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Abstract

The traditional representation of an epistemic scenario as a model
covers only complete descriptions that specify truth values of all as-
sertions. However, many, perhaps most, epistemic scenarios are not
complete and allow partial or asymmetric knowledge. Syntactic Epis-
temic Logic, SEL, suggests viewing an epistemic situation as a set of
syntactic conditions rather than as a model, thus also capturing in-
complete descriptions. This helps to extend the scope of Epistemic
Game Theory. In addition, SEL closes the conceptual and technical
gap, identified by R. Aumann, between the syntactic character of game
descriptions and the semantic method of analyzing games.

1 Introduction

We intend to promote changing the way logic and epistemic-related applica-
tions, in particular, in game theory, specify epistemic scenarios. We argue
that the traditional semantic specifications as a single Kripke or Aumann
structure are too restrictive since they cover only deductively complete de-
scriptions, demanding de facto specification of truth values of all sentences
in the language, not just the relevant ones.

Furthermore, in a normal situation in which a scenario is originally de-
scribed syntactically and then formalized as a model, a completeness analysis



relating these two modes of formalization is required but is basically never
done, which is one of the shortcomings of the semantic approach.

For example, the Muddy Children puzzle is given syntactically but the
reasoning is performed on a specific model, presumed commonly known, with-
out rigorous justification (cf. [15, 19, 20, 21, 22]). We will show, that the
choice of this model for Muddy Children can be justified, cf. Section 4. How-
ever, this case is a fortuitous exception: see Sections 4.6, 5.1 for syntactically
defined scenarios without exact semantic definitions.

1.1 What is Syntactic Epistemic Logic?

The name Syntactic Epistemic Logic was suggested by Robert Aumann (cf.
[9]) who identified the conceptual and technical gap between the syntactic
character of game descriptions and the predominantly semantical way of
analyzing games via relational /partition models.

Suppose the initial description Z of an epistemic situation is syntactic in
a natural language. The long-standing tradition in epistemic logic and game
theory is given Z, proceed to a specific epistemic model Mz, and make the
latter a mathematical definition of Z:

informal description T = “natural model” Mx. (1)

Hidden dangers lurk within this process: a syntactic description Z may have
multiple models and picking one of them (especially declaring it common
knowledge) is not generally sound. Furthermore, if we seek an exact specifica-
tion, then only deductively complete scenarios can be represented. Epistemic
scenarios outside this group, which include situations with asymmetric and
less-than-common knowledge (e.g., mutual knowledge) of conditions, typi-
cally do not have acceptable single-model presentations, but can be specified
and handled syntactically.

Through the framework of Syntactic Epistemic Logic, SEL, we suggest
making the syntactic logic formalization S; a formal definition of
the situation described by Z:

description T = syntactic formalization S = all its models Ms.  (2)

The first step from Z to Sz is a formalization problem which certainly has its
own subtleties which we, however, will not analyze here'. The SEL approach

Lexcept for a brief discussion in Section 4.7 about representing negative knowledge.



(2), we argue, encompasses a broader class of epistemic scenarios than a
semantic approach (1).

1.2 From semantic to syntactic in game theory

The rigorous definition of a game with epistemic knowledge conditions, cf.
6, 7], was originally purely semantic in a single-model format. Later, in
8], Aumann discusses two modes of formalization of epistemic conditions,
semantic and syntactic, and argues that they are basically equivalent. In
more recent papers (cf. [1, 9]), Aumann acknowledges the deficiencies of
purely semantic formalizations and asks for some kind of “syntactic epistemic
logic” to bridge a gap between the syntactic character of game descriptions
and the semantic way of analyzing games.

The current paper contributes to this development by outlining, from
the position of logic, the Syntactic Epistemic Logic framework. In addition
to sealing the gap between syntactic and semantic, SEL extends the scope
of Epistemic Game Theory by capturing natural scenarios which are not
represented semantically by single models.

Furthermore, SEL does not lose efficient semantical descriptions. Each
model yields the set of valid formulas which may be regarded as a complete
syntactic description T of the situation. Moreover, if the initial model is
finite, then 7 is linear-time decidable (cf. Section 7.2). So, efficient semantic
descriptions are also accepted in SEL.

If a scenario is originally described syntactically as a set of assumptions
I' but we wish to work with a specific model M, then we should establish
the completeness of I' with respect to M, cf. the Muddy Children example
in Section 4.

1.3 Is the syntactic approach practical?

SEL provides a balanced view of the epistemic universe as being comprised of
two inseparable entities, syntactic and semantic. Such a dual picture is well-
tested and has been highly beneficial in many contexts such as mathematics,
logic, linguistics, etc. The dual view of objects is well-established in mathe-
matical logic where the syntactic notion of a formal theory is supplemented
by the notion of a model of a theory, with rich mutually beneficial connec-
tions. One could expect equally productive interactions between syntax and
semantics in epistemology as well.



1.4 Disclaimer

In this paper, we apply SEL to extensive games; the syntactic epistemic ap-
proach to strategic games has been outlined in [4]. However, neither of these
papers considers Epistemic Game Theory in its entirety, including proba-
bilistic belief models, cf. [13]; we leave this for future studies.

We realize that the list of references is not adequate to the task of
paradigm change and does not do justice to the volumes of quality work
in Epistemic Logic and Epistemic Game Theory. We are determined to im-
prove this in the future.

2 Logical postulates and derivations

We consider the language of classical logic?, augmented by modalities K;, for
agent i’s knowledge, i = 1,2, ..., n. For the purposes of this paper, we assume
the usual “knowledge postulates” (cf. [11, 14, 15, 19, 22]) corresponding to
the multi-agent modal logic S5,,:

e classical logic postulates and rule modus ponens A, A— B + B;

e distributivity: K;(A— B)— (K;A—K;B);

reflection: K;A— A;

e positive introspection: K;A—K;K;A;

negative introspection: - K; A — K;=K;A;
e necessitation rule: F A = F KA.

Derivation in S5, is a derivation from S5,-axioms by S5,-rules (modus ponens
and necessitation). This suffices to formalize any rigorous reasoning from the
above principles. The notation

- A (3)

is used to represent the fact that A is derivable in S5,. The necessitation
rule reflects the principle that all logical truths, i.e., S5,-principles and hence
all their consequences (S5,-theorems) are common knowledge.

2In this paper, we consider the propositional case: symbol L stands for the proposition
‘false.



An easy but useful observation: knowledge modalities and conjunction
comimute:

2.1 Derivations from hypotheses

For a given set of formulas T' (here called “hypotheses” or “assumptions”)
we consider derivations from I': assume all logical truths (i.e., the set of
S5,-theorems) and I' and use classical reasoning (rule modus ponens). The
notation

r-A (4)
represents ‘A is derivable from I')

It is important to distinguish the role of necessitation in reasoning without
assumptions (3) and in reasoning from a nonempty set of assumptions (4). In
(3), necessitation can be used freely: what is derived from logical postulates
(F A) is known (- K;A). In (4), the rule of necessitation is not postulated: if
A follows from a set of assumptions I', we cannot conclude that A is known,
since I itself can be unknown. However, for some “good” sets of assumptions
', necessitation is a valid rule (cf. I's from Example 2, MC,, from Section 4,
Game 1 from Section 5).

Example 1 If we want to describe a situation in which proposition m is
known to agent 1, we consider the set of assumptions I':

From this I', by reflection principle Kym —m from S5,,, we can derive m,

I'm.

Likewise, we can conclude ‘1 knows that 1 knows m’ by using positive intro-
spection:
'k KlKlm.

However, we cannot conclude that agent 2 knows m:
T |71 KQTTL.

This is rather clear intuitively since when assuming ‘1 knows m,” we do not
settle the question of whether 2 knows m.? Therefore, there is no necessita-
tion in this I, since we have I' = m but I' ¥ Kom.

3 A rigorous proof of this non-derivability can be made by providing a counter-model.



2.2 Common knowledge and necessitation

We will also use abbreviations: for “everybody’s knowledge”
EX =K X ANKy X,
and “common knowledge”
CX = {X, EX, E*X, E’X, ...}.

As one can see, CX is an infinite (though quite regular and decidable) set of
formulas. Since modalities K; commute with the conjunction A, CX is the
set of all formulas which are X prefixed by iterated knowledge modalities:

CX:{P1P2P]€X‘]{?:0,1,2,, PLE{Kl,Kz}}

Naturally, CI' = U{CF | F € I'} that states “I" is common knowledge.”
The following proposition states that the rule of necessitation corresponds to
common knowledge of all derivable facts.

Proposition 1 A set of formulas T" is closed under necessitation if and only
if ' CT, d.e., that I' proves its own common knowledge.

Proof. Direction ‘if. Assume I' - CI" and prove by induction on derivations
that I' F X yields I' F K; X. For X being from S5,,, this follows from the
rule of necessitation in S5,,. For X € I'} it follows from the assumption that
' CX, hence I' - K; X. If X is obtained from modus ponens, ' Y — X
and I' F Y. By the induction hypothesis, I' F K;(Y — X) and I' - K,;Y. By
the distributivity principle of S5,,, I' F K; X.

For ‘only if,” suppose that I' is closed under necessitation and F € T,
hence I' = F. Using appropriate instances of the necessitation rule in I' we
can derive PP, ..., P.F for each prefix PLP,Ps, ..., P, with P; is one of
K, Ks,...,K,. Therefore, ' - CF and I' - CI". a

3 Kripke structures and models

A Kripke structure is a convenient vehicle for specifying epistemic assertions
via truth values of atomic propositions and the combinatorial structure of
the set of global states of the system.



Kripke structure*
M = (W, Ry, Ry, ... P

consists of a non-empty set W of possible worlds, “indistinguishability” equiv-
alence relations Ry, Rs, ... for each agent, and truth assignment ‘I’ of atoms
at each world. Predicate ‘F' holds at v’ (ulF F') respects Booleans and reads
epistemic assertions as

ulFKGF iff  for each state v € W with uR;v, viFF holds.

Conceptually, ‘agent i at state u knows F’ (ul-K;F) encodes the situation
in which F' holds at each state indistinguishable from u for agent 1.

A model of a set of formulas I is a pair (M, u) of a Kripke structure M
and a state u such that all formulas from I' hold at wu:

M, ul-F forall F€T.?
The soundness property states that if (M, u) is a model of T, then
'-F = M,ulFF.
A pair (M, u) is an exact model of I if
'-F < Mul-F.

An epistemic scenario (a set of S5,-formulas) I' admits a semantical defi-
nition iff I has an exact model.

There is a simple criterion to determine whether I' admits semantical
definitions (Theorem 1) and we argue that “most” epistemic scenarios lack
semantical definitions. These observations provide a justification for Syntac-
tic Epistemic Logic with its syntactic definitions of epistemic scenarios.

A formula F' follows semantically from T,

I'EF,

4Introduced for multi-agent case in [17].

5Here we mean local models when I' is satisfied at one world. This should not be
confused with the more restrictive notion of global models when I' is satisfied at each
world of the model (cf. [11, 12, 16]). For epistemic purposes, global models do not suffice:
for example, a consistent and meaningful situation I' = {m, -Km}, i.e., ‘m holds but is
not known’ does not have global models.



if F holds in each model (M, u) of I'. A well-known fact connecting syntactic
derivability from I' and semantic consequence is given by the Completeness
Theorem®:

'FF & TEF

This fact has been used by some to claim the equivalence of the syntactic
and semantic approaches and to define epistemic scenarios semantically by a
model. We challenge these claims and show the limitations of single-model
semantic specifications, cf. Theorem 1.

3.1 Aumann knowledge structures

A knowledge structure (a.k.a. partition structure) is a tuple
M= (K1, Kn,s),

where () is a set of “global states,” Ky, ..., K, are “knowledge partitions” of
Q) corresponding to players 1,2,...,n, and s is a mapping from 2 to the set
of all strategy profiles”: for a state w,

s(w) = (S1,.-+,5n)-

If we associate propositional variables with strategies, the strategy profile
function s assigns truth values to these variables in the worlds of the model.
So, the truth of atomic propositions is defined at each state w € €2, the
Boolean connectives behave conventionally, and

K,F holds at w iff F holds at any o' € K;(w),

i.e., " holds at any «’ indistinguishable from w for player i.

With these assumptions, and equivalence relations instead of partitions,
knowledge structures may be regarded as Kripke S5-models.

The fundamental requirement of knowledge structures (as well as Kripke
models) in epistemic contexts is common knowledge of the model [8, 9]%. For

example, to interpret
ulF KoK p

6There are many sources in which the proof of this theorem can be found, e.g., [11, 12,
14, 15, 16, 19, 22].

7Cf. Section 5 for more details about strategies and profiles.

8Knowledge of the “real” world is not required.
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as
at world u agent 2 knows that agent 1 knows p,

we have to assume that

when at u, 2 knows that at each v which is 2-equivalent to u, 1
knows that for each w which is 1-equivalent to v, p holds.

This requires that 2 knows both the model and that 1 knows the model, etc.
Common knowledge of the model is naturally required when the model
is a vehicle of defining epistemic values at each world:

model = epistemic assertions at each world.

3.2 Canonical model

The Completeness Theorem claims that if I' does not derive F', then there is
a model (M, u) of I' in which F' is false. Where does this model come from?
The standard answer is given by canonical model construction.

In any model (M, u) of T', the set of truths 7 contains I" and is maximal,
i.e., for each formula F’,

FeT o —-FeT.

This observation suggests the notion of a possible world as a maximal set of
formulas I which is consistent, i.e., I' t/ L.

A canonical model M(S5,,) of S5,, (cf. [11, 12, 14, 15, 16, 19]) consists
of all possible worlds over S5,,. We will also be interested in versions of S5,
with finite sets of propositional letters, e.g., {my, ma, ..., my}. Accessibility
relations are defined on the basis of what is known at each world: for maximal

consistent o and [,
aR;p it ak, €0

where

ak, = {F | K;F € a},

ie.,
all facts that are i-known at o are true at 3.



The standard and well-known reasoning demonstrates that, since all theo-
rems of S5, belong to each possible world, each R; is an equivalence rela-
tion. Evaluations of atomic propositions are defined according to the possible
worlds:

alkFp, iff p; € a.

The standard Truth Lemma shows that Kripkean truth values in the canon-
ical model agree with possible worlds: for each formula F',

alFF it Fea.

Canonical model M (S5,,) serves as a universal model of all epistemic sce-
narios. The following proposition is a well-known model existence property
of syntactic descriptions.

Proposition 2 Any consistent set of formulas I' has a model.

Proof. Given consistent I', by the well-known Lindenbaum construction,
extend I' to a maximal consistent set «. By definition, « is a possible world
in M(S5,,). By the Truth Lemma, all formulas from I" hold in «:

M(S5,,), alFT.

O

We see that the canonical model M(S5,,) of S5,, plays a crucial role here:
it provides a Kripke model for each consistent set of formulas I' with an
appropriate choice of a.

However, M(Sb,,) itself is not an independently defined semantical struc-
ture for specifying knowledge assertions. On the contrary, states and relations
of the canonical model are reverse engineered from syntactic data of what is
assumed to be “known” at each possible world:

truth values of epistemic assertions =- canonical model.

Possible world a from proof of Proposition 2 is also built syntactically (the
Lindenbaum construction) from a given I' and the resulting model (M(S5,,), o)
is defined given I' and hence is not a semantic definition of I'.

Another feature of M(S5,,) is that this model is not constructively defined
and has continuum-many states even in the simplest case with one proposi-
tional letter and n > 1 [8]. As a result, M(S5,,) cannot be considered known
as a Kripke/Aumann structure in any reasonable sense of “known.”

10



3.3 Deductive completeness

Definition 1 A set of S5,-formulas I' is deductively complete if

I'EF or I'k-F.

Example 2 Consider examples in the language of the two-agent epistemic
logic S5, with one propositional variable m and knowledge modalities K;
and K.

1. I'y = {m}, where m is a propositional letter. Neither K;m nor -Kym
is derivable in I'; and this can be easily shown on corresponding models®.
Hence I'; is not deductively complete.

2. Ty = {Em}, i.e., both agents have first-order knowledge of m. How-
ever, the second-order knowledge assertions, e.g., KoK m, are independent'®

FQ )7/ K2K1m and FQ ’7( —|K2K1m.

This makes I'y deductively incomplete.

3. I's = Cm, i.e., it is common knowledge that m. This set is deduc-
tively complete for formulas over variable m. Indeed, first note that, by
Proposition 1, I's admits necessitation!:

X = IEFKX, i=1,2.
To establish the completeness property: for each formula F',
I'sHF or I'sk—F,

run an induction on F'. The base case when F' is m is covered, since I's - m.
The Boolean cases are straightforward. Case F' = K;X. If '3 = X, then, by
necessitation, I's - K; X. If I's F =X, then, since S5 proves =X — —K; X,
Fg H _\KlX

9Note that in classical logic without epistemic modalities, this set I'; is deductively
complete: for each modal-free formula F' of one variable m, either I'; = F or I'y = =F'. So,
epistemic modalities make the difference here.

10 Again, there are easy countermodels.

Mywhich is not the case for I'y and I's.
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3.4 Semantical definitions and complete scenarios

The following theorem provides a necessary and sufficient condition for de-
finability. Let I' be a consistent set of formulas in the language of epistemic
logic S5,,.1

Theorem 1 T' is semantically definable if and only if it is deductively com-
plete.

Proof. The ‘only if’ direction. Suppose I' has an exact model (M, u), i.e.,
'-F & MulkFE
The set of true formulas in (M, u) is maximal: for each formula F,
MulFF or M, ul-—F,
hence I is deductively complete: for each F,
'EF or T'F-F

The ‘if’ direction. Suppose I' is consistent and deductively complete.
Then the deductive closure I' of T'

I ={F|TFF},

is a maximal consistent set, hence an element of the canonical model M(S5,,).

We claim that (M(S5,),T") is an exact model of ', i.e., for each F,
I'+F &  M(S5,),TIFF

Indeed, if I' - F, then F € T by the definition of I'. By the Truth Lemma in
M(S5,), F holds at the world I'. If I' I/ F', then, by deductive completeness
of I', ' b =F, hence, as before, =F holds at I, i.e., M(S5,,),'Il/F. a

Theorem 1 shows serious limitations of semantical definitions. Since,
intuitively, deductively complete scenarios I' are exceptions, “most” epistemic
situations cannot be defined semantically.

In Section 4.6, we provide a concrete example of an incomplete but mean-
ingful epistemic scenario, a natural variant of the Muddy Children puzzle,

12The same criteria hold for any other normal modal logic which has a canonical model.
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which, by Theorem 1 does not have a semantical definition, but can never-
theless be easily specified and analyzed syntactically.

In Section 5.1, we consider an example of an extensive game with incom-
plete epistemic description which cannot be defined semantically, but admits
easy syntactical analysis.

4 The Muddy Children puzzle

Consider the Muddy Children puzzle, which is formulated syntactically.

A group of n children meet their father after playing in the mud.
Their father notices that k > 0 of the children have mud on their
foreheads. Fach child sees everybody else’s foreheads, but not his
own. The father says: “some of you are muddy,” then adds: “Do
any of you know that you have mud on your forehead? If you
do, raise your hand now.” No one raises his hand. The father
repeats the question, and again no one moves. After exactly k
repetitions, all children with muddy foreheads raise their hands
simultaneously. Why?

4.1 Standard syntactic formalization

This situation can be described in n-agent epistemic logic S5,, with modal-
ities Ky, Ky, ..., K, for the children’s knowledge and atomic propositions
my, Mo, ..., m, with m; stating “child ¢ is muddy.”

In addition to general epistemic logic principles S5,,, the initial config-
uration, which we call MC,,, includes common knowledge assertions of the
following assumptions:

1. Knowing about the others:
A Ki(m;) v Ki(=my)].
i#j

2. Not knowing about themselves:

i=1,...,n

Consider the case n = k = 2, i.e., two children, both muddy. Here is an
informal solution of the problem.

13



After the father’s announcement “some of you are muddy,” if
a child sees another child not muddy, he knows that he himself
is muddy. Since both children announce that they did not know
that they were muddy, reflecting on this argument, both children
determine that they are muddy and raise their hands in the second
round.

This reasoning is quite rigorous and can be formalized in modal epistemic
logic. We will present this solution in a more formal setting in Section 4.7.

4.2 Syntactic vs semantic formalizations

The “standard” formalization of Muddy Chidren is by a Kripke model: n-
dimensional cube @, ([15, 19, 20, 21, 22]). The aforementioned syntactic
formalization of the initial configuration of Muddy Children puzzle as MC,,
corresponds to @, cf. Section 4.4, and is an example of handling a problem
in SEL, via syntactic formalization.

A peculiar feature of both MC,, and @),, formalizations is that they postu-
late that no child knows his/her forehead. However, all children eventually
know whether they are muddy. This means that in the process if commu-
nicating and reasoning, children reverse assumption (2) ‘not knowing about
themselves! As we can see in Section 4.7, the syntactic solution of this
puzzle does not need assumption (2) and avoids this kind of non-monotonic
reasoning.

4.3 Semantic solution

In a semantic solution, the set of assumptions MC,, is replaced by a Kripke
model: n-dimensional cube @,, ([15, 19, 20, 21, 22]). To keep things simple,
we consider the case n = k = 2. Logical possibilities for the truth value com-
binations® of (my,my): (0,0), (0,1), (1,0), and (1,1) are declared possible
worlds. There are two indistinguishability relations denoted by solid arrows
(for agent 1) and dotted arrows (for agent 2). It is easy to check that condi-
tions 1 (knowing about the other) and 2 (not knowing about himself) hold at
each node of this model. Furthermore, ()5 is assumed to be commonly known
to the agents. After the father publicly announces m; V my, node (0,0) is
no longer possible and model M; now becomes common knowledge. Both

131 standing for ‘true’ and 0 for ‘false’

14



0,0

Figure 1: Model Q5.

1,1
. 1,1

1,0 e e (0,1
Figure 2: Models M; and M.

children realize that in (1,0), child 2 would know whether he is muddy (no
other 2-indistinguishable worlds), and in (0,1), child 1 would know. After
both children answer “no” to whether they know what is on their foreheads,
worlds (1,0) and (0, 1) are no longer possible, and each child eliminates them.
The only remaining logical possibility here is model Ms. Now both children
know that their foreheads are muddy.

4.4 Justifying the model

The semantic solution in Section 4.3 starts with adopting @),, as an equivalent
of a theory MC,. Can this choice of a model be justified? In the case of
Muddy Children, the answer is ‘yes.

Let u be a node at @),,. i.e., u is an n-tuple of 0’s and 1’s and w|Fm; iff
i’s projection of u is 1. Naturally, u is represented by a formula 7(u):

m(u) = N{mi | ulb-mi} A AN{—~m; | ulb—m;}.

It is obvious that vIF7(u) iff v = w.
By MC,(u) we understand the Muddy Children scenario with specific
distribution of truth values of m;’s corresponding to u:

MC,.(u) = MC,, U {m(u)}.

15



So, each specific instance of Muddy Children is formalized by an appropriate
MC,, (u).

Theorem 2 FEach instance MC,,(u) of Muddy Children is deductively com-
plete and (Qn,u) is its exact model

MC,(u) - F  iff  Qu,ulFF.

Proof.'* The direction ‘only if’ claims that (Q,,u) is a model for MC,, (u)
is straightforward. First, @, is an S5,-model and all principles of S5,, hold
everywhere in ),,. It is easy to see that principles ‘knowing about the others’
and ‘not knowing about himself’ hold at each node. Furthermore, as m(u)
holds at u, everything that can be derived from MC,,(u) holds at w.

To establish the ‘if” direction, we first note that, by Proposition 1, neces-
sitation is admissible in MC,,: for each F,

MC,FF = MC,F K;F.
The theorem now follows from the statement S(F):

for all nodes u € @,

Qn,ulFF = MC,F7n(u)—F

and

Qn,ulF=F = MC, F m(u)——F.

We prove that S(F') holds for all F' by induction on F.

The case F' is one of the atomic propositions my,mo, ..., m, is trivial
since MC,, - w(u) — m;, if ulFm; and MC,, - m(u) — —-m,, if ul-—-m;. The
Boolean cases are also straightforward.

The case F' = K;X. Consider the node u* which differs from u only at
the i-coordinate. Without a loss of generality, we may assume that uIFm;
and u!lF—m;; the alternative ulF—m; and u'lFm; is similar.

14\We have chosen to present a syntactic proof of this theorem, partly because it em-
phasizes the strong and fundamental nature of syntactic formalism. A semantic proof can
also be given. It makes use of bounded morphisms, a special case of bi-simulations. This
is standard machinery for modal logicians, but is perhaps less familiar to those working
in game theory. It is sophisticated and powerful machinery, and should be better known
beyond the logic community.

16



Suppose Q,,, ulFK;X. Then Q,,,ulF X and Q,,u'lF X. By the induction
hypothesis,
MC, F 7(u)—X and MC,F m(u’)— X.

By the rules of logic (splitting premises)
MC, - m(u)_;—(m;—X) and MC, F 7m(u)_;— (—-m; = X),
where 7(v)_; is w(v) without its i-th coordinate!®. By further reasoning,
MC,, F m(u)_;— X.
By necessitation in MC,,, and distributivity,
MC, - Kim(u)_i — K X.

By ‘knowing about the others’ principle, and since 7(u)_; contains only atoms
other them m;,
MC,, - m(u)_; — K;m(u)_;,

hence
|\/|Cn F W(U),i —>KzX7

and

MC, F 7(u) - K; X.

Now suppose Q,,ulF=K;X. Then Q,,ulF—=X or Q,,u’lF—-X. By the
induction hypothesis,

MC, - m(u)—=—-X or MC,F 7(u’)——-X.
)

In the former case we immediately get MC,, - m(u) — —K; X, by reflection
=X —-K;X. So, consider the latter, i.e., MC, F 7(u’) ——X. As before,

I\/ICn H W(U),Z’—> (_\mi—>_\X).

By contrapositive,

By necessitation and distribution,

BFormally, w(v)_; = A{m; | viFmy, j #i} A N{—~m; | vIF—m;, j #i}.

17



By ‘knowing about others,” as before,
MC, F 7(u)_; — (K; X - K;ym;).
By ‘not knowing about himself,” MC,, = =K;m;, hence
MC, F 7(u)_; —-K; X,

and
MC,, - m(u) - -K; X.

O

As we see, in the case of Muddy Children given by a syntactic description,
MC,,(u), picking one “natural model” (@, u) can be justified. However, in a
general setting, the approach

given a syntactic description, pick a “natural model”

is intrinsically flawed: by Theorem 1, in many (intuitively, most) cases, there
is no model description at all. Furthermore, if there is a “natural model,” a
completeness analysis in the style of what we did for MC,, in Theorem 2 is
required.

4.5 Atomic propositions and possible worlds

A possible (and observed) reaction to the criticism that @,, was adopted as
The Model of Muddy Children puzzle without a completeness analysis of its
syntactic description is

It is not much to assume that an agent can figure out that the
logical possibilities for the truth values of my,my correspond to
the vertices of Qn, e.g., for n = 2, they are (0,0), (0,1), (1,0),
and (1,1).

This argument only goes halfway: it does not explain why a combination
of truth values of atoms determine truth values of any relevant epistemic
sentence. Without this, we cannot claim that atoms determine a possible
world. In the version of the Muddy Children puzzle from Section 4.6, this is
not the case.
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4.6 Muddy Children lite

Consider a simplified Muddy Children scenario, MClite;, which has a straight-
forward syntactic formalization and solution but lacks an exact semantic de-
scription. We also show that in MClitey, possible worlds are not determined
by the truth values of atoms.

In Muddy Children lite, condition (2) “not knowing about himself” of the
standard Muddy Children puzzle is omitted:

Two children have muddy foreheads and each child sees the other
child’s forehead. The father announces publicly “some of you are
muddy.” The father then asks: “Do either of you know that you
have mud on your forehead? If you do, raise your hand now.” No
one raises his hand. The father repeats the question. What do
children do?

The challenge here is to formalize all three stages of this situation: prior to
father’s announcement, after the announcement, and after the first round of
question and answers, and justify children’s answers.

The syntactic description of MClite; over two-agent S5y with atoms mq
and my is given by

e common knowledge of “knowing about the other”

N[Ki(m;) VK (-m;)], 4,j=1,2.
i#]
e M1 A Mms.

What is the natural epistemic model of MClite;? Good old Q2 with world
1,1 is certainly a model (fewer conditions to check than for MC,). Here are
other models M3, My, and M5, in which MClite; holds at node 1, 1.

1,1 1,1 1,1

1,0e (1

Figure 3: Models M3, M, and Ms.
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Incidentally, multiple models appear here not just because some edges
in ()2 are not specified in MClite;. The problem is deeper: unlike the stan-
dard Muddy Children, MClite; has models in which truth values of atomic
propositions do not determine a possible world. For example, MClite; holds
at each world of Mg that has different possible worlds a and b with the same

1,1

[
/b\\\\
1,1 e e 1.0
a C

Figure 4: Model M.

propositional component (1,1), e.g., alFKomsy (“child 2 knows that (s)he is
muddy”) and blF—=Kgyms (“child 2 does not know that (s)he is muddy”).

Proposition 3 MClitey is deductively incomplete and hence does not have
an exact model.

Proof. Formula K;m; holds in M3 and does not hold in M,. Therefore,
neither Kym; nor =K m, is derivable in MClite,. O

4.7 Syntactic solution of Muddy Children lite

The aforementioned intuitive deductive solution of MCy (Section 4.1) fits
MClitey as well since it does not use condition (2) “not knowing about him-
self.” Moreover, we can avoid knowledge revisions typical for solutions of the
usual Muddy Children puzzle which some could find questionable!®.

Here is a syntactic solution of MClite;. We denote miAms as 11, ~mqAme
as 01, my A =my as 10, =mq; A -my as 00.

The initial description I'y of MClite; atop the two-agent epistemic logic
S5, (cf. Section 2) is a direct formalization of the some default epistemic

16Tn standard MCsy, the ignorance of agents about the state of their foreheads is postu-
lated up front, e.g., “K1m1, hence K;—K;m1, only to be replaced by its negation Kim;
during further exchanges. This constitutes a failure of a natural indefeasibility property of
knowledge of “Kimi: “there is no further truth which, had the subject known it, would
have defeated [subject’s| present justification for the belief” [18].
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assumptions and the condition “two children have muddy foreheads and each
child sees the other child’s forehead.”!

Commonly known assumptions:

1. Knowing About Others (KAO) assumption
K1m2 V Kl(_‘m2)7 K2m1 V Kg(_'ml).

This reflects a general idea that by the situation setup, it is common
knowledge that each child sees the other child’s forehead in the real
and all hypothetical situations.

2. The existence of the “real world”: the situation occurs under specific
truth values of m; and msy. This is reflected in assuming common
knowledge that at least one of 11, 01, 10, or 00 should be in I'y. This
fact is not represented by a formula, but plays a role in determining
the updates of agents’ knowledge after public announcements.

Specific “real world” condition:

3. 11 (= my A my) — the true values of my, my. This corresponds to
condition “both children have muddy foreheads.”

So,
'y = C(KAO) U {11},

with additional meta assumption (2).
When reasoning about logical and epistemic information containing in a
given syntactic set I', we have to distinguish among the following statements.

e “[" holds,” meaning that I' = F.
e “["is known to agent 7,” meaning I' - K, F'.

Note that “F is not known to agent i” is thus I' I/ K;F
rather then I' = —K;F. We argue that this is a more ap-
propriate formalization of “F' is not known to agent i” in a

situation of dynamic changes to the data: it is “¢ does not yet
have enough data to conclude F” (I' I/ K;F') rather than “i

1"The suggested formalization is one of essentially equivalent ways of specifying this
situation syntactically.
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knows that he does not and never will know F” (I' =K, F').
This fine distinction allows us to avoid non-monotonicity and
knowledge revision during updates.

e “F is common knowledge,” meaning I' - CF.*®
Some immediate observations concerning I'y.
e m; Amy (= 11) holds in I’y but is not known to any agent.

e m; is known to agent 2, and msy is known to agent 1, but neither is
common knowledge.

e both —m; —Ks(—m;) and —my — K;(—my) are commonly known. We
prove the former, the latter is symmetric. Reason in I'y. By KAO, it is
common knowledge that Kom; V Ko(—m;) and hence that ~Kym; —
Ky (—my). By reflection, it is common knowledge that —m; — —Kaom;.
By logic reasoning, it is common knowledge that —m; — Ko(—my).

The public announcements, questions, and answers lead to two consec-
utive updates of I'y to I'y, and then to I';. Unlike the traditional Muddy
Children puzzle, we do not revise knowledge here: both updates are mono-
tonic, agents just acquire new information without rejecting their existing
data.

Update 1. Public announcement “some of the children are muddy”
amounts to making “not 00” common knowledge.

Iy = Iy + C(-00).

This rules out the option “both are not muddy” (00 € I'y) for both children.

Update 2. Father’s question “Do any of you know that you have mud on
your forehead?” and the negative replies reveal that neither of the children
can conclude that he is muddy, i.e.,

Fl |71 K1m1 and Fl |71 K2m2.

This information is incompatible with situations 01 € I'y and 10 € I';.
Indeed, suppose 01 (= —mj Ams) were in I'; instead of 11. Since I'; contains

-miq— Kg(_'ml),

18This means I' proves each of F, EF, E*F, E3F, ....
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we would also have Ky(—my). By the first update, Ko—(—my A —=my) and, by
the rules of logic, Ko(—mi—ms), hence

Kg(—\ml) — Kng.

From this we would derive
K2m27

i.e., child 2 would know that he was muddy, which is inconsistent with his/her
answer. Case 10 € I'; is symmetric.

This makes it common knowledge that neither 01 nor 10 is in I'; and
hence 11 € I'; is the only remaining option'. This leads to the second
update

FQ - Fl + C(].].),

i.e., it becomes common knowledge that both children are muddy.

So the syntactic solution of MClite; is given by the sequence of syntactic
sets g, I'1, and 'y that provide (partial) descriptions of possible worlds at the
corresponding moments. These descriptions themselves contain all relevant
information and ignore irrelevant, higher-order epistemic assertions.

4.8 Discussion

The idea of this syntactic solution does not differ much from the aforemen-
tioned semantic solution of MCy: both are based on consecutive elimination of
logical possibilities by some kind of epistemic reasoning and meta-reasoning.
However, the format of the Kripke/partition model forces operating with
individual possible worlds (nodes of the model) which are overspecified.

For example, in MClitey, one logical possibility mq A\ mo corre-
sponds to infinitely many (continuum) nonconstructive maximal
consistent sets each of which can be a possible world. This renders
semantic analysis at the level of possible worlds unfeasible.

So, if we want to go beyond complete epistemic scenarios, we
need a mathematical apparatus to handle classes of models, not
just single models. The format of syntactic specifications is a viable
candidate for such an apparatus.

Y Technically, this argument uses meta assumption (2).
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Note that no belief revision occurs in the syntactic solution of MClites:
all updates are consistent with the original data.

The traditional model solution of MC,, without completeness analysis uses
a strong additional assumption — common knowledge of a specific model @,
and hence, strictly speaking, does not resolve the original Muddy Children
puzzle; it rather corresponds to a different scenario, e.g.,

A group of robots programmed to reason about model @, meet
their programmer after playing in the mud. ...

One could argue that the model solution actually codifies a deductive
solution in the same way that geometric reasoning is merely a visualization
of a rigorous derivation in some sort of axiom system for geometry. This is a
valid point which can be made scientific within the framework of Syntactic
Epistemic Logic.

5 Syntactic Epistemic Logic and games

Aumann’s definition of an extensive form game ([7]) is based on the notion of
a partition structure with a condition that the model should itself be common
knowledge. In this paper, we focus on the non-probabilistic case.

We argue that the single-model semantic definition of a game is too re-
strictive and needs to be extended.

Let us recap basic terminology ([7]). An extensive game consists of the
following components.

e A finite set N = {1,2,...,n} of players.
e A finite rooted tree.

e A player function P that assigns a player (who makes a move) to each
nonterminal node.

e For each player 7, a payoff function u; defined on terminal nodes.

The root node is the starting point of the game. At any nonterminal node
v, player P(v) chooses one of the successor nodes (a move). A strategy s; of
player ¢ is a choice of moves at each node assigned to player . A strategy
profile s = (s1,...,,) is an n-tuple of strategies of players 1,2, ..., n.
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An extensive-form game is a game tree and a partition structure A (cf.
Section 3.1) which are commonly known (and a “real state” which makes
the game concrete). It is presumed that A codifies possible worlds of the
game, i.e., what is known and what is not known to the players. Available
strategies are represented by atomic propositions and epistemic conditions
are formulas in the multi-agent epistemic logic over these propositions.

Consider Game 1 with the game tree as shown and with the standard
assumption of common knowledge of the game and rationality of players,
CKGR. Since Bob is rational, he plays across. Ann knows that Bob is ratio-

Ann a  Bob a
[ ) [ ]

3,3
(%1 (%)

2,2 1,1

?

Figure 5: Game 1.

nal; she anticipates Bob’s move and herself moves across, hence the “back-
ward induction” solution — strategy profile (a, a) which is common knowledge.

The logic language of this game consists of propositional variables pa
and pp symbolizing Ann’s and Bob’s moves across, logical connectives, and
knowledge modalities K4, Kg. The syntactic formalization over S5y can be
reduced to the following set of formulas:

1. Cpg - “it is common knowledge that Bob is rational hence plays across”;

2. C(Kapp—pa) - “it is common knowledge that since Ann is rational,
if Ann knows that Bob plays across, she plays across as well”;

Let A; be the set of assumptions 1 and 2. Since Cpp implies CK 4pg, by
easy modal reasoning we conclude Cpy4. This yields that

Ay =C(pg Apa)®

The corresponding Kripke model for Ay is M; = (W, Ra, Rp,Jb) that has
only one node (a,a), R4 and Rp are reflexive, and p4 and pp hold.
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PA,PB

(a,a)
Figure 6: Model Mj.

Ay is similar to the set from Example 2.3 and M- is its adequate model
representation: for each formula F

A FF iff MpIEFE.

5.1 Partial knowledge is not definable semantically

Consider Game 2 that features the same players Ann and Bob, and the
game tree, as Game 1. The difference is in the epistemic conditions: mutual
knowledge of rationality, i.e., both Ann and Bob know that both players
are rational. Note that Game 2 does not specify second-order knowledge of
rationality, e.g., whether Bob knows that Ann knows that Bob is rational,
etc. The outcome of Game 2 is the same as that of Game 1: Ann and Bob
play across; this can be established by an easy logical reasoning.

Let us consider the syntactic formalization of Game 2.

1. Bob is rational is formalized as pgp (Bob moves for a higher payoff).
Ann knows that Bob is rational is formalized as

Kups.

2. Ann is rational is formalized as if Ann knows that Bob plays across,
she plays across Kapp —pa. Bob knows that Ann is rational is then

Kp(Kapp—pa)-
3. Standard ‘measurability’ condition knowing their own mowves:
pi—Kipi, —pi—Ki(-pi), i€ {A, B}
The formalization of Game 2 is the set A, consisting of principles 1 — 3.

Proposition 4 Game 2 (formalized as As) is not deductively complete and
hence does not have a single-model semantic description.

20Indeed, condition C(K app —pa) immediately follows from Cpy.
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Proof. We claim that Kgps (i.e. ‘Bob knows that Ann plays across’) is
independent of A,. Indeed, As; ¥ =K pgpa since both Ay and Kgpa hold in
M. To show that A, ¥ Kgpa, consider model Mg. The solid arrow stays

Pa,PB bB

@ << > Q@ <—> 0

(a,a) (d,a) (d,d)

Figure 7: Model Ms.

for R4 and the dotted arrow represents Rp. It is easy to check that A,
holds at (a,a). Let us check (2). Formula K pp does not hold at (d,a) and
(d, d) since pg does not hold at (d, d) and these two nodes are R 4-equivalent.
Hence Kapp — pa holds everywhere in the model, hence Kg(Kapg — pa)
holds at (a,a).
Furthermore, Kpp4 does not hold at (a, a) since p4 does not hold at (d, a)
and these two nodes are Rg-equivalent. Therefore, Ay ¥ Kgpa.
U

Model Mg can be represented as a partition structure Ag that has three
possible worlds,
Q - {w17w27w3}

where w; corresponds to profile (a,a), wy to profile (d,a), and ws to profile
(d,d); pa holds at wy, pp holds at wy and w,. Partitions for Ann and Bob are

]CA = {{Wl}v {w2>w3}}7 ’CB = {{whw?}? {W3}},

and the real state is wy. In K4, the partition cell containing w; is a singleton
at which p4 holds, hence Ann knows Bob’s move. In Kpg, states w; and w, are
in the same cell and hence are indistinguishable for Bob, therefore, =K gpa
holds at wq, i.e., Bob does not know Ann’s move.

5.2 Asymmetric knowledge is not definable either

Consider Game 3 that features the same players Ann and Bob, and the same
game tree as Game 1 and Game 2, but with a different epistemic condition:
Ann is rational and knows that Bob is rational. Note that Game 3 does not
specify whether Bob knows that Ann is rational, not to mention higher-order
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epistemic assertions of the type ‘Ann knows that Bob does not know that
she is rational,” etc. The outcome of Game 3 is the same as that of Game 1
and Game 2, namely, Ann and Bob play across.

Here is a syntactic formalization of Game 3.

1. Ann knows that Bob is rational is formalized as

Ka(ps).

2. Ann is rational is formalized as if Ann knows that Bob plays across,
she plays across:

Ki(pp) —pa.
3. Standard ‘measurability’ condition knowing their own mowves:

pi—Ki(pi), pi—K;i(-pi), 1€ {A B}.

The formalization of Game 3 is the set Aj consisting of principles 1 — 3.
Obviously, this is equivalent to the set Aj: 2!

{Ka(pa), Ka(ps), Kp(ps)}-

It is easy to see that Kp(pa) is independent of AL: in model M7, A} and
Kp(pa) are true, model Mg at (a,a) makes Af true and Kp(pa) false.

Pa,PB bB

@ << > @

(a,a) (d,a)

Figure 8: Model My

Model My can be represented as a knowledge structure Ag that has two
epistemic states, 2 = {w;,ws} where w; corresponds to profile (a,a) and wy
- to profile (d,a), pa holds at wy, and pp holds at both states. Partitions of
Q) for Ann and Bob are

Ka={w}Awa}}, K= {{wr, w2},

and the real state is wy. In 4, both partition cells are singletons, hence Ann
knows Bob’s move. In Kp, states w; and w, are in the same cell and hence
are indistinguishable for Bob who does not know Ann’s move. Therefore,
—Kpg(pa) holds in Ay, but does not follow from Game 3. So Ay is not an
adequate semantic formalization of Game 3 either.

21 A1l principles of A logically follow from 1-3 and all 1-3 can be derived from Af.
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Proposition 5 Game 3 (formalized by A3 ) is not deductively complete and
hence does not have an exact model.

6 Incomplete Scenarios

How typical are deductively incomplete epistemic scenarios? We argue infor-
mally that this is the rule rather than the exception: it appears that unless
common knowledge of the basic assumptions is postulated, some higher-order
epistemic assertions remain independent. Epistemic conditions more flexible
than CKGR (mutual knowledge of rationality, asymmetric epistemic assump-
tions when one player knows more than the other, etc.) lead to semantical
undefinability.

Of course, common knowledge of epistemic conditions does not alone yield
deductive completeness. The Muddy Children lite scenario has commonly
known epistemic assumptions but is, nevertheless, incomplete.

Semantically non-definable scenarios are like the “dark matter” of the
epistemic universe: they are everywhere, but cannot be visualized as a model.
The semantic approach does not recognize these “dark matter”
scenarios; SEL deals with them syntactically.

7 Complete Scenarios

By Theorem 1, deductively incomplete scenarios do not have single-model
semantic characterizations. The principal question remains: how manageable
are semantic definitions of deductively complete scenarios?

7.1 Cardinality and knowability issue

Models of complete I'’s provided by Theorem 1 are instances of the canonical
model M(S5,,) at the node r corresponding to I'. This generic solution is,
however, not satisfactory because of the highly nonconstructive nature of the
canonical model M(S5,,).

As was shown in [8], the canonical model M(S5,,) for any n > 1 has
continuum-many possible worlds even with just one propositional letter. This

alone renders models (M(S5,,), ') not knowable under any reasonable mean-
ing of “known.” The canonical model for S5,, is just too large to be considered
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known and hence does not a priori satisfy the knowability of the model re-
quirement.

So, we have to admit that the question about existence of an epistemo-
logically acceptable (“known”) model for a given deductively complete set T’
remains open.

A lazy cardinality analysis shows that “most” deductively complete I"s
don’t have knowable single-model characterizations: there are continuum-
many such I'’s; basically each possible world in M(S5,). However, there
are only countably-many structures/models that can be specified by effi-
cient descriptions in a countable language (finite, computable, computably-
enumerable, arithmetical, etc.). This argument suggests that the question of
semantical definability of deductively complete scenarios, perhaps, requires
a case-by-case consideration.

7.2 Specifications via finite models and SEL

If an epistemic scenario can be naturally formalized by a manageable model,
we have a win-win situation. Each model (M, u) specifies a sets of formulas

['(u) ={F | M,ulFF}.

For a finite structure M??, T'(u) is deductively closed and linear-time decid-
able. Indeed, we have to check that the validity at w is linear-time decidable.
The validity of atoms is given, and with each step of formula-building we
have to check the bit values of one or two subformulas at the fixed finite set
of nodes which amounts to a fixed finite amount of checkups.

As we can see, the set of formulas I'(u) provides an efficient syntactic
description of the epistemic situation specified by model (M, u). So, semantic
specifications by finite models are acceptable in SEL and even desirable.

7.3 Complexity considerations

One could argue that in a complete scenario, it is natural to reason in terms
of models rather than in terms of logical conditions. We believe this is not
necessarily the case.

22 A relational structure is finite if both the set of states and the evaluation of variables
are finite (e.g., the evaluation ulkp; holds only for a finite set of variables p;).
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Epistemic models of even simple and complete scenarios can be pro-
hibitively large compared to their syntactic descriptions. For example, Muddy
Children model @), is exponential in n whereas its syntactic description MC,,
is quadratic in n.

Consider a real-life situation, say the game of poker. One can show that
its natural syntactic description in epistemic logic is deductively complete
and hence admits a model characterization. Moreover, it has a natural finite
model of the type given in Chapter 2.1 of [15], with hands as possible worlds
and with straightforward knowledge relations. However, with 52 cards and 4
players there are over 10** different combinations of hands. So, the number
of nodes in the model exceeds the number of stars in the observable universe.
This yields that explicit formalization of the model not practical. Players
use a concise syntactic description of poker in the natural language, which
can also be formalized in epistemic logic?® in a feasible way.

In this and some other real life situations, models are prohibitively large
whereas appropriate syntactic descriptions can be quite manageable.

8 Some Practical Observations

An interesting question is why the semantic approach, despite its aforemen-
tioned shortcomings, produces correct answers in many situations. We see
several reasons for this.

1. Common knowledge of the game and rationality assumption CKGR of-
ten yield deductive completeness. For example, in perfect information games,
CKGR leads to deductive completeness and non-problematic singleton mod-
els. However, CKGR is considered too restrictive: players might not have
complete and equal information about the game and each other, there might
be a certain level of ignorance and/or secrecy, etc. In these cases, CKGR
does not hold, which leaves the door open for semantically non-definable
scenarios.

2. Pragmatic self-limitation. Given an informal description of a game
G, we intuitively seek a solution that logically follows from G. Even if we
skip the formalization of G and pick a “natural model” M of G, normally
overspecified, we try not to use features of the model that are not supported

23perhaps first-order epistemic logic
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by G. If we conclude a property P by such self-restricted reasoning about
the model, then P indeed logically follows from G.

This situation resembles Geometry, in which we reason about tri-
angles, circles, etc., but in the background have a rigorous system
of postulates. We are trained not to venture beyond these postu-
lates even in informal reasoning.

Such an ad hoc pragmatic approach needs a scientific foundation, which can
be provided within the framework of Syntactic Epistemic Logic.

9 Syntactic Epistemic Logic suggestions

The Syntactic Epistemic Logic suggestion, in brief, is to make the syntactic
formalization of an epistemic scenario its formal specification.

Since SEL accommodates constructive model reasoning (Section 7.2), we
speak about extending the scope of scientific epistemology. SEL offers a
remedy for two principal weaknesses of the traditional semantic approach.

1. SEL suggests a way to handle incomplete scenarios which, however,
have reasonable syntactic descriptions (cf. MClite;, Game 2, Game 3,
etc.).

2. SEL provides a scientific framework for resolving the tension, identified
by R. Aumann [9], between a syntactic description and its hand-picked
model: formalize the former and establish completeness.

Appropriate syntactic specifications also help to handle situations for
which natural models exist but are too large for explicit presentations.

Within Syntactic Epistemic Logic, we offer a new definition of an exten-
sive form game,

a game tree plus a syntactic description of epistemic conditions,

which is more general than the knowledge model definition. Numerous games
with deductively incomplete descriptions can now be formalized (cf. Game
2, Game 3) and studied.

This can help to extend Epistemic Game Theory from CKGR towards
capturing more general epistemic conditions. A broad class of epistemic
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scenarios does not define higher-order epistemic assertions and rather ad-
dresses individual knowledge, mutual and limited-depth knowledge, asym-
metric knowledge, etc. and hence is deductively incomplete and has no exact
model characterizations. However, if such a scenario allows an adequate syn-
tactic formulation, it can be handled by a variety of mathematical tools,
including reasoning about its models.

If an epistemic scenario is given syntactically but represented by an epis-
temic model, it is prudent to establish their equivalence.

Since the basic object in SEL is a syntactic description I' of an epistemic
scenario rather than a specific model, there is room for a new syntactic
theory of updates and belief revision. The case study of syntactic updates
is presented in the syntactic solution of the Muddy Children lite puzzle in
section 4.7.
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