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Abstract

This paper studies the interaction of automata of size m. We
characterise statistical properties satisfied by random plays generated
by a correlated pair of automata with m states each. We show that in
some respect the pair of automata can be identified to a more complex
automaton of size comparable to m log m. We investigate implications
of these results on the correlated min-max value of repeated games
played by automata.

1 Introduction

Automata are a central model in Game Theory when it comes to modelling
agents with bounded cognitive abilities (see e.g. Aumann [1981], Abreu and
Rubinstein [1988], Neyman [1997], Ben-Porath [1993]). But how complex are
they? Early on, Neyman [1998] and Kalai and Stanford [1988] noted that if a
repeated game strategy o includes exactly m continuation strategies, then m
is also the size of the smallest automaton that can implement o. This gives
foundation for automaton size as a measure for strategic complexity. In this
paper, we take a different look at the same question by asking: how complex
are phenomena that can be generated by one or several automata?

If we consider an isolated automaton of size m that generates a series of
outputs in an alphabet A, then we know that this sequence is periodic of
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period at most m, and in fact, automata of size m can generate all such se-
quences. Since there are roughly speaking m™ such automata and A™ < m™
such sequences, the automaton model is not economical when it comes to
describing the behaviour of a single agent. The situation becomes more in-
teresting when looking at interacting automata, which is the issue studied of
this paper. Consider two agents interacting. Agent 1 is represented by an
automaton o' of size m and output space A' while agent 2 uses a repeated
game strategy o2 with output space A%. The pair (01,02) generates a se-
quence of outputs aq,as,...,a;. An outside observer of the sequence who
initially does not know (o, 0?), but knows that o! is an automaton of size
at most m forms beliefs at every stage on the next action of o'. Since o' is
chosen in a finite set, the outside observer is, as t grows, eventually able to
predict every action of agent 1. Actually, we show a stronger result. Theo-
rem 2.1, called the information constraint, holds: the total per stage entropy
of the outside observer’s prediction on agent 1’s action is bounded by the
logarithm of the number of strategies of agent 1.

We prove several results showing that the information constraint is tight.
Since the information constraint is obtained by looking solely at the number
of automata of a given size, these converse results show that automata are
as rich as any other model with same number of strategies. In terms of
complexity, automata generate phenomena of maximal randomness for the
smallest possible number of strategies. In this sense, automata are a very
economical model and do not have too many redundancies.

Our first converse result, Theorem 2.2, shows that, for any given distri-
bution of beliefs P of an outside observer on the pair of actions of agents 1
and 2, there exist distributions over automata for agent 1 and strategies for
agent 2 such that the average expected distribution of beliefs of an outside
observer on both agents’ actions between stages 1 and r is arbitrarily close
to P, as long as r is small enough so that the information constraint is sat-
isfied. This result considers an outside observer who observes the actions of
both agent 1 and 2, while the information constraint only considers agent 1’s
action. However, Theorem 2.2 particularized to distributions P in which the
action of agent 2 is a function of the action of agent 1 shows that the infor-
mation constraint provides a tight characterization of the beliefs an outside
observer may have on the actions of an automaton that interacts with an
outside strategy.

How about the complexity of two interacting automata, instead of one
automaton interacting with an arbitrary strategy? Our second converse re-
sult shows that, when both agents are restricted to using automata of size
at most m, the information constraint is tight up to a multiplicative con-
stant that depends on the distribution of beliefs of the outside observer to be



achieved. In particular, a pair of interacting automata of size m can generate
a large subset of the set of sequences of period less than or equal to m log m.
We observe that mlogm is much larger than the period m to which a single
automaton is constrained. In terms of orders of magnitude, the logarithm
of the number of pairs of automata is a constant times mlogm, and so is
the logarithm of the number of sequences that can be generated. Therefore,
this results shows that automata are not only a rich model when interacting
with arbitrary strategies, but also when interactions are restricted within the
model.

Therefore, it appears that while an automaton in isolation is unable to
produce much complex phenomena, two interacting automata can. One may
wonder what is the minimal complexity of a stream of inputs that an au-
tomaton requires in order to generate complex phenomena. Our Theorem
2.4 shows that an automaton of size m provided with a deterministic periodic
stream of inputs whose period length is of order logm can generate random
sequences of length of order m logm.

The proof of our impossibility result relies on entropy techniques intro-
duced by Lehrer [1988] and substantially developed by Neyman and Okada
[1999, 2000, 2009] and then pursued by e.g. Gossner et al. [2006] and Peretz
[2012, 2013]. The converse results rely on extensions of the construction of
automata whose states are elements of De Bruijn sequences [Gossner and
Hernéndez, 2003, 2006]. In contrast to Gossner and Herndndez [2003, 2006],
we are not interested here in constructing an automaton that matches a
given sequence, but in the construction of a random automaton or a pair
of automata that achieve desired statistical properties. We rely on a result
proven independently by Ornstein [1970] and Shapira [2007] showing that
the desired property is satisfied when the entropy of the generated sequence
is sufficiently close to the target.

The min-max values of two-player repeated games played by automata
[Ben-Porath, 1993, Neyman, 1985, 1998, Kalai, 1990, Neyman and Spencer,
2010, Neyman, 2008] or by strategies of bounded recall [Lehrer, 1988, Peretz,
2012] is relatively well understood. However, little is known about min-
max values of games played with three or more finite automata, while a few
results have been obtained on three players with bounded recall [see Bavly
and Neyman, 2014, Peretz, 2013]. Our results on the set of random plays
generated by finite automata have natural consequences on the min-max
values of repeated games played by three automata, which was one of the
question which originally motivated our study.

The paper is organised as follows. Section 2 presents the model and the
main results, which are then proven in Section 3. Section 4 examines the
min-max values of repeated games played by finite automata.



2 Model and statement of the results

Let A' and A? be finite action sets for agents 1 and 2, and A = A x A%
It is assumed throughout that |A'|,|A%| > 2. A (pure, reduced) strategy for
agent i € {1,2} in the repeated interaction is a function from U;so(A™)" to
A?and the set of strategies for agent i is denoted Y. A pair of strategies
(o', 0?) € ¥ x ¥? induces a play (ay,...,as,...) € AN, where a; = (a},a?)
is defined recursively by ai = o’(a;’,...,a;",).

A (reduced) automaton of size m for agent i is given by a state space
S of cardinality m, an initial state gy, an action function f: S — A’ and
a transition function h: S x A=% — S. An automaton for agent i and a
sequence (a;’,...,a;") € (A7) induce a sequence of states qg, q1, . . . , ¢; given
recursively by

qo,
q1 = h(q()a al_z)7

qr = h(Qt—17 at_i)-

Thus, an automaton defines a strategy o by

o'(ar’,-. - a") = flan).

We let 3¥(m) be the set of strategies of agent i induced by automata of size
m.

For a compact metric space X, the set of probability measures on X
endowed with the weak-* topology is a compact metric space which is denoted
A(X). We abbreviate A(A(X)) by AA(X). It is noted that throughout the
paper we mainly consider finitely supported probability measures, so the
weak-* topology does not play a crucial role.

Shannon’s entropy of a probability measure over a finite space, @@ € A(X),
is the quantity

H(Q) =~ Qx)log (Q(x)),
zeX
where log = log, and 0log0 = 0 by continuity. The entropy of a random
variable x € X, denoted H(x), is the entropy of its distribution. If z € X
and y € X are two finitely valued random variables H(z,y) denotes the
entropy to the random variable (z,y) € X x Y. The entropy of = conditional
on y is defined by the chain rule H(z|y) = H(z,y) — H(y). The inequality
of conditional entropy asserts that H(x) > H(z|y) > 0, where the first
inequality is equality if and only if z and y are independent. By taking m
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to be a uniform random permutation on X, the inequality of conditional
entropy implies that H(x) = H(w(x)|7) < H(w(x)) = log | X|, with equality
if and only if # has the uniform distribution. The mutual information of x
and y is defined as I(z;y) = H(x) — H(x|ly) = I(y;x). By the inequality
of conditional entropy, I(x;y) > 0 with equality if and only if z and y are
independent.

For P € AA(X), we denote the expected entropy of P by

mm:/ﬂ@mm@.

A correlated strategy is a probability distribution 7 € A(X! x ¥2). Such
7 induces a probability distribution P. over the set of infinite histories AY.
For any finite history (ay,...a;—1) such that P, (ay,...,a;—1) > 0 we let

D@, ... ai1) = Praday, ... a—q),
pi(ar, ... a-1) = Pr(atlay, ..., ai1).
That is, py (a1, ...,a;-1) and pj_(as,...,a;—1) represent the beliefs of an out-

side observer on a; and on aj given ay, . .., a;—1. We denote by Pi(1) € AA(A)
and P/(1) € AA(A?) the laws of the random variables p; - (a1, ...,a;—1) and
of pf‘;ﬁ(al, ...,a;_1) when (ay,...,a;_1) is drawn according to P.

Finally, for » > 0, we define the r-stage expected empirical frequency of
beliefs [Gossner and Tomala, 2006, 2007] induced by 7, P,.(7) € AA(A) and
Pi(1) € AA(AY), by

1 s

737’(7—) =~ ZB?
r t=1

i 1 - i

Pir)=—) P
t=1

Note that we can express H(P,(1)) = 1 >°_, H(a;|a,—1) and H(Pi(1)) =
v i H(ayla-1). .

Clearly, the sets of all possible P,.(7) and P(7) when r > 0 and 7 is an
unrestricted correlated strategy are dense in AA(A) and AA(A?Y) (since any
P € AA(A) can be approximated by an average of Dirac measures P, =
%(5621 + ---dg,), and such P, can be implemented by correlated strategies
that play @Q; at each stage ¢ = 1,...,r independently of the history up to
stage 7). Our aim is to investigate what restrictions are imposed on these
sets when either or both strategies are taken among subclasses of bounded
complexity.

By considering the cardinality of X(m) we obtain the following constraint
on the possible Pi(7) when o' is restricted to take values in ¥¢(m).
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Theorem 2.1 (information constraint). For every m € N, 7 € A(X!(m) x
¥2), and r € N,
H(PL(T)) o mlogm + o(mlogm)
|A2| -1 — r '

Our main effort is dedicated to obtaining converse results showing that
the bounds provided by the information constraint are tight. In order to state
possibility results precisely, it will be convenient to consider a metric that
induces the weak-* topology on AA(A). The Wasserstein metric d serves this
purpose. Let (X, d) be a metric space, e.g., (A(A), ||-||;). For P, P" € A(X),
the d distance between P and P’ is defined by

d(P, P = inf /dx, dQ(z,y),

(PP) = ot popp | A9) 4R, 9)

where Q! and Q? denote the first and second marginals of Q respectively.
We are now in position to state our first converse result to Theorem 2.1.

Theorem 2.2. For every P € AA(A) and € > 0 there exists 1o € N such
that for every r > rq there exists m € N and 7 € A(X(m) x X?) such that

H(P) mlogm
R - > =2
|A2|—1+E_ r

and

d(P, P, (1)) < e.

Theorem 2.2 shows that the information constraint of Theorem 2.1 is
tight when particularized to distributions P such that H(P) = H(P'), i.e.,
H(a*|a') = 0 (P as.). In terms of expected distributions of beliefs, the
set of strategies 3'(m) is as rich as any other set of strategies of the same
cardinality can be. A natural question to ask is whether this richness still
holds when the set in which o2 is chosen is also restricted.

In order to address this question we restrict both agents to strategies
implementable through finite automata of size m. The information constraint
shows that for every correlated 7 € A(X(m) x $y(m)),

- H(P;Z(T)) < mlogm + o(mlogm)
ie{r2y | (|4 —=1) ) — r

The next theorem asserts that the above bound is tight up to a constant
multiplier that depends on P. It shows that the information constraint is
tight even when agent 2’s strategy comes from the same (space) complexity
class as that of agent 1.



Theorem 2.3. For every P € AA(A) there exists C(P) > 0 such that for
every € > 0 there exists ro € N such that for every r > rq there exist m € N
and 7 € A(XY(m) x ¥%(m)) such that

mlogm

C(P)+e>

r

and

d(P, P, (1)) < e.

Note that C'(P) does not depend on €. It does, however, depend on P.
Whether one could replace C(P) by a constant that does not depend on P
(but rather just on A) is unknown. The information constraint implies that

|Af[—1

The next theorem provides a sense in which the information constraint
is still tight under two further restrictions. First, the strategy of agent 2 is
pure, i.e. constant on the support of 7. In particular, the strategies of 1 and
2 are now independent. Second, agent 2 uses a strategy in a much smaller
space than ¥%(m), namely the space of periodic sequences' of period at most
O(logm). On the other hand, Theorem 2.4 considers only the distribution of
predictions of agent 1, and not of both 1 and 2’s actions. In this result, the
sequence of actions of agent 2 can be considered as a “source” which, albeit
deterministic, allows agent 1 to look more unpredictable from the point of
view of an outside observer.

To fix notations, for > 0 we denote by A2(z) the set of sequences of
period at most « and identify each sequence (a7) € A2(x) with the strategy

o2 given by o%(al,...,al ,) = a? for every (ai,...,a; ).

we cannot replace C(P) by a constant C' < max;e( 2} {M}_

Theorem 2.4. For every P' € AA(AY) there exist C = C(P') > 0 such
that for every e > 0 there exists ro € N such that for every r > ry there exist
m € N and 7 € A(X'(m)) x A2(C'logm) such that

H(P) mlogm
e/

and

d(P',PL(1)) <e.

1Or, equivalently, in the space of oblivious automata of size at most O(logm), i.e. those
that ignore the actions of the other agent.



3 Proofs of the Main Results

3.1 Information constraint

Theorem 2.1 is a consequence of the following upper bound on the number
of finite automata.

Lemma 3.1. _
|Zz(m)| < m(‘A"’fl)ero(m)‘

Proof. All elements of 3;(m) are induced by automata with state space
{1,...,m}, thus are described by ¢o € {1,...,m}, f: {1,...,m} — A,
and h: {1,...,m} x A= — {1,...,m}. This gives m|A*|™m!4""I™ differ-
ent descriptions. Since strategies are invariant to permutations of states in
{1,...,m}, by Stirling approximation, we have:

|Zz(m)| < |Ai|mm|A*i\m/(m - 1)' _ m(‘A_i’—l)m—&-o(m)‘
O

To complete the proof of Theorem 2.1 we rely on a slight generalization
of a result due to Neyman and Okada [Neyman and Okada, 1999, Section 5]
showing that the strategic entropy of a strategy is at most its entropy:

Lemma 3.2. Let 7 € A(X? x ¥2), where X't is any finite set and r > 1,
then,

A(P)(r)) < - log ||
Proof. Let T € A(X! x¥,) be a correlated strategy. Denote by o = (¢!, 0?) a
random variable with values in X! x ¥2 with distribution 7 and by a4, ..., a,,
where a; = (a;,a?) the play induced by o. We abbreviate a! := a},..., al
(i = 1,2), and a; := (a;,a?). By the chain rule of entropy, the inequality
of conditional entropy, and the fact that a; is a function of a? ; and o', we

have:

Z H(a;laz) + H(afla1,a;) = H(a,)
t=1
< H(c'a?) = H(c") + H(a?|o")

» T

= H(c")+ > H(a}|a1,a},0").

t=1



And therefore:

AP = =3 Hialla) <

t=1

1

—H(c") < 1log =7
r r

Theorem 2.1 is an immediate consequence of Lemmata 3.1 and 3.2.

3.2 Concatenable strategy pairs

The proofs of Theorems 2.2, 2.3, 2.4 rely on the construction of adequate
automata. These constructions are built in blocks, and larger automata are
obtained by concatenation of smaller ones. We introduce a condition that
ensures that such concatenations can be implemented by automata of size
equal to the sum of the smaller ones.

We say that a pair of automata (o', 0?) is r-concatenable if there exists
a pair of transitions (s',a?) for o' and, (s%,a') for o2 such that, in the play
induced by ¢! and o2, the first hitting time of both (s', a?) and of (s%,a') is r.
We denote by (X!(m!) x 32(m?))" the subset of X! (m') x X%(m?) consisting
of all r-concatenable pairs of automata o' of size m!' and o2 of size m?.

A pair given by an automaton o' of agent 1 and a strategy o2 of agent
2 is r-concatenable if there exists a transition (s!,a?) such that, in the play
induced by ¢! and o2, the first hitting time of (s',a?) is r. We denote by
(H(m') x X2)" the subset of X'(m!) x ¥? consisting of all r-concatenable
pairs formed by an automaton of agent 1 of size m! and a strategy of agent
2.

A pair given by an automaton o' of agent 1 and an r-periodic sequence of

actions a® = a?,...,a2,a? ... of agent 2 is r-concatenable if there exists a state

7 ()
s! of o! such that, in the play induced by ¢! and a2, the first hitting time of
(s',a2) is 7. We denote by (X' (m') x A2(m?))" the subset of X' (m') x A2(m?)
consisting of all r-concatenable pairs formed by an automaton of agent 1 of
size m' and a periodic sequence of actions of agent 2 whose period is at most
m? (in particular, the period must divide 7).

An r’-concatenable pair of an automaton and another strategy can be
concatenated to an r”-concatenable such pair by redirecting the last transi-
tion of the former automaton to the initial state of the latter automaton. The
result is an 7’ + r”-concatenable pair whose automaton size is the sum of the
sizes of the two automata. This idea is formally expressed by the following
three lemmata.



Lemma 3.3 (Concatenation Lemma 1). Let (0}, 0%)1<p<n be a family of
strategy pairs such that for every k, (of,02) € (X' (m}) x $2(m3))™. Let
r=,rk, mt =3, mp, and m* = >, mi. Then, there exists a strategy
pair (ob,0%) € (B (m') x ¥2(m?))" such that the play induced by (o', 0?) is
the concatenation of the plays induced by (0}, 02)1<k<n-

Lemma 3.4 (Concatenation Lemma 2). Let (0},0%)1<k<n be a family of
strategy pairs such that for every k, (o},0%) € (X1(m}) x ). Let r =
Sk, and m* = >", mj. Then, there exists a strategy pair (o', %) €
(S (mt) x 32)" such that the play induced by (o', 0?) is the concatenation of

the plays induced by (0}, 02)1<k<n-

Lemma 3.5 (Concatenation Lemma 3). Let (0})1<k<n be a family of strate-
gies for agent 1 and a* an m?-periodic sequence for a agent 2. Suppose that
for every k, (o4,a%) € (X' (my) x A(m?))™. Let r =Y 1, m* =3, my.
Then, there exists a strategy o' for agent 1 such that (ct,a) € (X'(m!) x
A2(m?))" and the play induced by (o', @*) is the concatenation of the plays
induced by (0}, a*)1<k<n-

The next lemma, Lemma 3.6, utilises the Concatenation Lemmata in
order to reduce Theorems 2.2, 2.3, and 2.4, to considering only r’s in a
sequence that does not increase too fast. Formally, Lemma 3.6 consists of
three lemmata, referring to the three theorems. Since the three lemmata are
very similar both in their formulation and in their proofs, we state and prove
them as one result.

Lemma 3.6. Let {my}, {rp}i2, be sequences of natural numbers, and let
T € A(XH(my) x B2 (respectively, A(X(my) x X2 (mg))™, or A(S(my,) x
A, (f(my)))™ for some non-decreasing f: N — Ry and with pure marginal
72).
Suppose limy,_,oo P, (1) = P exists, and
(1) Sup Tr41 = 00,

(i) sup, T’;—:l < 00.

Then, for every e > 0 there exists rog € N such that for everyr > rqy there exist
m >0, <r and T € A(S'(m) x )" (respectively, A(L'(m) x £2(m))",
or A(S'(m) x A(f(m)))" with 7% pure), such that

—>1—¢

r

mlo my logm
,g <limsupw+e,
r k Tk



Proof. Assume w.l.o.g. that {r;} is increasing (otherwise consider an increas-
ing sub-sequence). Let 1 > ¢ > 0 and ko € N (later, ko will be assumed to be
sufficiently large). Let 79 = [¢ 1y, |. For r > 1, let k be the largest integer

such that r, < er. Let C' = sup;, 2. Let 7’ =1y, {ﬁJ It follows that

Tk

/
—>1—-c
’
Let 71 be the strategy assumed by the lemma. Set 7 to be the concate-
nation of % independent copies of 7. It follows that

Po(r) = Py, (1) —— P.

ko%oo

Let m = %mk. The concatenation lemma ensures that 7 € A(X(m) x
%2)" (respectively, A(S(m) x X2(m))", or A(S(m) x A2(f(m)))” with 72
pure).

It remains to verify that 71oem

. 1 .
2 < lim supy, %kgm’“ + ¢, for an appropriate

choice of kq. Since Cry > rpy1 > er > er’, we have % < € 'C. Therefore,

mlogm - my log my,

- + %log(e_lo).
T Tk Tk

Assuming lim sup, ™8™ o6 for any k large enough, we have Zxl8me
k Tk ? 9 r

lim sup,, %kgm’“ + § and - log(e71C) < §. O

3.3 Building blocks

We define a few building blocks that will be used in the construction of the
strategies required for Theorems 2.2, 2.3, and 2.4 . For | € N and z € (A)!,
the empirical frequency, emp(x) € A(A), is defined by

emp(e)(a) = 7 |{t € 1) 20 = o},

where [n] .= {1,...,n}.

For a rational distribution Q over A, we let T?(l) be the set of sequences
of elements of A of length [ with empirical frequency ). We say that [ is
a common denominator of Q if T?(l) # (). We use the fact that if [ is a
common denominator of @), then [Cover and Thomas, 2006, Chapter 11]

. log | T2 (uly)|

U—> 00 ulo

= H(Q). (3.1)
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Throughout, an alphabet is a set that contains at least two distinct ele-
ments. A de Bruijn sequence of order k over a finite alphabet B is a |B|*-
periodic sequence of B symbols z1, xs, ..., such that for every (by,...,b;) €
B* there exists a unique 1 < ¢ < |B|* such that (by,...,b,) = (24, ..., Tesp_1).
The existence of de Bruijn sequences was shown, e.g., by de Bruijn [1946]
through the existence of Eulerian cycles in de Bruijn’s graph.

The empirical frequency of de Bruijn sequences is always uniform. In
order to obtain sequences with similar properties, but whose empirical fre-
quency is arbitrary we define de Bruijn sequences over compound alphabets.
For [ > 1, let Y be a subset of B! with at least two distinct element, called
the set of words. A compound de Bruijn sequence of order k over Y is an
I|Y|*-periodic sequence of B elements obtained by the concatenation of the
|Y'|¥ words forming a de Bruijn sequence of order k over the alphabet Y. It

is, therefore, an [|Y |*-periodic sequence x1, 75, . .. of elements in B such that
for every sequence (yi,...,yx) € Y*, there exists a unique 1 < j < [Y|F
such that (yi---yx) = (Tj+1,..., Tji4,) (Where uv denotes the concate-

nation of v and v). The item z; € B is the t-th element, while we call
Y; = (Tjis1, - .., xjip1) € B the j-th word, and (y;, ..., y;+k—1) € B* the j-th
block. When Y = T%(l), the compound de Bruijn has empirical frequency
Q.

The following definition provides a simple upper bound on the amount
of information needed to describe a finite string of symbols given another
string. We define a variant of Levenshtein’s edit distance. For a set X we
let X< be the set of finite sequences of elements of X. Given a finite
alphabet B, the simple edit operations on B<* are the following 2|B| + 2
operations: appending one symbol at the end or the beginning of a string,
and deleting the first or last element of a string. We define the simple edit
distance between two words w,u € B<*° denoted e(w, u), to be the minimal
number of simple edit operations needed in order to transform w to u. As
usual, the distance between a string w and a set of strings K, e(w, K), is the
minimal distance between w and some u € K. Note that, up to a multiplier
of log(2|B| + 2), the simple edit distance is an upper bound on the amount
of information content of one string given another string.

The strategies required for Theorems 2.2, 2.3, and 2.4 all have a common
structure. We next describe the common structure of the random plays
induced by these strategies.

Definition 3.7 (Random Enumeration Scheme). Let Y C Al, for some [ > 1.
A random enumeration scheme over Y is a sequence of tuples (L, Gy)pe ;.
where for every k, Ly = (w1, ..., w,|) is a finite sequence of strings in A<>
and G, is a group of permutation on [|Lg|]. In addition, there is a constant
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C' (that does not depend on k) such that
(1) {s e [[Ll]] cws=wi} [ <C Vi e[L],
(i) e(w,Y¥) <O vie[L)

(i) [Y]*/|L| < C,

i) ()™ <c,

for all £ € N.

Each element of the group G} acts on the sequence Ly by re-ordering its
elements. That is, every m € G}, transforms L, into

(wrr(l)v cee awﬂ’(\LkD)'

When 7 € Gy is random and uniformly distributed, the corresponding
random sequence a(k) := Wr(1) ** * Wr(L,)) 18 called the induced random play.

Informally, the idea is that L, is approximately an enumeration of Y'* and
(G, contains a substantial portion of all the permutations of Ly, so that the
induced random play a(k) approximates a sequence of i.i.d. random variables
drawn uniformly from Y. The two processes are similar in two ways: they
produce similar sequences and they have similar entropy rates. Since for
each element w; of Ly, e(wy, Y’“) < C, w,; is almost entirely composed of a
concatenation of strings from Y, and hence so is a(k). The next lemma says
that the entropy rate of a(k) is also similar to that of a uniformly distributed
independent sequence of Y-valued random variables.

Lemma 3.8. Let (Ly, Gi)ry be a random enumeration scheme over a com-
pound alphabet Y C Al. Let 1}, be the total length of the random play a(k).
Then,

Proof. Let m be a uniformly random permutation from Gj, and a(k) =
ai,...,a,, the corresponding induced play. We first estimate iH (m) and
then compare it to %H(EL(I{?)).

Let C' be as in Definition 3.7. Since the length of any word in L; is at
most ki + C', we have
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Since |G| > O+l L] and |Ly| > C7HY|F,

1 1 log(|Ly|!)  |Li|logC _  log(|L|") log C

—H = —1 > — > _

L H(m) = log(|Gil) = — e Lo (kl+C)  Kl+C
kl+C kl+C I

We now compare %H (a(k)) to iH () by coupling a(k) with additional
random variables of low entropy, such that 7 can be read off from a(k) and
the additional random variables. Recall that

a(k) = wr)Wr(2) - - Wa(|L4))5

where Ly, = (wy, wa, ..., wL,). Denote by |w| the length of the word w. For
each j € [|Ly|], let

bj = |wﬂ(j)|, and

¢ = i <m(h) :wi =wagp}|
Note that from @ and by, . .., bz, one can read off the words wr1y, ..., wr(L,)),
and further from cy, ..., ¢y, the permutation 7 itself. The values of each b;

range between kl — C and kl + C, and the values of each ¢; are in [C]. It
follows that

%H a(k)) > T_kH(W) - Tik [H(bh S bz,) + Hien, 7C|Lk|)}
> —1Ogl|y| (1-0(1)) - % log(2C?) > bgl'Y' (1-0(1)).

We now describe a framework within which one can construct schemes
of automata that are naturally associated with certain random enumeration
schemes.

Definition 3.9 (Random Automaton Scheme). A random automaton scheme

for agent i is a tuple = = (P, 1, {w(k), L, (se(k), 2 (k) o (W)}, G}~ )
=1
where

o P =3 ,qi0q, € AA(A) is a finitely supported rational distribution
over rational beliefs.

e | € N is such that each [; := ¢;/ is a common denominator of @); (in
particular, /; is an integer).
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Let Y =X, T9i(l;). For every k € N,

o v =u(k)=(21,...,2y,) is a compound de Bruijn sequence of order k
over Y, where my, = [|Y|¥.

o L= (wy,...,wy,|)is asequence of A-words such that sup, my/|Li| < oo.
e Fort=1,...,|L,

— st = se(k) € [,

— 2z =z (k) € [lk] \ [[(k — 1)], and

—a =a (k) € AT\ {a ]

such that
i —1
Wy = Tsp—zy """ Tsp—1 (:Est’ ay )’

and (s, a;") # (sp,a,") for all t # ¢'.

1
e G is a group of permutations on [|Lg|], with sup,, ('lé’j‘!) < o

Definition 3.10. Given a random automaton scheme Z, an automaton
oL(k) € ¥'(my) is defined by:

e the states space [my];
e the initial state s; — z; mod my;
e the action function f(s) = z';

R

e the transition function

s + 1 mod my if a=' = a7,
h(s,a™") =< 8411 — 241 mod my, if s = s, and a~ = a; " for some t € [|L]],
unspecified otherwise.

A transition of the first type is called a +1 transition and a transition of the
second type a jump transition.

Note that the jump transitions are well defined, since it is assumed that
the pairs (s;,a; ") are distinct.

The rest of Section 3.3 presents relevant properties of random enumera-
tion schemes. For readability, the random automaton schemes are assumed
to be for agent 1. Of course, similar properties hold for random enumeration
schemes for agent 2.

15



With the notation of Definition 3.9, the concatenation of the elements of
L. is denoted
dE(k') = wiwsy - - U}|Lk|

The next lemma ensures that the strategy oi(k) generates the desired play
az(k), that is has the necessary concanetability properties and provides the
relevant upper bound on the state space cardinality.

Lemma 3.11. Let = be a random automaton scheme for agent 1, then:
(1) the induced strateqy ok(k) is consistent with the play a=(k),

(1i) the induced strategies o (k) coupled with (any strategy consistent with)
az(k) is rp-concatenable, and

(1) limsup,,_, %kgmk < H(P)limsup,_,., ﬁ

Proof. Part (i) follows from the definition of ol(k). In the beginning and
after each jump transition, ol(k) is in state s; — z;. In the next z; periods
asz(k) prescribes the action proﬁles (Ts—24j—1 1 J € [2]). Provided ol(k) is
at state s; — 2, + 7 — 1 it plays xSt atj—1 as required. Provided agent 2, too,
plays as required, xSt stj_1, @ “+17 transition to s; — 2; + j occurs. After
2 steps, oL (k) is at state s;. At that time az(k) prescribes the action profile
(zl,a?). If agent 2 plays a7, then a jump transition to s, 11 — z occurs, and
the result follows by induction on t¢.

Part (ii) holds since the play ends at a jump transition and each jump
transition occurs at most once by Definition 3.9.

For Part (iii) note that r, = ZlL“ 2z + 1> |Lg|(k — 1)l. Thus,

my 10g my 10g my k my
T Tkl k=1L

It remains to show that lim sup logm H(P). Recall that my, = I|Y[*. Since

log [Y'| = 32, log [T9(1 )\<ZlH(Qz) LH(P),

logmy,  log|Y]| N log
Kl ki

]

A permutation m € G}, acts on the k-th component of = by transforming
Lk = (wl, .. w|Lk‘) into (Wr(1y, - - -, Wr(Lg))), St IO Srp), 2 into 2, and
a? into a? (%) for t= ,|Lk|. This transformation defines another random
automaton scheme denoted 7.=. The following lemma describes the relation
between random automaton schemes and random enumeration schemes.

16



Lemma 3.12. Let = be a random automaton scheme for agent 1. Then:
(i) (Lg, Gi)rey is a random enumeration scheme over'Y.
(ii) oy = is consistent with the play wr(1)Wr(2) - - - Wr(iL,)) (Where Ly, = (w1, wa, ..., wiL,))).
Proof. Part (ii). By the definition of 7.Z2,
G 2(K) = Wr()Wr(2) -+ Wa(|Ly )

By Lemma 3.11, o} _ is consistent with a,=(k).

Part (i). We need to verify (i)-(iv) from Definition 3.7. (iii) and (iv) follow
from Definition 3.9, since my, = [|Y|¥ and sup, my/|Li| < oo.

We prove (ii). Let L, = (wy,...,wy,)). BEach word w, consists of z
consecutive elements xg,_,,...,zs,—1 of z followed by a single symbol. Since
|z; — kl| <[, there is some block B = [(u + k)I] \ [ul] such that symmetric
difference between B and {s; — z,...,s;, — 1} is at most 2[; therefore the

simple edit distance between w and x g is at most 2[+ 1. (ii) then holds since
rp € YE.

We finally show (i). We must bound from above the multiplicity of el-
ements in L;. Fix a mapping t — B(t) as described above, i.e., B(t) =
[(w+ k)] \ [ul] such that s; € [(u+ k)] \ [(u+ k—1)]]. We must bound from
above

max |1t:w; =w ,
iy 1 we =10

which is clearly not more than

(maX| {t: B(t) = B} |) ( max |{B(t) : w, = wy,} |> :

B to€[| L]

We bound each one of the above factors from above by functions of [ and |A]
that do not depend on k. We begin with the first factor, the number of indices
t mapped to any given block B. Since s; € [(u+k)I]\ [(u+ &k — 1)I], there are
only [ possible values for s;. Since each (s;, a?) is unique, the multiplicity of
each s; is at most |A?| — 1; therefore the number of indices mapped to any
given B is at most [(|A?| —1).

Now, fix ty € [|Lk|]. We bound from above the cardinality of { B(t) : w; = wy, }.
Since the simple edit distance between w; and xg) is at most 2/ + 1, for any
t, we have that if w, = wy, then xp) belongs to the ball of radius 4 + 2
around (). Since the size of that ball is a function of [ and |A| (but not k)
and since zp determines B, the cardinality of {B(t) : wy = wy, } is bounded
(by a function of [ and |A|).

O
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A random automaton scheme allows us to implement a random play with
certain properties. Lemma 3.15 shows that these properties guarantee that
the expected distribution of beliefs induced by the play is close to the target
distribution P.

Lemma 3.13. Let = be a random automaton scheme for agent 1 and P =
S 4ido,. Letry be the length of a=(k). For every k € N, let a(k) = ar=(k)
be the random play obtained by taking a uniform random permutation m €
Gi. The corresponding mizture of strategies o} =(k) coupled with any a, = (k)

.=

consistent strategies for agent 2 defines a correlated strategy Ty.
(i) The play induced by Ty is a(k).
(ii) The strategy Ty is in A(X(my,) x $2)"
)

= ¢;Qi(a). The random play

(iii) Let Q € A(Ax[n]) be given by Q(a,i a=
a(k) can be coupled with a random [n|-valued sequence b = by, ... by,
such that

o limy HQ - E [emp(d,lg)} || =0,

® limk_,oo iH(b) =0.
(i) liminfy_ iH(&(k)) > H(P) — f(1), where f(I) = 0, as | — oc.

(v) limsup,_, %kgmk < H(P)limsup,_,, |T_,f|

Proof. Parts (i), (ii), and (v) immediately follow from Lemma 3.11.

Part (iv) follows from Lemma 3.11(i), Lemma 3.8 and Equation (3.1).

It remains to verify Part (iii). Associate with any state of s € [my] a
number ¢ = i(s) € [n], defined by

selli+...+ L\ [li+...+ -] mod L

Recall that the induced play is of the form a = wyw; - w,|, where w, =
(Tt s+ Tsp1, 1), for some a; € A. Let uy = i(s; — 2)---i(s; — 1) 1, and
b= (bi,ba, ..., by, ). Since |wy| = |b| = 2z + 1 > (k — 1)l, and since the em-
pirical distribution of any word x4 . .. xy4; coupled with i(¢1+1)...i(tl+1)
is Q, [lemp(by, wy) — Q|| = O(k™); therefore ||Q — E [emp(a, b)]|| = O(k™).
The sequence b can be read off from the random variables {z;, s; mod [ : 1 <t < |L|}.
Since these random variables take values in sets of size [,

| - 1 |Li| logl log !

—Hb) < —H dl:1<t<]|L < < 0

/r'k ( ) — rk- (Zt,St mo — — | k?|) — T]g — (k _ 1)[ — ?
as k — o0 O
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3.4 Information criterion

The following lemma will allow us to determine whether a distribution of
beliefs is d-close to a target Dirac distribution.

Lemma 3.14. Let A be a finite set and H: A(A) — R continuous and
strictly concave. For every € > 0 there is 6 > 0 such that for every @ € A(A)
and P =Y, q0q, € AA(A), if

(i) |Q =, aiQill <9, and
(i) >, :H(Q:) > H(Q) — 6,
then

d(5Q, P) < €.

Lemma 3.14 has been shown by several authors independently, see for
instance Lemma 1 in Ornstein [1970] and Lemma 22 in Shapira [2007].

A distribution over beliefs can be represented by a pair of random vari-
ables. Let x be a random variables taking values in a finite set X. Define
p(z) € AA(X) to be the Dirac measure supported on the distribution of x.
For an event of positive probability F, define p(z|E) € AA(X) to be the
Dirac measure supported on the distribution of x conditional on F. Let y
be another random variable taking values in a finite set Y. The distribution

over beliefs p(z|y) € AA(X) is defined by

> Py =y)plaly =y).

yey

Lemma 3.14 says that for every € > 0 there is 6 = (¢, | X|), such that

I(z;y) <6 = d(p(z),p(zly) <e

Let z be a third random variable. By Markov’s inequality we have

I(z;y|lz) <0 = d(p(z|2),p(z|y, 2)) < e+ 6. (3.2)

Lemma 3.15 (Information Criterion). Let A be a finite alphabet. For every
€ > 0 there is § > 0 such that for every n > 1, every Q € A(A x [n]), every
r > 0, and every random play a = aq,...,a., if a can be coupled with an
[n]-valued random sequence b = by, ..., b, such that

(i) ||Q — E [emp(a, )] H <4,
(i1) %H(&]B) > H(z|y) — &, where (z,y) ~ Q,
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(iii) 11(a;b) < 6,
then i
d(p([Ely),'PT(d)) < €.

Before we prove Lemma 3.15, note that the case of n = 1 is exactly
Lemma 3.14.

Proof. Since the mapping that maps the distribution of (z,y) to p(z|y) is
continuous as a function form A(A x [n]) to AA(A), we may assume w.l.o.g.
that Eemp(a, b) = Q. Let € > 0. By (3.2) we can take 6 > 0 as such that

I(a;blc) <8 = d(p(alc),plald,c)) < 3,

for any random variables a, b, ¢, where a takes values in A.
Let t be a random variable uniformly distributing in [r] independently of
(@,b). Let H; = ay, ..., a;. Note that (as,b;) ~ Q, and P,(a) = p(as|H_1,1).
By the triangle inequality

d(p(aebe), plar|He-1,t)) < d(p(aelbe), placlbs, Hi 1,t))
+d(p(at|bt, He1, t)) p(at|Ht—17 t))

By the choice of d, the proof will be concluded if we prove two inequalities:

[(at;Htflaﬂbt) < 5, (33)
I(at; bt|Ht—l7 t) <. (34)

For (3.3):
I((It; Hi1, t|bt) = H(at|bt) - H(at’%t—la t, bt)

S H(at]bt) - H<at’Ht717t>B)
< 0

where the last inequality is provided by condition (ii) of the lemma.
For (3.4):

I(at§bt|Ht—1>t) = H(at|Ht—1at)_H<at’%t—1at>bt)
1

< —[H(a) - H(alb)]
1 _
— —I(ab
@)
< 0
where the last inequality is provided by condition (iii) of the lemma. O
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3.5 One automaton
The stage is set for proving Theorem 2.2.

Proof of Theorem 2.2. Let P € AA(A) and € > 0. Since the function H(-)
is continuous and the set of distributions with finite support and rational
coefficients is dense in AA(A), we may assume w.l.o.g. that P = """ | ¢;do,
is rational. Let § = d(€) > 0 be given by Lemma 3.15. Let [ be a common
denominator of P, such that f(I) of Lemma 3.13 is less than J.

We define a random automaton scheme for agent 1

= = (P4 {alh), Ly, (s (k). 2 (k) (kDI Gr )

k=1
with

e u(k)=my,...,2,, an arbitrary compound de Bruijn sequence as spec-
ified by Definition 3.9,

o [Li| = (147 = D),
o 2(k) =kl —1 for every t € [|Lg|],

o {(si(k),a?(k))} an arbitrary enumeration of all pairs (s, a?) such that
s € [myg] and a® # 22(k),

e Gy, the entire symmetry group on [|Ly|].

Lemma 3.13 provides the strategies 7, € A(X!(my) x 22)™. Also, since

|Ly| = (J]A?] — 1)my, the same lemma ensures that limsup, .. %}ﬁgmk <

%—i—f(l). Lemma 3.13(iii) and Lemma 3.15 ensure that d(P,, (7:), P) < €,
‘[Lor every k large enough. Lemma 3.6 extends the construction to strategies

that induce a play of any length r > rgy, for some ry > 0. [

3.6 One automaton, one sequence

In this section we prove Theorem 2.4. Theorem 2.4 refers only to P(7),
and so we can take any coupling P € AA(A) such that P = P} (). In
particular, P can be taken such that P? = 4,2, for some a®> € A% (P a.s.).

The strategies of agent 2 are a subset of the strategies specified in the
proof of Theorem 2.2. Take the same k and [ as in the proof of Theorem 2.2.
Agent 2’s strategy will be a ki(|A%| — 1)-periodic sequence of pure actions,
where at times not divisible by kl agent 2 plays a?. At each time t = ukl,
u=1,...,]A?| — 1, agent 2 plays a different action in A?\ {a*}. After time
kl(]A%| — 1), agent 2 continues periodically.
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Formally, given € > 0 and a rational distribution P € AA(A) with P? =
05, Let 0 = 6(e) > 0 be given by Lemma 3.15. Let | be a common
denominator of P, such that f(/) of Lemma 3.13 is less than 9.

Let N
= = (P (k). L (s (R). k), af ()L G )
be a random automaton scheme for agent 1 with

o u(k)=um,...,2,, an arbitrary compound de Bruijn sequence as spec-
ified by Definition 3.9,

o |Li| = (JA%] = 1)my,
o 2(k) =kl —1 for every t € [|Lg|],

o {(si(k),a?(k))} an enumeration of all pairs (s,a?) € [my] x A?\ {a?},
such a?(k) is (]A?| — 1)-periodic (in t),

e Gy is the group of all the permutations 7 on [|Lg|] such that 7(t) = ¢
mod |A?| — 1, for all ¢ € [|Lg|].

The choice of the jump transition {(s;(k),a?(k))} was made such that
the induced play aZ(k) € A,(kl(|A%| — 1)). The definition of Gy is such that
a2 =(k) = a%(k), for all m € G,.

The rest of the specification of = is the same as in the proof of Theo-
rem 2.2, and so the length of the induced play is the same. The onlly thing

remaining to show is that Gy, is large enough, so that sup, (M) Bl - 50

|G|
Indeed,
2|1
|Lk| | A2
Gyl = !
Gy (| e

1

1
| Ly |1\ TEsT | L] TZxT Lol
(o)™ = (o 7 )™ = =i = -1

[A2[-1> " 0 JA%T

and therefore,

3.7 Pairs of automata

In this section we prove Theorem 2.3. For simplicity of exposition we prove
the theorem only in the case that |A'| = |A?| > 2 which is what we assume
throughout this section.
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The set of beliefs A(A) is divided into two regions:

A[(A) ={Q € A(A) : “Q is supported on either one row or one column”},
An(A) = A(A)\ Ar(A).

Every P € AA(A) can be (uniquely) represented as AP; + (1 — \)Pyy,
where P; ;€ AAr7(A) and 0 < A < 1. The constant C(P) of Theorem 2.3
is defined as AC(Pr)+ (1 =N)Ci1(Pir), with Cprr: AA;1(A) — Ry defined
by

Ci(P) = f(_Pl)’ (where n = |A'| = |A?|)
cutpy - 1E)

Where, D(P) = [ D(Q)dP(Q) and D: A(A) — [0,n — 1] is a continuous
function whose zeros are exactly A;(A). The definition of D is deferred to
Section 3.7.2.

The following lemma allows us to consider each one of the cases P €
AA[(A) and P € AA[(A) separately.

Lemma 3.16. Let Py, Py € AA(A), C1,Cy > 0, and 0 < XA < 1. Suppose
that for every € > 0 and every l € {1,2} there ezists 1o € N such that for
every r > 1o there exist v’ < r, m € N, and 7 € A(XY(m) x 2(m))" such
that

/

r
_21_67
’

mlogm
/g Scl—i-E,
,

and

d(Py, P (1)) < €.

Then, for every e > 0 there exists 1o € N such that for every r > rq there
exist v’ <r, m € N and 7 € A(X'(m) x X2(m))" such that

/
r
—>1—¢,

,

mlogm

; S)\Cl—F(l—)\)CQ—i‘G,
r
and

AP+ (1 — NP, Pu(7)) < €.
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Proof. Let € > 0 and A € (0,1). Set Ay = Aand Ay =1 — Xy, and P =
AP+ XAoPs. Let 19 > 0 be large enough so that for every r > ry and
[ € {1,2}, there are r, < N\, my € N, and 7 € A(X(my) x X2(my))" such
that

Ty

— >1—c¢

)\ﬂ”
m;logm

(8]

and B
d(Py, Pr, (1)) < €.

Let ' = r{ +7r9 and m = m; + ms. Let 7 be the concatenation of 7, and 7.
We have,
T € A(XH(m) x 2*(m))",

r
—>1—¢
r

and

(P, Pu(7)) < e.

It remains to verify

mlogm m; logm my log my mllogmﬂl
e D Db Dl
1=1,2 1=1,2 1=1,2
1
<A S g
1=1,2 1=1,2
mp My
< \C H( 22)

) +o(1).

< Z NCy +

=12
[

By Lemmata 3.6 and 3.16, it is sufficient to prove the following lemma.
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Lemma 3.17. For every € > 0 and every P € AA(A) U AA(A) there
exist sequences ry, my € N and 7, € A(X(my) X 32(my))™ satisfying

sup ry = 00, (3.5)
keN
SUp 741 /7TK < 00, (3.6)
keN
1
lim sup ZE 28 Py 4, (3.7)
k—o00 Tk
limsup d(P, P,(11,)) < e. (3.8)
k—o0

3.7.1 Cy(P)

In this section we prove Lemma 3.17 in the case P € AA;(A). We partition
Aj(A) into finitely many regions. By virtue of Lemma 3.16, we assume
w.l.o.g. that P is supported in one of these regions.

There are n? + 2n regions as follows: Dirac beliefs, beliefs supported on
any single row, and the beliefs supported on any single column:

{6(1} a € A,
{QeA({ad'} x A%): H(Q) > 0} a' € Al
{Q e A(A" x {a®}) : H(Q) > 0} a’ € A%

The case P = d5, is simple. Let b € (A'\ {a'}) x (42\ {a®}). Let o} be
an automaton with £ states that k-periodically outputs k — 1 consecutive a's
followed by a b'. Let o2 be an automaton that k + 1-periodically outputs k
consecutive a’s followed by a b%. A transition of the form (-, b) is first hit at
time k(k + 1); therefore this pair of automata is r, = k(k + 1) concatenable.
Lemma 3.17 holds with m; = k + 1.

It remains to consider the case P € AA(A! x {a?}) with H(P) > 0 (the
case P € AA({a'} x A?) is symmetric). The construction builds on the
construction in the proof of Theorem 2.4. We consider my, r, L and the
automata o!(k) and o%(k), as given in the proof of Theorem 2.4.

We construct an (ry + kl)-concatenable pair of automata with my + ki
states that generate the same sequence as (o'(k),0?) in the first kl steps.
Since kl < my, 1y, the conditions of Lemma 3.17 are satisfied.

Agent 1’s automaton is the concatenation of o' (k) with an oblivious au-
tomaton with kl states. The oblivious automaton starts at state 1 and moves
to state 2 and then 3, and so on until it reaches state kl, while always out-
putting some fixed action a! € Al. Note that L; does not include a sequence
where agent 1 always plays al.
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The kl(n — 1)-periodic oblivious automaton o2 is paired with an automa-
ton that looks for the ending sequence of kl consecutive al actions. For-
mally, suppose the states of o2, [kl(n — 1)], are visited in increasing order
1,2,...,kl(n—1). The states of the new automaton are [kl(n —1)] x {0, 1}.
The transitions are of the form (i,b,a') — (i + 1 mod kl(n — 1), ), where
x =1 if and only if either i = ki(n — 1), or b= 1 and a! = al.

After 7, steps the automaton of agent 1 reaches the final transition of o}
and moves to the initial state of its second automaton. At the same time
agent 1’s automaton is at state (1,1). In the next kl steps agent 1 plays a'
which result in both agents reaching certain states for the first time: agent 2 —
state (kl, kl), and agent 1 — the last state of its second automaton. Therefore,
our construction is 7, + kl concatenable.

3.7.2  Cu(P)

In this section we prove Lemma 3.17 in the case P € AA;;(A). Recall that
the definition of C'(P) = Cp;(P) depends on an appropriate definition of a
function D: Ar;(A) — (0,n — 1]. We begin by defining? the function D.

We think of A as the complete bipartite graph with color sets A, A%2. A set
of action profiles J C A is called a matching if for every (a',a?), (b',0%) € J,
at = b if and only if a® = b

Definition 3.18. We define D: A(A) — [0,n — 1] by

DIQ) = max 171(17]— 1) min Qo)

Note that D is continuous and its range is indeed [0, n—1]. The maximum,
n — 1, is attained when @ is a uniform distribution on a perfect matching.?4
The minimum, 0, is attained exactly when () is supported on either a single
row or a single column.

The construction is based on the existence of a pair of random enumera-
tion schemes, one for each agent, such that the two schemes induce exactly
the same play.

Definition 3.19. A random bi-automata scheme is a tuple

@ = (P1, {w(k), L, (s} (), s3(R), 2 ()4, G}~ )

2The function D is not the largest possible. Its concavification cav D is also possible
as discussed in Section 3.7.3.

3A perfect matching is a matching of size n.

4Section 3.7.3 suggests that D can be replaced by cav D which implies that n — 1 can
be attained whenever the two marginals of Q, @' and Q?2, are uniform.
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such that for each i € {1,2},

@5 = (Pt {a(k), L (si(k), 2e(k) 2 ), G f )
is a random automaton scheme for agent i.

Let P € AA;;(A). By continuity, we may assume w.l.o.g. that P =
> ¢idg, is finitely supported rational distribution over rational believes. Let
[ be an arbitrary common denominator of P. By Lemmata 3.6, 3.13, and
3.15, it is sufficient to construct a random bi-automata scheme

@ = (P, {ah), L, (51 (0), 3 (8), 524 Gr ) )

k=1

with I
lim inf L] > D(P) — (1),

k—o0 mk‘

where €(l) — 0, as | — o0.

Let P = >, q;0q, and [ a natural number such that each [; = ¢;l is a
common denominator of @;. Let Y = X_ T9(l;), and z(k) = z1,. .., Ty, an
arbitrary compound de Bruijn sequence of order k over the alphabet Y. The
group Gy, is the entire symmetry group on [|Lg|]. It remains to specify |Lg|,
s;(k), s2(k), and z (k).

In what follows we sometimes suppress the index k when it causes no
confusion. For a state s € [my], let {lt +1,...,lt +1} > s be the unique
non-overlapping interval of [ consecutive states containing s. We consider
the chunk of = that begins (k — 1) places before that interval and ends at s.
That is, let u = u(s) be the unique integer such that (k — 1)l < u < kl and
s=wu+1 mod . We call the chunk of the de Bruijn sequence x[,_, 1] :=
(Ts—uy--.,xs—1) the stem of s, denoted stem(s). We call the state s — u the
origin of s, denoted orig(s).

For states s,t € [my| corresponding to elements of the compound de
Bruijn sequence z, = (a',a?) and z; = (b*,0?), we say that (s,t) is a good
pair of states if

(i) stem(s) = stem(t), and

(i) a' # b! and a® # b°.
The played action at (s,t) is (a1, be) and we use the notations:

s,t) = (a',b?),

H(s) =

act?(t)

act(
t

ac

»

CLl
b2

[\)
-3



A set of good pairs of states X is independent if for every (s,t), (s',t') € X

s =5 = act?(t) # act?(t), and

t =t = act'(s) # act'(s). (3:9)

In graph theoretic terminology, X is an independent set of vertices in an
auxiliary graph whose vertices are the good pairs of states and whose edges
are given by (3.9).

From an independent set of good pairs of states of size L, {(s}, sf)}le,
we construct the remaining components of ® by setting |Ly| = L, and 2z, =
u(s}) =wu(s?), forallt =1,..., L. Condition (3.9) ensures that the fifth item
of Definition 3.9 is satisfied.

Therefore, it remains to find an independent set of size > (D(P)—e(l))my
for every [ and every k large enough, where €(I) — 0, as [ — 0.

With a tolerable abuse of notation define

D(,Q) = |7|(1J] ~ 1) min Q(a),
for a matching J and a distribution @ € A(A). Recall that
D(Q) = max D(J.q).

Let J* be a matching such that D(Q) = D(J*, Q).

It will be convenient to consider two partitions of the states: a coarser one
and a finer one. The coarser partition is made by grouping together states
with the same stem. We say the two states s,t € [my] are equivalent if they
have the same stem. Namely, s ~ ¢ if stem(s) = stem(¢). The equivalence
class of s € [my] is denoted (s). The finer partition is given by further
considering the action x4. For a € A and J C A, we define

(s),={t:t~s, x,=a}, and

(s), = ()

aeJ

These partitions induce conditional distributions ¢(|s) € A(A) defined by

_ [{s)]
Q(a‘s) - |<S>| :

Denote L; = l; + --- 4+ ;. Note that if s =4 mod [, i € [L;] \ [L;_1], then
q(+|s) depends only on sz, 41,1 Explicitly,

_ ‘{y € TQJ (l]> : y[l,i*Ljflfl] - x[S*i+L]’71+1,871]7 Yi = a}|
{y € TQj(lj) YLy -1 = x[s—z‘+Lj_1+1,s—1}}\

q(als)
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Explanation: the states in (s) correspond to blocks of x whose prefix is
stem(s), which are exactly all the sequences in Y* beginning with stem(s).
Since the first £ — 1 Y-words of these sequences are determined by stem(s),
we have

[(s)|=HyeY: Y,i-1] = x[s—i+1,s—1}}\
= |{y € TQj(lj) “Ylyi-Ljo-1] = x[sfi+Lj71+1,S*1]}| X | >< TQj(lj’)L

3>

and similarly,

| <S>a| = |{y S Y . y[l,ifl] - 3:[571'4,17871]’ Y; = a}|

= |{y € TY(1;) : YllioLy—1) = Tlsit Ly +1,5-1], Yi = af] x| X TQ;(ZJ")"
3>

When s is drawn uniformly at random from [my], ¢(+|s) becomes a random
variable (a function of s). We denote this random variable ¢;, emphasizing
the dependence of the distribution of ¢(-|s) on I (and not on k or the choice
of z). Note that the distribution of ¢; is the expected distribution of beliefs

Q1.
of a uniform random sample from Y. By Lemma 3.15, since llim M =
—00 J

H(Q);), for all j, we have that ¢ — P in distribution (as [ — oco). Since the
function D(J*,-) is continuous on the compact domain A(A), the proof will
be concluded if we construct an independent set of size myE[D(J*, /)]

We turn now to construct an independent set of size myE[D(J*, ¢)]. Let
s € [mg]. Let d = mingey-|(s),|. It suffices to find d|J*|(|J*| — 1) in-
dependent good pairs of states from (s) ., since by doing so we obtain an
independent set of pairs Iy C (s) x (s) of size | (s) [D(J*,q(-|s)). Summing
over all the equivalence classes {(s) : s € [my]} gives an independent set of
the desired size,

U Iul=> = Y D(J*,q(-]s)) = miE[D(P*, q)].

(s):s€[mg] S€[my]

For every a € J*, let S, C (s),, |S.] = d. For every ordered pair (a,b) €
J*x J* a # b, let pqap : Sy — Sy be a bijection. The following set is an
independent set of good pairs all coming from (s) ;. whose size is d|J*|(|.J*| —
1):

U {(t, @ap(t)) : t € S,}.

(a,b)eJ* x J*,a#b
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3.7.3 Improving Cj;

We suggest an improvement of Cy;, by replacing the function D by its con-
cavification cav D. Our proof that shows that D(Q) is achievable could be
slightly modified in order to show that (cav D)(Q) is achievable. For the sake
of simplicity and clarity of the proof, we chose to prove the slightly weaker
statement, while only sketching the proof of the stronger statement.

The quantity (cav D)(Q) is the solution of the following linear programme:

max Z x| J|(|J] = 1) subject to
matching J
Z r; < Qa) for every a € A,
matching J:
acJ
zy >0 for every matching J.

As before, the idea is to find an independent set of good pair of states of
size miE [(cav D)(q(+|s))] — o(my,). Take a random state s € my. Associate
with s a bipartite multi-graph M, whose colour sets are A' and A2, and
the multi-edges between each a' € A' and a® € A? correspond to (s>(a17a2).
Let {z;} be an optimal solution for the linear programme (cav D)(q(-|s)).
Let dy = |x,|(s) ||, for every matching J. Note that d;/|(s) | is a feasible
solution for the linear grogramme, and it is nearly optimal, if | (s) | is large.
The multi-graph M contains d; copies of each matching J. For every copy
of J, take the ordered pairs of states that correspond to any ordered pair of
multi-edges in J. Do the same for every J. The union of these collections of
pairs of states is an independent set of good pairs of states of size d.(s) =
>y Al JI(|J] = 1), with d.(s)/(cav D)(q(-[s)) = 1, as | {s) | = oo.

Remark 3.20. Since cav D(Q) is a linear programme, it could be interesting
to find a meaningful interpretation to the dual program, which could possibly
lead to tightness results.

4 Values of repeated games

We present a few implications of our main results on the min-max values of
repeated games played by finite automata.

We consider a class of three-player repeated games, parameterized by a
one-shot strategic-form game, automaton size constraints, and game dura-
tion.
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Formally, G = (A = A! x A2 x A3, g : A — R) is a three-player game,
where g is the payoff to Player 3. The payoff function extends to g : A(A) —
R linearly. Given such a game, we define different min-max values depending
on whether the team of players 1 and 2 are restricted to pure strategies, or
can randomize independently, or play correlated strategies. The correlated
min-max is defined as

corminmax G = min max 9(7172 ® 7.3).
TL2e A(Alx A2) TBEA(A3)

The pure min-max and max-min are defined as

pureminmaxG = min  max g(a',a? a®),
al€Ala2€A2 a3 A3

puremaxmin G = max min g(a',d? a?).
a3€A3 al€Al a2cA?

The r-stage repeated version of G is denoted G,.(my, ma, m3), where each
player i is restricted to strategies of automaton size m;, and the payoff is the
average per-stage payoff (or the limiting average, if r = 00). We allow for
at most one of the parameters to be infinite. In this case, either all player’s
strategy sets are finite, or r is finite, which guarantees that the game has a
finite strategic form.

Since G,.(m1, mg, m3) is a finite game in strategic form, the three values,
cor min max, pure min max and pure max min are well defined. For example

cor min max G,.(my, ms, mg) =

. 1 ¢ 1.2 3
TI’QEA(Ell(nn"lLSXEQ(mg)) T3e§?§3§m3)) ETLQ’S; ; 9ar, az, a;).

We study asymptotic properties of the min-max values of G,.(my, ma, ms)
and compare them to the min-max values of G.

In what follows {my}, {ny}, and {ry} are sequences of natural numbers.
If Players 1 and 2 could implement a random play of r; independent -
distributed actions, then they could guarantee, in the r;-stage repeated game,
the value that () guarantees in the one-shot game. Since implementing an
i.i.d. play is not always possible under automaton size constraints, we need a
notion of approximation to i.i.d. play that guarantees similar strategic power.

Definition 4.1. For Q € (A; X Ay), an approzimation of vy, independent Q-
distributed random actions (approzimate i.i.d. play, for short) is a sequence of
distributions P, € A((A! x A?)™) such that the expected empirical frequency
of beliefs of P, converges to dg w.r.t. the d distance (as k — 00).
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Theorems 2.2, 2.3, and 2.4 provide conditions under which Players 1 and
2 can implement such approximate i.i.d. plays. These conditions translate to
three Propositions regarding the correlated min-max value.

Theorem 2.2 provides an implementation of an approximate i.i.d. play in
situations where Player 1 is restricted and Player 2 is fully rational.

Proposition 4.2. If lim;_, rp, = o0 and

1 2
Fiming log my, > log(]A' x A |)’
k—oo TL (‘A2| — ].)

then
lim cor min max G,, (my, 00, 00) = cor min max G.
k—o0
When both players, 1 and 2, are restricted, Theorem 2.3 provides a similar
result, only that in this case the ratio between r, and m;logm; depends on
the one-shot payoff function.

Proposition 4.3. There exists a constant C' > 0, that depends on G, such
that if limg_,oo 7 = 00 and
.. .mylogmy
liminf ————
k—o0 Tk

> C,

then

lim cor min max G,, (my, mg, 00) = cor min max G.
k—o0

When the actions of Player 2 do not influence the payoff, the correlated
min-max of the one-shot game is equal to the (uncorrelated) min-max. By
Theorem 2.4, the situation is asymptotically the same w.r.t. the repeated ver-
sion. Furthermore, Player 2’s automaton can be very simple: pure, oblivious,
and with just O(logm) states.

Proposition 4.4. If the payoff function g does not depend on Player 2’s
actions, then there is C' > 0 such that if limy_, rx = 00 and

my logmy, _ log |AY|

lim inf
k—o0 Tk - |A2| — ]_’
then?
lim min max g(7', 0%, %) = cor min max G.
k—oo  7leA(Z(myg)) o3ex3
o2 €A ([Clog(my)])

®Note that cor min max G = mingiea(a1) max,se a3 (', -, a®)
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Proofs of Propositions 4.2, 4.3, and 4.4. Let Q € A(A'x A?) be a correlated
min-max strategy for players 1 and 2 in the game G. By Theorem 2.3,
there exist a constant C'= C(Q) and correlated strategies 7, € A(X!(my,) X
¥2(my)) whose induced play of length C'my, log m;, approximates a sequence
of independent @-distributed random variables. This proves Proposition 4.3.
Similarly, resorting to Theorems 2.2 and 2.4 proves Propositions 4.2 and 4.4
respectively. O]

Conversely to Propositions 4.2, 4.3, and 4.4, Player 3 has a pure strategy
that guarantees the pure one-shot-game min-max value when the duration
of the game is much more than mlogm.

Proposition 4.5. If %}fmk — 0, as k — o0, then

lem pure max min G, (mg, my, 00) = pure min max G.
o0

Proof. By Lemma 3.1, |3 (my) x $2(my,)| = O(my log my,); Theorem 1 from
Neyman and Okada [2009] asserts that if one player is restricted to strate-
gies in a set whose size is sub-exponential in the duration of the game and
the other player is unrestricted, then the other player can asymptotically
guarantee the pure-min-max value using pure strategies. O

We turn now to settings in which Player 3’s automaton size is bounded
and the duration of the game r; is not necessarily finite.

Proposition 4.6. If —°%5™ (0, as k — oo, then

my log my,

klgn cor min max G, (mg, my, ng) = cormin max G.
o

Proof. Let Q € A(A' x A?%) be an optimal correlated strategy for Players
1 and 2 in G. By Lemmata 3.6 and 3.17, there exists C(Q) > 0 and r, ~
C(Q)my log my, such that Players 1 and 2 can implement an approximation
of a r-periodic sequence of independent @-distributed random actions. We
assume w.l.o.g. that the induced play is stationary, because it can be made
stationary by taking the average of r}, shifts of the play. Divide the duration

of the game 7, into time intervals of length 7} with a possible remainder in
the beginning. Namely, intervals [t,11] \ [tn], where tg =0, t; = 1, — 7}, V:—EJ
k

(or 0 if r, = 00), and ¢, = ¢; + (n — 1)r},. Let o be a pure strategy for
player 3 (possibly, a best response). For any n = 0,1,... let afn be Player’s
3 strategy induced on the game starting at time ¢,,. The random variable af’n
(n > 0) assumes values in a set of size n; depending on the state of Player

3’s automaton at time t,, and o) = o° is a fixed strategy. By [Peretz, 2012,
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Corollary 4.3] (also, [Neyman, 2008, pp. 9, 15-16]), the expected average
per-stage payoff between time ¢,, and time ¢, — 1 is asymptotically at least
the correlated min-max value of G, as k goes to infinity. Since this is true for
any n, the expectation of the payoff is asymptotically at least the correlated
min-max value of G. O]

Conversely to Proposition 4.6, if my log my, is not large enough compared
to logny then Player 3 can beat players 1 and 2.

Proposition 4.7. For every C' > |A3|(|AY|+|A?|)—2, if logny, > C'my log my,
and r, > n, — 00, as k — oo, then

kh_}rgo cor min max G,, (my, mg, ng) = pure min max G.

Proposition 4.7 strengthens Proposition 4.5 in that Player 3 needs only
be exponentially smarter than Players 1 and 2 and the duration of the game
is allowed to be proportional to mylogmy. Nevertheless, Proposition 4.5 is
stronger in that Player 3 can do with a pure strategy. Conversely, Players 1
and 2 have a winning pure strategy when they are much smarter than Player
3, as shown in Proposition 4.8 below.

Propositions 4.3 and 4.5 together show that around a duration propor-
tional to m log m a phase transition occurs. The correlated min-max value of
the repeated game changes from the correlated to the pure min-max values
of the one-shot game.

Proof of Proposition 4.7. The proof is similar to the proof of [Neyman, 1997,
Theorem 3]. Let v : A' x A? — A3 be a best-response function. That is,
g(a',a®,y(a',a?)) = maxyscas g(a', a®, a®), for every a' € A, a®> € A% The
definition of v extends to strategies in the repeated game recursively by

v Sl x ¥ (4%,
(ot o) =v(e"*(nlo', 0%)i5)),

where o"* is the reduced strategy of the team of players 1 and 2 induced
by o' and o?. Let X(m) = {y(¢',0?) : ¢! € B'(m), 0? € X%(m)}. Since
every pair of automata (o', 0%) € £(m) x X?(m) can be regarded as a single
automaton with m? states, every z € X (m) can be implemented through an
oblivious automaton with m? states.

We next construct an automaton for Player 3 with m?| X (m)| states. By
Lemma 3.1, log(m?| X (m)]) < (JA%|(|A'] 4+ |A?%|) — 2)mlogm + o(mlogm).
The strategy of Player 3 is the following strategy:

1,2
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(i) Choose z € X(m) uniformly at random. Play x as long as it best
responds to the actions of players 1 and 2.

(ii) Repeat Step (i) m|X (m)| times or until the end of the game.
(iii) Continue arbitrarily.

The implementation of x in Step (i) requires m? states, and so implement-
ing m|X (m)| repetitions of Step (i) requires m?/ X (m)| states, as promised.

The probability of “guessing” the best response in each iteration of Step
(i) is at least | X (m)|™!, therefore the probability getting to Step (iii) is at
most (1 — | X (m)|~H)™Xml — 0, as m — oo.

[t remains to verify the expected payoff. In each iteration of Step (i) there
is at most one non-best-response stage. Since the duration of the game is
much longer than the number of iterations, and the probability of getting to
Step (iii) is negligible, the expected payoff is guaranteed to be asymptotically
at least the pure min-max of the one-shot game. O]

If players 1 and 2 are much “smarter” than Player 3, they can implement
a fixed play that looks like a sequence of optimal correlated mixed actions in
the eyes of Player 3.

Proposition 4.8. If TZ—’Z — 0, as k — oo, then

lem pure min max G, (mg, my, ng) = cor min max G,
(o]

for any r, > mylogmy,.

Proof. Let Q € A(A!' x A?%) be an optimal correlated strategy for Play-
ers 1 and 2 in G. By Lemmata 3.6 and 3.17, there are C'(Q) > 0, 7}, ~
C(Q)my,log my, and 7, € A(S*(1my,) x $?(my))"s such that Py (73,) converges
to dg (as k — 0o0) w.r.t. the d metric. We assume w.l.0.g. that ry, is a multiple
of r, (otherwise we prove the Proposition with a ny < m) < my, such that
dividing rj by 7, leaves a negligible reminder).

Let 3 : support(r;) — ¥3(ny) be any function. It suffices to show that
for any such § (possibly a best-reply for Player 3) there is at least one
a € support(ry) such that g, (a,f(a)) < corminmaxG + o(1). We show
a stronger statement

Eg,, (0,5(0)) < corminmax G + o(1), (4.1)

where o is a random strategy that distributes according to 7. We may
assume that r, = r}, since otherwise we can divide [ry] into intervals of
length 7, and prove the statement in each one of these intervals.

Inequality (4.1) follows from [Peretz, 2012, Corollary 4.3], since H(5(0)) <
log(|(ne)]) = o(ry). =
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