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Abstract—The coordination of autonomous agents is a critical
issue for decentralized communication networks. Instead of trans-
mitting information, the agents interact in a coordinated manner
in order to optimize a general objective function. A target joint
probability distribution is achievable if there exists a code such
that the sequences of symbols are jointly typical. The empirical
coordination is strongly related to the joint source-channel coding
with two-sided state information and correlated source and state.
This problem is also connected to state communication and is
open for non-causal encoder and decoder. We characterize the
optimal solutions for perfect channel, for lossless decoding, for
independent source and channel, for causal encoding and for
causal decoding.

Index Terms—Shannon Theory, State-dependent Channel,
Joint Source-Channel Coding, Empirical Coordination, Empiri-
cal Distribution of Symbols, Non-Causal Encoding and Decoding,
Causal Encoding, Causal Decoding.

I. INTRODUCTION

The problem of the coordination of autonomous agents
is the cornerstone of decentralized communication networks.
Communication devices are considered as agents that interact
in a coordinated manner in order to achieve a common
objective, for example, the transmission of information. This
analysis is based on a two step approach [1], [2]. The first
step is the characterization of the set of achievable joint prob-
ability distributions over the symbols of source and channel.
The second step is the maximization or the minimization of
an objective function (source distortion or channel cost) by
considering the set of achievable joint probability distributions.

Empirical coordination has been investigated in [3], [4] with
a rate-distortion perspective. In the literature of game theory,
the agents coordinate their actions by implementing a coding
scheme that satisfies an information constraint [5]. Empirical
coordination was under investigation in [6] for perfect channel,
in [7] for causal encoding, in [8] with channel feedback, in
[9] for a multi-user network with an eavesdropper, in [10]
for polar codes, in [2] for causal decoding, in [11], [12] with
feedback from the source, and in [13] for lossless decoding
and correlated source and state.

The characterization of the set of achievable joint proba-
bility distributions is equivalent to the joint source-channel
coding with two-sided state information [14], [15] and corre-

lated source and state (Fig. 1). It is also related to the problem
of state communication [16]. In this paper, we investigate the
empirical coordination with non-causal encoding and decoding
and we characterize the optimal solutions for three particular
cases: perfect channel, lossless decoding and independent
source and channel. We also characterize the optimal solutions
for causal encoding and causal decoding with two-sided state
information.
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Fig. 1. Non-causal encoding f : U™ x S™ — X™ and decoding g : Y™ X
Z™ — V" functions for i.i.d. source Pys; and memoryless channel 7;\><s-
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Channel model and definitions are presented in Sec. II. In
Sec. III, we provide achievability and converse results for non-
causal encoding and decoding. In Sec. IV, we characterize
optimal solutions for perfect channel, for lossless decoding
and for independent source and channel. Causal encoding and
decoding are presented in Sec. V. Conclusion is in Sec. VI
and sketches of proof are provided in App. A, B, C, D, E.

II. SYSTEM MODEL

The problem under investigation is depicted in Fig. 1. Cap-
ital letter U denotes the random variable, lowercase letter u €
U denotes the realization and " denotes the n-time cartesian
product. U™, S™, Z™, X", Y™, V™ denote the sequences of
random variables of source symbols u" = (uq,...,u,) € U™,
of channel states s™ € S™, of state informations at the decoder
z" € Z", of channel inputs 2z € X", of channel outputs
y™ € Y™ and of outputs of the decoder v™ € V". Sets
U, S, Z, X, Y, V are discrete. A(X) stands for the set of
probability distributions P(X) over X. The total variation
distance between the probability distributions Q and P is
denoted by [|Q—P||t, = 1/2->_ c» |Q(x) —P(z)|. Notation
1 (y|z) denotes the indicator function, that is equal to 1 if
y = x and 0 otherwise. Markov chain property is denoted
by Y —e— X —o— U and holds if for all (u,z,y) we have
P(y|lz,u) = P(y|z). Information source and channel states



are correlated and i.i.d. distributed with P,s,. Channel is
memoryless with transition probability 7j|.s. Statistics of Py,
and 7, are known by both encoder C and decoder D.

Definition IL.1 Non-causal code c = (f,g) € C(n) is defined
by: fioUtxST— X ()

g: YV'xZ'"— V" 2)
N(ulu™) denotes the occurrence number of symbol u € U in

the sequence u™. The empirical distribution Q™ € A(U x S x
ZXX XY xV)of (um,s™, 2" x™, y", v") is defined by:

Qn('U,’s’z’,'_l;’y"U) — N(u7 872’(7:177y71}|7‘L’n/7'S’n’7z’n/7:1/”n’7y’n/77‘)’n/)7

n
V(u,s,z,2,y,v) € UXSXZXXXYXV. 3)

Fix a target proba. distribution Q € A(UXSEX Zx X xYxV),
the error probability of the code ¢ € C(n) is defined by:

Pe(C)—Pc<HQ"—Q wz€>, @

where Q™ € A(UXS X Z XX x)Y V) is the random variable
of the empirical distribution induced by the code c € C(n) and
the probability distributions Pusz, Ty|xs.

Definition IL.2 Probability distribution Q € A(U x S X Z X
X x Y xV) is achievable if for all € > 0, there exists an € N
s.t. for all n > 0, there exists a code ¢ € C(n) that satisfies:

Pelc) =7>C(HQ"— Q

. > 6) <e. ©)
If the error probability Pg(c) is small, the empirical frequency
of symbols (u, s,z,2,y,v) EUXSX Zx X xYxV is close
to the target probability distribution Q(u, s, z, 2, y, v), i.e. the
sequences (U™, S™, Z", X" Y™ V™) € A (Q) are jointly
typical, with large probability. In that case, the sequences of
symbols are coordinated empirically.

The performance of the coordination is evaluated by an
objective function ® : U X S X Z X X x Y xV — R, as
stated in [2] and [13]. This approach is powerful and since the
expectation E[d(u, v)] over the set of achievable distributions,
provides directly the minimal distortion level d(u,v). This is
valid for any function, as the channel cost c¢(x) or the utility
®(u, s, z,x,y,v) of a decentralized network [5].

III. ACHIEVABILITY AND CONVERSE RESULTS

We provide necessary and sufficient conditions for non-
causal encoding and decoding. This problem is open.

Theorem III.1 (Non-Causal Encoding and Decoding)
1) If the joint probability distribution Q(u,s,z,x,y,v) is
achievable, then it satisfies the marginal and Markov chains:

{ Q(u, 5,2) = Pusc(u, 5,2),  Q(ylz,s) = T(ylz, ),

Y o (X,S) o (U, Z), Z-o(U,S)-o (X,v). @

2) The joint probability distribution Pys,(u, s, 2)®@Q(x|u, $)®
T(ylz, s) ® Q(v|u, s, z,z,y) is achievable if:

max (I(Wl,Wz;KZ)—I(Wth;U,S)) >0, @)

3) The joint probability distribution Pys,(u, s, 2) @ Q(z|u, $)®
T(ylz, s) ® Q(v|u, s, z,z,y) is not achievable if:

max (I(Wl;Y,Z|W2)—I(W2;U7S|W1)) <0, (8
S

Q is the set of distributions Q € A(U x S x Z x Wy x Wy X
X x Y x V) with auxiliary random variables (W1, W) s.t.:

2wy wa)ewy xwy 2, 8,2, W1, w2, T, Y, v)
= Pusz(u, 8, 2) ® Q(z|u, s) @ T (y|z, s) @ Q(v|u, s, 2, z,y),
Y - (,X'7 S) —-— (U7 Z, W1,W2),
Z o (U,8) < (X,Y, Wi, W),
V o (Y, Z, W1, Ws) = (U, S, X).

The probability distribution Q € Q decomposes as follows:
PUSZ(U7 S, Z) ® Q(:C7 w1, w2|u7 8) ® T(y|$7 8) ® Q(v|y7 Z, W1, w2)-

The supports of the auxiliary random variables (Wy, W5)
are bounded by max(|Wi|,|Wa|) < (|B] +1) - (|B| + 2) with
B=UXSXxZxXxYxV.

Remark IIL.2 It is possible to send an additional message
m € M with rate R corresponding to left-hand side of equa-
tion (7), while still satisfying the coordination requirement.
This remark also extends to the other results of this article.

Sketches of proof are available in App. A and B. Achiev-
ability result of Theorem III.1 is based on hybrid coding [17],
[18] and is stated in [7], with a unique auxiliary random
variable W = (W3, Wh), without state informations S and
Z. Empirical coordination is obtained by considering (U, S)
as state information at the encoder and (Y,Z) as a state
information at the decoder. This open problem is also related
to "state communication" [16] which is solved for Gaussian
channels [19], but remains open for non-causal encoding and
decoding. In the following, we connect the duality result of
[15] and the separation result of [14] to empirical coordination.

IV. OPTIMAL SOLUTIONS FOR PARTICULAR CASES

In this section, we characterize the joint probability distri-
butions that are achievable for three particular cases.

A. Perfect Channel is defined by Ty = 1(y|x) as in Fig. 2
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Fig. 2. The perfect channel is defined by Ty = ]l(y|m)

Theorem IV.1 (Perfect Channel)
1) If the joint probability distribution Q(u,s,z,x,v) is
achievable, then it satisfies:

Q(“y S, Z) = Pusz(u, S, 2)7

2) The probability distribution Pys;(u,s,z) @ Q(z|u,s) @
Q(vl|u, s, z,x) is achievable if (10). The converse holds.

7 (U,S) = X. (9

max (I<w2; Z1X) + H(X) — I(X, Was U, s>) >0, (10)



Qp is the set of distributions Qus;w,xw With Wy satisfying marg-
inals and Z (U, S)-e (X, Ws) and Vo (X, Z, W3)-e (U, S).
Support satisfies |Wa| < |B| + 1 and Q € Q, decomposes:

PUSZ(ua S, Z) ® Q(I|U, S) ® Q(w2|uv S, I) ® Q(’U|ZC, 2 ’LUQ)-

Achievability comes from replacing ¥ and W; by X in
Theorem III.1 and converse is in App. C. This results extends
the coding theorem of Wyner-Ziv [20] with distortion d(u, v),
to the framework of coordination. The message of rate R
corresponds to the channel inputs X™ of rate log, |X| and
the optimal distortion level D* is obtained by taking the ex-
pectation E[d(u, v)], as in Corollary V.2. The main difference
is that the symbols (U, S, V) are coordinated with X.

B. Lossless Decoding defined by Q(vl|u, s, z,z,y) = 1(a|u)

The characterization for lossless decoding with correlated
source and state is in [13]. Achievability is also a particular
case of Theorem III.1 by replacing random variables V'
and W3 by U. Joint distribution Py, (u, s, 2) ® Q(z|u,s) ®
T (y|z, s) @ 1(@i|u) is achievable if (11). The converse holds.

rQngS (I(U, WY, Z) — I(Wy; S|U) — H(U)) >0, (1D
1

Q) is the set of distributions Qysw,xya Satisfying marginal
conditions and Markov chains Y —e- (X, S) - (U, Z, W)
and Z —e— (U,S) —o— (X,Y,W7). This result extends the
coding theorem of Gel’fand-Pinker [21] to the framework of
coordination. The message is a sequence of source symbols U
correlated with the states (.5, Z) and channel inputs X . Duality
between equations (10) and (11) recalls the duality between
channel capacity and rate distortion, as mentioned in [15].

C. Independent source (U, Z, V), channel (S,X,Y), Fig. 3
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Fig. 3. The random variables of the source (U, Z, V') are independent of the
random variables of the channel (S, X,Y").
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Theorem IV.2 (Independent Source and Channel)
1) If the product QSu, z,v) ® Q(s,z,y) of probability
distribution is achievable, then it satisfies:

Qu, 2) = Puz(u, 2), Q(s) =Ps(s), Qylw,s) =T (ylw,s).

2) Probability distribution Py,(u,z) ® Q(v|u,z) ® Ps(s) ®
O(z|s)®T (y|x, s) is achievable if (13). The converse holds.

12

s (T0V3Y) 4+ 10W2:2) ~ 10¥158) = (W 0)) > 0. (13)
Qs is the set of product distributions Qzw,y @ Qsxwyy With
auxiliary random variables (W1, Ws) satisfying conditions:
Z e U-o Wy, V- (Z,W3)-eU Y - (X,S5)-e Wi.

Supports of (W1, Ws) are bounded by (|B| + 1) - §|B| +2).
The product distribution Q € Qs decomposes as follows:

Puz(u, 2) ® Qwz|u) ® Q(v|z, w2) @ Ps(s) @ Q(z, wils) @ T (ylz, s).

As mentioned in [2], the independence between the prob-
ability distributions of the source and channel induces the
separation of the source coding and the channel coding. This
result is related to Theorem 1 in [14], with expected distor-
tion d(u,v) and channel cost ¢(x) functions. By considering
(U, Z,Ws,V) independent of (S, X,W7,Y) and introducing
three indexes (m, [, j) with rates (R,,, R;, R;) satisfying,

Rm"‘Rl 2 I(W2§U)7 Rl SI(W27Z)7
Rj > I(W1;S), Rm-i-Rj SI(W1;Y),

the achievability of Theorem III.1 becomes a separated coding
scheme. The author would like to thank Pablo Piantanida,
Matthieu Bloch and Claudio Weidmann for useful discussions
about the independence of the auxiliary random variables
(W1, W3) in the converse proof of Theorem IV.2.

V. CAUSAL ENCODING AND DECODING

The encoding (resp. decoding) is causal if for all 7 €
{1,...,n}, we have X; = f;(U*, S?), (resp. V; = g:(Y?, Z?)).
We characterize of the set of achievable joint probability
distributions for causal encoding and for causal decoding.
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Fig. 4. Causal encoding function f; : U? x S* — X, forall i € {1,...,n}.
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Theorem V.1 (Causal Encoding and Non-Causal Decoding)
1) If Q(u, s, z,x,y,v) is achievable, then it satisfies:

Q(uv S, Z) = PUSZ(“? S, Z)7 Q(y|l’, S) = T(y|$,8), (14)
Y o (X,5) e (U,2), Z-e (US)- (X,Y).
2) The distribution Pys;(u, s, 2) ® Q(z|u,s) @ T (y|z,s) &
Q(v|u, s, z,x,y) is achievable if (15). The converse holds.

QeQe

max <I(W1,W2;Y, Z) - I(WQ;U,S|W1)) >0, (15

Qe is the set of joint distributions Qusywiwyxyw With auxiliary
random variables (W1, Wa) satisfying marginal cond. and:

(U, S) independent of Wh, X - (U, S,W1) - W,
Y - (X,S5) - (U, Z, W1, W),

Z - (U,S) = (X,Y, W1, W>),

V - (Y, Z, W1,W2) —-— (U7 S, X)

Supports of (W1, Ws) are bounded by (|B| + 1) - (|B| + 2).
The probability distribution Q € Qe decomposes as follows:

Pusz & le & sz\uswl & Qx\uswl & 7;/|><s & Qv\yzwlwz'

Proofs are available in App. A and B. This result is a
particular case of Theorem 2 in [7], by considering (U, S) as
information source and (Y, Z) as channel output. Empirical
coordination is equivalent to joint source channel coding with
two-sided state information and correlated source and state.
Theorem V.1 also reduces to Theorem 3 in [16], by considering
(U, S) as channel state and (Y, Z) as channel output.



When considering strictly causal encoding instead of causal
encoding, the optimal solution is obtained by replacing W7 by
X in equation (15).

Corollary V.2 (Causal Encoding without Coordination)
Consider a distortion function d : U x V — R. The distortion
level D > 0 is achievable if and only if:

max (I(Wl,Wg;Y,Z)—I(WQ;U,S|W1)) >0,
D

Qu; .2
2

v]yzwywy

Corollary V.2 is a direct consequence of Theorem V.1. The
distortion level D > 0 is achievable if and only if there exists
a joint distribution Pus; @ Qw; @ Qs jusw; @ Luusws @ Tyjxs @
Qujyzwiw, that satisfies (16), such that E[d(U, V)] < D. Similar
analysis is mentioned in [2] for the proof of Theorem V.3.

Causal decoding and non-causal encoding is considered in
[2] without S and Z. Joint probability distribution P, ®
Quus @ Tyjxs @ Qujuszxy 18 achievable if (16). Converse holds.

max
xwpwo |us’

Q

Q

(I(WI;KZ|W2)_I(W17W2;Uus)) >07 (16)
vlyzwa

Remark that V' depends on (Y, Z, W3) but not on W;. When
considering strictly causal decoding instead of causal decod-
ing, the optimal solution is obtained by replacing W3 by V' in
equation (16). More details are provided in [2].

VI. CONCLUSION

The problem of empirical coordination is closely related
to the joint source-channel coding with two-sided state in-
formation with correlation between source and state. These
two problems are also related to state communication. We
provide achievability and converse results for the non-causal
case, that is open. We characterize the optimal solutions for
perfect channel, for lossless decoding, for independent source
and channel, for causal encoding and for causal decoding.

APPENDIX

The full versions of the proofs are stated in [22].

A. Sketch of Achievability of Theorem III. 1

Consider Q(u, s, z, w1, ws, z,y,v) € Q that achieves the
maximum in (7). There exists 6 > 0 and rate R > 0 such that:

R 2 I(Wl,WQ;U,S)+5, (17)
R < I(Wi,WaY,Z)—4. (18)
e Random codebook. We generate |[M| = 2"R pairs of

sequences (W7*(m), Wi (m)) with index m € M drawn
from the i.i.d. marginal probability distribution Q%l’},vz.

e Encoding function. Encoder finds the index m € M such
that (U™, S™, W' (m), W3t (m)) € A"(Q) are jointly
typical. It sends X™ drawn from QS:IZW1W2 depending on
(U™, 5™, Wi (m), W3 (m)).

e Decoding function. Decoder finds the index m € M
such that (Y™, Z" W (m), W3(m)) € A(Q) are

Xn

jointly typical. Decoder returns V" drawn from Qvlyzme

depending on (Y™, Z™ W (m), Wir(m)).
The pair (W7, Wa2) can be replaced by a single W. From
properties of typical sequences, packing and covering Lemmas
stated in [23] pp. 27, 46 and 208, equations (17), (18) imply
that the expected probability of error is bounded for all n > n:

h[P((U", S™) ¢ A;"(Q))} <e, (19)
Be[P(vm e M, @ ST W] ) W m) ¢ 42"(@)] < @0
EC[P(am’ #m, st (Y™, z", Wit (m’), Wi (m')) € A;"(Q))] <e. @D

There exists a code ¢* € C(n) such that sequences are jointly
typical for distribution Pus; © Quw,wz|us @ Ty|xs @ Qulyzwiw, With
probability more than 1 — 3e.

B. Sketch of Converse of Theorem III.1
Consider code c(n) € C with small error probability Pe(c).

n

ZI(U?+175?+D1Q117Z?+1?Yixzi|ylilleil)

i=1

- ZI(YiilxZiil?Ui75i|U;L+175?+1sz'11xZ?Jrl) (22)
i=1
n n

= Zl(Wl,i;E,ZHWz,i)*ZI(Wz,i;Ui,Si\WLi) (23)

=1 i=1

0 <

IN

n-max (I(W1§Y7Z\W2)—I(Wz;U,S|W1)>- 24

Eq. (22) is due to Csiszar Sum Identity and properties of MI.
Eq. (23) introduces auxiliary random variables W;; =
(UP S0, Y, Z ) and W = (Y1, Z071) satisfying:

3

}/'L' —©- (Xlasl) - (U’iaZ’ivwl,i7W2,i)a (25)
Z; - (U;, Si) o (X5, Y5, Wi 5, Wa ), (26)
Vi o (Y5, Zi, Wh i, Wa ;) o (U;, S;, X5). (27)

This is due to memoryless channel, i.i.d. source and non-causal
decoding since (Y™, Z™) is included in (Y;, Z;, Wy 5, Wa ;).
Eq. (24) comes from taking the maximum over the set Q.

C. Sketch of Converse of Theorem IV.1

Consider code ¢(n) € C with small error probability Pe(c).
0 = H(X",z")—I(X",Z"U",8") - H(X",Z"|U", S") (28)
< S THXG, Zi) - Y I(X",Z7 U Si UL ST )
i=1 i=1
_ H(Xn, Z”‘U”, Sn) (29)
= > I(X™Z" UM, SHa Xi, Zi)
i=1
n
= DIXT 2N UL, ST Ui, i) — H(XT, Z7 U™, ST) (G0)
i=1

n

< S TIXT, 27N UR SH X, Zi)
=1

- > I(X"™, z7N U, 8P UL S) (31
=1
n

= > I(Xi,Wai; Xi, Zi) — I(X, Wa,i3Us, S5) (32)
i=1

< n- max (I(X7 Wa; X, Z) — I(X, Wa; U, S)) (33)
QeqQp

Eq. (28), (29) are due to properties of mutual information.
Eq. (30) is due to the i.i.d. source (U, S).
Eq. (31) is due to the i.i.d. source (U, S, Z): H(Z™|U™, S™) =



Y H(Zi|Us, Si) = 3 H(Zi| X", 27", Ul .y, Sit, Ui, ).

Eq. (32) introduces auxiliary random variable Wp; =
(X", Z7", U, S ) that satisfies Markov chains: Z; —e—
(Ui, Sl) —— (Xl, Wg)l) and V; —— (Xi, Zi, Wg)i) (Ui, Sz)
This is due to i.i.d. source (U, .S, Z) and non-causal decoding.
Eq. (33) comes from taking the maximum over the set Qp.

D. Sketch of Achievability of Theorem V.1

Consider Q € Q. that maximizes (15) and block-Markov

code ¢ € C(n) over B € N blocs of length n € N with:
R < I(WyY,Z2)+1(Wa Y, Z|W7) — 4.

(34)
(35)

e Random codebook. We generate |M| = 2"R sequences
W1(m) drawn from Q" with index m € M. For each
m € M, we generate the same number |M| = 2"R of
sequences W3 (m,m) with index € M, drawn from
sz\w depending on W{*(m).

e Encoding function. It recalls my_1 and finds my € M s.t.
sequences (U]" ;,Sp 1, Wi (mp—1), W3 (mp—1,mp)) €
Ar™(Q) are jointly typical in block b — 1. It deduces
W7 (my) for block b and sends X drawn from Q%"
depending on (U}[*, S;*, W{*(my,)).

e Decoding function. It recalls my_; and finds my, € M
such that (Y, ,Z} |, Wi (mp—1), W3 (mp—1,mp)) €
AF(Q) and (Y, Zp, Wi (my)) € A*"(Q) are jointly

x| uswy

typical. It returns V> ; drawn from Qv‘yzwlwz depending
on (Y, Zyy, Wi'(mp—1), W3' (mp—1,my)).
n an b—2,b—1, b b+1
s i s s s s s
1 * = ¥ *
n, | = | | |
V)qu | i T [ [ [
i ! ' Ly ' '
£ A S Z :
W% | A | | |
Vv T f f T T T

Equations (34), (35) im&y for all n > n and for a large
number of blocks B € the sequences are jointly typical
with large probability:

ze[p(@™ 5™ ¢ a@)] <«
Ec [P(Vm € M, (UP'_ 1,851, Wi (my_1), W3 (my_1,m)) ¢ A;"(Q))} <
Ec [77 (am’ #m, st {(yb", zl, wit(m”)) € A;"(g)} n

{(Ygil, ZP 1, Wit (myy_1), Wat(my,_q, m’)) € A;n(Q)})} <

E. Sketch of Converse of Theorem V.1
Consider code ¢(n) € C with small error probability Pe(c).

n

0 < ZI(Uiilasl 1Y¢111Z?+1?Yivzi)

=1
n . .

- IV ZN UL SUT ST (36)
i=1

= D I(Wi, Wai3 Vi, Zs) — > I(Wauii Ui, Si|Wii)  (B7)
=1 =1

< nmax (1<w1,w2;Y,Z>71<W2;U,S|W1>), (39

e

Eq. (36) is due to Csiszdr Sum Identity and properties of MI.
Eq. (37) introduces auxiliary random variables W;; =

(U=, 87 and Wo; = (Y%, Z7 ) satisfying:
(Ui, S;) are independent of W1y ;, (39)
X -~ (Ui, Siy, W1,3) o= Wa i, (40)
- (X3, 8:) o (Ui, Zs, Wr,5, Wa i), (41)
Z; -~ (Uy, Si) ~o= (X4, Yi, W15, Wa i), (42)
-~ (Yi, Zi, W14, Wa i) = (Ui, Si, Xi). 43)

Eq. (38) comes from taking the maximum over the set Q..

REFERENCES

[1] V. Anantharam and V. Borkar, “Common randomness and distributed
control: A counterexample,” Systems & Control Letters, vol. 56, no. 7-
8, pp. 568 — 572, 2007.

[2] M. Le Treust, “Empirical coordination for the joint source-channel cod-
ing problem,” submitted to IEEE Transactions on Information Theory,
http://arxiv.org/abs/1406.4077, 2014.

[3] G. Kramer and S. Savari, “Communicating probability distributions,”
IEEE Trans. on Info. Theory, vol. 53, no. 2, pp. 518 — 525, 2007.

[4] P. Cuff, H. Permuter, and T. Cover, “Coordination capacity,” IEEE Trans.
on Information Theory, vol. 56, no. 9, pp. 4181-4206, 2010.

[5] O. Gossner, P. Hernandez, and A. Neyman, “Optimal use of communi-
cation resources,” Econometrica, vol. 74, no. 6, pp. 1603-1636, 2006.

[6] P.Cuff and L. Zhao, “Coordination using implicit communication,” /[EEE
Information Theory Workshop (ITW), pp. 467— 471, 2011.

[7]1 P. Cuff and C. Schieler, “Hybrid codes needed for coordination over the
point-to-point channel,” 49th Annual Allerton Conference on Communi-
cation, Control, and Computing, pp. 235-239, 2011.

[8] M. Le Treust, “Empirical coordination with feedback,” in IEEE Inter-
national Symposium on Information Theory (ISIT), 2015.

[91 M. Le Treust, A. Zaidi, and S. Lasaulce, “An achievable rate region
for the broadcast wiretap channel with asymmetric side information,”
49th Annual Allerton Conference on Communication, Control, and
Computing, pp. 68-75, 2011.

[10] M. Bloch, L. Luzzi, and J. Kliewer, “Strong coordination with polar
codes,” 50th Annual Allerton Conference on Communication, Control,
and Computing, pp. 565-571, 2012.

[11] B. Larrousse and S. Lasaulce, “Coded power control: Performance
analysis,” IEEE Internat. Symp. on Inf. Th. (ISIT), pp. 3040-3044, 2013.

[12] B. Larrousse, S. Lasaulce, and M. Bloch, “Coordination in distributed
networks via coded actions with application to power control,” Submitted
to IEEE Trans. on Info. Theory, http://arxiv.org/abs/1501.03685, 2014.

[13] M. Le Treust, “Correlation between channel state and information
source with empirical coordination constraint,” IEEE Information Theory
Workshop (ITW), pp. 272-276, 2014.

[14] N. Merhav and S. Shamai, “On joint source-channel coding for the
wyner-ziv source and the gel’fand-pinsker channel,” IEEE Transactions
on Information Theory, vol. 49, no. 11, pp. 2844-2855, 2003.

[15] T. Cover and M. Chiang, “Duality between channel capacity and rate
distortion with two-sided state information,” IEEE Transactions on
Information Theory, vol. 48, no. 6, pp. 1629-1638, Jun 2002.

[16] C. Choudhuri, Y.-H. Kim, and U. Mitra, “Causal state communication,”
IEEE Trans. on Info. Th., vol. 59, no. 6, pp. 3709-3719, June 2013.

[17] S. Lim, P. Minero, and Y.-H. Kim, “Lossy communication of correlated
sources over multiple access channels,” 48th Annual Allerton Conference
on Communication, Control, and Computing, pp. 851-858, 2010.

[18] P. Minero, S. Lim, and Y.-H. Kim, “Joint source-channel coding via
hybrid coding,” IEEE International Symposium on Information Theory
(ISIT), pp. 781-785, 2011.

[19] T. M. C. A. Sutivong, M. Chiang and Y.-H. Kim, “Channel capacity and
state estimation for state-dependent gaussian channels,” IEEE Transac-
tions on Information Theory, vol. 51, no. 4, pp. 1486-1495, 2005.

[20] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Transactions on Information
Theory, vol. 22, no. 1, pp. 1-11, 1976.

[21] S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random
parameters,” Pb. of Control and L.T., vol. 9, no. 1, pp. 19-31, 1980.

[22] M. Le Treust, “Coding theorems for empirical coordination,” internal
technical report, to be submitted, 2015.

[23] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, Dec. 2011.



