ¢;. Thus, the same argument applies as in case 1. O

Proof of Corollary 4 Consider ¢; marginally above ¢* and ¢; = q?. By definition of ¢,
s(@;) = s(w;) = (i,4) - i.e., ¢ € R}. From Lemma 6, we know that Ey p(7') is decreasing on ¢; and
decreasing in g;. By definition of ¢/, when ¢ = (¢}, qj), Ey (') = p(m). Hence for ¢; marginally
above ¢, there exists ¢; marginally above q? such that Eq, w(r") < p(m). O

Proof of Corollary 5 When the transparency of information on j is qu, for «; marginally
above 7;, agent i is strong irrespective of w;. Hence, pu(7’) is concave in i, which implies Eq, p(m’)
is concave in ;. For m; marginally below m;, s(w;,w;) = (j,7). Therefore, u(n’) is concave in ;
when 7} = 1 — m; and affine in 7 when 7} = 7. Therefore, Ey u(x’) is concave in .

Since, the affine relation is negative, and all the other relations are positive, for 7, marginally
below ; the slope of Eq;u(w’ ) is smaller than for 7} marginally above ;.

Let f be piece-wise concave above and below some x. Take x; < x9 such that for a € (0,1),
ary + (1 — a)xy = x. Also, f'(z3) > f'(z1). Then af(x1) + (1 — a)f(z2) > f(x). Suppose, for
contradiction, af(x1) + (1 — a)f(x2) < f(x). Then (1 —a)(f(x2) — f(x)) < a(f(x) — f(x1)). Also,
(1—a)(zs — z) = a(z — 7). After dividing we then get £&2=0@) < J@=J) Take 1, — 21, then

To—T T—x1

x — x1 (since z € (xq,x2)). Therefore f'(x9) < f'(x1). Hence, contraction.

Replacing f by Eq;,,u(w’ ) we can then conclude that a marginal increase in g; or spreading m; in a
Bayes consistent way, will increase £, p(7"). We have seen in the proof of Proposition 4 that, when
¢; is marginally above ¢ and ¢; = ¢F, ¢ € R}. From Lemma 6, we know that Ey p(n') increasing in
q; when ¢ € R?. By definition, when ¢ = (¢7, ¢}), Eypu(n’) = pu(7). Hence, for ¢; marginally above
q) there exists ¢; < ¢/ such that Eyu(r') > p(w). O

9.3 Optimal Transparency

Proof of Proposition 5 Recall that



Similar to Lemma 4, when there is one sided information, we have

Lemma 7 If s = (s(w;),s(w;)) = (4,7) then increase in transparency will increase Egypy(7'). If
s = (4,J) then increase in transparency has no effect on Eypq (7). If s = (i,1) then increase in

transparency will reduce Eypq (7).

Proof. u(n’) is linear in 7}, and so is {(n’). Hence, ¢; has no effect on Ep(7’) when s = (4, 7).
p(7') is concave in 7, and so is £(n’). Hence, increasing ¢; reduces E, p;(n’) when s = (4,4). Suppose
s = (i,7)

1 L

/ " *(1+>}*]_‘) _ /_(H';TZ.) 3 3 N NSV
By (r') =1 —mm; | @(7;) — ~° + (1 —@)m; i) = (N A mimy (@ (T) N+ (1 — g)m)

Note that

;

—/
Dyl = 21 — m) and Dy, = 21 — 7),
q;

4d;
where subscript h and [ denote partial derivative w.r.t. ¢ and q, respectively. Differentiating

Eypn(r') wr.t g, and substituting Dy} we get

N+ )1 —m ] 1
DﬂEqéMl(W')Z( - J) - ((WQ) (HAZ‘)—(WQ)*J') >0

Differentiating Ey i (7') w.r.t ¢; and substituting D7} we get

Y Aj 1
DhEygpn(n') = (A’ : AJ) (1) ((ﬂ)“*&-) - <ﬁ;>w)

Therefore Dy Egpu(7') > 0. =

Given this lemma, same argument applies as in Corollary 2 and Corollary 3. Hence, the threshold

rule applies. [

Lemma 8 (1) If g € R} for some i € N, then Eyui(r') decreases in g; and not affected by q;. (2)

46



Ifq e Rjz for some j € N, then Eyui(7') increases in q; and decreases in q;. (3) If ¢ € R} for some

: N ‘ . .
i€ N, Eypi (') increases in q; but may increase or decrease in g;.

Proof. This lemma claims that p; has the same properties of p as in Lemma 6. I have already
shown that (Lemma 7) p; has the same properties as p (Lemma 4) under one-sided information.

By the same argument as in Lemma 6 and replacing Lemma 4 by Lemma 7, we get this lemma. m

Lemma 9 If q € R} for some i € N, then Eyu(w') is concave in g;.

Proof. When ¢ € R?, we have have,

T 1— E/' 1 — 7-[—; 1— El'
Egp(n) = 1= | adi—5 + (1 - g)—= + (1 —g)g;— + (1 — )1 — ¢j) — 5~
(7)) % (7)) % (75) (1 —mj)%
Let us define  : [0,1]> x [0,1] x R — R as
w(q, ¢;m, k) == L(q, q¢; ) - N(q,q; 7, k) where
L@ gim) = 1= 7 - (1= 1)1~ ) end N(gugi ) i= (1 )
q,¢;m) =1L —7mq— (1l —T —¢g) an q,q;T, = -
= = l—7mg—(1-7)(1~—gq)
Then,
Iy / —/ ;\j
Egp(n') =1 — (¢;7+ (1 — ;) (1 — 7)) 6(1 — g3 m;, 5\—)—
/ / j‘z / / j‘j
(1 =) = g)r(l — g5 7, X_) — (L= m) (1 — qj)r(as m;, X_>

J 7

>

A i _ by
=1- (ij‘”v(l = i T, 5\—]) +mi(1 = @i)r(1 — g5 75, 5\—) + (1 — q;) k(g i, 5\_])>

i j i
Lemma 10 x(q,q;.) satisfies the following properties:
1. (Converity) D*k(q,q;.) is positive semidefinite
2. knn(1 = qi, Jkulgi, ) + knn(qi, Jku(l — gy ) = 2601 = @iy )k (gi,-) = 0

where subscript h and | denotes the partial derivatives w.r.t. q and q respectively.
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Proof. Differentiating L(¢q) =1 —-7¢— (1 —-7)(1 —¢q) =1—¢' w.r.t g and ¢ respectively, we get

Lin(q) = —m and Li(q) = (1 — 7). Note that N(q)—% _ W(i(;)@)

=1 — «’. Therefore,

M) =k s N ), Nla) = k=N ()
Nin(q) = i fq,) <(1 _1(i ;,E,)) (k+1) + 2> , Nu(@)Nulq) = (k—1) 8 — ;T,)) Ni(q)
(1 = ¢)Nu(q) + Lu(g) Ni(q) + Li(q) Nu(q) = (k + 1)(1 — 7)Ni(q)
Therefore,

(50D g

1—7
r(q) = (k+1)(1 = 7m)N(q)
Taking second order partial derivatives we get,

#nn(q) =(1 = ¢')Nun(q) + 2L (q) Ni(q)

—r (S k) w0

1—7
ku(q) =(1 — ¢')Nulq) + 2Li(q) Ni(q)

=k+1)(1—-7m)Ni(q) >0
k= (1 = ¢ )Nu(q) + Lu(q)Ni(q) + Li(q) Nn(q) = (k4 1)(1 — 7)Nu(q)

Therefore,

s — 121 =(1— (14 k)’ Na(g) (w“‘“—f”w - w)Nh<q>)

(1_(1_E/))]{3(1_7T)N(q) —(1—71')]671_

=(1—7)(1 4 k)*Na(q) (W —x "(=q) (1-m)(1—¢) q))

=0
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Also,

Krn(@)ku(1 — q) + krn(1 — @)ku(q) — 260(q) k(1 — q)

= (= m) 1+ kPN - ) (7P ) - (1= M)

(1-(1-1))
1—7

HL= R0+ RPN (o Nl =)~ (1= N1~ 9)) =0

Taking partial derivatives of Eyp(r’) w.r.t ¢; (h) and g, (1) we get,

~ ~

A s
DEyu(r') =miki(1 — qis i, 5\—3) — (1 — q;)klqi; i, 5\_3)
7 ('%l(l & T, S\_Z) — k(g m;, 5\_?) + Gk (g i, 5\_]1)

~

A ~
DpEyu(r') =mjkn(l — qi; mi, 5\—]) — (1 — Gj)kn(gi; m, J

>| PN

)+ mir(l = g5 75, =)
J

>
>/>(>

by A A

= | k(1 = gy mi, =) — kalqss i, =) | 4 7@k (g miy ==

J(l( )\i) l( )\i> J4j l( )\i>
Ai
+ mir(l — g5, =)
Aj

Taking the second order derivatives we get,

A ~

s N
DyEyp(r') = — miru(l — gi; mi, 5\—]) — mi(1 — q;)kugs; ™, ;\—J) <0

/ ;\j _ j‘j
DppEyp(r') = — miknn(l — gi; i, 5\—) — (1 — @;)knn(qis mi, 5\—) <0

DiynEgp(r') = — 2 (knn(1 — @, Ju(l — qi, ) — k(1 — @3, )?) — 75 (kn (@5 (i, -) — Eal@, -)?)

— 75 (ko (1 = @i, k(@i -) + £nn (@, a1 — a5, ) — 26m(1 = i, )kn(i, ) = 0

The first two inequalities follow from Lemma 10.1. The last equality follows from Lemma 10.1 and

10.2. Therefore E,pu(7') is concave in ¢;. ®

Proof of Proposition 6 Let us simplify ¢; = g, =4 for all i € N.
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Step 1: If ¢ € R} for some i € N, then E,pu;(7') is concave in g;. To see this note that when

q € R},

1

(') = Eypp(x') — mer, (qm;w F - ) g%+ 1 zﬂ) .

We have
=/ =/
om, ml-—m

— gl A
9

4G 4 dq; __1—%1—%
1 —/
Taking partial derivatives of ¢;(7})* w.r.t. ¢; and substituting gﬁj we get

q
0 N N 1—m 1
—q;(m) N =(m)% (1 —
sy )Y =S (14 == o

1—n!
o-m) 85’) we get

L
—
I
=
—_—
=
[
o
o
=
o
o
2
=
(=
—-
Q
—
o
€]
=
<
v
=
<
(€
»n
o
=
—~
[u—
|
R
—
—~
[u—
|
=,
N
=
=
=
R
2
=
(o
n
a
on
n
=
=
o
(=
—-
=
a3
o))

Given that E,u(7’) is concave in ¢; when ¢ € R? (see Lemma 9) we have %Eq/ul(w/) < 0.

Step 2: If ¢; is sufficiently high such that ¢’s signal determines which agent is stronger, i.e.,
q € R?. Using Lemma 8, we can say that an increase in ¢; will increase Eq; w1 (7). Hence, there
exists ¢ (g;) < 1 such that the optimal choice of transparency is maximum transparency when g;

exceeds this threshold.

>

J

If ¢; is sufficiently low, either ¢ € R} (if ¢; is is sufficiently small such that T >m;t) orq € RJQ»

A

(is g; is large such that 7 < ﬂ? ). In either case £y py(7') is decreasing in ¢; (see Lemma 8). Hence,
there exists a threshold ¢~ such that below this threshold the optimal choice of transparency is the

minimum transparency.

Recall that under one sided public information or ¢; = q?, Ey (') first falls and then increase
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in ¢;. Hence these two threshold are the same. However, when there is public information on both
sides these two thresholds may not be the same. If ¢; is neither too high nor too low, then it is
possible that ¢ € R?. From step 1, we know welfare is concave in ¢;. If Eyui(7') in decreasing
at the minimum g;, then it is a decreasing function in this region. Consequently, ¢ (q;) = ¢*(q;).
Similarly if E,p(7’) in increasing at the maximum ¢;, then it is an increasing function in this
region. Consequently, ¢/ (g;) = ¢ (q;). However, if E,ui(7') in increasing in ¢; at the minimum g;
and decreasing in ¢; at the maximum ¢;, then from concavity of E, py(7") w.r.t ¢; (see Lemma 8), we
know there exists an intermediate ¢;, say ¢/ (¢;), where E, pu1(7') in locally maximum. If Eypuy (7) at
(4™ (q)), qj) exceeds the (), then ¢ (g;) is this intermediate value and ¢/ (¢;) < ¢M(q;) < ¢’ (q;).
Also, if g; is sufficiently high, then it is possible that for the intermediate value of ¢;, ¢ € R?. From

Lemma 8. we know welfare in increasing in ¢;. Therefore, ¢ (¢;) = ¢*(q;). O

9.4 Appointing a Mediator

Proof of Proposition 7

A
A
Case 1: m; > !

A
Aj

7, for any ¢;, s = (i,7). From

When agents have exactly same bargaining strength, m; =
Lemma 7 we know that Eypu; is increasing in ¢; and hence disclosing information about i will

increase Eg ('), Thus, Eypi(n') > pi(m) (since the RHS corresponds to ¢; = ¢7). Also, when

i

m; is sufficiently high such that 1 — x, > 7T;\7 , we have s = (i,i). From Lemma 7, we know
Eypy is decreasing in ¢; and hence disclosing information about i will decrease Ey/puy(n'). Thus,
Egpa (') < pu ().

The welfare difference of no information disclosure as compared to disclosed information p; —

FEpy, is negative when agents have balanced strength and positive when ¢ has sufficiently high

i

relative strength. 1 will show that there is a unique 7V € [ﬂ';j ,1] such that p; — Epy < 0 for

>

7

™ € [m}” ;7] and py — Epg > 0 for m; € [7,1]. This follows from the following Lemma.

1

Lemma 11 Given s = (i,7), if ¢ > cjiHXi, then py — Epy is increasing in m; and if ¢, < cjf;\i, then

w1 — By is concave in ;.

o1



Proof. As defined in equation 11, iy — Epy = (u — Ep) + (A + A,)(€ — E€). For convenience,

I will use

Note that if ¢ > q‘i1+;\i then D < 0 and vice versa. A’, A” will denote the first order and the second
order derivative of A w.r.t. m; and similarly for the other terms. Replacing 7} and 1 — x}, we have

w—Epu=AB+ L, and £ — E{ = CD + L¢. Both L, and L, are linearly increasing in ;.

A /—A A BEV i
1= (3) (F)mmo e (1) Foda g n e

1 1 L apa
o' = <1 n T) (€> 7, <0, D = (—) @) (@) " @ g, 1) >0

)\i Uy i

Therefore (AB) = A'B+ AB’ > 0, which implies u — E is increasing. However, C"D 4+ C' D' is not

necessarily positive. Thus, ¢ — E¢ may not be increasing. Note that

%

’ Q L / 5\1 —+ S\j _ _y —A—J iy —14++
AB'+ (N +4)0D" = | — (@ +q,—D((m) » —(m) *)>0

Therefore, when D < 0, p; — Epy is increasing in 7;. If D > 0, this may not be true. Note that

A A (A AW DY RS
A" = (A—J) (1 + A—J> <F) T <0, B" =~ (1 + A—J> (A—j> (@) ™ (@)% (G+q—-1)2<0
1 1 C 1 1Y o+ d, -+l
C//:<1+T)(T)<—>W<0,D//:—<T><1+T) i Ai ; Ai i+ —12<0
WASWAC T % X (@) i (q;) (@ +q,—1)

Substitute these expressions, one gets (AB)" = A"B 4+ 2A'B’ + AB” < 0 and when D > 0,
(CD)" =C"D+2C"D'+CD" < 0. Let us first consider (C'D)"”. Replacing C’, C" and given C < 0,

we get (CD)" < 0 iff
2 ! 1 / 1 1
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Substituting D, D’, D", the condition becomes

Since the last term in parentheses is less than 1, a sufficient condition for concavity is D > 0 or

¢ <q A Following similar steps we get (AB)” < 0 when

Y] No/1—qg\?
(@) Az-<q;>”&( q,-’) <1

)

which is always true. Therefore, when D > 0, yy — Epy is concave in 7;. m
Suppose, for contradiction there are multiple solutions to p; — Epy = 0. If gy — E iy is increasing

then this not possible. Also, even if it is not increasing, from concavity and the fact that p; —FEpy < 0

Ai

at balanced strength and p; — Epy > 0 when 7; is such that 1 — 7, = 7T;\7, (1 — Epy must be first

increasing and then decreasing. If there are multiple solutions then p; — Euy; < 0 when m; is such

A

that 1 — 7, = 7r;j . Hence contradiction.

Aj

-
Case 2: m; < i
A

Aj
If ; falls but 7} > 7T]-Ai (note that 7} is increasing in ;) then the concave closure of iy is always
above ji;. Therefore, disclosing information about i will increase Eypuy(7'). If m; falls further then

such disclosure will have no effect since ¢ will be weak no matter what signal is realized. This give

i

us a threshold 7/ (m;, ¢;) such that disclosure is the optimal strategy whenever 7; € [ (7}, ¢;), 7T;\j]

and disclosure is ineffective whenever m; € [0, 7/ (7;, ¢;)]. O
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