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Abstract—The coordination of autonomous agents is a critical
issue for decentralized communication networks. Instead of trans-
mitting information, the agents interact in a coordinated manner
in order to optimize a general objective function. A target joint
probability distribution is achievable if there exists a code such
that the sequences of symbols are jointly typical. The empirical
coordination is strongly related to the joint source-channel coding
with two-sided state information and correlated source and state.
This problem is also connected to state communication and is
open for non-causal encoder and decoder. We characterize the
optimal solutions for perfect channel, for lossless decoding, for
independent source and channel, for causal encoding and for
causal decoding.

Index Terms—Shannon Theory, State-dependent Channel,
Joint Source-Channel Coding, Empirical Coordination, Empiri-
cal Distribution of Symbols, Non-Causal Encoding and Decoding,
Causal Encoding, Causal Decoding.

I. INTRODUCTION

The problem of the coordination of autonomous agents

is the cornerstone of decentralized communication networks.

Communication devices are considered as agents that interact

in a coordinated manner in order to achieve a common

objective, for example, the transmission of information. This

analysis is based on a two step approach [1], [2]. The first

step is the characterization of the set of achievable joint prob-

ability distributions over the symbols of source and channel.

The second step is the maximization or the minimization of

an objective function (source distortion or channel cost) by

considering the set of achievable joint probability distributions.

Empirical coordination has been investigated in [3], [4] with

a rate-distortion perspective. In the literature of game theory,

the agents coordinate their actions by implementing a coding

scheme that satisfies an information constraint [5]. Empirical

coordination was under investigation in [6] for perfect channel,

in [7] for causal encoding, in [8] with channel feedback, in

[9] for a multi-user network with an eavesdropper, in [10]

for polar codes, in [2] for causal decoding, in [11], [12] with

feedback from the source, and in [13] for lossless decoding

and correlated source and state.

The characterization of the set of achievable joint proba-

bility distributions is equivalent to the joint source-channel

coding with two-sided state information [14], [15] and corre-

lated source and state (Fig. 1). It is also related to the problem

of state communication [16]. In this paper, we investigate the

empirical coordination with non-causal encoding and decoding

and we characterize the optimal solutions for three particular

cases: perfect channel, lossless decoding and independent

source and channel. We also characterize the optimal solutions

for causal encoding and causal decoding with two-sided state

information.
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Fig. 1. Non-causal encoding f : Un × Sn → Xn and decoding g : Yn ×
Zn → Vn functions for i.i.d. source Pusz and memoryless channel Ty|xs.

Channel model and definitions are presented in Sec. II. In

Sec. III, we provide achievability and converse results for non-

causal encoding and decoding. In Sec. IV, we characterize

optimal solutions for perfect channel, for lossless decoding

and for independent source and channel. Causal encoding and

decoding are presented in Sec. V. Conclusion is in Sec. VI

and sketches of proof are provided in App. A, B, C, D, E.

II. SYSTEM MODEL

The problem under investigation is depicted in Fig. 1. Cap-

ital letter U denotes the random variable, lowercase letter u ∈
U denotes the realization and Un denotes the n-time cartesian

product. Un, Sn, Zn, Xn, Y n, V n denote the sequences of

random variables of source symbols un = (u1, . . . , un) ∈ Un,

of channel states sn ∈ Sn, of state informations at the decoder

zn ∈ Zn, of channel inputs xn ∈ Xn, of channel outputs

yn ∈ Yn and of outputs of the decoder vn ∈ Vn. Sets

U , S, Z , X , Y , V are discrete. ∆(X ) stands for the set of

probability distributions P(X) over X . The total variation

distance between the probability distributions Q and P is

denoted by ||Q−P||tv = 1/2 ·
∑

x∈X |Q(x)−P(x)|. Notation

1(y|x) denotes the indicator function, that is equal to 1 if

y = x and 0 otherwise. Markov chain property is denoted

by Y −
− X −
− U and holds if for all (u, x, y) we have

P(y|x, u) = P(y|x). Information source and channel states



are correlated and i.i.d. distributed with Pusz. Channel is

memoryless with transition probability Ty|xs. Statistics of Pusz

and Ty|xs are known by both encoder C and decoder D.

Definition II.1 Non-causal code c = (f, g) ∈ C(n) is defined

by:
f : Un × Sn −→ Xn, (1)

g : Yn ×Zn −→ Vn. (2)

N(u|un) denotes the occurrence number of symbol u ∈ U in
the sequence un. The empirical distribution Qn ∈ ∆(U ×S×
Z × X × Y × V) of (un, sn, zn, xn, yn, vn) is defined by:

Q
n(u, s, z, x, y, v) =

N(u, s, z, x, y, v|un, sn, zn, xn, yn, vn)

n
,

∀(u, s, z, x, y, v) ∈ U × S × Z × X × Y × V. (3)

Fix a target proba. distribution Q ∈ ∆(U×S×Z×X×Y×V),
the error probability of the code c ∈ C(n) is defined by:

Pe(c) = Pc
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where Qn ∈ ∆(U×S×Z×X×Y×V) is the random variable

of the empirical distribution induced by the code c ∈ C(n) and

the probability distributions Pusz, Ty|xs.

Definition II.2 Probability distribution Q ∈ ∆(U × S ×Z ×
X ×Y×V) is achievable if for all ε > 0, there exists a n̄ ∈ N

s.t. for all n ≥ n̄, there exists a code c ∈ C(n) that satisfies:

Pe(c) = Pc

(
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≤ ε. (5)

If the error probability Pe(c) is small, the empirical frequency

of symbols (u, s, z, x, y, v) ∈ U ×S×Z×X ×Y×V is close

to the target probability distribution Q(u, s, z, x, y, v), i.e. the

sequences (Un, Sn, Zn, Xn, Y n, V n) ∈ A⋆n
ε (Q) are jointly

typical, with large probability. In that case, the sequences of

symbols are coordinated empirically.

The performance of the coordination is evaluated by an

objective function Φ : U × S × Z × X × Y × V 7→ R, as

stated in [2] and [13]. This approach is powerful and since the

expectation E[d(u, v)] over the set of achievable distributions,

provides directly the minimal distortion level d(u, v). This is

valid for any function, as the channel cost c(x) or the utility

Φ(u, s, z, x, y, v) of a decentralized network [5].

III. ACHIEVABILITY AND CONVERSE RESULTS

We provide necessary and sufficient conditions for non-

causal encoding and decoding. This problem is open.

Theorem III.1 (Non-Causal Encoding and Decoding)
1) If the joint probability distribution Q(u, s, z, x, y, v) is

achievable, then it satisfies the marginal and Markov chains:
{

Q(u, s, z) = Pusz(u, s, z), Q(y|x, s) = T (y|x, s),

Y −
− (X,S)−
− (U,Z), Z −
− (U, S)−
− (X,Y ).
(6)

2) The joint probability distribution Pusz(u, s, z)⊗Q(x|u, s)⊗
T (y|x, s)⊗Q(v|u, s, z, x, y) is achievable if:

max
Q∈Q

(

I(W1,W2;Y, Z)− I(W1,W2;U, S)

)

> 0, (7)

3) The joint probability distribution Pusz(u, s, z)⊗Q(x|u, s)⊗
T (y|x, s)⊗Q(v|u, s, z, x, y) is not achievable if:

max
Q∈Q

(

I(W1;Y, Z|W2)− I(W2;U, S|W1)

)

< 0, (8)

Q is the set of distributions Q ∈ ∆(U ×S ×Z ×W1×W2×
X × Y × V) with auxiliary random variables (W1,W2) s.t.:


























∑

(w1,w2)∈W1×W2
Q(u, s, z, w1, w2, x, y, v)

= Pusz(u, s, z)⊗Q(x|u, s)⊗ T (y|x, s)⊗Q(v|u, s, z, x, y),

Y −
− (X,S)−
− (U,Z,W1,W2),

Z −
− (U,S) −
− (X,Y,W1,W2),

V −
− (Y,Z,W1,W2)−
− (U, S,X).

The probability distribution Q ∈ Q decomposes as follows:

Pusz(u, s, z)⊗Q(x,w1, w2|u, s)⊗ T (y|x, s)⊗Q(v|y, z, w1, w2).

The supports of the auxiliary random variables (W1,W2)
are bounded by max(|W1|, |W2|) ≤ (|B|+ 1) · (|B|+ 2) with

B = U × S × Z × X × Y × V .

Remark III.2 It is possible to send an additional message

m ∈ M with rate R corresponding to left-hand side of equa-

tion (7), while still satisfying the coordination requirement.

This remark also extends to the other results of this article.

Sketches of proof are available in App. A and B. Achiev-

ability result of Theorem III.1 is based on hybrid coding [17],

[18] and is stated in [7], with a unique auxiliary random

variable W = (W1,W2), without state informations S and

Z . Empirical coordination is obtained by considering (U, S)
as state information at the encoder and (Y, Z) as a state

information at the decoder. This open problem is also related

to "state communication" [16] which is solved for Gaussian

channels [19], but remains open for non-causal encoding and

decoding. In the following, we connect the duality result of

[15] and the separation result of [14] to empirical coordination.

IV. OPTIMAL SOLUTIONS FOR PARTICULAR CASES

In this section, we characterize the joint probability distri-

butions that are achievable for three particular cases.

A. Perfect Channel is defined by Ty|xs = 1(y|x) as in Fig. 2
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Fig. 2. The perfect channel is defined by Ty|xs = 1(y|x).

Theorem IV.1 (Perfect Channel)
1) If the joint probability distribution Q(u, s, z, x, v) is

achievable, then it satisfies:

Q(u, s, z) = Pusz(u, s, z), Z −
− (U, S)−
−X. (9)

2) The probability distribution Pusz(u, s, z) ⊗ Q(x|u, s) ⊗
Q(v|u, s, z, x) is achievable if (10). The converse holds.

max
Q∈Qp

(

I(W2;Z|X) +H(X)− I(X,W2;U, S)

)

> 0, (10)



Qp is the set of distributions Quszw2xv with W2 satisfying marg-

inals and Z−
−(U, S)−
−(X,W2) and V −
−(X,Z,W2)−
−(U, S).
Support satisfies |W2| ≤ |B|+ 1 and Q ∈ Qp decomposes:

Pusz(u, s, z)⊗Q(x|u, s)⊗Q(w2|u, s, x)⊗Q(v|x, z, w2).

Achievability comes from replacing Y and W1 by X in

Theorem III.1 and converse is in App. C. This results extends

the coding theorem of Wyner-Ziv [20] with distortion d(u, v),
to the framework of coordination. The message of rate R

corresponds to the channel inputs Xn of rate log2 |X | and

the optimal distortion level D⋆ is obtained by taking the ex-

pectation E[d(u, v)], as in Corollary V.2. The main difference

is that the symbols (U, S, V ) are coordinated with X .

B. Lossless Decoding defined by Q(v|u, s, z, x, y) = 1(û|u)

The characterization for lossless decoding with correlated

source and state is in [13]. Achievability is also a particular

case of Theorem III.1 by replacing random variables V
and W2 by U . Joint distribution Pusz(u, s, z) ⊗ Q(x|u, s) ⊗
T (y|x, s)⊗1(û|u) is achievable if (11). The converse holds.

max
Q∈Ql

(

I(U,W1;Y, Z)− I(W1;S|U)−H(U)

)

> 0, (11)

Ql is the set of distributions Quszw1xyû satisfying marginal

conditions and Markov chains Y −
− (X,S) −
− (U,Z,W1)
and Z −
− (U, S) −
− (X,Y,W1). This result extends the

coding theorem of Gel’fand-Pinker [21] to the framework of

coordination. The message is a sequence of source symbols U
correlated with the states (S,Z) and channel inputs X . Duality

between equations (10) and (11) recalls the duality between

channel capacity and rate distortion, as mentioned in [15].

C. Independent source (U,Z, V ), channel (S,X, Y ), Fig. 3
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Fig. 3. The random variables of the source (U,Z, V ) are independent of the
random variables of the channel (S,X, Y ).

Theorem IV.2 (Independent Source and Channel)
1) If the product Q(u, z, v) ⊗ Q(s, x, y) of probability
distribution is achievable, then it satisfies:

Q(u, z) = Puz(u, z), Q(s) = Ps(s), Q(y|x, s) = T (y|x, s). (12)

2) Probability distribution Puz(u, z) ⊗ Q(v|u, z) ⊗ Ps(s) ⊗
Q(x|s)⊗T (y|x, s) is achievable if (13). The converse holds.

max
Q∈Qs

(

I(W1;Y ) + I(W2;Z)− I(W1;S) − I(W2;U)

)

> 0, (13)

Qs is the set of product distributions Quzw2v ⊗ Qsxw1y with
auxiliary random variables (W1,W2) satisfying conditions:

Z −
−U −
−W2, V −
− (Z,W2)−
− U, Y −
− (X, S)−
−W1.

Supports of (W1,W2) are bounded by (|B| + 1) · (|B|+ 2).
The product distribution Q ∈ Qs decomposes as follows:

Puz(u, z)⊗Q(w2|u)⊗Q(v|z, w2)⊗ Ps(s) ⊗Q(x,w1|s)⊗ T (y|x, s).

As mentioned in [2], the independence between the prob-
ability distributions of the source and channel induces the
separation of the source coding and the channel coding. This
result is related to Theorem 1 in [14], with expected distor-
tion d(u, v) and channel cost c(x) functions. By considering
(U,Z,W2, V ) independent of (S,X,W1, Y ) and introducing
three indexes (m, l, j) with rates (Rm,Rl,Rj) satisfying,

Rm + Rl ≥ I(W2;U), Rl ≤ I(W2;Z),

Rj ≥ I(W1;S), Rm + Rj ≤ I(W1;Y ),

the achievability of Theorem III.1 becomes a separated coding

scheme. The author would like to thank Pablo Piantanida,

Matthieu Bloch and Claudio Weidmann for useful discussions

about the independence of the auxiliary random variables

(W1,W2) in the converse proof of Theorem IV.2.

V. CAUSAL ENCODING AND DECODING

The encoding (resp. decoding) is causal if for all i ∈
{1, . . . , n}, we have Xi = fi(U

i, Si), (resp. Vi = gi(Y
i, Zi)).

We characterize of the set of achievable joint probability

distributions for causal encoding and for causal decoding.

U i

Si

Zn

Xi Y n V n

Pusz C T D

Fig. 4. Causal encoding function fi : U i×Si → X , for all i ∈ {1, . . . , n}.

Theorem V.1 (Causal Encoding and Non-Causal Decoding)
1) If Q(u, s, z, x, y, v) is achievable, then it satisfies:
{

Q(u, s, z) = Pusz(u, s, z), Q(y|x, s) = T (y|x, s),

Y −
− (X,S)−
− (U,Z), Z −
− (U,S)−
− (X,Y ).
(14)

2) The distribution Pusz(u, s, z) ⊗ Q(x|u, s) ⊗ T (y|x, s) ⊗
Q(v|u, s, z, x, y) is achievable if (15). The converse holds.

max
Q∈Qe

(

I(W1,W2;Y, Z)− I(W2;U, S|W1)

)

> 0, (15)

Qe is the set of joint distributions Quszw1w2xyv with auxiliary
random variables (W1,W2) satisfying marginal cond. and:


















(U, S) independent of W1, X −
− (U,S,W1)−
−W2,

Y −
− (X,S)−
− (U,Z,W1,W2),

Z −
− (U,S) −
− (X,Y,W1,W2),

V −
− (Y,Z,W1,W2)−
− (U, S,X).

Supports of (W1,W2) are bounded by (|B| + 1) · (|B|+ 2).
The probability distribution Q ∈ Qe decomposes as follows:

Pusz ⊗Qw1
⊗Qw2|usw1

⊗Qx|usw1
⊗ Ty|xs ⊗Qv|yzw1w2

.

Proofs are available in App. A and B. This result is a

particular case of Theorem 2 in [7], by considering (U, S) as

information source and (Y, Z) as channel output. Empirical

coordination is equivalent to joint source channel coding with

two-sided state information and correlated source and state.

Theorem V.1 also reduces to Theorem 3 in [16], by considering

(U, S) as channel state and (Y, Z) as channel output.



When considering strictly causal encoding instead of causal

encoding, the optimal solution is obtained by replacing W1 by

X in equation (15).

Corollary V.2 (Causal Encoding without Coordination)
Consider a distortion function d : U ×V 7→ R. The distortion

level D ≥ 0 is achievable if and only if:

max
Qw1

,Qw2|usw1
,Qx|usw1

,

Qv|yzw1w2
,E[d(U,V )]≤D

(

I(W1,W2;Y,Z) − I(W2;U, S|W1)

)

≥ 0,

Corollary V.2 is a direct consequence of Theorem V.1. The

distortion level D ≥ 0 is achievable if and only if there exists

a joint distribution Pusz ⊗Qw1
⊗Qw2|usw1

⊗Qx|usw1
⊗ Ty|xs ⊗

Qv|yzw1w2
that satisfies (16), such that E[d(U, V )] ≤ D. Similar

analysis is mentioned in [2] for the proof of Theorem V.3.

Causal decoding and non-causal encoding is considered in

[2] without S and Z . Joint probability distribution Pusz ⊗
Qx|us ⊗ Ty|xs ⊗Qv|uszxy is achievable if (16). Converse holds.

max
Qxw1w2|us

,

Qv|yzw2

(

I(W1;Y, Z|W2)− I(W1,W2;U, S)

)

> 0, (16)

Remark that V depends on (Y, Z,W2) but not on W1. When

considering strictly causal decoding instead of causal decod-

ing, the optimal solution is obtained by replacing W2 by V in

equation (16). More details are provided in [2].

VI. CONCLUSION

The problem of empirical coordination is closely related

to the joint source-channel coding with two-sided state in-

formation with correlation between source and state. These

two problems are also related to state communication. We

provide achievability and converse results for the non-causal

case, that is open. We characterize the optimal solutions for

perfect channel, for lossless decoding, for independent source

and channel, for causal encoding and for causal decoding.

APPENDIX

The full versions of the proofs are stated in [22].

A. Sketch of Achievability of Theorem III.1

Consider Q(u, s, z, w1, w2, x, y, v) ∈ Q that achieves the

maximum in (7). There exists δ > 0 and rate R ≥ 0 such that:

R ≥ I(W1,W2;U, S) + δ, (17)

R ≤ I(W1,W2;Y, Z)− δ. (18)

• Random codebook. We generate |M| = 2nR pairs of

sequences (Wn
1 (m),Wn

2 (m)) with index m ∈ M drawn

from the i.i.d. marginal probability distribution Q⊗n
w1w2

.

• Encoding function. Encoder finds the index m ∈ M such

that (Un, Sn,Wn
1 (m),Wn

2 (m)) ∈ A⋆n
ε (Q) are jointly

typical. It sends Xn drawn from Q⊗n
x|usw1w2

depending on

(Un, Sn,Wn
1 (m),Wn

2 (m)).
• Decoding function. Decoder finds the index m ∈ M

such that (Y n, Zn,Wn
1 (m),Wn

2 (m)) ∈ A⋆n
ε (Q) are

jointly typical. Decoder returns V n drawn from Q⊗n
v|yzw1w2

depending on (Y n, Zn,Wn
1 (m),Wn

2 (m)).
The pair (W1,W2) can be replaced by a single W . From
properties of typical sequences, packing and covering Lemmas
stated in [23] pp. 27, 46 and 208, equations (17), (18) imply
that the expected probability of error is bounded for all n ≥ n̄:

Ec

[

P

(

(U
n
, S

n
) /∈ A

⋆n
ε (Q)

)]

≤ ε, (19)

Ec

[

P

(

∀m ∈ M, (U
n
, S

n
,W

n
1 (m), W

n
2 (m)) /∈ A

⋆n
ε (Q)

)]

≤ ε, (20)

Ec

[

P

(

∃m
′
6= m, s.t. (Y

n
, Z

n
,W

n
1 (m

′
), W

n
2 (m

′
)) ∈ A

⋆n
ε (Q)

)]

≤ ε. (21)

There exists a code c⋆ ∈ C(n) such that sequences are jointly

typical for distribution Pusz⊗Qxw1w2|us⊗Ty|xs⊗Qv|yzw1w2
with

probability more than 1− 3ε.

B. Sketch of Converse of Theorem III.1

Consider code c(n) ∈ C with small error probability Pe(c).

0 ≤
n
∑

i=1

I(Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1;Yi, Zi|Y

i−1
, Z

i−1)

−

n
∑

i=1

I(Y
i−1

, Z
i−1

;Ui, Si|U
n
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1) (22)

=

n
∑

i=1

I(W1,i;Yi, Zi|W2,i) −

n
∑

i=1

I(W2,i;Ui, Si|W1,i) (23)

≤ n · max
Q∈Q

(

I(W1; Y,Z|W2) − I(W2;U, S|W1)

)

. (24)

Eq. (22) is due to Csiszár Sum Identity and properties of MI.

Eq. (23) introduces auxiliary random variables W1,i =
(Un

i+1, S
n
i+1, Y

n
i+1, Z

n
i+1) and W2,i = (Y i−1, Zi−1) satisfying:

Yi −
− (Xi, Si)−
− (Ui, Zi,W1,i,W2,i), (25)

Zi −
− (Ui, Si)−
− (Xi, Yi,W1,i,W2,i), (26)

Vi −
− (Yi, Zi,W1,i,W2,i)−
− (Ui, Si, Xi). (27)

This is due to memoryless channel, i.i.d. source and non-causal

decoding since (Y n, Zn) is included in (Yi, Zi,W1,i,W2,i).
Eq. (24) comes from taking the maximum over the set Q.

C. Sketch of Converse of Theorem IV.1

Consider code c(n) ∈ C with small error probability Pe(c).

0 = H(Xn
, Z

n) − I(Xn
, Z

n;Un
, S

n) − H(Xn
, Z

n|Un
, S

n) (28)

≤
n
∑

i=1

H(Xi, Zi) −
n
∑

i=1

I(Xn
, Z

n;Ui, Si|U
n
i+1, S

n
i+1)

− H(Xn
, Z

n|Un
, S

n) (29)

=
n
∑

i=1

I(Xn
, Z

n
, U

n
i+1, S

n
i+1;Xi, Zi)

−

n
∑

i=1

I(X
n
, Z

n
, U

n
i+1, S

n
i+1;Ui, Si) − H(X

n
, Z

n
|U

n
, S

n
) (30)

≤

n
∑

i=1

I(Xn
, Z

−i
, U

n
i+1, S

n
i+1;Xi, Zi)

−
n
∑

i=1

I(Xn
, Z

−i
, U

n
i+1, S

n
i+1;Ui, Si) (31)

=

n
∑

i=1

I(Xi,W2,i ;Xi, Zi) − I(Xi,W2,i;Ui, Si) (32)

≤ n · max
Q∈Qp

(

I(X,W2;X,Z) − I(X,W2;U, S)

)

. (33)

Eq. (28), (29) are due to properties of mutual information.

Eq. (30) is due to the i.i.d. source (U, S).
Eq. (31) is due to the i.i.d. source (U, S, Z): H(Zn|Un, Sn) =



∑

H(Zi|Ui, Si) =
∑

H(Zi|X
n, Z−i, Un

i+1, S
n
i+1, Ui, Si).

Eq. (32) introduces auxiliary random variable W2,i =
(X−i, Z−i, Un

i+1, S
n
i+1) that satisfies Markov chains: Zi −
−

(Ui, Si)−
− (Xi,W2,i) and Vi −
− (Xi, Zi,W2,i)−
− (Ui, Si).
This is due to i.i.d. source (U, S, Z) and non-causal decoding.

Eq. (33) comes from taking the maximum over the set Qp.

D. Sketch of Achievability of Theorem V.1

Consider Q ∈ Qe that maximizes (15) and block-Markov

code c ∈ C(n) over B ∈ N blocs of length n ∈ N with:

R ≥ I(W2;U, S|W1) + δ, (34)

R ≤ I(W1;Y, Z) + I(W2;Y, Z|W1)− δ. (35)

• Random codebook. We generate |M| = 2nR sequences

Wn
1 (m) drawn from Q⊗n

w1
with index m ∈ M. For each

m ∈ M, we generate the same number |M| = 2nR of

sequences Wn
2 (m, m̂) with index m̂ ∈ M, drawn from

Q⊗n
w2|w1

depending on Wn
1 (m).

• Encoding function. It recalls mb−1 and finds mb ∈ M s.t.

sequences (Un
b−1, S

n
b−1,W

n
1 (mb−1),W

n
2 (mb−1,mb)) ∈

A⋆n
ε (Q) are jointly typical in block b − 1. It deduces

Wn
1 (mb) for block b and sends Xn

b drawn from Q⊗n
x|usw1

depending on (Un
b , S

n
b ,W

n
1 (mb)).

• Decoding function. It recalls mb−1 and finds mb ∈ M
such that (Y n

b−1, Z
n
b−1,W

n
1 (mb−1),W

n
2 (mb−1,mb)) ∈

A⋆n
ε (Q) and (Y n

b , Zn
b ,W

n
1 (mb)) ∈ A⋆n

ε (Q) are jointly

typical. It returns V n
b−1 drawn from Q⊗n

v|yzw1w2
depending

on (Y n
b−1, Z

n
b−1,W

n
1 (mb−1),W

n
2 (mb−1,mb)).

(Un, Sn)
Wn

1

Wn
2

Xn

(Y n, Zn)
Ŵn

1

Ŵn
2

V n

b− 2 b− 1 b b+ 1

Equations (34), (35) imply for all n ≥ n̄ and for a large
number of blocks B ∈ N, the sequences are jointly typical
with large probability:

Ec

[

P

(

(U
n
, S

n
) /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∀m ∈ M, (U
n
b−1 , S

n
b−1,W

n
1 (mb−1), W

n
2 (mb−1, m)) /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∃m
′
6= m, s.t.

{

(Y
n
b , Z

n
b , W

n
1 (m

′
)) ∈ A

⋆n
ε (Q)

}

∩

{

(Y
n
b−1, Z

n
b−1, W

n
1 (mb−1), W

n
2 (mb−1,m

′
)) ∈ A

⋆n
ε (Q)

}

)]

≤ ε.

E. Sketch of Converse of Theorem V.1

Consider code c(n) ∈ C with small error probability Pe(c).

0 ≤
n
∑

i=1

I(Ui−1
, S

i−1
, Y

n
i+1, Z

n
i+1;Yi, Zi)

−

n
∑

i=1

I(Y
n
i+1Z

n
i+1;Ui, Si|U

i−1
, S

i−1
) (36)

=

n
∑

i=1

I(W1,i,W2,i;Yi, Zi) −

n
∑

i=1

I(W2,i;Ui, Si|W1,i) (37)

≤ n · max
Q∈Qe

(

I(W1,W2;Y,Z) − I(W2;U, S|W1)

)

. (38)

Eq. (36) is due to Csiszár Sum Identity and properties of MI.
Eq. (37) introduces auxiliary random variables W1,i =
(U i−1, Si−1) and W2,i = (Y n

i+1, Z
n
i+1) satisfying:

(Ui, Si) are independent of W1,i, (39)

Xi −
− (Ui, Si,W1,i) −
−W2,i, (40)

Yi −
− (Xi, Si) −
− (Ui, Zi,W1,i,W2,i), (41)

Zi −
− (Ui, Si) −
− (Xi, Yi,W1,i,W2,i), (42)

Vi −
− (Yi, Zi,W1,i,W2,i) −
− (Ui, Si, Xi). (43)

Eq. (38) comes from taking the maximum over the set Qe.

REFERENCES

[1] V. Anantharam and V. Borkar, “Common randomness and distributed
control: A counterexample,” Systems & Control Letters, vol. 56, no. 7-
8, pp. 568 – 572, 2007.

[2] M. Le Treust, “Empirical coordination for the joint source-channel cod-
ing problem,” submitted to IEEE Transactions on Information Theory,

http://arxiv.org/abs/1406.4077, 2014.
[3] G. Kramer and S. Savari, “Communicating probability distributions,”

IEEE Trans. on Info. Theory, vol. 53, no. 2, pp. 518 – 525, 2007.
[4] P. Cuff, H. Permuter, and T. Cover, “Coordination capacity,” IEEE Trans.

on Information Theory, vol. 56, no. 9, pp. 4181–4206, 2010.
[5] O. Gossner, P. Hernandez, and A. Neyman, “Optimal use of communi-

cation resources,” Econometrica, vol. 74, no. 6, pp. 1603–1636, 2006.
[6] P. Cuff and L. Zhao, “Coordination using implicit communication,” IEEE

Information Theory Workshop (ITW), pp. 467– 471, 2011.
[7] P. Cuff and C. Schieler, “Hybrid codes needed for coordination over the

point-to-point channel,” 49th Annual Allerton Conference on Communi-

cation, Control, and Computing, pp. 235–239, 2011.
[8] M. Le Treust, “Empirical coordination with feedback,” in IEEE Inter-

national Symposium on Information Theory (ISIT), 2015.
[9] M. Le Treust, A. Zaidi, and S. Lasaulce, “An achievable rate region

for the broadcast wiretap channel with asymmetric side information,”
49th Annual Allerton Conference on Communication, Control, and

Computing, pp. 68–75, 2011.
[10] M. Bloch, L. Luzzi, and J. Kliewer, “Strong coordination with polar

codes,” 50th Annual Allerton Conference on Communication, Control,

and Computing, pp. 565–571, 2012.
[11] B. Larrousse and S. Lasaulce, “Coded power control: Performance

analysis,” IEEE Internat. Symp. on Inf. Th. (ISIT), pp. 3040–3044, 2013.
[12] B. Larrousse, S. Lasaulce, and M. Bloch, “Coordination in distributed

networks via coded actions with application to power control,” Submitted

to IEEE Trans. on Info. Theory, http://arxiv.org/abs/1501.03685, 2014.
[13] M. Le Treust, “Correlation between channel state and information

source with empirical coordination constraint,” IEEE Information Theory

Workshop (ITW), pp. 272–276, 2014.
[14] N. Merhav and S. Shamai, “On joint source-channel coding for the

wyner-ziv source and the gel’fand-pinsker channel,” IEEE Transactions

on Information Theory, vol. 49, no. 11, pp. 2844–2855, 2003.
[15] T. Cover and M. Chiang, “Duality between channel capacity and rate

distortion with two-sided state information,” IEEE Transactions on

Information Theory, vol. 48, no. 6, pp. 1629–1638, Jun 2002.
[16] C. Choudhuri, Y.-H. Kim, and U. Mitra, “Causal state communication,”

IEEE Trans. on Info. Th., vol. 59, no. 6, pp. 3709–3719, June 2013.
[17] S. Lim, P. Minero, and Y.-H. Kim, “Lossy communication of correlated

sources over multiple access channels,” 48th Annual Allerton Conference

on Communication, Control, and Computing, pp. 851–858, 2010.
[18] P. Minero, S. Lim, and Y.-H. Kim, “Joint source-channel coding via

hybrid coding,” IEEE International Symposium on Information Theory

(ISIT), pp. 781–785, 2011.
[19] T. M. C. A. Sutivong, M. Chiang and Y.-H. Kim, “Channel capacity and

state estimation for state-dependent gaussian channels,” IEEE Transac-

tions on Information Theory, vol. 51, no. 4, pp. 1486–1495, 2005.
[20] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding

with side information at the decoder,” IEEE Transactions on Information

Theory, vol. 22, no. 1, pp. 1–11, 1976.
[21] S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random

parameters,” Pb. of Control and I.T., vol. 9, no. 1, pp. 19–31, 1980.
[22] M. Le Treust, “Coding theorems for empirical coordination,” internal

technical report, to be submitted, 2015.
[23] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge

University Press, Dec. 2011.


