SYMMETRIC MECHANISM DESIGN

YARON AZRIELI AND RITESH JAIN

ABSTRACT. Designers of economic mechanisms often have an incentive to bias the rules
of the mechanism in favor of certain groups of agents. This paper studies the extent
to which a policy prohibiting biased mechanisms is effective in achieving fair outcomes.
Our main result is a characterization of the class of social choice functions that can be
implemented by symmetric mechanisms. When the solution concept used is Bayes-Nash
equilibrium, symmetry is typically not very restrictive and discriminatory social choice
functions can be implemented by symmetric mechanisms. Our characterization in this
case is based on a ‘revelation principle’ type of result, where we show that a social choice
function can be symmetrically implemented if and only if a particular kind of (indirect)
symmetric mechanism implements it. When implementation in dominant strategies is
considered, only symmetric social choice functions can be implemented by symmetric
mechanisms. We illustrate our results in environments of voting with private values,
voting with a common value, and assignment of indivisible goods.
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1. INTRODUCTION

Designers of economic mechanisms can often benefit by biasing the rules in favor
of some of the participating agents. In auction design, for example, it is well known
([11]) that if bidders are heterogenous then the seller can intensify the competition by
subsidizing the bids of weaker bidders. Thus, this ‘affirmative action’ type of bias may

' Another example is the admission criteria employed by

increase the seller’s revenue.
academic institutions in order to achieve a diverse student body, criteria that have been
criticized as unfair and even challenged in courts.? In electoral competition, the practice
of manipulating district boundaries to obtain partisan advantage (gerrymandering) often
comes under fire for preventing fair elections.

On the other hand, fairness is a high priority goal for policy makers. This is evident
from the many existing acts and regulations whose goal is to guarantee that markets
are not biased against certain groups in the population.? In the context of mechanism
design, a natural candidate for an anti-discriminatory regulation is that the “rules of
the game” are the same for all participants. In other words, the mechanism should be
symmetric across agents. Symmetry is a normatively appealing property that has been
used extensively in the social choice and mechanism design literature. It appears for
example in the classic result of May [10] on simple majority rule, in the theory of social
welfare functions (e.g. [8, Chapter 22]), and in the theory of values of cooperative games
(e.g. [14]), among many others.

The goal of this paper is to analyze the extent to which symmetric mechanisms guar-
antee fair outcomes. We consider an abstract mechanism design environment with in-
complete information, allowing for both correlated types and interdependent values. The
output of a mechanism specifies a public outcome and a private outcome for each agent.
For instance, in a public good provision problem a mechanism determines whether the
good is provided or not (the public outcome) and the transfer required from each of the
agents (the private outcomes) as a function of the profile of messages sent to the mech-

anism.* Roughly speaking, a symmetric mechanism is one in which a permutation of

'In a recent paper, Deb and Pai [5] show how the seller can implement the revenue-maximizing auction
without explicitly biasing the rules in favor of weaker bidders. We discuss their result and its relation
to our work in detail below.

2A recent example is the case of Fisher verses University of Texas, US supreme court, vol. 570 (2013).
3For example, the U.S. Equal Employment Opportunity Commission (EEOC) enforces several anti-
discriminatory labor-market laws. Another example is the Genetic Information Nondiscrimination Act
of 2008 in health insurance markets.

“Environments with only public outcomes (such as voting environments) and environments with only
private outcomes (such as auctions) can of course be accommodated in our framework.
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the vector of messages results in no change to the public outcome and the corresponding
permutation of the private outcomes.

Our main result (Theorem 1) characterizes the class of social choice functions (i.e.,
mappings from type profiles to outcomes) that a designer can implement in Bayes-Nash
equilibrium using symmetric mechanisms. In many environments this class is large and
contains functions that clearly favor certain agents over others. In some environments
this includes even the extreme case of dictatorial functions, as we illustrate in Section
2 below. Thus, a regulation requiring mechanisms to treat agents symmetrically (in
the sense we have defined it) is not necessarily an effective way to achieve fairness. On
the other hand, in many cases symmetry does put some restrictions on what can be
implemented, and combining symmetry with additional context-specific requirements
may be an effective policy.

Our characterization can be roughly described as follows. A given (incentive compati-
ble) social choice function f can be implemented by a symmetric mechanism if and only
if for every pair of agents 7 and j there exists another social choice function f;; such that
(1) fi; treats ¢ and j symmetrically; and (2) for any type of agent 7, the expected utility
¢ receives under f by truthfully revealing his type is weakly higher than the expected
utility he receives under f;; from any possible type report. When such functions f;; exist,
we explicitly show how to construct a symmetric mechanism that implements f. The
construction is based on the idea that the equilibrium message of an agent encodes his
identity as well as his type, and the mechanism uses f to determine the outcome when
the message profile contains all identities. The function f;; is used to incentivize agent 7
to reveal his true identity instead of ‘pretending’ to be agent 7.5 Conversely, if for some
pair of agents 7 and j an appropriate function f;; does not exist, then, not only that this
construction does not work, symmetric implementation is impossible altogether. Thus,
our result has the flavor of a ‘revelation principle’, in the sense that one should only
consider a particular kind of (indirect) mechanisms to determine whether symmetric

implementation is possible or not.

5This construction is reminiscent of mechanisms used in the literature on implementation with complete
information (e.g. [9]), where each agent reports everyone’s preferences and an agent is punished if his
message disagrees with the messages of all other agents. There are important differences however: First,
and most importantly, in our case the designer does not use the punishment scheme to elicit any new
information from the agents; it is only used to create symmetry in cases where the original social choice
function is not symmetric. Second, under complete information the construction works for every social
choice function, while this is not the case in our setup. Third, our construction is meaningful even if
there are only two agents, which is not the case with complete information.



We emphasize that we do not argue that the type of mechanism described above is
a practical way for designers to get around a rule requiring symmetry. It is merely a
theoretical construction that enables us to prove the sufficiency part of our theorem and
to provide an upper bound on what can be symmetrically implemented. It may very well
be that simpler and more practical symmetric mechanisms can be found that implement
a given social choice function, as is the case in [5] for example. However, we do think
that one of the contributions of this paper is to expose the role that indirect mechanisms
have in overcoming exogenous constraints such as symmetry.°

A well-known criticism of implementation in Bayes-Nash equilibrium is that it assumes
too much common knowledge among the agents and the planner (see [2]). One solution
to this problem is to consider the more robust concept of dominant strategies. Dominant
strategy mechanisms are typically studied in environments with private values, so we re-
strict attention to this type of environments. In Theorem 2 we prove that only symmetric
social choice functions can be implemented in (weakly) dominant strategies by symmet-
ric mechanisms. In other words, indirect mechanisms are not useful in overcoming the
symmetry constraint. This stands in stark contrast to the results for implementation in
Bayes-Nash equilibrium.

The closest paper to ours is Deb and Pai [5], who study the possibility of a seller to
design discriminatory auctions in an independent private-values setup under the same
symmetry constraint as in the current paper. However, the set of feasible mechanisms
they consider is further restricted to include only mechanisms in which bidders submit a
single number (the bid), and the highest bidder wins the object. This rules out the type of
mechanisms that we use in our proof. Nevertheless, they are able to show that essentially
any incentive compatible direct mechanism (social choice function in our terminology)
can be implemented in Bayes-Nash equilibrium by some such symmetric auction.” In
other words, symmetry puts almost no restriction on what can be implemented. In
Corollary 1 below we show that the same is true in voting environments with independent
private-values, i.e. every incentive compatible social choice function can be symmetrically
implemented in Bayes-Nash equilibrium. However, as we show by examples, this is no

longer true with correlated types or interdependent values.

60ther examples that illustrate the potential importance of indirect mechanisms include [3] for the case
where the designer lacks commitment power, [12] when agents have menu-dependent preferences, and
[13] when only deterministic mechanisms are allowed.

"The notion of implementation used in [5] is somewhat weaker than ours, since they only require that
the expected payment in the indirect mechanism is equal to the payment in the direct mechanism. Our
definition requires that they are equal ex-post.
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In the following section we illustrate our result with three examples. The first is in an
environment of voting with private values, the second in a common-value voting setup (as
in the ‘Condorcet Jury’ theorem), and the third is in a model of assignment of indivisible
goods. Section 3 presents the notation and the definition of symmetry that we use, and
Section 4 contains the main result and its proof. The special case in which the outcome
space contains only public outcomes (voting environment) is further analyzed in Section
5. Section 6 contains the analysis of implementation in dominant strategies. Section 7
concludes.

2. MOTIVATING EXAMPLES

2.1. Voting with private values. Consider a society of two agents which needs to
choose an alternative from the set {z,y} (they may also choose to randomize between
the alternatives). Each agent can either be of type X or of type Y. Both agents have
the same (private-values) utility function given by u(X,z) = u(Y,y) = 1 and u(X,y) =
u(Y,z) = 0, that is an agent of type X prefers alternative x and an agent of type Y
prefers alternative y. The realized profile of types is drawn according to the distribution
given by the following matrix, where rows correspond to types of agent 1 and columns
to types of agent 2:

Y
X 1 1/2—p
Y |1/2—p L

The parameter 0 < p < 1/2 measures the likelihood that agents have similar preferences.

Notice that when p > 1/4 agents’ types are ‘positively correlated” and when p < 1/4
they are ‘negatively correlated’. When p = 1/4 types are independent.

Consider the case where agent 1 is a dictator who gets to choose his favorite alternative.
We can describe this Social Choice Function (SCF) f by the following matrix, where rows

correspond to types of agent 1 and columns to types of agent 2:

XY
Xz |z
Yiyly

Clearly f is incentive compatible, since agent 1 always gets his favorite alternative
and agent 2 cannot influence the outcome. However, f treats the agents asymmetri-

cally, favoring agent 1 over 2. The violation of symmetry is expressed by the fact that
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f(X,Y) =z while f(Y, X) =y, so that two type profiles which are permutations of one
another lead to different outcomes.

Is there a way to implement f as a Bayesian equilibrium of some symmetric indirect
mechanism? We claim that the answer is positive if and only if g > 1/4. To see this,
consider the indirect mechanism in which the set of messages available to each agent
is M = {mq, mg, m3, my}, and the mapping from profiles of messages to alternatives is

given by the following matrix:

my | Mo | TNy | My
mi| By | x| @
my| v |0 |y |y
ms | T Yy X X
myg | T Yy X X

In the above matrix f,7 and ¢ stand for numbers in [0, 1] representing the probability
with which alternative x is chosen (y is chosen with the complementary probability).
Notice that this is a symmetric mechanism in the sense that when the agents switch
their messages the outcome does not change.

Consider the strategy profile in which agent 1 plays 1(X) = my and 01(Y) = my
and agent 2 plays 02(X) = mg and 02(Y) = my. Note that if the agents follow these
strategies then the SCF f is implemented, as can be seen in the boldfaced entries in the
matrix. Also, notice that oy is a best response for agent 1 to g5. To make this profile of
strategies an equilibrium we therefore need to choose f3,v,d € [0, 1] so that the following

inequalities are satisfied:

1
2

(2p) % B+ (1 = 2p) %y < 2p (1)

(2p) %y + (1 = 2p) % 6 < 2p (2)

(1=2p) % (1= B) + (2u) * (1 =) < 2 (3)

(1 =2p) % (L =7) + (2p) x (1 = 0) < 2u (4)

Inequalities (1) and (2) are the incentive constraints for agent 2 of type X not to deviate

to messages my or my, respectively. Similarly, inequalities (3) and (4) are the incentive
constraints for agent 2 of type Y.

Now, if 1+ > 1/4 then it is immediate to check that § =~y = § = 1/2 satisfy the above

inequalities, and hence f can be implemented by a symmetric mechanism. On the other
hand, if 1 < 1/4 then a simple manipulation of (1) and (3) implies that =1 and v =0
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must hold. But if v = 0 then (4) cannot be satisfied, hence there is no solution to this
system.

This argument only implies that the particular kind of mechanism considered above
cannot symmetrically implement f when p < 1/4. But our main result (Theorem 1)
says that looking at this kind of mechanisms is without loss of generality, that is, it’s
impossible to find any symmetric mechanism that implements f. To understand this
result better, let us rename the messages in the above mechanism so that M = {1,2} x
{X,Y}. Thus, each agent reports a name of an agent and a type. Replace m; by 1X,
mo by 1Y, mgs by 2X, and my by 2Y. The strategy profile we considered is the one in
which each agent truthfully reports his name and type. The outcome function of the
mechanism is designed so that under this truthful strategy profile the given SCF f is used
to determine the outcome. To make this truthful reporting an equilibrium, each agent
should be incentivized not to deviate to messages that ‘belong’ to the other agent. It is
easy to design a punishment for agent 1 to prevent him from ‘pretending’ to be agent 2,
since agent 1 gets his favorite alternative in equilibrium. However, when p < 1/4 it is not
possible to design an effective punishment for agent 2 to prevent him from ‘pretending’
to be 1. The difficulty comes from the fact that the punishment should satisfy the
symmetry constraint (the outcome should be « in both message profiles (1X,1Y") and
(1Y,1X)). We show in Theorem 1 that if such a symmetric punishment scheme is not

available then no symmetric mechanism that implements f exists.

2.2. Common value voting. Consider a ‘Condorcet Jury’ setup, where given the state
of nature all agents agree on the correct decision, but there is uncertainty about the
realized state. Specifically, assume that the state is either H or L, and that each of a
group of n agents receives a signal in {h,[}. Let u be the (full-support) distribution over
{H, L} x {h,l}" according to which the state and signals are drawn. The set of possible
decisions is { H, L}. All agents receive utility of 1 if the decision matches the state and a
utility of 0 otherwise. To fit with our formal framework, it will be convenient to define
the utility of agents as a function of the realized profile of signals and the decision chosen
(by taking expectation over the state of nature). That is, the utility function of each
agent i is given by w(t, H) = p(H|t) and wi(t, L) = pu(LIt) = 1 — wi(t, H).

Consider the SCF f which chooses the decision more likely to be correct given any
profile of types. That is f(t) = H if u(H|t) > 1/2 and f(t) = L otherwise. Clearly
f is incentive compatible, since even if agent i knows everyone else’s types it is still a
best response for him to be truthful (i.e., truth-telling is an ex-post equilibrium under f).

However, since we make no assumption on the structure of i, it may be that some agents’
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signals are highly correlated with the state and hence provide valuable information, while
others’ signals are independent of the state. If this is the case then f would not be
symmetric — the decision will not depend just on the number of A signals in the message
profile but also on the identity of the agents who sent those h signals.

It is possible however to implement f by a symmetric mechanism. To see this, consider
the ‘names mechanism’ described in the previous example, where the set of messages
available for each agent is M = {1,...,n} x{h,l}. The mapping from message profiles to
decisions is defined as follows. If all the names 1 through n appear in the message profile
then choose the decision prescribed by f at the reported type profile, treating the names
as if they were truthfully announced (even if they were not). In all other message profiles
choose alternative H. This mechanism is clearly symmetric, in the sense that when the
message profile is permuted the decision is not affected. In addition, the strategy profile
in which each agent 7 reports his real name and his type is an equilibrium, since in this
case f is used to determine the decision, so i gets his preferred alternative at each type

profile. Thus, this symmetric mechanism implements f.

2.3. An assignment model. Three goods {a,b,c} are to be allocated to three agents

{1,2,3}, one good per agent.® Each agent’s type is drawn from the set
T = {abc, ach, bac, bea, cab, cba},

where each t € T corresponds to a strict ordering over the goods. Agents’ types are
independent and identically distributed according to the probabilities u(abc) = % + 59
and p(t) = ¢ — 6 for any other ¢t € T, with 0 € [0, ). Note that when § = 0 all types
are equally likely, and that as 0 increases the ordering a > b > ¢ becomes more likely
relative to all other types. For concreteness, suppose that the utility an agent gets from
consuming his most preferred good is 3, from consuming his second-best is 2, and from
consuming his least favorable is 1.

A mechanism specifies a lottery over assignments as a function of the agents’ mes-
sages. Our definition of symmetry requires in this setup that if the profile of messages
is permuted then the vector of lotteries over the goods is permuted accordingly. For
example, suppose that under some message profile agent 1 gets good a for sure while

agents 2 and 3 each gets good b with probability 1/2 or good ¢ with probability 1/2.°

8This example is based on the assignment model of [7]. It is important for our argument that the
designer must allocate all three goods and cannot leave some agents empty-handed, as is often the case
in applications.

9By the Birkhoff-von Neumann Theorem this collection of lotteries corresponds to some distribution
over assignments.
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Symmetry implies that if agents 1 and 2 switch their messages (and agent’s 3 message is
unchanged) then agent 2 gets good a for sure and agents 1 and 3 each gets good b with
probability 1/2 or good ¢ with probability 1/2. Note that this implies in particular that
when two agents send the same message to the mechanism they should get the same
lottery over goods.

Consider the ‘serial dictatorship” SCF in which agent 1 gets to choose his favorite
good first, and agent 2 gets to choose his favorite good from what’s left after 1’s choice.
Agent 3 is assigned the good not chosen by the first two agents.'® This SCF clearly
does not satisfy the above symmetry requirement. Yet, is there a symmetric indirect
mechanism that can implement serial dictatorship? It turns out that the answer depends
on the parameter d; if § is sufficiently small, specifically § < §* := %ﬁ 2 (.05, then
symmetric implementation is possible; if 6 > ¢* then it is not.

We present here a sketch of the argument for the above claim; a detailed proof appears
in Appendix A. Consider again the ‘names mechanism’, and recall that the key for sym-
metric implementation is the existence of symmetric punishment schemes that prevent
agents from sending other agents’ messages. Since agent 1 always gets his favorite good
according to the given SCF, it is easy to construct such a punishment scheme to prevent
him from lying for any value of . The same is true for agent 2, since if for example
he pretends to be agent 3 then we can use the SCF in which agent 1 picks his favorite
good as before, and the other two goods are randomly (uniformly) assigned to agents 2
and 3. This SCF is symmetric between agents 2 and 3, and agent 2 is worse off under
this function relative to the original one for any value of . A similar construction works
when agent 2 pretends to be agent 1.

Symmetric implementation therefore depends on whether we can prevent agent 3 from
pretending to be one of the other agents. The cutoff 6* is obtained by equating the
probability with which agent 3 gets item ¢ under the given serial dictatorship to 1/2: If
0 < 0* then this probability is less or equal to 1/2, and if § > §* then it is greater than
1/2. If this probability is below 1/2 then the punishment scheme is simply the constant
SCF in which the lottery over the goods for agent 3 and the agent he pretends to be are
both equal to the lottery that 3 gets under the serial dictatorship. Since the probabilities
in this lottery are all below 1/2 this yields a legitimate random assignment, and agent
3 has no incentive to deviate. However, if this probability is greater than 1/2 then this

construction no longer works, and we show in Appendix A that nothing else works in

10See [1] for an analysis of the ‘random serial dictatorship’ mechanism in this model. In [4] this mecha-
nism is referred to as ‘random priority’.
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this case. By our main result this implies that no symmetric mechanism can implement

serial dictatorship.!!

3. NOTATION AND DEFINITIONS

We will work in a standard abstract mechanism design environment with incomplete
information as in e.g. [6]. There is a finite set [n] = {1,...,n} of agents, with n > 2.
The private information of agents is described by their types, where T is the finite set
of possible types of each agent. A state or a type profile is an assignment of an element
in T for each agent, and we denote a state by t = (t1,...,t,) € T", where t; € T is the
type of agent i. We use the standard notation in which a subscript —: means that the
i'" coordinate of a vector is omitted. In particular, given a state ¢, we write ¢_; for the
vector of types of all agents except i, and we write (¢;,¢_;) for the state in which the
type of i is t; and the types of all other agents are the same as in t.

The set of finite-support distributions over some set A is denoted A(A).'? Agents’
beliefs about the types of others may depend on their own type in an arbitrary way. For
each ¢ € [n] there is a function u; : T — A (7™ 1) which specifies the beliefs of agent ¢
given each one of his possible types. For any state t we write p;(t_;|t;) for the probability
that ¢ assigns to the other agents’ type profile being ¢_; when his type is ¢;. Note that we
allow for correlated types and that beliefs need not be consistent with a common prior.
If every p; is constant, that is p;(t_;|t;) = ui(t_;|t}) for all i, t;, ¢, and ¢_;, then we say
that types are independent.

Let O be a set whose elements are called public outcomes, and let P be a set whose
elements are called private outcomes. For example, in a public good provision problem
O may stand for whether the good is provided or not and P for the transfer required
from the agent to finance the good. Agents’ preferences are defined over 7" x O x P.
Specifically, we assume that agent ¢’s preferences are represented by the von Neumann-
Morgenstern utility function u; : 7" x O x P — R. Note that this allows the possibility of
interdependent values, where an agent preferences depend on other agents’ types. Agents
are assumed to be expected utility maximizers. With abuse of notation, if A € A(O x P)

then we write u;(t, A) for the expected utility > co >~ ,cp A0, p)ui(t, 0,p).

HTt is easy to generalize this example to any number of agents and any (ii.d.) type distribution. The key
to whether symmetric implementation is possible or not is the lottery over the goods for the last agent:
If this agent receives one of the goods with probability greater than 1/2 then symmetric implementation
is not possible, otherwise it is.

2Eormally, A(A) is the set of all mappings ¢ : A — [0,1] such that p(a) # 0 for only finitely many
acAand ) ., ¢(a) = 1. We often identify each a € A with the lottery that assigns probability 1 to
a.
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The last component in the description of the environment is a set D C O x P", whose
elements are called feasible outcomes. Each d = (o,p) € D is composed of a public
outcome o € O and a vector p = (p1,...,pn) € P" that specifies the private outcome for
each agent. By allowing D to be a strict subset of O x P™ we can incorporate constraints
such as budget-balance in a public good provision problem, or that each agent gets a
single good in an assignment problem (as in subsection 2.3 above). Throughout the
paper we assume that D is closed under permutations of the vector of private outcomes.
Formally, if 7 : [n] — [n] is any permutation of the agents’ names and (o,p) € D then
also (o, mp) € D, where mp = (pr(1),- - - Pr(n))-

A mechanism specifies the set of messages available to each player and an outcome
function which maps each profile of messages to a lottery over feasible outcomes. We
will restrict our attention to mechanisms in which all players have the same finite set of
messages. A mechanism is therefore formally defined as a pair (M, g), where M is some
finite set and g : M"™ — A(D).

Before stating the main definition of this section we need one more piece of notation.
Given any vector z of length n and any pair 7,7 € [n], we denote by 2 the vector of

length n which is identical to x except that the ¢th and jth coordinates are switched.

Definition 1. A mechanism (M, g) is ij-symmetric if for every m € M"™ and every
(o,p) € D,

g(m)(o,p) = g(m")(0,p").
A mechanism (M, g) is symmetric if it is ij-symmetric for every pair i, j € [n]. Equiva-

lently, (M, g) is symmetric if for every permutation 7 of the agents
g(m)(0,p) = g(mm)(o, 7p).

In words, symmetric mechanisms have the property that if one message profile is a
permutation of another then the mechanism output at the former is the corresponding
permutation of the latter. For deterministic output this simply means that the public
outcome is not affected by permutations of the message vector and the private outcomes
are permuted accordingly. When the output is stochastic we require that the joint
distribution over D is permuted. Note that symmetry implies in particular that the
marginal distribution over the public outcome o is not affected by permutations of the
message profile, and that if m is such that m; = m; then the marginal of g(m) on O x P,
is the same as its marginal on O x P;. In addition, note that symmetry not only means
that agents are treated equally in the outcomes they receive themselves, but also that

agents are symmetric in the influence they have on other agents’ outcomes.
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Remark. There are other possible ways to define symmetry that capture the idea that
agents are treated equally by the mechanism. For instance, one could use a weaker
notion than Definition 1 only requiring that the marginal on O x P; of the distribution
g(m) is the same as the marginal on O x P; of the distribution g(m*), and that for any
other agent k the marginal on O x P is the same under these two message profiles. This
definition makes sense since agents only care about the public outcome and their own
private outcome. The two definitions coincide for deterministic mechanisms. Our results
can be adapted to this alternative definition. However, we find Definition 1 to be the

most natural one.

Given the beliefs and preferences of the players, every mechanism induces a (finite)
Bayesian game. A (pure) strategy for an agent is a mapping o : T — M. If ¢ =
(01,...,0,) is a strategy profile and ¢ is a state then we write o(t) = (o1(t1), ..., 0n(tn))
for the vector of induced messages. Given some A € A(D), it will be convenient to
denote by Ao, the marginal of A on O x P, that is A\p,(0,p) = Z{gePn  piep) Ao, p)
for every (o,p) € O x P. A strategy profile ¢ is a Bayes-Nash Equilibrium (BNE) of a
mechanism (M, g) if

Z pi(t—ilti)ui(t, g(a(t))os) = Z pi(t—ilts)ui(t, g(mi, o0—i(t—:))o,i)
t_; i
for every i € [n], every t; € T, and every m; € M.

A Social Choice Function (SCF) is a mapping f : T™ — A(D). The pair (T, f) is itself
a mechanism, called the direct mechanism associated with f. A SCF f is ¢j-symmetric
(symmetric) if the direct mechanism associated with f is ¢j-symmetric (symmetric).
Truth-telling refers to the strategy in the direct mechanism in which a player reports his
true type. A SCF f is Bayesian Incentive Compatible (BIC) if truth-telling is a BNE
of the direct mechanism associated with f. Finally, we define the notion of symmetric

implementation that will be used in the next sections.

Definition 2. Let f be a SCF. A mechanism (M, ¢g) implements f in BNE if there is a
BNE ¢ of (M, g) such that f(t) = g(a(t)) for every t € T™.

We say that f is symmetrically implementable in BNFE if there is a symmetric mechanism
(M, g) that implements f in BNE.

Note that we only require ‘partial implementation’, i.e. that there is an equilibrium for
which the outcome of the mechanism coincides with that prescribed by the SCF. There

may be other equilibria with different outcomes.
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4. MAIN RESULT

Before stating the result we need one more definition.

Definition 3. Fix an environment and two SCFs f and f’. We say that f dominates f’

for agent 1 if

Z,uz z uz t f Oz > Zﬂ'z z uz(t f (Szy —z)Oz) (5)

for every t;,s;, € T.

The left-hand side of (5) is the expected utility for agent i of type ¢; under f when all
agents are truth-telling. The right-hand side is the expected utility for ¢ of type ¢; under
f" when he reports type s; and all other agents are truth-telling. Thus, f dominates f’

for ¢ if the former is not smaller than the latter for any pair of types ¢; and s;.

Theorem 1. A SCF f is symmetrically implementable in BNE if and only if f is BIC
and for every ordered pair of agents (7, j) there is an ij-symmetric SCF f;; such that f

dominates f;; for agent <.

Proof. We start with the ‘If” direction. Assume that f is BIC and that there are SCF's
{fi;} satistying the conditions in the statement of the theorem. We will now construct a
symmetric mechanism (M, ¢g) and an equilibrium ¢ of this mechanism that implements
f.

Let the set of messages available to each player be M = [n| x T. Thus, each player
reports to the mechanism a name of a player and a type, and we denote by m; = (b;, s;)
the message sent by agent i, where b; € [n] and s; € T. We describe the outcome function

g in three steps.
Step 1:

Consider message profiles in which each agent truthfully reports his name, that is for all
i, m; = (1,8;) for some s; € T. Define g(m) = g((1,s1),...,(n,8,)) = f(s1,...,8,) in
this case.

Consider now some message profile m = ((by, s1), ..., (bn, Sn)) in which {by,...,b,} =
[n]. Any such m is a permutation of a unique message profile on which g was just defined
in the previous paragraph. Therefore, there is a unique way to extend g to such message
profiles while preserving symmetry. We define ¢ in this way. Note that our assumption

that D is closed under permutations of p guarantees that the range of g is contained in
A(D).
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Step 2:
Fix two agents 7,j € [n]. Consider message profiles m in which b, = k for every k # i
and b; = j, that is all agents truthfully report their name except agent i who reports

name j. Thus, the message profile is of the form

m=((1,s1),...,(0—1,8-1),(7,8), 0+ 1,841),--.,(J,85),- -, (n,8)).

Define g(m) = fi;(s1,...,s,), that is, the SCF f;; is used instead of f on the reported
types. Notice that the fact that f;; is ij-symmetric guarantees that our definition does
not violate the symmetry of g when ¢ and j switch their messages.

Now, as in Step 1 above, there is a unique way to symmetrically extend g to all message
profiles in which (by,...,b,) contains all names except ¢ and in which j appears twice.
We extend g to preserve symmetry in this way. The same procedure is repeated for every

ordered pair of agents (i, j).
Step 3:

The message profiles on which g has not been defined in the previous two steps are those
in which at least two names are missing from the list (by,...,b,). Define g arbitrarily
on such message profiles, while preserving symmetry. Given the assumption on D such

a symmetric function clearly exists.

The fact that the above mechanism is indeed symmetric is obvious from its construc-
tion. Consider the strategy profile defined by o;(t;) = (i,t;) for every i, that is each
player truthfully announces his name and his type. Clearly, f(t) = g(a(t)) for every
teTm.

We claim that ¢ is a BNE of the mechanism. Indeed, note first that agent 7 of type t;
can’t gain by deviating to a message of the form (7,¢}), since in this case the mechanism
would still use f to determine the outcome; since f is BIC such misreporting of the
type is not beneficial. Second, consider a deviation of agent i of type t; to a message of
the form m; = (j,s;) with j # ¢. In this case the mechanism uses the function f;; to
determine the outcome, and since f dominates f;; for agent ¢ such a deviation is also not

profitable. Thus, we have proven that (M, ¢g) symmetrically implements f in BNE.

Consider now the ‘Only If’ direction, and assume that f is symmetrically imple-
mentable in BNE. First, as is well-known, if f is not BIC then it cannot be implemented
in BNE by any mechanism, so in particular it cannot be implemented by a symmetric
mechanism (the ‘revelation principle’). Thus, f must be BIC.

It is left to construct the collection of SCFs {f;;} from the theorem. Let g be a

symmetric mechanism that together with the equilibrium ¢ implements f. Given a pair
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of players (i, j), define the strategy profile o’ by o}, = oy, for every k # i and o] = o;.
That is, in ¢’ all players except ¢ play their equilibrium strategies, and player i plays j’s
equilibrium strategy. Define f;;(t) = g(¢'(t)).

We claim that this f;; satisfies the conditions in the theorem. First, f;; is ij-symmetric,

since

fii()(0,p) = g(a’ () (0, p) = g((¢'(t))")(0,p”) = g('(t")) (0, p”) = fis(t7)(0,p"),

where the first and last equalities are by the definition of f;;, the second equality follows
from the symmetry of g, and the third equality follows from the fact that ¢ and j play
the same strategy under o’.

Second, for every two types t;,s; € T" we have that

Zul iltui(t, £(2) Zuz iltui(t 9(a(t))os) >
Zuz( ilta)ui(t, g(oj(s:), 0-i(t-i))o.) =
ZMZ( |1/L )ul(t g( (517 Z/v‘z |t Uz t fz](Sz, )O,i)a

where the first equality follows from f(t) = g(c(t)), the inequality from the fact that o
is a BNE, the next equality by the definition of ¢’, and the last equality by the definition
of fi;. Thus, f dominates f;; for agent ¢ and the proof is complete. O

5. VOTING ENVIRONMENTS

We call an environment a voting environment if it contains only public outcomes. This
can be formally embedded in our general framework by letting P be a singleton. For
ease of notation we will identify D with O in this case. Agents’ preferences are described
by u; : T" x O — R, and an outcome function of a mechanism is g : M" — A(O).
Symmetry here means that g is invariant under permutations of the vector of messages,

that is g(m) = g(mm) for every permutation .

5.1. Voting with private values. We start by analyzing voting environments in which

the preferences of a player do not depend on the types of his opponents.

Definition 4. Agents in a voting environment have private values if u;(t,0) = u;(t’, o)
for every i € [n], every o € O, and every t,t' € T" with ¢; = t.. When agents have
private values we will write w;(t;,0) for the utility of agent i of type t; when alternative

o is chosen.
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We now use Theorem 1 to derive two conditions, one necessary and one sufficient, for
a SCF to be symmetrically implementable in voting environments with private values.
These conditions are easier to check and to understand than the condition of Theorem

1, as will be illustrated by examples below. The following notation will be useful. Let

Nt f) = Z”Z fltit_;) € A(O)

be the expected distribution over O under a SCf f when agent ¢ is of type ¢;. Also, let
LCi(t; [) = {A € A(O) = wilts, A) < wilti, \i(tis f)}

be the lower contour set in A(O) of the lottery \;(¢;; f) for type t; of agent i, i.e. the
set of lotteries which are weakly worse for ¢ of type t; than the lottery he can get by
truthfully reporting his type.

Proposition 1. Consider a voting environment with private values.

L. Let f be a BIC SCF. If (", . LCi(t;; f) # 0 for each agent i, then f is symmetrically
implementable in BNE.

2. If n = 2 and f is symmetrically implementable in BNE, then LC;(t;; f)NLC;(ts; f) # 0
for each agent ¢ and for each pair of types ¢;,t; € T.

Proof. 1. Fix an agent 7 and let \* € (), .p LCy(t;; f). For each other agent j and for
every t define f;;(t) = A\*. Clearly, f;;(t) = fi;(t7) for all £, so f;; is ij-symmetric. Also,

for every t;,s; € T' we have

Z”z |t Us tu.f( )) = uz(tza/\z(tzaf)) > uz tzy)\ Z,uz |t Us; tufzy(su z))a

so f dominates f;; for agent ¢. It follows from Theorem 1 that f can be symmetrically
implemented.

2. We will prove the result for agent ¢ = 1, the proof for i = 2 is identical. Fix
two types t1,t] € T. Since f is symmetrically implementable in BNE, it follows from
Theorem 1 that there is a symmetric function fi5 : 7% — A(O) such that for every s € T

ur (L, Mt f)) > Z pa (tlt)us (L, fi2(s, 1)),

and

ur (8, M (8 ) =) (Eh)ur (8, fia(s, ).

teT
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For each s € T multiply the first inequality by pi(s|t]) and sum up over all s € T.
Similarly, multiply the second inequality by pu4(s|t;) and sum up over all s € T. We get

wn(ty, Mt ) > D (sl (it )u (b, fra(s,8) = un | 01, Y pa(sft) s (tE) fra(s, ) |

(s,t)eT? (s,t)eT?

and

w (M) = > (st ) (8, fra(s t) = ua (£, > pa(sltn)pa(th) fia(s, t)

(s,t)eT? (s,t)eT?

But since fia(s,t) = fia(t, s) for every pair (s,t), it follows that

Z (s[t)pa(tlt) fiz(s, ) = pa () (E[E7) fra(s, B).
(s,t)eT? (s,t)eT?
Hence, this lottery belongs to both LC;(t;; f) and LC;(t}; f). O

Remark. In the simple case where n = 2 and |O| = 2 the sufficient condition of part 1
and the necessary condition of part 2 in Proposition 1 coincide, hence we get a characteri-
zation. Indeed, when |O] = 2 the set A(O) is one dimensional, so non-empty intersection
of each pair of sets LC;(t;; f), LC;(t;; f) implies that the whole collection intersects.

Example 1. We first illustrate the conditions in Proposition 1 by revisiting the example
of subsection 2.1. Recall that f is a dictatorial SCF in which agent 1 gets to choose his
favorite alternative out of {z,y}. We identify A(O) with the [0, 1] interval, so that any
p € [0, 1] corresponds to the probability of x being chosen.

If agent 1 is of type X then x is chosen for sure, and when he is of type Y then y
is chosen for sure. In the above notation this means that A\;(X; f) =1 and \(Y; f) =
0, which implies LCy(X; f) = [0,1] and LC(Y; f) = [0,1]. Thus, the condition in
Proposition 1 holds for this agent for any value of a.

For agent 2, A(X; f) = 2a and \a(Y;f) = 1 — 2a, so LCy(X; f) = [0,2a] and
LCy(Y; f) = [1 — 2a,1]. Thus, LC(X; f) N LCy(Y; f) # 0 if and only if o > 1/4.
Proposition 1 then tells us that f can be symmetrically implemented in BNE if and only

if @« > 1/4, as we saw in subsection 2.1.

Example 2. Let n =2, O = {z,y,2}, and T = {X,Y, Z}. Both agents have the same
utility function given by u(X,z) = u(Y,y) = u(Z,2) = 1 and u = 0 otherwise. Thus,
each agent’s expected utility is the expected probability of the alternative corresponding
to his type being chosen. Agents’ beliefs are the posteriors generated from the (common)

prior p given by the matrix
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x| o [1/3] 0
Y[ o] o]13
Z11/3] 0 | 0

We identify each distribution in A(O) with the vector of probabilities (p,, py,p.). Let
a = (4/9,4/9,1/9), 6 = (1/9,4/9,4/9), and v = (4/9,1/9,4/9). Consider the SCF f
defined by the matrix

X|\Y|z
X|la|B|y
Yia|B |y
Zla|B|y

Note that f is BIC, since agent 1’s type does not affect the outcome at all, and agent 2
gets one of his favorite outcomes (out of «, [3,7) for each of his types.

We now check the conditions of Proposition 1, starting with agent 2. We have
(X5 f) = a, (Y5 f) = B, and \o(Z; f) = 7. Thus, at every type, agent 2 has
expected utility of 4/9 when he reveals his true type. It follows that the center of the
simplex, i.e. the distribution (1/3,1/3,1/3), is in the intersection of the lower contour
sets for the three types, since for each type it gives agent 2 an expected utility of just
1/3.

Moving to agent 1, we have A\ (X; f) = 8, M(Y; f) = v, and \(Z; f) = a. Thus,
agent’s 1 expected utility when he truthfully reports his type is only 1/9. Since for any
distribution in A(O) at least one outcome has probability greater than 1/9, it follows
that the intersection of the three lower contour sets for agent 1 is empty. However, notice
that for every pair of types of agent 1 the lower contour sets for these types intersect.
For example, the distribution (0,0, 1) is in both LCy(X; f) and LCy (Y f).

We conclude that the necessary condition of Proposition 1 is satisfied in this example,
but the sufficient condition is not. We therefore cannot rely on this proposition to
determine whether f is symmetrically implementable or not, and instead we use directly
the characterization in Theorem 1 to show that in fact the answer is positive. Indeed, we
can define fo1(t) = (1/3,1/3,1/3) for every t as the ‘punishment’ SCF for agent 2 when
he pretends to be agent 1. For agent 1, the punishment SCF f;5 can be for example
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X\|\Y | Z
Xlzxly|lz
Y iylyl|=z
Zlx|z|z

It is straightforward to verify that these f5; and fi5 satisfy the conditions of Theorem 1.
Finally, it is worth noting that the example can be modified so that the prior has
full support. All the relevant inequalities in the example are strict, so for any prior

sufficiently close to p none of the arguments will be affected.

An important corollary of Proposition 1 is that, in voting environments with private
values and independent types, symmetry constraints imposed on the mechanism never
bind.

Corollary 1. In a voting environment with private values and independent types a SCF
f is symmetrically implementable in BNE if and only if f is BIC.

Proof. We prove just the ‘if’ direction, as the ‘only if” direction is clear. Let f be some
BIC SCF, and fix an agent 7. Since i’s belief does not depend on his type, we simply
write u;(t_;) instead of p;(t—;|t;). Fix some type tf € T and denote \* = \;(t; f). We
claim that A\* € [, .p LCi(t; f) and hence that this intersection is non-empty. Indeed,
for every t; € T,

tz; >\* Z,u uz tzy f < Z,u Uz tm f(tzat—z)) = Ui(tz‘, /\i(ti; f)):

where the first equality is by the definition of A*, the inequality follows from the assump-
tion that f is BIC, and the last equality is by the definition of A;(¢;; f). O

We point out that both assumptions of private values and independent types are
needed for the result. The fact that not every BIC SCF can be implemented in voting
environments with private values can be seen in Example 1 above. In Appendix B we
provide an example of an environment with independent types but interdependent values

and a BIC SCF in this environment that cannot be symmetrically implemented in BNE.

5.2. Common value voting. We now show how the example of subsection 2.2 gener-

alizes to arbitrary common-value voting environments.

Definition 5. A common value voting environment is a voting environment in which
u;(t,0) = u;(t, o) for every i,j € [n], every o € O, and every ¢t € T™. We denote by u the

common utility function of the agents.
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Proposition 2. If a SCF f in a common value voting environment satisfies u(t, f(t)) >
u(t, o) for every o € O and every t € T" (i.e., f is utilitarian) then f is symmetrically

implementable in BNE.

Proof. Since f is utilitarian, it follows that u(t, f(t)) > u(t, f(t},t_;)) for every ¢, every i,
and every t;. Thus, truth-telling is an ex-post equilibrium under f, so in particular f is
BIC. Choose an arbitrary outcome o* € O and define f;;(t) = o* for every i,j € [n] and
every t € T™. Then clearly each f;; is symmetric, and since f is utilitarian we have that
u(t, f(t)) > u(t, o*) = ult, fij(si,t—;)) for every t and s;. It follows that f dominates f;;
for agent ¢, so by Theorem 1 f is symmetrically implementable in BNE. ]

6. SYMMETRIC IMPLEMENTATION IN DOMINANT STRATEGIES

In this section we demonstrate that the possibility to use indirect mechanisms in
order to symmetrically implement asymmetric SCF's is very limited when one requires
implementation in dominant strategies rather than BNE. We focus here on environments
with private values, since dominant strategy mechanisms are typically studied in such
environments. Thus, the utility function of each agent ¢ depends only on his own type,
and we view u; as a mapping u; : 7' x O x P — R. In addition, to make our point
particularly clear, we assume that the labeling of types is the same for all agents in the
sense that w;(t,-, ) = u;(t,-,-) for any type t € T and every i,j € [n]. This assumption
is satisfied in the voting examples considered in the previous section, as well as in the
assignment model of subsection 2.3.

Given a mechanism (M, g), a strategy o; of player i is (weakly) dominant if for every
t; € T and every m; € M

ui(ti, g(oi(ts), m—_i)os) > wi(ts, g(mi, m_;)o)
holds for every m_; € M™ ! with a strict inequality for at least one m_;. A strategy

profile ¢ is a Dominant Strategy FEquilibrium (DSE) if o; is a dominant strategy for all
i € [n).

Definition 6. Let f be a SCF. A mechanism (M, g) implements f in DSE if there is a
DSE ¢ of (M, g) such that f(t) = g(c(t)) for every t € T™.

We say that f is symmetrically implementable in DSFE if there is a symmetric mechanism
(M, g) that implements f in DSE.

Theorem 2. Under the assumptions of this section, if a SCF f is symmetrically imple-

mentable in DSE then the direct mechanism associated with f is symmetric.
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In words, under the assumptions of this section, the use of indirect mechanisms does
not increase the class of SCFs that can be symmetrically implemented in dominant
strategies. Only SCFs that inherently treat the agents symmetrically can be imple-
mented. This stands in stark contrast to the situation with BNE implementation, where
indirect mechanisms can often be used to create artificial symmetry, as we saw in the

previous sections.

Proof. Suppose that f is symmetrically implementable in DSE. Let (M, g) be a symmetric
mechanism that together with the strategy profile ¢ implements f in DSE. We will now
show that it must be the case that oy = ... = g, i.e., all players use the same strategy.
Notice that this will complete the proof, since it implies (together with the symmetry of
g) that for any permutation 7 of the agents, any ¢t € 7", and any (o,p) € D

f@(o,p) = gla(t))(o,p) = g(n(a(t)))(0; 7p) = g(a(nt)) (0, 7p) = f(mt)(0,mp).

To show that all players use the same strategy, fix i, j € [n] and a type ¢, € T. Denote
m, = o0;(t.). We need to show that O'j(t*) = m,. Fix an arbitrary message m € M
and a profile of messages m_; for the players other than j. Let m, = (m.,m_;) and
m = (m,m_;). Notice that in the profile m" agent i plays m., while in the profile m"
agent ¢ plays m; all agents except ¢ send the same message in these two profiles. Thus,

we get that

uj(te, g(m.)os) = wilts, g(m)o.) = uilts, g(m”)o.) = u;(t., g(m)o,y),

where the two equalities follow from the symmetry of ¢ and our assumption on the
labeling of types, and the inequality follows from the assumption that m, = o;(t.) is a
dominant message for ¢ of type t,. It follows that m, is a best response for agent j of
type t. against any profile m_;. Since there cannot be two weakly dominant strategies
this implies that o;(t.) = m. as needed. O

7. FINAL REMARKS

We have analyzed the extent to which a symmetry constraint limits the set of SCFs
that a designer can implement. The main takeaway from the analysis is that symmetry
by itself is typically not very restrictive if one considers implementation in Bayes-Nash
equilibrium. In particular, symmetry does not prevent the implementation of highly
biased SCFs. This apparent contradiction between the symmetry of the mechanism and
the unfair outcomes it generates may seem surprising at first look, but notice that the

bias is generated by the asymmetry in the equilibrium strategies of the players and not
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by the mechanism itself. When considering implementation in dominant strategies, the
symmetry of the mechanism implies that all agents use the same strategy and hence that
the resulting SCF is symmetric.

In some cases the agents participating in the mechanism have inherently different roles,
for example buyers and sellers, or firms and workers. In such situations it seems more
suitable to define symmetry only within each group of agents having the same role and
not across all agents. While we do not pursue this direction here, we believe that such
an extension would not create significant complications.

It is important to point out again that Theorem 1 concerns partial implementation,
and that the mechanisms we consider often have multiple equilibria that may generate
very different outcomes than the one we focus on. This is especially clear by looking at
the example of subsection 2.1: If the agents switch their strategies, that is agent 1 plays
01(X) = m3 and 01(Y) = my and agent 2 plays o9(X) = my and o9(Y) = my then we
get an equilibrium that implements the SCF in which agent 2 is the dictator instead of
agent 1! This phenomenon is not unique to this particular example; similar multiplicity
of equilibria will hold whenever the underlying environment is sufficiently symmetric.
We leave a detailed study of full implementation under symmetry for future research.

Finally, given our results, an important question is what other regulations, either in
isolation or combined with symmetry, are more effective in preventing implementation
of discriminatory SCFs. Our analysis suggests that limiting the messages’ space of the
mechanism, either by imposing bounds on its cardinality or by prohibiting certain kinds
of labeling of messages, may help in achieving this goal. Another possibility is to restrict
the set of feasible outcomes (D in our notation) so that it is more difficult for the designer
to punish agents who deviate from their designated behavior. Exploring these interesting

directions is beyond the scope of this paper.
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APPENDIX A. PROOF OF CLAIM IN THE ASSIGNMENT EXAMPLE

Claim: In the assignment example described in subsection 2.3, serial dictatorship is
symmetrically implementable in BNE if and only if § < 0* := %ﬁ = 0.05.

Proof. We use the characterization in Theorem 1 to prove the claim. Denote by f the
given serial dictatorship SCF. First, f is clearly BIC for any value of §. Second, if
we define f15 and fi3 to be the uniform random assignment of goods to agents then
these functions satisfy the conditions in the theorem for any value of §. Indeed, these
functions are clearly symmetric, and since agent 1 always gets his favorite good under f
his expected utility cannot increase under any alternative SCF and any possible report
of type.

Next, define the SCF fy3 to be the one in which agent 1 gets his favorite good and
agents 2 and 3 are equally likely to get each of the remaining goods. Then fo3 is 23-
symmetric and is dominated by f for agent 2. Indeed, at any realization of types, agent 2
gets his favorite good after 1’s favorite is removed under f, while under fo3 he is equally
likely to get either that good or a good he likes less, regardless of the type he reports.
Similarly, define f; to be the SCF in which agent 3 gets his favorite good, and agents 1
and 2 are equally likely to get each of the other goods. By the symmetry between the
agents, a similar argument shows that this SCF satisfies the conditions of the theorem

as well.
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It remains to check whether we can find appropriate SCF's f35; and f35 to prevent agent
3 from pretending to be one of the other agents. We claim that such functions exist if
and only if § < §*. Let (pa(0),ps(0),pc(9)) be the probabilities with which agent 3 gets
each of the goods under f for a particular value of 9. Notice that these probabilities do

not depend on 3’s type. A simple computation gives that

pa(8) = §_45+1252,

n(d) = 5 +0- 180,
1

p(6) = §+36+652,

which implies that p,(d), py(d) are decreasing and p.(9) is increasing for § € [0,1/6).
We now argue that appropriate f3; and f3s exist if and only if p.(§) < 1/2, which is

equivalent to § < §* (note that p,(d) and p,(6) are always less than 1/2). Suppose first

that this condition holds. Define f3; to be the constant SCF that at every type profile

selects the random assignment given by the following matrix

a b c
pa(é) pb((s) pc(5)
1 —2py(6) | 1 —2py(6) | 1 — 2pc(d)
Pa(0) po(6) pe(9)

Since all three probabilities p,(d), pp(0) and p.(d) are in [0,1/2] this is a bi-stochastic
Since this SCF is

constant and gives identical lotteries over the goods to agents 1 and 3 it is 31-symmetric

matrix, and hence corresponds to some lottery over assignments.

as needed. Finally, agent 3 gets the same lottery over goods under f and under fs;
regardless of his report, so inequality (5) holds as equality. The construction of the SCF
f32 is similar. We therefore proved that f is symmetrically implementable in BNE when
0 < 6%,

Suppose now that § > 0%, so that p.(d) > 1/2. Assume by contradiction that a 31-
symmetric SCF f3; exists that is dominated by f. For some fixed type t € T', denote by
(9a(9), qp(), qe(0)) the expected lottery over the goods that agent 3 obtains by reporting
type t under f3;. Then (5) implies that the following inequalities must hold:

3qa(5) + 26]17(6) + QC(5)7
qa(0) + 2q5(9) + 3¢.(9).

3pa(0) +2p(6) + pe(d) =
Pa(8) + 2py(6) 4 3pc(8) >
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The first inequality means that if agent 3 is of type abc then truthfully reporting his
name (and his type) is not worse for him then pretending to be agent 1 of type t. The
second inequality corresponds to agent 3 of type cba. Together, and taking into account

that these are distributions, these inequalities imply that

Pa(0) = qa(9) = pe(6) — qc(9).

Similarly, using the inequalities for types acb and bca of agent 3, we get that
Pa(0) = qa(6) = pu(9) — ¢5(9)
must hold. Altogether this implies that (p,(9), ps(0), pc(d)) = (qa(0), @(0), q(9)).

Hence, since t was arbitrary, under f3; the expected lottery over the goods for agent
3 is the same regardless of his type, and is equal to the lottery he obtains under the
serial dictatorship f. This implies in turn that under f3; the ex-ante (before learning his
type) expected lottery over the goods for agent 3 is also (p,(9), py(d), pe(d)). Since f3;
is 31-symmetric, and since the distribution of types is i.i.d. across agents, the ex-ante
expected lottery for agent 1 under f5; must be the same as that of agent 3. Therefore,
both agents 1 and 3 each gets good ¢ with ex-ante expected probability of p.(d) >
1/2. However, the ex-ante expected assignment is a convex combination of the ex-post
(random) assignments, so the sum of the probabilities for each of the goods must be

exactly 1, a contradiction. O

APPENDIX B. INDEPENDENT TYPES AND INTERDEPENDENT VALUES EXAMPLE

Let n =2, O = {x,y}, and T = {G, R}. Types are independent with the common
prior being u(R, R) = u(R,G) = u(G, R) = u(G,G) = 1/4. Both agents have the same
utility function given by the following matrices, where rows correspond to the agent’s

own types, columns to the other agent types, and each matrix to a different alternative:

R G
x: G101 y G|1/|0
R{0O]O R|1

In words, each agent prefers alternative y over x in all type profiles, except when his
type is G and the other agent type is R, in which case he prefers x over y.
Consider the SCF f given by the following matrix:
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G|R
Glz|y
Rix |y

This is a dictatorial SCF with agent 2 being the dictator. It is clearly incentive compatible
for agent 1. It is also incentive compatible for agent 2, since he believes that agent 1 is
equally likely to be of type G or R, so if his own type is G then he is indifferent between
x and y, and if his own type is R then he prefers y.

We claim that f cannot be symmetrically implemented in BNE, and we use the con-
dition in Theorem 1 to prove this. Consider agent 1 of type GG. His expected utility from
truthfully reporting his type is 0. Thus, for symmetric implementation we need to find

probabilities (for outcome z) fi2(G, G), fi12(G, R) = f12(R,G), and fi2(R, R) such that
02 3 [12(G,G) #0+ (1= (G, G) 1)+ 5 (G, R) 1+ (1= fia(G, R)) 0,
and
0> 2 [fio(R.G) 0+ (1 = fua(R,G) 1] + 1 [fualR, R) % 0+ (1= ol R, F)) #1].

However, the first inequality implies that fi2(G, R) = 0 and the second implies that
fi12(R,G) = 1, a contradiction.



