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of the mechanism in favor of certain groups of agents. This paper studies the extent
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1. Introduction

Designers of economic mechanisms can often benefit by biasing the rules in favor

of some of the participating agents. In auction design, for example, it is well known

([11]) that if bidders are heterogenous then the seller can intensify the competition by

subsidizing the bids of weaker bidders. Thus, this ‘affirmative action’ type of bias may

increase the seller’s revenue.1 Another example is the admission criteria employed by

academic institutions in order to achieve a diverse student body, criteria that have been

criticized as unfair and even challenged in courts.2 In electoral competition, the practice

of manipulating district boundaries to obtain partisan advantage (gerrymandering) often

comes under fire for preventing fair elections.

On the other hand, fairness is a high priority goal for policy makers. This is evident

from the many existing acts and regulations whose goal is to guarantee that markets

are not biased against certain groups in the population.3 In the context of mechanism

design, a natural candidate for an anti-discriminatory regulation is that the “rules of

the game” are the same for all participants. In other words, the mechanism should be

symmetric across agents. Symmetry is a normatively appealing property that has been

used extensively in the social choice and mechanism design literature. It appears for

example in the classic result of May [10] on simple majority rule, in the theory of social

welfare functions (e.g. [8, Chapter 22]), and in the theory of values of cooperative games

(e.g. [14]), among many others.

The goal of this paper is to analyze the extent to which symmetric mechanisms guar-

antee fair outcomes. We consider an abstract mechanism design environment with in-

complete information, allowing for both correlated types and interdependent values. The

output of a mechanism specifies a public outcome and a private outcome for each agent.

For instance, in a public good provision problem a mechanism determines whether the

good is provided or not (the public outcome) and the transfer required from each of the

agents (the private outcomes) as a function of the profile of messages sent to the mech-

anism.4 Roughly speaking, a symmetric mechanism is one in which a permutation of

1In a recent paper, Deb and Pai [5] show how the seller can implement the revenue-maximizing auction
without explicitly biasing the rules in favor of weaker bidders. We discuss their result and its relation
to our work in detail below.
2A recent example is the case of Fisher verses University of Texas, US supreme court, vol. 570 (2013).
3For example, the U.S. Equal Employment Opportunity Commission (EEOC) enforces several anti-
discriminatory labor-market laws. Another example is the Genetic Information Nondiscrimination Act
of 2008 in health insurance markets.
4Environments with only public outcomes (such as voting environments) and environments with only
private outcomes (such as auctions) can of course be accommodated in our framework.
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the vector of messages results in no change to the public outcome and the corresponding

permutation of the private outcomes.

Our main result (Theorem 1) characterizes the class of social choice functions (i.e.,

mappings from type profiles to outcomes) that a designer can implement in Bayes-Nash

equilibrium using symmetric mechanisms. In many environments this class is large and

contains functions that clearly favor certain agents over others. In some environments

this includes even the extreme case of dictatorial functions, as we illustrate in Section

2 below. Thus, a regulation requiring mechanisms to treat agents symmetrically (in

the sense we have defined it) is not necessarily an effective way to achieve fairness. On

the other hand, in many cases symmetry does put some restrictions on what can be

implemented, and combining symmetry with additional context-specific requirements

may be an effective policy.

Our characterization can be roughly described as follows. A given (incentive compati-

ble) social choice function f can be implemented by a symmetric mechanism if and only

if for every pair of agents i and j there exists another social choice function fij such that

(1) fij treats i and j symmetrically; and (2) for any type of agent i, the expected utility

i receives under f by truthfully revealing his type is weakly higher than the expected

utility he receives under fij from any possible type report. When such functions fij exist,

we explicitly show how to construct a symmetric mechanism that implements f . The

construction is based on the idea that the equilibrium message of an agent encodes his

identity as well as his type, and the mechanism uses f to determine the outcome when

the message profile contains all identities. The function fij is used to incentivize agent i

to reveal his true identity instead of ‘pretending’ to be agent j.5 Conversely, if for some

pair of agents i and j an appropriate function fij does not exist, then, not only that this

construction does not work, symmetric implementation is impossible altogether. Thus,

our result has the flavor of a ‘revelation principle’, in the sense that one should only

consider a particular kind of (indirect) mechanisms to determine whether symmetric

implementation is possible or not.

5This construction is reminiscent of mechanisms used in the literature on implementation with complete
information (e.g. [9]), where each agent reports everyone’s preferences and an agent is punished if his
message disagrees with the messages of all other agents. There are important differences however: First,
and most importantly, in our case the designer does not use the punishment scheme to elicit any new
information from the agents; it is only used to create symmetry in cases where the original social choice
function is not symmetric. Second, under complete information the construction works for every social
choice function, while this is not the case in our setup. Third, our construction is meaningful even if
there are only two agents, which is not the case with complete information.
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We emphasize that we do not argue that the type of mechanism described above is

a practical way for designers to get around a rule requiring symmetry. It is merely a

theoretical construction that enables us to prove the sufficiency part of our theorem and

to provide an upper bound on what can be symmetrically implemented. It may very well

be that simpler and more practical symmetric mechanisms can be found that implement

a given social choice function, as is the case in [5] for example. However, we do think

that one of the contributions of this paper is to expose the role that indirect mechanisms

have in overcoming exogenous constraints such as symmetry.6

A well-known criticism of implementation in Bayes-Nash equilibrium is that it assumes

too much common knowledge among the agents and the planner (see [2]). One solution

to this problem is to consider the more robust concept of dominant strategies. Dominant

strategy mechanisms are typically studied in environments with private values, so we re-

strict attention to this type of environments. In Theorem 2 we prove that only symmetric

social choice functions can be implemented in (weakly) dominant strategies by symmet-

ric mechanisms. In other words, indirect mechanisms are not useful in overcoming the

symmetry constraint. This stands in stark contrast to the results for implementation in

Bayes-Nash equilibrium.

The closest paper to ours is Deb and Pai [5], who study the possibility of a seller to

design discriminatory auctions in an independent private-values setup under the same

symmetry constraint as in the current paper. However, the set of feasible mechanisms

they consider is further restricted to include only mechanisms in which bidders submit a

single number (the bid), and the highest bidder wins the object. This rules out the type of

mechanisms that we use in our proof. Nevertheless, they are able to show that essentially

any incentive compatible direct mechanism (social choice function in our terminology)

can be implemented in Bayes-Nash equilibrium by some such symmetric auction.7 In

other words, symmetry puts almost no restriction on what can be implemented. In

Corollary 1 below we show that the same is true in voting environments with independent

private-values, i.e. every incentive compatible social choice function can be symmetrically

implemented in Bayes-Nash equilibrium. However, as we show by examples, this is no

longer true with correlated types or interdependent values.

6Other examples that illustrate the potential importance of indirect mechanisms include [3] for the case
where the designer lacks commitment power, [12] when agents have menu-dependent preferences, and
[13] when only deterministic mechanisms are allowed.
7The notion of implementation used in [5] is somewhat weaker than ours, since they only require that
the expected payment in the indirect mechanism is equal to the payment in the direct mechanism. Our
definition requires that they are equal ex-post.
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In the following section we illustrate our result with three examples. The first is in an

environment of voting with private values, the second in a common-value voting setup (as

in the ‘Condorcet Jury’ theorem), and the third is in a model of assignment of indivisible

goods. Section 3 presents the notation and the definition of symmetry that we use, and

Section 4 contains the main result and its proof. The special case in which the outcome

space contains only public outcomes (voting environment) is further analyzed in Section

5. Section 6 contains the analysis of implementation in dominant strategies. Section 7

concludes.

2. Motivating examples

2.1. Voting with private values. Consider a society of two agents which needs to

choose an alternative from the set {x, y} (they may also choose to randomize between

the alternatives). Each agent can either be of type X or of type Y . Both agents have

the same (private-values) utility function given by u(X, x) = u(Y, y) = 1 and u(X, y) =

u(Y, x) = 0, that is an agent of type X prefers alternative x and an agent of type Y

prefers alternative y. The realized profile of types is drawn according to the distribution

given by the following matrix, where rows correspond to types of agent 1 and columns

to types of agent 2:

X Y

X µ 1/2− µ

Y 1/2− µ µ

The parameter 0 ≤ µ ≤ 1/2 measures the likelihood that agents have similar preferences.

Notice that when µ > 1/4 agents’ types are ‘positively correlated’ and when µ < 1/4

they are ‘negatively correlated’. When µ = 1/4 types are independent.

Consider the case where agent 1 is a dictator who gets to choose his favorite alternative.

We can describe this Social Choice Function (SCF) f by the following matrix, where rows

correspond to types of agent 1 and columns to types of agent 2:

X Y

X x x

Y y y

Clearly f is incentive compatible, since agent 1 always gets his favorite alternative

and agent 2 cannot influence the outcome. However, f treats the agents asymmetri-

cally, favoring agent 1 over 2. The violation of symmetry is expressed by the fact that
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f(X,Y ) = x while f(Y,X) = y, so that two type profiles which are permutations of one

another lead to different outcomes.

Is there a way to implement f as a Bayesian equilibrium of some symmetric indirect

mechanism? We claim that the answer is positive if and only if µ ≥ 1/4. To see this,

consider the indirect mechanism in which the set of messages available to each agent

is M = {m1,m2,m3,m4}, and the mapping from profiles of messages to alternatives is

given by the following matrix:

m1 m2 m3 m4

m1 β γ x x

m2 γ δ y y

m3 x y x x

m4 x y x x

In the above matrix β, γ and δ stand for numbers in [0, 1] representing the probability

with which alternative x is chosen (y is chosen with the complementary probability).

Notice that this is a symmetric mechanism in the sense that when the agents switch

their messages the outcome does not change.

Consider the strategy profile in which agent 1 plays σ1(X) = m1 and σ1(Y ) = m2

and agent 2 plays σ2(X) = m3 and σ2(Y ) = m4. Note that if the agents follow these

strategies then the SCF f is implemented, as can be seen in the boldfaced entries in the

matrix. Also, notice that σ1 is a best response for agent 1 to σ2. To make this profile of

strategies an equilibrium we therefore need to choose β, γ, δ ∈ [0, 1] so that the following

inequalities are satisfied:

(2µ) ∗ β + (1− 2µ) ∗ γ ≤ 2µ (1)

(2µ) ∗ γ + (1− 2µ) ∗ δ ≤ 2µ (2)

(1− 2µ) ∗ (1− β) + (2µ) ∗ (1− γ) ≤ 2µ (3)

(1− 2µ) ∗ (1− γ) + (2µ) ∗ (1− δ) ≤ 2µ (4)

Inequalities (1) and (2) are the incentive constraints for agent 2 of type X not to deviate

to messages m1 or m2, respectively. Similarly, inequalities (3) and (4) are the incentive

constraints for agent 2 of type Y .

Now, if µ ≥ 1/4 then it is immediate to check that β = γ = δ = 1/2 satisfy the above

inequalities, and hence f can be implemented by a symmetric mechanism. On the other

hand, if µ < 1/4 then a simple manipulation of (1) and (3) implies that β = 1 and γ = 0
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must hold. But if γ = 0 then (4) cannot be satisfied, hence there is no solution to this

system.

This argument only implies that the particular kind of mechanism considered above

cannot symmetrically implement f when µ < 1/4. But our main result (Theorem 1)

says that looking at this kind of mechanisms is without loss of generality, that is, it’s

impossible to find any symmetric mechanism that implements f . To understand this

result better, let us rename the messages in the above mechanism so that M = {1, 2} ×
{X,Y }. Thus, each agent reports a name of an agent and a type. Replace m1 by 1X,

m2 by 1Y , m3 by 2X, and m4 by 2Y . The strategy profile we considered is the one in

which each agent truthfully reports his name and type. The outcome function of the

mechanism is designed so that under this truthful strategy profile the given SCF f is used

to determine the outcome. To make this truthful reporting an equilibrium, each agent

should be incentivized not to deviate to messages that ‘belong’ to the other agent. It is

easy to design a punishment for agent 1 to prevent him from ‘pretending’ to be agent 2,

since agent 1 gets his favorite alternative in equilibrium. However, when µ < 1/4 it is not

possible to design an effective punishment for agent 2 to prevent him from ‘pretending’

to be 1. The difficulty comes from the fact that the punishment should satisfy the

symmetry constraint (the outcome should be γ in both message profiles (1X, 1Y ) and

(1Y, 1X)). We show in Theorem 1 that if such a symmetric punishment scheme is not

available then no symmetric mechanism that implements f exists.

2.2. Common value voting. Consider a ‘Condorcet Jury’ setup, where given the state

of nature all agents agree on the correct decision, but there is uncertainty about the

realized state. Specifically, assume that the state is either H or L, and that each of a

group of n agents receives a signal in {h, l}. Let µ be the (full-support) distribution over

{H,L}× {h, l}n according to which the state and signals are drawn. The set of possible

decisions is {H,L}. All agents receive utility of 1 if the decision matches the state and a

utility of 0 otherwise. To fit with our formal framework, it will be convenient to define

the utility of agents as a function of the realized profile of signals and the decision chosen

(by taking expectation over the state of nature). That is, the utility function of each

agent i is given by ui(t,H) = µ(H|t) and ui(t, L) = µ(L|t) = 1− ui(t,H).

Consider the SCF f which chooses the decision more likely to be correct given any

profile of types. That is f(t) = H if µ(H|t) ≥ 1/2 and f(t) = L otherwise. Clearly

f is incentive compatible, since even if agent i knows everyone else’s types it is still a

best response for him to be truthful (i.e., truth-telling is an ex-post equilibrium under f).

However, since we make no assumption on the structure of µ, it may be that some agents’
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signals are highly correlated with the state and hence provide valuable information, while

others’ signals are independent of the state. If this is the case then f would not be

symmetric – the decision will not depend just on the number of h signals in the message

profile but also on the identity of the agents who sent those h signals.

It is possible however to implement f by a symmetric mechanism. To see this, consider

the ‘names mechanism’ described in the previous example, where the set of messages

available for each agent is M = {1, . . . , n}×{h, l}. The mapping from message profiles to

decisions is defined as follows. If all the names 1 through n appear in the message profile

then choose the decision prescribed by f at the reported type profile, treating the names

as if they were truthfully announced (even if they were not). In all other message profiles

choose alternative H. This mechanism is clearly symmetric, in the sense that when the

message profile is permuted the decision is not affected. In addition, the strategy profile

in which each agent i reports his real name and his type is an equilibrium, since in this

case f is used to determine the decision, so i gets his preferred alternative at each type

profile. Thus, this symmetric mechanism implements f .

2.3. An assignment model. Three goods {a, b, c} are to be allocated to three agents

{1, 2, 3}, one good per agent.8 Each agent’s type is drawn from the set

T = {abc, acb, bac, bca, cab, cba},

where each t ∈ T corresponds to a strict ordering over the goods. Agents’ types are

independent and identically distributed according to the probabilities µ(abc) = 1
6
+ 5δ

and µ(t) = 1
6
− δ for any other t ∈ T , with δ ∈ [0, 1

6
). Note that when δ = 0 all types

are equally likely, and that as δ increases the ordering a ≻ b ≻ c becomes more likely

relative to all other types. For concreteness, suppose that the utility an agent gets from

consuming his most preferred good is 3, from consuming his second-best is 2, and from

consuming his least favorable is 1.

A mechanism specifies a lottery over assignments as a function of the agents’ mes-

sages. Our definition of symmetry requires in this setup that if the profile of messages

is permuted then the vector of lotteries over the goods is permuted accordingly. For

example, suppose that under some message profile agent 1 gets good a for sure while

agents 2 and 3 each gets good b with probability 1/2 or good c with probability 1/2.9

8This example is based on the assignment model of [7]. It is important for our argument that the
designer must allocate all three goods and cannot leave some agents empty-handed, as is often the case
in applications.
9By the Birkhoff–von Neumann Theorem this collection of lotteries corresponds to some distribution
over assignments.
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Symmetry implies that if agents 1 and 2 switch their messages (and agent’s 3 message is

unchanged) then agent 2 gets good a for sure and agents 1 and 3 each gets good b with

probability 1/2 or good c with probability 1/2. Note that this implies in particular that

when two agents send the same message to the mechanism they should get the same

lottery over goods.

Consider the ‘serial dictatorship’ SCF in which agent 1 gets to choose his favorite

good first, and agent 2 gets to choose his favorite good from what’s left after 1’s choice.

Agent 3 is assigned the good not chosen by the first two agents.10 This SCF clearly

does not satisfy the above symmetry requirement. Yet, is there a symmetric indirect

mechanism that can implement serial dictatorship? It turns out that the answer depends

on the parameter δ; if δ is sufficiently small, specifically δ ≤ δ∗ := −3+
√
13

12
∼= 0.05, then

symmetric implementation is possible; if δ > δ∗ then it is not.

We present here a sketch of the argument for the above claim; a detailed proof appears

in Appendix A. Consider again the ‘names mechanism’, and recall that the key for sym-

metric implementation is the existence of symmetric punishment schemes that prevent

agents from sending other agents’ messages. Since agent 1 always gets his favorite good

according to the given SCF, it is easy to construct such a punishment scheme to prevent

him from lying for any value of δ. The same is true for agent 2, since if for example

he pretends to be agent 3 then we can use the SCF in which agent 1 picks his favorite

good as before, and the other two goods are randomly (uniformly) assigned to agents 2

and 3. This SCF is symmetric between agents 2 and 3, and agent 2 is worse off under

this function relative to the original one for any value of δ. A similar construction works

when agent 2 pretends to be agent 1.

Symmetric implementation therefore depends on whether we can prevent agent 3 from

pretending to be one of the other agents. The cutoff δ∗ is obtained by equating the

probability with which agent 3 gets item c under the given serial dictatorship to 1/2: If

δ ≤ δ∗ then this probability is less or equal to 1/2, and if δ > δ∗ then it is greater than

1/2. If this probability is below 1/2 then the punishment scheme is simply the constant

SCF in which the lottery over the goods for agent 3 and the agent he pretends to be are

both equal to the lottery that 3 gets under the serial dictatorship. Since the probabilities

in this lottery are all below 1/2 this yields a legitimate random assignment, and agent

3 has no incentive to deviate. However, if this probability is greater than 1/2 then this

construction no longer works, and we show in Appendix A that nothing else works in

10See [1] for an analysis of the ‘random serial dictatorship’ mechanism in this model. In [4] this mecha-
nism is referred to as ‘random priority’.
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this case. By our main result this implies that no symmetric mechanism can implement

serial dictatorship.11

3. Notation and definitions

We will work in a standard abstract mechanism design environment with incomplete

information as in e.g. [6]. There is a finite set [n] = {1, . . . , n} of agents, with n ≥ 2.

The private information of agents is described by their types, where T is the finite set

of possible types of each agent. A state or a type profile is an assignment of an element

in T for each agent, and we denote a state by t = (t1, . . . , tn) ∈ T n, where ti ∈ T is the

type of agent i. We use the standard notation in which a subscript −i means that the

ith coordinate of a vector is omitted. In particular, given a state t, we write t−i for the

vector of types of all agents except i, and we write (t′i, t−i) for the state in which the

type of i is t′i and the types of all other agents are the same as in t.

The set of finite-support distributions over some set A is denoted ∆(A).12 Agents’

beliefs about the types of others may depend on their own type in an arbitrary way. For

each i ∈ [n] there is a function µi : T → ∆(T n−1) which specifies the beliefs of agent i

given each one of his possible types. For any state t we write µi(t−i|ti) for the probability
that i assigns to the other agents’ type profile being t−i when his type is ti. Note that we

allow for correlated types and that beliefs need not be consistent with a common prior.

If every µi is constant, that is µi(t−i|ti) = µi(t−i|t′i) for all i, ti, t′i and t−i, then we say

that types are independent.

Let O be a set whose elements are called public outcomes, and let P be a set whose

elements are called private outcomes. For example, in a public good provision problem

O may stand for whether the good is provided or not and P for the transfer required

from the agent to finance the good. Agents’ preferences are defined over T n × O × P .

Specifically, we assume that agent i’s preferences are represented by the von Neumann-

Morgenstern utility function ui : T
n×O×P → R. Note that this allows the possibility of

interdependent values, where an agent preferences depend on other agents’ types. Agents

are assumed to be expected utility maximizers. With abuse of notation, if λ ∈ ∆(O×P )

then we write ui(t, λ) for the expected utility
∑

o∈O
∑

p∈P λ(o, p)ui(t, o, p).

11It is easy to generalize this example to any number of agents and any (i.i.d.) type distribution. The key
to whether symmetric implementation is possible or not is the lottery over the goods for the last agent:
If this agent receives one of the goods with probability greater than 1/2 then symmetric implementation
is not possible, otherwise it is.
12Formally, ∆(A) is the set of all mappings φ : A → [0, 1] such that φ(a) ̸= 0 for only finitely many
a ∈ A and

∑
a∈A φ(a) = 1. We often identify each a ∈ A with the lottery that assigns probability 1 to

a.
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The last component in the description of the environment is a set D ⊆ O×P n, whose

elements are called feasible outcomes. Each d = (o, p) ∈ D is composed of a public

outcome o ∈ O and a vector p = (p1, . . . , pn) ∈ P n that specifies the private outcome for

each agent. By allowing D to be a strict subset of O×P n we can incorporate constraints

such as budget-balance in a public good provision problem, or that each agent gets a

single good in an assignment problem (as in subsection 2.3 above). Throughout the

paper we assume that D is closed under permutations of the vector of private outcomes.

Formally, if π : [n] → [n] is any permutation of the agents’ names and (o, p) ∈ D then

also (o, πp) ∈ D, where πp = (pπ(1), . . . , pπ(n)).

A mechanism specifies the set of messages available to each player and an outcome

function which maps each profile of messages to a lottery over feasible outcomes. We

will restrict our attention to mechanisms in which all players have the same finite set of

messages. A mechanism is therefore formally defined as a pair (M, g), where M is some

finite set and g : Mn → ∆(D).

Before stating the main definition of this section we need one more piece of notation.

Given any vector x of length n and any pair i, j ∈ [n], we denote by xij the vector of

length n which is identical to x except that the ith and jth coordinates are switched.

Definition 1. A mechanism (M, g) is ij-symmetric if for every m ∈ Mn and every

(o, p) ∈ D,

g(m)(o, p) = g(mij)(o, pij).

A mechanism (M, g) is symmetric if it is ij-symmetric for every pair i, j ∈ [n]. Equiva-

lently, (M, g) is symmetric if for every permutation π of the agents

g(m)(o, p) = g(πm)(o, πp).

In words, symmetric mechanisms have the property that if one message profile is a

permutation of another then the mechanism output at the former is the corresponding

permutation of the latter. For deterministic output this simply means that the public

outcome is not affected by permutations of the message vector and the private outcomes

are permuted accordingly. When the output is stochastic we require that the joint

distribution over D is permuted. Note that symmetry implies in particular that the

marginal distribution over the public outcome o is not affected by permutations of the

message profile, and that if m is such that mi = mj then the marginal of g(m) on O×Pi

is the same as its marginal on O × Pj. In addition, note that symmetry not only means

that agents are treated equally in the outcomes they receive themselves, but also that

agents are symmetric in the influence they have on other agents’ outcomes.
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Remark. There are other possible ways to define symmetry that capture the idea that

agents are treated equally by the mechanism. For instance, one could use a weaker

notion than Definition 1 only requiring that the marginal on O × Pi of the distribution

g(m) is the same as the marginal on O× Pj of the distribution g(mij), and that for any

other agent k the marginal on O×Pk is the same under these two message profiles. This

definition makes sense since agents only care about the public outcome and their own

private outcome. The two definitions coincide for deterministic mechanisms. Our results

can be adapted to this alternative definition. However, we find Definition 1 to be the

most natural one.

Given the beliefs and preferences of the players, every mechanism induces a (finite)

Bayesian game. A (pure) strategy for an agent is a mapping σ : T → M . If σ =

(σ1, . . . , σn) is a strategy profile and t is a state then we write σ(t) = (σ1(t1), . . . , σn(tn))

for the vector of induced messages. Given some λ ∈ ∆(D), it will be convenient to

denote by λO,i the marginal of λ on O × Pi, that is λO,i(o, p) =
∑

{p∈Pn : pi=p} λ(o, p)

for every (o, p) ∈ O × P . A strategy profile σ is a Bayes-Nash Equilibrium (BNE) of a

mechanism (M, g) if∑
t−i

µi(t−i|ti)ui(t, g(σ(t))O,i) ≥
∑
t−i

µi(t−i|ti)ui(t, g(mi, σ−i(t−i))O,i)

for every i ∈ [n], every ti ∈ T , and every mi ∈ M .

A Social Choice Function (SCF) is a mapping f : T n → ∆(D). The pair (T, f) is itself

a mechanism, called the direct mechanism associated with f . A SCF f is ij-symmetric

(symmetric) if the direct mechanism associated with f is ij-symmetric (symmetric).

Truth-telling refers to the strategy in the direct mechanism in which a player reports his

true type. A SCF f is Bayesian Incentive Compatible (BIC) if truth-telling is a BNE

of the direct mechanism associated with f . Finally, we define the notion of symmetric

implementation that will be used in the next sections.

Definition 2. Let f be a SCF. A mechanism (M, g) implements f in BNE if there is a

BNE σ of (M, g) such that f(t) = g(σ(t)) for every t ∈ T n.

We say that f is symmetrically implementable in BNE if there is a symmetric mechanism

(M, g) that implements f in BNE.

Note that we only require ‘partial implementation’, i.e. that there is an equilibrium for

which the outcome of the mechanism coincides with that prescribed by the SCF. There

may be other equilibria with different outcomes.
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4. Main result

Before stating the result we need one more definition.

Definition 3. Fix an environment and two SCFs f and f ′. We say that f dominates f ′

for agent i if ∑
t−i

µi(t−i|ti)ui(t, f(t)O,i) ≥
∑
t−i

µi(t−i|ti)ui(t, f
′(si, t−i)O,i) (5)

for every ti, si ∈ T .

The left-hand side of (5) is the expected utility for agent i of type ti under f when all

agents are truth-telling. The right-hand side is the expected utility for i of type ti under

f ′ when he reports type si and all other agents are truth-telling. Thus, f dominates f ′

for i if the former is not smaller than the latter for any pair of types ti and si.

Theorem 1. A SCF f is symmetrically implementable in BNE if and only if f is BIC

and for every ordered pair of agents (i, j) there is an ij-symmetric SCF fij such that f

dominates fij for agent i.

Proof. We start with the ‘If’ direction. Assume that f is BIC and that there are SCFs

{fij} satisfying the conditions in the statement of the theorem. We will now construct a

symmetric mechanism (M, g) and an equilibrium σ of this mechanism that implements

f .

Let the set of messages available to each player be M = [n] × T . Thus, each player

reports to the mechanism a name of a player and a type, and we denote by mi = (bi, si)

the message sent by agent i, where bi ∈ [n] and si ∈ T . We describe the outcome function

g in three steps.

Step 1:

Consider message profiles in which each agent truthfully reports his name, that is for all

i, mi = (i, si) for some si ∈ T . Define g(m) = g((1, s1), . . . , (n, sn)) = f(s1, . . . , sn) in

this case.

Consider now some message profile m = ((b1, s1), . . . , (bn, sn)) in which {b1, . . . , bn} =

[n]. Any such m is a permutation of a unique message profile on which g was just defined

in the previous paragraph. Therefore, there is a unique way to extend g to such message

profiles while preserving symmetry. We define g in this way. Note that our assumption

that D is closed under permutations of p guarantees that the range of g is contained in

∆(D).
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Step 2:

Fix two agents i, j ∈ [n]. Consider message profiles m in which bk = k for every k ̸= i

and bi = j, that is all agents truthfully report their name except agent i who reports

name j. Thus, the message profile is of the form

m = ((1, s1), . . . , (i− 1, si−1), (j, si), (i+ 1, si+1), . . . , (j, sj), . . . , (n, sn)).

Define g(m) = fij(s1, . . . , sn), that is, the SCF fij is used instead of f on the reported

types. Notice that the fact that fij is ij-symmetric guarantees that our definition does

not violate the symmetry of g when i and j switch their messages.

Now, as in Step 1 above, there is a unique way to symmetrically extend g to all message

profiles in which (b1, . . . , bn) contains all names except i and in which j appears twice.

We extend g to preserve symmetry in this way. The same procedure is repeated for every

ordered pair of agents (i, j).

Step 3:

The message profiles on which g has not been defined in the previous two steps are those

in which at least two names are missing from the list (b1, . . . , bn). Define g arbitrarily

on such message profiles, while preserving symmetry. Given the assumption on D such

a symmetric function clearly exists.

The fact that the above mechanism is indeed symmetric is obvious from its construc-

tion. Consider the strategy profile defined by σi(ti) = (i, ti) for every i, that is each

player truthfully announces his name and his type. Clearly, f(t) = g(σ(t)) for every

t ∈ T n.

We claim that σ is a BNE of the mechanism. Indeed, note first that agent i of type ti

can’t gain by deviating to a message of the form (i, t′i), since in this case the mechanism

would still use f to determine the outcome; since f is BIC such misreporting of the

type is not beneficial. Second, consider a deviation of agent i of type ti to a message of

the form mi = (j, si) with j ̸= i. In this case the mechanism uses the function fij to

determine the outcome, and since f dominates fij for agent i such a deviation is also not

profitable. Thus, we have proven that (M, g) symmetrically implements f in BNE.

Consider now the ‘Only If’ direction, and assume that f is symmetrically imple-

mentable in BNE. First, as is well-known, if f is not BIC then it cannot be implemented

in BNE by any mechanism, so in particular it cannot be implemented by a symmetric

mechanism (the ‘revelation principle’). Thus, f must be BIC.

It is left to construct the collection of SCFs {fij} from the theorem. Let g be a

symmetric mechanism that together with the equilibrium σ implements f . Given a pair
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of players (i, j), define the strategy profile σ′ by σ′
k = σk for every k ̸= i and σ′

i = σj.

That is, in σ′ all players except i play their equilibrium strategies, and player i plays j’s

equilibrium strategy. Define fij(t) = g(σ′(t)).

We claim that this fij satisfies the conditions in the theorem. First, fij is ij-symmetric,

since

fij(t)(o, p) = g(σ′(t))(o, p) = g((σ′(t))ij)(o, pij) = g(σ′(tij))(o, pij) = fij(t
ij)(o, pij),

where the first and last equalities are by the definition of fij, the second equality follows

from the symmetry of g, and the third equality follows from the fact that i and j play

the same strategy under σ′.

Second, for every two types ti, si ∈ T we have that∑
t−i

µi(t−i|ti)ui(t, f(t)O,i) =
∑
t−i

µi(t−i|ti)ui(t, g(σ(t))O,i) ≥∑
t−i

µi(t−i|ti)ui(t, g(σj(si), σ−i(t−i))O,i) =∑
t−i

µi(t−i|ti)ui(t, g(σ
′(si, t−i))O,i) =

∑
t−i

µi(t−i|ti)ui(t, fij(si, t−i)O,i),

where the first equality follows from f(t) = g(σ(t)), the inequality from the fact that σ

is a BNE, the next equality by the definition of σ′, and the last equality by the definition

of fij. Thus, f dominates fij for agent i and the proof is complete. �

5. Voting environments

We call an environment a voting environment if it contains only public outcomes. This

can be formally embedded in our general framework by letting P be a singleton. For

ease of notation we will identify D with O in this case. Agents’ preferences are described

by ui : T n × O → R, and an outcome function of a mechanism is g : Mn → ∆(O).

Symmetry here means that g is invariant under permutations of the vector of messages,

that is g(m) = g(πm) for every permutation π.

5.1. Voting with private values. We start by analyzing voting environments in which

the preferences of a player do not depend on the types of his opponents.

Definition 4. Agents in a voting environment have private values if ui(t, o) = ui(t
′, o)

for every i ∈ [n], every o ∈ O, and every t, t′ ∈ T n with ti = t′i. When agents have

private values we will write ui(ti, o) for the utility of agent i of type ti when alternative

o is chosen.
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We now use Theorem 1 to derive two conditions, one necessary and one sufficient, for

a SCF to be symmetrically implementable in voting environments with private values.

These conditions are easier to check and to understand than the condition of Theorem

1, as will be illustrated by examples below. The following notation will be useful. Let

λi(ti; f) =
∑
t−i

µi(t−i|ti)f(ti, t−i) ∈ ∆(O)

be the expected distribution over O under a SCf f when agent i is of type ti. Also, let

LCi(ti; f) = {λ ∈ ∆(O) : ui(ti, λ) ≤ ui(ti, λi(ti; f))}

be the lower contour set in ∆(O) of the lottery λi(ti; f) for type ti of agent i, i.e. the

set of lotteries which are weakly worse for i of type ti than the lottery he can get by

truthfully reporting his type.

Proposition 1. Consider a voting environment with private values.

1. Let f be a BIC SCF. If
∩

ti∈T LCi(ti; f) ̸= ∅ for each agent i, then f is symmetrically

implementable in BNE.

2. If n = 2 and f is symmetrically implementable in BNE, then LCi(ti; f)∩LCi(t
′
i; f) ̸= ∅

for each agent i and for each pair of types ti, t
′
i ∈ T .

Proof. 1. Fix an agent i and let λ∗ ∈
∩

ti∈T LCi(ti; f). For each other agent j and for

every t define fij(t) = λ∗. Clearly, fij(t) = fij(t
ij) for all t, so fij is ij-symmetric. Also,

for every ti, si ∈ T we have∑
t−i

µi(t−i|ti)ui(ti, f(t)) = ui(ti, λi(ti; f)) ≥ ui(ti, λ
∗) =

∑
t−i

µi(t−i|ti)ui(ti, fij(si, t−i)),

so f dominates fij for agent i. It follows from Theorem 1 that f can be symmetrically

implemented.

2. We will prove the result for agent i = 1, the proof for i = 2 is identical. Fix

two types t1, t
′
1 ∈ T . Since f is symmetrically implementable in BNE, it follows from

Theorem 1 that there is a symmetric function f12 : T
2 → ∆(O) such that for every s ∈ T

u1(t1, λ1(t1; f)) ≥
∑
t∈T

µ1(t|t1)u1(t1, f12(s, t)),

and

u1(t
′
1, λ1(t

′
1; f)) ≥

∑
t∈T

µ1(t|t′1)u1(t
′
1, f12(s, t)).
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For each s ∈ T multiply the first inequality by µ1(s|t′1) and sum up over all s ∈ T .

Similarly, multiply the second inequality by µ1(s|t1) and sum up over all s ∈ T . We get

u1(t1, λ1(t1; f)) ≥
∑

(s,t)∈T 2

µ1(s|t′1)µ1(t|t1)u1(t1, f12(s, t)) = u1

t1,
∑

(s,t)∈T 2

µ1(s|t′1)µ1(t|t1)f12(s, t)

 ,

and

u1(t
′
1, λ1(t

′
1; f)) ≥

∑
(s,t)∈T 2

µ1(s|t1)µ1(t|t′1)u1(t
′
1, f12(s, t)) = u1

t1,
∑

(s,t)∈T 2

µ1(s|t1)µ1(t|t′1)f12(s, t)

 .

But since f12(s, t) = f12(t, s) for every pair (s, t), it follows that∑
(s,t)∈T 2

µ1(s|t′1)µ1(t|t1)f12(s, t) =
∑

(s,t)∈T 2

µ1(s|t1)µ1(t|t′1)f12(s, t).

Hence, this lottery belongs to both LCi(ti; f) and LCi(t
′
i; f). �

Remark. In the simple case where n = 2 and |O| = 2 the sufficient condition of part 1

and the necessary condition of part 2 in Proposition 1 coincide, hence we get a characteri-

zation. Indeed, when |O| = 2 the set ∆(O) is one dimensional, so non-empty intersection

of each pair of sets LCi(ti; f), LCi(t
′
i; f) implies that the whole collection intersects.

Example 1. We first illustrate the conditions in Proposition 1 by revisiting the example

of subsection 2.1. Recall that f is a dictatorial SCF in which agent 1 gets to choose his

favorite alternative out of {x, y}. We identify ∆(O) with the [0, 1] interval, so that any

p ∈ [0, 1] corresponds to the probability of x being chosen.

If agent 1 is of type X then x is chosen for sure, and when he is of type Y then y

is chosen for sure. In the above notation this means that λ1(X; f) = 1 and λ1(Y ; f) =

0, which implies LC1(X; f) = [0, 1] and LC1(Y ; f) = [0, 1]. Thus, the condition in

Proposition 1 holds for this agent for any value of α.

For agent 2, λ2(X; f) = 2α and λ2(Y ; f) = 1 − 2α, so LC2(X; f) = [0, 2α] and

LC2(Y ; f) = [1 − 2α, 1]. Thus, LC2(X; f) ∩ LC2(Y ; f) ̸= ∅ if and only if α ≥ 1/4.

Proposition 1 then tells us that f can be symmetrically implemented in BNE if and only

if α ≥ 1/4, as we saw in subsection 2.1.

Example 2. Let n = 2, O = {x, y, z}, and T = {X, Y, Z}. Both agents have the same

utility function given by u(X, x) = u(Y, y) = u(Z, z) = 1 and u = 0 otherwise. Thus,

each agent’s expected utility is the expected probability of the alternative corresponding

to his type being chosen. Agents’ beliefs are the posteriors generated from the (common)

prior µ given by the matrix
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X Y Z

X 0 1/3 0

Y 0 0 1/3

Z 1/3 0 0

We identify each distribution in ∆(O) with the vector of probabilities (px, py, pz). Let

α = (4/9, 4/9, 1/9), β = (1/9, 4/9, 4/9), and γ = (4/9, 1/9, 4/9). Consider the SCF f

defined by the matrix

X Y Z

X α β γ

Y α β γ

Z α β γ

Note that f is BIC, since agent 1’s type does not affect the outcome at all, and agent 2

gets one of his favorite outcomes (out of α, β, γ) for each of his types.

We now check the conditions of Proposition 1, starting with agent 2. We have

λ2(X; f) = α, λ2(Y ; f) = β, and λ2(Z; f) = γ. Thus, at every type, agent 2 has

expected utility of 4/9 when he reveals his true type. It follows that the center of the

simplex, i.e. the distribution (1/3, 1/3, 1/3), is in the intersection of the lower contour

sets for the three types, since for each type it gives agent 2 an expected utility of just

1/3.

Moving to agent 1, we have λ1(X; f) = β, λ1(Y ; f) = γ, and λ1(Z; f) = α. Thus,

agent’s 1 expected utility when he truthfully reports his type is only 1/9. Since for any

distribution in ∆(O) at least one outcome has probability greater than 1/9, it follows

that the intersection of the three lower contour sets for agent 1 is empty. However, notice

that for every pair of types of agent 1 the lower contour sets for these types intersect.

For example, the distribution (0, 0, 1) is in both LC1(X; f) and LC1(Y ; f).

We conclude that the necessary condition of Proposition 1 is satisfied in this example,

but the sufficient condition is not. We therefore cannot rely on this proposition to

determine whether f is symmetrically implementable or not, and instead we use directly

the characterization in Theorem 1 to show that in fact the answer is positive. Indeed, we

can define f21(t) = (1/3, 1/3, 1/3) for every t as the ‘punishment’ SCF for agent 2 when

he pretends to be agent 1. For agent 1, the punishment SCF f12 can be for example
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X Y Z

X x y x

Y y y z

Z x z z

It is straightforward to verify that these f21 and f12 satisfy the conditions of Theorem 1.

Finally, it is worth noting that the example can be modified so that the prior has

full support. All the relevant inequalities in the example are strict, so for any prior

sufficiently close to µ none of the arguments will be affected.

An important corollary of Proposition 1 is that, in voting environments with private

values and independent types, symmetry constraints imposed on the mechanism never

bind.

Corollary 1. In a voting environment with private values and independent types a SCF

f is symmetrically implementable in BNE if and only if f is BIC.

Proof. We prove just the ‘if’ direction, as the ‘only if’ direction is clear. Let f be some

BIC SCF, and fix an agent i. Since i’s belief does not depend on his type, we simply

write µi(t−i) instead of µi(t−i|ti). Fix some type t∗i ∈ T and denote λ∗ = λi(t
∗
i ; f). We

claim that λ∗ ∈
∩

ti∈T LCi(ti; f) and hence that this intersection is non-empty. Indeed,

for every ti ∈ T ,

ui(ti, λ
∗) =

∑
t−i

µ(t−i)ui(ti, f(t
∗
i , t−i)) ≤

∑
t−i

µ(t−i)ui(ti, f(ti, t−i)) = ui(ti, λi(ti; f)),

where the first equality is by the definition of λ∗, the inequality follows from the assump-

tion that f is BIC, and the last equality is by the definition of λi(ti; f). �

We point out that both assumptions of private values and independent types are

needed for the result. The fact that not every BIC SCF can be implemented in voting

environments with private values can be seen in Example 1 above. In Appendix B we

provide an example of an environment with independent types but interdependent values

and a BIC SCF in this environment that cannot be symmetrically implemented in BNE.

5.2. Common value voting. We now show how the example of subsection 2.2 gener-

alizes to arbitrary common-value voting environments.

Definition 5. A common value voting environment is a voting environment in which

ui(t, o) = uj(t, o) for every i, j ∈ [n], every o ∈ O, and every t ∈ T n. We denote by u the

common utility function of the agents.
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Proposition 2. If a SCF f in a common value voting environment satisfies u(t, f(t)) ≥
u(t, o) for every o ∈ O and every t ∈ T n (i.e., f is utilitarian) then f is symmetrically

implementable in BNE.

Proof. Since f is utilitarian, it follows that u(t, f(t)) ≥ u(t, f(t′i, t−i)) for every t, every i,

and every t′i. Thus, truth-telling is an ex-post equilibrium under f , so in particular f is

BIC. Choose an arbitrary outcome o∗ ∈ O and define fij(t) = o∗ for every i, j ∈ [n] and

every t ∈ T n. Then clearly each fij is symmetric, and since f is utilitarian we have that

u(t, f(t)) ≥ u(t, o∗) = u(t, fij(si, t−i)) for every t and si. It follows that f dominates fij

for agent i, so by Theorem 1 f is symmetrically implementable in BNE. �

6. Symmetric implementation in dominant strategies

In this section we demonstrate that the possibility to use indirect mechanisms in

order to symmetrically implement asymmetric SCFs is very limited when one requires

implementation in dominant strategies rather than BNE. We focus here on environments

with private values, since dominant strategy mechanisms are typically studied in such

environments. Thus, the utility function of each agent i depends only on his own type,

and we view ui as a mapping ui : T × O × P → R. In addition, to make our point

particularly clear, we assume that the labeling of types is the same for all agents in the

sense that ui(t, ·, ·) ≡ uj(t, ·, ·) for any type t ∈ T and every i, j ∈ [n]. This assumption

is satisfied in the voting examples considered in the previous section, as well as in the

assignment model of subsection 2.3.

Given a mechanism (M, g), a strategy σi of player i is (weakly) dominant if for every

ti ∈ T and every mi ∈ M

ui(ti, g(σi(ti),m−i)O,i) ≥ ui(ti, g(mi,m−i)O,i)

holds for every m−i ∈ Mn−1 with a strict inequality for at least one m−i. A strategy

profile σ is a Dominant Strategy Equilibrium (DSE) if σi is a dominant strategy for all

i ∈ [n].

Definition 6. Let f be a SCF. A mechanism (M, g) implements f in DSE if there is a

DSE σ of (M, g) such that f(t) = g(σ(t)) for every t ∈ T n.

We say that f is symmetrically implementable in DSE if there is a symmetric mechanism

(M, g) that implements f in DSE.

Theorem 2. Under the assumptions of this section, if a SCF f is symmetrically imple-

mentable in DSE then the direct mechanism associated with f is symmetric.
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In words, under the assumptions of this section, the use of indirect mechanisms does

not increase the class of SCFs that can be symmetrically implemented in dominant

strategies. Only SCFs that inherently treat the agents symmetrically can be imple-

mented. This stands in stark contrast to the situation with BNE implementation, where

indirect mechanisms can often be used to create artificial symmetry, as we saw in the

previous sections.

Proof. Suppose that f is symmetrically implementable in DSE. Let (M, g) be a symmetric

mechanism that together with the strategy profile σ implements f in DSE. We will now

show that it must be the case that σ1 = . . . = σn, i.e., all players use the same strategy.

Notice that this will complete the proof, since it implies (together with the symmetry of

g) that for any permutation π of the agents, any t ∈ T n, and any (o, p) ∈ D

f(t)(o, p) = g(σ(t))(o, p) = g(π(σ(t)))(o, πp) = g(σ(πt))(o, πp) = f(πt)(o, πp).

To show that all players use the same strategy, fix i, j ∈ [n] and a type t∗ ∈ T . Denote

m∗ = σi(t∗). We need to show that σj(t∗) = m∗. Fix an arbitrary message m ∈ M

and a profile of messages m−j for the players other than j. Let m∗ = (m∗,m−j) and

m = (m,m−j). Notice that in the profile mij
∗ agent i plays m∗, while in the profile mij

agent i plays m; all agents except i send the same message in these two profiles. Thus,

we get that

uj(t∗, g(m∗)O,j) = ui(t∗, g(m
ij
∗ )O,i) ≥ ui(t∗, g(m

ij)O,i) = uj(t∗, g(m)O,j),

where the two equalities follow from the symmetry of g and our assumption on the

labeling of types, and the inequality follows from the assumption that m∗ = σi(t∗) is a

dominant message for i of type t∗. It follows that m∗ is a best response for agent j of

type t∗ against any profile m−j. Since there cannot be two weakly dominant strategies

this implies that σj(t∗) = m∗ as needed. �

7. Final remarks

We have analyzed the extent to which a symmetry constraint limits the set of SCFs

that a designer can implement. The main takeaway from the analysis is that symmetry

by itself is typically not very restrictive if one considers implementation in Bayes-Nash

equilibrium. In particular, symmetry does not prevent the implementation of highly

biased SCFs. This apparent contradiction between the symmetry of the mechanism and

the unfair outcomes it generates may seem surprising at first look, but notice that the

bias is generated by the asymmetry in the equilibrium strategies of the players and not
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by the mechanism itself. When considering implementation in dominant strategies, the

symmetry of the mechanism implies that all agents use the same strategy and hence that

the resulting SCF is symmetric.

In some cases the agents participating in the mechanism have inherently different roles,

for example buyers and sellers, or firms and workers. In such situations it seems more

suitable to define symmetry only within each group of agents having the same role and

not across all agents. While we do not pursue this direction here, we believe that such

an extension would not create significant complications.

It is important to point out again that Theorem 1 concerns partial implementation,

and that the mechanisms we consider often have multiple equilibria that may generate

very different outcomes than the one we focus on. This is especially clear by looking at

the example of subsection 2.1: If the agents switch their strategies, that is agent 1 plays

σ1(X) = m3 and σ1(Y ) = m4 and agent 2 plays σ2(X) = m1 and σ2(Y ) = m2 then we

get an equilibrium that implements the SCF in which agent 2 is the dictator instead of

agent 1! This phenomenon is not unique to this particular example; similar multiplicity

of equilibria will hold whenever the underlying environment is sufficiently symmetric.

We leave a detailed study of full implementation under symmetry for future research.

Finally, given our results, an important question is what other regulations, either in

isolation or combined with symmetry, are more effective in preventing implementation

of discriminatory SCFs. Our analysis suggests that limiting the messages’ space of the

mechanism, either by imposing bounds on its cardinality or by prohibiting certain kinds

of labeling of messages, may help in achieving this goal. Another possibility is to restrict

the set of feasible outcomes (D in our notation) so that it is more difficult for the designer

to punish agents who deviate from their designated behavior. Exploring these interesting

directions is beyond the scope of this paper.
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Appendix A. Proof of claim in the assignment example

Claim: In the assignment example described in subsection 2.3, serial dictatorship is

symmetrically implementable in BNE if and only if δ ≤ δ∗ := −3+
√
13

12
∼= 0.05.

Proof. We use the characterization in Theorem 1 to prove the claim. Denote by f the

given serial dictatorship SCF. First, f is clearly BIC for any value of δ. Second, if

we define f12 and f13 to be the uniform random assignment of goods to agents then

these functions satisfy the conditions in the theorem for any value of δ. Indeed, these

functions are clearly symmetric, and since agent 1 always gets his favorite good under f

his expected utility cannot increase under any alternative SCF and any possible report

of type.

Next, define the SCF f23 to be the one in which agent 1 gets his favorite good and

agents 2 and 3 are equally likely to get each of the remaining goods. Then f23 is 23-

symmetric and is dominated by f for agent 2. Indeed, at any realization of types, agent 2

gets his favorite good after 1’s favorite is removed under f , while under f23 he is equally

likely to get either that good or a good he likes less, regardless of the type he reports.

Similarly, define f21 to be the SCF in which agent 3 gets his favorite good, and agents 1

and 2 are equally likely to get each of the other goods. By the symmetry between the

agents, a similar argument shows that this SCF satisfies the conditions of the theorem

as well.
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It remains to check whether we can find appropriate SCFs f31 and f32 to prevent agent

3 from pretending to be one of the other agents. We claim that such functions exist if

and only if δ ≤ δ∗. Let (pa(δ), pb(δ), pc(δ)) be the probabilities with which agent 3 gets

each of the goods under f for a particular value of δ. Notice that these probabilities do

not depend on 3’s type. A simple computation gives that

pa(δ) =
1

3
− 4δ + 12δ2,

pb(δ) =
1

3
+ δ − 18δ2,

pc(δ) =
1

3
+ 3δ + 6δ2,

which implies that pa(δ), pb(δ) are decreasing and pc(δ) is increasing for δ ∈ [0, 1/6).

We now argue that appropriate f31 and f32 exist if and only if pc(δ) ≤ 1/2, which is

equivalent to δ ≤ δ∗ (note that pa(δ) and pb(δ) are always less than 1/2). Suppose first

that this condition holds. Define f31 to be the constant SCF that at every type profile

selects the random assignment given by the following matrix

a b c

1 pa(δ) pb(δ) pc(δ)

2 1− 2pa(δ) 1− 2pb(δ) 1− 2pc(δ)

3 pa(δ) pb(δ) pc(δ)

Since all three probabilities pa(δ), pb(δ) and pc(δ) are in [0, 1/2] this is a bi-stochastic

matrix, and hence corresponds to some lottery over assignments. Since this SCF is

constant and gives identical lotteries over the goods to agents 1 and 3 it is 31-symmetric

as needed. Finally, agent 3 gets the same lottery over goods under f and under f31

regardless of his report, so inequality (5) holds as equality. The construction of the SCF

f32 is similar. We therefore proved that f is symmetrically implementable in BNE when

δ ≤ δ∗.

Suppose now that δ > δ∗, so that pc(δ) > 1/2. Assume by contradiction that a 31-

symmetric SCF f31 exists that is dominated by f . For some fixed type t ∈ T , denote by

(qa(δ), qb(δ), qc(δ)) the expected lottery over the goods that agent 3 obtains by reporting

type t under f31. Then (5) implies that the following inequalities must hold:

3pa(δ) + 2pb(δ) + pc(δ) ≥ 3qa(δ) + 2qb(δ) + qc(δ),

pa(δ) + 2pb(δ) + 3pc(δ) ≥ qa(δ) + 2qb(δ) + 3qc(δ).
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The first inequality means that if agent 3 is of type abc then truthfully reporting his

name (and his type) is not worse for him then pretending to be agent 1 of type t. The

second inequality corresponds to agent 3 of type cba. Together, and taking into account

that these are distributions, these inequalities imply that

pa(δ)− qa(δ) = pc(δ)− qc(δ).

Similarly, using the inequalities for types acb and bca of agent 3, we get that

pa(δ)− qa(δ) = pb(δ)− qb(δ)

must hold. Altogether this implies that (pa(δ), pb(δ), pc(δ)) = (qa(δ), qb(δ), qc(δ)).

Hence, since t was arbitrary, under f31 the expected lottery over the goods for agent

3 is the same regardless of his type, and is equal to the lottery he obtains under the

serial dictatorship f . This implies in turn that under f31 the ex-ante (before learning his

type) expected lottery over the goods for agent 3 is also (pa(δ), pb(δ), pc(δ)). Since f31

is 31-symmetric, and since the distribution of types is i.i.d. across agents, the ex-ante

expected lottery for agent 1 under f31 must be the same as that of agent 3. Therefore,

both agents 1 and 3 each gets good c with ex-ante expected probability of pc(δ) >

1/2. However, the ex-ante expected assignment is a convex combination of the ex-post

(random) assignments, so the sum of the probabilities for each of the goods must be

exactly 1, a contradiction. �

Appendix B. Independent types and interdependent values example

Let n = 2, O = {x, y}, and T = {G,R}. Types are independent with the common

prior being µ(R,R) = µ(R,G) = µ(G,R) = µ(G,G) = 1/4. Both agents have the same

utility function given by the following matrices, where rows correspond to the agent’s

own types, columns to the other agent types, and each matrix to a different alternative:

x:

G R

G 0 1

R 0 0

y:

G R

G 1 0

R 1 1

In words, each agent prefers alternative y over x in all type profiles, except when his

type is G and the other agent type is R, in which case he prefers x over y.

Consider the SCF f given by the following matrix:
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G R

G x y

R x y

This is a dictatorial SCF with agent 2 being the dictator. It is clearly incentive compatible

for agent 1. It is also incentive compatible for agent 2, since he believes that agent 1 is

equally likely to be of type G or R, so if his own type is G then he is indifferent between

x and y, and if his own type is R then he prefers y.

We claim that f cannot be symmetrically implemented in BNE, and we use the con-

dition in Theorem 1 to prove this. Consider agent 1 of type G. His expected utility from

truthfully reporting his type is 0. Thus, for symmetric implementation we need to find

probabilities (for outcome x) f12(G,G), f12(G,R) = f12(R,G), and f12(R,R) such that

0 ≥ 1

2
[f12(G,G) ∗ 0 + (1− f12(G,G)) ∗ 1] + 1

2
[f12(G,R) ∗ 1 + (1− f12(G,R)) ∗ 0] ,

and

0 ≥ 1

2
[f12(R,G) ∗ 0 + (1− f12(R,G)) ∗ 1] + 1

2
[f12(R,R) ∗ 0 + (1− f12(R,R)) ∗ 1] .

However, the first inequality implies that f12(G,R) = 0 and the second implies that

f12(R,G) = 1, a contradiction.


