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Abstract

We present an axiomatic characterization of the Owen-Shapley spatial
power index for the case where issues are elements of two-dimensional
space. This characterization employs a version of the transfer condition,
which enables us to unravel a spatial game into spatial games connected
to unanimity games. The other axioms are spatial versions of anonymity
and dummy, and two conditions concerned particularly with the spatial
positions of the players. We show that these axioms are logically inde-
pendent.
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1 Introduction

Voting power in political bodies can be represented by simple games, which
identify the winning and losing coalitions: a winning coalition can enforce laws,
amendments, etc. In order to measure the power of an individual voter or
political party one can use a power index, like for instance the Shapley-Shubik
index, which is the Shapley value applied to the transferable utility game that
assigns one to winning and zero to losing coalitions. As is well known, the
Shapley-Shubik index distributes a total of one among the players by assigning
to each player the fraction of the number of player permutations in which that
player is pivotal. This way of measuring individual power, however, neither
takes the possible issues at stake into account nor the individual positions of
the players concerning these issues. In order to remedy this defect, Owen and
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Shapley (1989), following up on earlier papers of Owen (1971) and Shapley
(1977), assume that each player occupies a position in R™: one can think of
there being m possible criteria, and a point € R™ represents a position with
respect to these criteria. An issue is then a function f : R™ — R, with the
interpretation that if f(x) < f(y) then a player with position x is more in favor
of issue f, and thus more likely to support f, than a player with position .
Owen and Shapley restrict attention to linear homogenous issues; i.e., an issue
can be represented by a vector » € R™ with length one, so that a player with
position z is more in favor of r than a player with position y if -2 < r-y (dot-
products). Given a simple game and a constellation of player positions, for each
issue r a pivotal player exists, by building a coalition starting with the player
whose position has the smallest dot-product with r. Then the Owen-Shapley
spatial power index assigns to each player the fraction of issues at which this
player is pivotal. In other words, compared to the Shapley-Shubik index, the
player permutations are weighted by considering the positions of the players.

Although the model underlying the Owen-Shapley spatial power index may
seem somewhat abstract, the concept derives important support from the fact
that, at least if = 2 and the simple game is proper and strong (meaning, for
each coalition, that either that coalition is winning and its complement losing,
or the other way around), the strong point and the center of power coincide.
The latter point is the convex combination of the player positions using the
Owen-Shapley spatial power index values as weights; and the strong point is
the Copeland winner, i.e., the position that is least vulnerable to opposition
by (winning) coalitions in terms of Euclidian distance. See Owen and Shapley
(1989) for details and a proof of this result.

Also in this paper we assume m = 2. A spatial game is a combination of
a simple game and a constellation of player positions. A spatial power index
assigns to each player in a spatial game a nonnegative number, where these
numbers sum up to one. We show that the Owen-Shapley spatial power index
is uniquely characterized by five axioms: a version of the well known transfer
condition similar to the one in Einy and Haimanko (2011); anonymity and dum-
mie axioms adapted to the spatial context; and two axioms dealing exclusively
with the spatial positions of the players. We also show that these axioms are
logically independent. As far as we are aware, this is the first characterization
of the Owen-Shapley spatial power index.

Further related literature. Without claiming completeness, we mention a few
relevant related papers. Recently, Martin et al. (2014) have extended the Owen-
Shapley spatial power index to general (sub)sets of issues and player positions.
They also clarify the difference and overlap between the original concepts of
Owen (1971) and Shapley (1977). Shenoy (1982) provides a spatial version of
another well-known power index, the Banzhaf index. Passarelli and Bar (2007)
propose a power index which is more directly based on the Euclidian distance of
player positions to issues, where the latter are points in the same space as the
player positions. They also discuss application to the EU. Benatti and Marzetti
(2013) take a generalized approach to power indexes, comprising the Shapley-



Shubik and Owen-Shapley power indexes, and also apply this to EU’s council
of ministers. Alonse-Meijide et al. (2011) develop an alternative spatial power
index based on lengths of paths connecting player positions and induced by
player permutations, and consider an application to the Catalan Parliament.

Also the more specific political science literature provides many interesting
references to this topic. We mention in particular Grofman et al. (1987) and
Straffin jr (1994) for overviews and applications.

Organization of the paper. Preliminaries are collected in Section 2. Section 3
provides the axioms, characterization, and logical independence, and Section 4
concludes.

2 Preliminaries

We introduce the relevant notations and concepts in different subsections.

2.1 Notations in R?

For z,y € R? with x # y we denote by [z,y, —) the half-line starting at = and
crossing through y. The line segment with endpoints « and y is denoted by [z, y];
the perpendicular bisector of [z,y] is the line through %x + %y perpendicular
to the line through = and y. For a point  and a line £ in R? such that = ¢ ¢
we denote by z¢ the reflection of z with respect to ¢, i.e., £ is the perpendicular
bisector of [z, x¢]. For a point z € ¢ we define * = z. By z° we denote the
projection of a point z on a line ¢, i.e., ¢ = %x—k %xg. For z € R?, ||x|| denotes
the (Euclidean) length of x. For z = (z1,22), y = (y1,92) € R?, z - y denotes
the inner product of z and y, i.e., z -y = z1y1 + T2y2. For a subset X C R2,
co (X)) denotes the convex hull of X.

2.2 Simple games

A simple game is a pair (N,v), where N is a nonempty finite subset of N and
v is a function 2V — {0,1} satisfying (a) v()) = 0 and v(N) = 1; and (b)
v(S) < v(T) for all S, T € 2V with S C T.! Elements of N are called players
and subsets of N coalitions. A coalition S is winning if v(S) = 1, otherwise
it is losing. A minimal winning coalition is a winning coalition of which each
nontrivial subcoalition is losing. We denote by V!V the set of all simple games
with player set V.

Player i is pivotal in S if v(S) =1 and v(S'\ {i}) = 0.

For a simple game (N, v) with at least two players and a player ¢ € N we
define the game (N \ {i},v_;) as follows: v_;(§) = 0 and v_;(S) = v(S U {i})
for every § # S C N\ {i}. The game (N \ {i},v_;) can be interpreted as
player ¢ withdrawing from (N, v) but leaving his ‘consent’ behind; in particular,
a winning coalition in (IV,v) remains winning also without player 7. Note that,

indeed, (N \ {i},v_;) € YN\ik,

IThus, in this paper simple games are monotonic by definition.



2.3 Constellations

A constellation for player set N is a vector p = (p;)ien € (R?)Y such that
p; # pj for alli,j € N with i # j. We denote by PV the set of all constellations
for player set N. For p € PN and i € N, p_; € PN\ is defined by (p=i)j =D
for every j € N\ {i}. For a line £ in R? and p € PV, we denote p’ = (p!)icn-
Hence, the constellation p’ is the reflection of the constellation p with respect
to £.

2.4 Spatial games

A spatial game for player set N is a triple (N,v,p) where (N,v) € VN and
pe PN,

Player ¢ is a dummy in (N,v,p) if p; € co({p; | 7 € S\ {i}}) for every
coalition S in which 7 is pivotal. Note that, in particular, a player who is piv-
otal in no coalition in the simple game (N,v), is a dummy. More generally,
a dummy i, even if he is pivotal in some coalition .S, does not occupy an ‘ex-
treme’ position in that coalition and therefore will (almost) never exploit this
pivotalness: whatever the issue, player ¢ will not be the last player of coalition
S to consent. This interpretation is clearly consistent with the idea underlying
the Owen-Shapley spatial power index, but it is also consistent with alternative
approaches as mentioned in the introduction. For instance, if issues are identi-
fied with points in R? and we take the Euclidian distance as a measure of being
close to an issue, then in the situation above player ¢ will never have maximal
distance to an issue within the coalition S, and thus will never be the last player
in S to consent.

2.5 Power indices

A spatial power index is a function ¢ which maps each spatial game (N, v,p)
to a vector p(N,v,p) € RV, such that o;(N,v,p) > 0 for all i € N and
Y ien @i(N,v,p) = 1. Central in this paper is the Owen-Shapley spatial power
index (Owen and Shapley, 1989), which we define next.

Let (N,v,p) be a spatial game and let U = {r € R? | ||r|| = 1} denote
the circle with radius 1. We say that player i € N is pivotal at r € U if i is
pivotal in S ={j € N |r-p; <r-p;}. Then at each r € U, except at at most
finitely many points, there is a unique pivotal player. Let p; be the total length
of the arc(s) of U where player i is pivotal, divided by 27 (the total length of
U); 80 Y ,cn pi = 1. Alternatively, p; is the probability that player ¢ is pivotal
if r is chosen from the uniform distribution over U. The Owen-Shapley spatial
power index ® now assigns these probabilities to the spatial game (N,v,p):
(I)(Na Uap) = (pz)zEN

From a geometric point of view — which we will use often in the sequel —
player i is pivotal at r if the following holds. Consider a(ny) line £ in R? parallel
to r, and the projections ;Ef of the points p;, j € N, on £. Say that player j
precedes player ¢ on £ if the projection 15§ (weakly) precedes p! when going along



Figure 1: Illustrating Example 2.1

¢ in the direction of r. If player ¢ is pivotal in the set of preceding players (which
includes himself), then i is pivotal at r.2

To further illustrate the Owen-Shapley spatial power index, we compute it
for the case in which the game v is a unanimity game.

Example 2.1. We compute ® for the spatial game (N, ur,p) where ) #T C N
and ug is the unanimity game on T, i.e., ur(S) =1if T C S and urp(S) =0
otherwise. The players outside T are, trivially, dummies and, in particular,
cannot be pivotal at any r € U. Hence, ®;(N,ur,p) =0 for all i € N\ T and
moreover the points p; for those players play no role in determining ®; (N, ur, p)
for the players j in T'. If p; € co ({p; | i € T\ {j}}) for some j € T', then again j
is a dummy in (N, ur,p), and for any line £ the projection ﬁf is located between
projections of other players in T', so that j can be pivotal at most finitely many
r; hence ®; (N, ur, p) = 0. Let T” consist of the remaining (non-dummy) players
in T, and let P = co({p; | i € T'}). Thus, p; is an extreme point of P for every
i € T'. Without loss of generality suppose that P = {pi,...,pr} and that
the point p; is adjacent to p;_1 and p;1 for each i € T', where pg = pr and
pr+1 = p1. For each i € T' let «; denote the angle (in radians) at p; in P.

Let i € T'. We compute ®;(N,ur,p). Clearly, if k = 1 then ®;(N,ur,p) =
1. Now assume that £ > 2. Let ¢ be the line through p;,_; and p; and let m
be the line through p;y; and p;. (See Figure 1.) Let ¢+ be the line through
p; perpendicular to ¢ and let m® be the line through p; perpendicular to m.3
Consider a vector r of length one starting at p;. Then the projections of the
points p; for j € T' precede the projection of p; on the line through p; in the

2Verification of this claim follows from elementary geometry.
31If k = 2 then £ and m as well as £+ and m~ coincide.



direction of 7 if and only if r is in between ¢+ and m* and pointing outward
from P. It is easy to see that the (outward) angle between ¢+ and m™ is equal
to m — ay, so that ®;(N,ur,p) = (7 — «;)/27. Since the sum of the angles at
the vertices of P is equal to (k — 2)7m we have, indeed,

1 (k—2)m
€T’

3 An axiomatic characterization of the Owen-
Shapley spatial power index

We formulate the axioms and state and prove the characterization result. Fi-
nally, we show that the axioms are independent.

3.1 The axioms

Throughout, let ¢ be a power index. The first axiom is equivalent to the well-
known transfer axiom of Dubey (1975), as remarked in Dubey et al (2005). Here
we use a different name which reflects its content in a more direct manner.

Equal Power Change (EPC) For all player sets N, all p € PV, and all
v, o', waw' € VN if v —v" = w—w > 0, then p(N,v,p) — o(N,v',p) =
QO(N,’U),p) - @(Na wlap)'

EPC says that, for each constellation, if the same winning coalitions are added
when going from v’ to v as when going from w’ to w, then the change in power for
every player when going from v’ to v should be equal to the change in power when
going from w’ to w. As in Einy and Haimanko (2011), the condition will imply
that, for each fixed constellation, the power index for arbitrary simple games is
completely determined by its value on unanimity games as in Example 2.1.

The second axiom requires that dummies can be left out — while leaving
behind their consent — without any effect on the power of the remaining players.

Dummy Property (DP) For every spatial game (N, v, p) and every dummy ¢
in (N,v,p), ¢;(N,v,p) = ¢;(N \{i},v_s,p—;) for every j € N\ {i}.

Note that DP implies that dummies have zero power according to . The
Dummy Property is a natural consequence of the definition and interpretation
of a dummy in Sect. 2.4.

The third axiom is a standard anonymity requirement, expressing that it
should not matter how the players in a spatial game are called. Let N C N be
finite and let o : N — N be an injective function. For a spatial game (N, v, p)
define the spatial game (o(N),ov,op) by ov(o(S)) = v(S) for all S C N and
(0p)oiy = pi for all i € N.

Anonymity (AN) For every spatial game (N, v,p) and every injective function
0: N =N, p,)(0(N),0v,0p) = @;(N,v,p) for all i € N.



The last two axioms concern constellations. The first implies that it does
not matter where in R? the constellation is located. It is a natural consequence
of the assumption that for a power index all potential issues are taken into
consideration and are regarded equally likely, so that only the relative positions
of the players matter.

Reflection Invariance (RI) For every spatial game (N,v,p) and every line ¢
in R?, o(N,v,p) = ¢(N,v,p").

The final axiom reflects the consideration that what matters in a constella-
tion are the relative positions of the players as expressed by the lines connecting
them. The axiom states that the power of a player ¢ does not change if the
position p; of another player j moves along the line through p; and p; without
passing p;. Note that this implies that the order of precedence of the projections
of p; and p; on any line does not change. Thus, while all five axioms will be
crucial for obtaining the Owen-Shapley spatial power index — see Sect. 3.3 — the
final axiom perhaps most closely reflects the idea underlying this index.

Positional Invariance (PI) For all player sets N, i € N, and p,p’ € PV, if
P, = p; and p;- € [pi,pj,—) for all j € N\ {i}, then ¢;(N,v,p) = ¢;(N,v,p’)
for all (N,v) € V.

3.2 The characterization
The main result of this paper is the following.

Theorem 3.1. The Owen-Shapley spatial power index ® is the unique spatial
power index satisfying EPC, DP, AN, RI, and PI.

We first show that ® satisfies the five axioms in the theorem.
Lemma 3.2. ® satisfies EPC.

Proof. To show that ® satisfies EPC, let p € PV and let v, v, w, w’ be simple
games with player set N, satisfying v — v = w — w’ > 0. It is sufficient to
consider the case where v arises from v’ and w from w’ by adding the minimal
winning coalition S. First consider a player ¢ € S. Then v(T U {i}) — v(T) >
V' (TU{i})—v'(T) and w(TU{i})—w(T) > w'(TU{i})—w'(T) for all T C N\{i}.
This implies that, according to ®, player i can never lose power when going from
v’ to v and from w’ to w. Player ¢ gains, when going from v’ to v, at an r € U
where he is not pivotal according to v’ but pivotal according to v. Suppose the
induced ordering at such an r is i1,...,i, (where n = |N|), player i; is pivotal
according to v’, S C {iy,...,4:—1}, and 7 is the last player of S in this ordering,
say ¢ = 45 for some s <t — 1. Then {iy,...,is} is losing in v' and winning in
v, and therefore losing in w’ and winning in w. Also, {i1,...,is—1} is losing in
v’, v, w’, and therefore also in w. Thus, player 7 is pivotal according to v and
according to w but not according to v’ and w’. Hence, the gain in power for
player 1 at this particular ordering when going from v’ to v and when going
from w’ to w is equal to the share of the vectors € U inducing this ordering,



which depends exclusively on the constellation p. We conclude that the gain of
each player 7 € S when going from v’ to v and when going from w’ to w is the
same.

Next, let i ¢ S. Now player i can only lose when going from v’ to v and from
w’ to w. Player ¢ loses, when going from v’ to v, at an r € U where he is pivotal
according to v’ but not pivotal according to v. Suppose the induced ordering
at such an r is 41,...,4, (where n = |N|), player i = 4; is pivotal according to
o', and S C {i1,...,4t—1}, so that player i is no longer pivotal according to v.
Since S is also winning in w, player 7 is also not pivotal according to w. Since
{i1,...,4t—1} is losing in v' and winning in v, it must be losing in w’; and since
{i1,...,4;} is winning in v’, v, and w, it must be winning in w’. Hence, player i
is pivotal according to w’. Hence, the loss in power for player 1 at this particular
ordering when going from v’ to v and when going from w’ to w is equal to the
share of the vectors r € U inducing this ordering, which depends exclusively on
the constellation p. We conclude that the loss of each player ¢ € S when going
from v’ to v and when going from w’ to w is the same. O

Lemma 3.3. & satisfies DP, AN, RI, and PL

Proof. Let (N, v,p) be a spatial game. If player i is a dummy, i.e., p; € co ({p; |
j € S\ {i}}) for every coalition S in which 7 is pivotal, then the projection of
p; on any line £ is in between the projections of other players in S, for every S
in which 7 is pivotal. Hence, player i is pivotal at at most finitely many r € U.
Thus, ®;(N,v,p) = 0 and nothing changes for the other players if we leave out
player ¢ from (N,v) and p; from p, i.e., ¢;(N,v,p) = @;(N \ {i},v—_;,p—;) for
every j € N\ {i}. Hence, ® satisfies DP.

AN of ® is obvious by definition. For RI, suppose that player ¢ in (N, v, p) is
pivotal at some r € U. Let £ be a line in R?, and let m be the line through the
origin parallel to £. Then it is easy to check that player ¢ is pivotal at ™ € U in
the spatial game (N, v, p’). Since this holds for every player i and every r € U,
RI of ® follows.

Finally, let p’ € PN and i € N such that p} = p; and p; € [pi,pj,—) for
all j € N\ {i¢}. Then, for every r € U, player i is pivotal at r in (N,v,p) if
and only if he is pivotal at r in (N,v,p’), since the set of preceding players of
player ¢ does not change. Therefore, ¢;(N,v,p) = ¢;(N,v,p’), and PI of ® is
proved. O

Lemmas 3.2 and 3.3 imply that the Owen-Shapley spatial power index sat-
isfies the five axioms in the theorem. We now show uniqueness.

The next lemma implies that, if ¢ satisfies EPC, then it is completely deter-
mined by its value on unanimity games as defined in Example 2.1. The lemma
follows from Lemma 2.3 in Einy (1987), see also Einy and Haimanko (2011).

Lemma 3.4. Let ¢ be a spatial power index satisfying EPC and let (N,v,p)

be a spatial game. Let Ty,..., Ty be the minimal winning coalitions in (N,v).
Then
QD(N) U,p) = Z (_1)|I‘+1S0(N7 uUnLEITme) *
0AIC{1,....k}



Until further notice, ¢ is a spatial power index satisfying DP, AN, RI, and
PIL.

Lemma 3.5. Let (N,ur,p) be a spatial game, where § # T C N. Let T' C
N be the set of non-dummies. Then p;(N,v,p) = 0 for alli € N\ T and
wi(N,ur,p) = @i(T',ur,p') for all i € T', where p’ is the restriction of p to
T.

Proof. Clearly, 7/ C T. Let j € N\ T/, then ¢;(N,ur,p) = ¢i(N \
{7}, (ur)—j,p—;) for all i € N\ {j} by DP. In particular, ¢;(N,v,p) = 1 —
iemy @iV AN} (ur)—jp—;) = 1 =1 = 0; and @i(N,ur,p) = @i(N \
{7}, ur\ gy, p—;) for all i € N\ {j}. Also, T" is still the set of non-dummies in
(N\{7},ur\(;3,p—5). The lemma now follows from repeated application of this
argument. U

In view of Lemma 3.5 we may restrict attention to spatial games of the form
(N, upn,p) and having no dummies. The next lemma establishes a very useful
consequence of AN and RI for this kind of spatial game.

Lemma 3.6. Let (N,un,p) be a spatial game and suppose that for two distinct
players i and j with ¢ the perpendicular bisector of [p;, pj] we have {p% | k €
N} ={pk | k € N}. Then ¢;(N,un,p) = ¢;(N,un,p).

Proof. Consider 0 : N — N defined by o(k) = k' if ppr = pt. By AN,
@z(N, uNap) = (po(i)(Nv UUN7Up) = (pj(Na U’Nape)' By RL QOJ(N, uN7p£) =
wj(NauNap)' Hence Qai(Naqup):SOj(NauNap)' O

Lemma 3.7. Let (N,un,p) be a spatial game. If |[N| = 1 or |[N| = 2 then
QD(N,’U,N,p) = é(Nquap)

Proof. Observe that in both cases there are no dummies. If |[N| = {i} then
clearly ¢;(N,un,p) = ®;(N,un,p) = 1. If N = {i,j} with j # ¢ then
0i(N,un,p) = ¢;j(N,un,p) by Lemma 3.6. This holds also for ®, and we
obtain ®;(N,un,p) = ®;(N,un,p) = ¢i(NV,un,p) = ¢;(N,un,p) = % O

Lemma 3.8. Let [N| =3, k€ N, pe PN, and let co({p; | i € N}) have a

right angle at py. Then op(N,un,p) = Px(N,un,p) = %.

Proof. (Cf. Figure 2.) Without loss of generality let N = {1,2,3} with k = 2
and consider an additional player 4 with p; € R? such that co({p; | i € N U
{4}}) is a rectangle with vertex ps opposite of ps. Consider the spatial game
(NU{4}, unugay,p). By Lemma 3.6 we obtain o1 (NU{4}, unugay,p) = @2(NU
{4}, unugay p), and similarly o (NU{4}, unugay, p) = @3(NU{4}, unuiay,p) =
©a(NU{4}, unugay, p), so that ¢;(NU{4}, unyqay,p) = 1 forevery i =1,... 4.

Next consider the spatial game (N U {4},unu4y,q), where ¢; = p; for

i =1,2,3 and ¢4 = §p1 + 3p3. By PL 0a(N U {4}, unugay,q) = w2(N U
{4}, unugay,p) = %. Since player 4 is a dummy in (NU{4}, unyu{a}, q), we obtain
p2(N,un,p) = p2(N, (UNU{4})—47Q—4) = p2(NU{4}, UNU{4}s q) = i, where the
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Figure 2: Illustrating the proof of Lemma 3.8

second equality follows from DP. The same argument (or Example 2.1) applies
to ®. (]

In what follows we use the notation £ zyz for the (smaller) angle, measured
in radians, at y between the line through x and y and the line through z and y.
The following lemma and its proof are illustrated in Figure 3.

Lemma 3.9. Let a, b, ¢, and d be four distinct points in R? such that b and
¢ are on different sides of the line through a and d, and £bad + £ cad < .
Let N = {i,j,k}, |N| = 3, and let p,q,s € PV be defined by p = (pi, pj, px) =
(a,b,¢), ¢ = (¢i,45,qr) = (a,b,d), and s = (s;,sj,sx) = (a,d,c), Then

1
SDz(N»uNap) :Soi(Nqu»q)—'_QDi(N?uNas)_ 5 .

If, additionally, £ bad = £ cad, then

1
©i(N,un,p) = 2pi(N,un,q) — 5 .

2
Proof. Take a point x in the open line segment between a and d, such that the
line through z perpendicular to the line through a and d intersects the open
line segment between a and b in a point y and the open line segment between a
and c in a point z. By PI it is sufficient to prove that

1
Qpi(NauNam :@i(Nqu)a)_ngi(N)uNag)_ §a

and

1
(pi(NauNa@:2<pi(NauN7A)_§

10
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Figure 3: Illustrating Lemma 3.9 and its proof

if £bad = Acada where ﬁ: (ﬁhﬁja:ﬁk) = (CL,y,Z), Z]v: (Z]viaz]vjazjk) = (a,y,x),
and 5 = (5;,5;,5) = (a,2,2). Now

3
Soj(NauN7i;):SDj(N7uN7a):Z_SDZ(N7’U/N7®7 (1)

where the first equality follows from PI and the second from Lemma 3.8. By
analogous arguments,

3
SDk(N,UN,@:SDk(N,UNvg):ifsﬁi(N,UN,g)- (2)

Combining (1) and (2) we obtain

0i(N,un,p) = 1—¢;(N,un,p) — ox(N,un,p)
1
= @i(N7UN7(7)+S0i(N7UN7§)_§a

which completes the proof of the first statement. Now suppose, additionally,
that £bad = £ cad. Then by Lemma 3.6 we have ¢;(N,un,p) = ox(N,un,D).
By (1) and (2) this implies ;(N,un,q) = @:(N,un,s), and the second state-
ment in the lemma follows. O

Lemma 3.10. Let N = {i,j, k}, |[N| =3, and let p € PN such that £ p;pip, =
Zem for some h,m € N with m < 2". Then ¢;(N,un,p) = 1 — 5%+.

Proof. First suppose m = 1. If h = 1 then ¢;(N,un,p) = i by Lemma 3.8.
Assume that the statement has been proved for h, then for h + 1 we have by
the second statement in Lemma 3.9 that

1 1

- oh+1 = 2902(N7UN717) - 5 )

DN | =
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Figure 4: Illustrating the proof of Lemma 3.11

hence ¢; (N, un,p) = % — # By induction the statement in the lemma follows

for m = 1 and all h € N. Now suppose the statement in the lemma has been
proved for m and arbitrary h such that m+1 < 2", Then by the first statement
in Lemma 3.9 we obtain for m + 1

11 1 m 1 1 m+1
and the proof of the lemma is complete by induction. O

Let m
A:{2—h7r\h,m€N, m<2h}.

With some abuse of notation we will write ¢(a) := ;(N,up,p) for (N,un,p)
as in Lemma 3.10, where a = £ p;p;p;, € A. Observe that A is a dense subset
of the interval (0,7) and that ¢ : A — (0,3), Ztm — L — /% is a decreasing
continuous function. Note that p(a) = "= for every o € A.

Next, we extend these findings to all of (0, 7).

Lemma 3.11. Let a, b, ¢, and d be four distinct points in R? such that d and
b are on different sides of the line through a and ¢, and 0 < £ cab < £ dab < .
Let N = {iaj’k}7 |N| = 37 letp = (p’up]7pk) = ((L,b, C) and let q= (qiaqjaqk) =
(a7 ba d) Then Qoi(Nv U’N7p) > (,Oi(N, Un, q)

Proof. By PI we may assume that the line m through b and d is perpendicular
to the line ¢ through a and ¢ and that these two lines intersect in c. See
Figure 4 for an illustration of this and of the later part of the proof. Without
loss of generality we assume i =1, j = 2, k = 3.

Consider the spatial game (N U {4}, unuqa}, (a,b,e,d)), where e = a™. By
PI and DP we obtain

02 (N U {4}, unuqays (a,b,e,d)) = p2(N,un, (a,b,e)) (3)

12



which can be seen by moving the location d of player 4 to ¢ along m. Since
©1(N,up, (a,b,e)) = o3(N,un, (a,b,e)) by Lemma 3.6, we have

p2(N,un, (a,b,e)) =1—2p1(N,un, (a,b,e)) . (4)

Since also @1 (N U {4}, unuqay, (a,b,e,d)) = @3(N U {4}, unuay, (a,b,e,d)) by
Lemma 3.6, we obtain

4102(NU {4}7UNU{4}a (a7b7€7d)) = 1- QQDI(NU {4}7uNU{4}a (a7bae7d))
—@4(N U {4}, unygay, (a,b,e,d)) . (5)

Combining (3), (4), (5) and the assumption that p4(NU{4}, unugay, (a,b,e,d)) >
0, we obtain

QOl(N, UnN, (a’ b, e)) > Qol(N U {4}a UNU{4}> (av b,e, d)) . (6)

By PI, v1(N,un, (a,b,e)) = v1(N,un, (a,b,c)) and by PI and DP, o1 (N U
{4}, unugay, (a,b,e,d)) = ©1({1,2,4},uf1,2,43, (a,b,d). Together with (6) we
have ¢1(N,un, (a,b,c)) > @1({1,2,4},u{17274},(a,b,d), hence by AN, ¢1(N,
un, (a,b,¢)) > o1 (N,un, (a,b,d). O

Lemma 3.11 in fact states that in a spatial game (N, ux, p) with three players
and the points py forming a triangle, the power of player ¢ decreases as the angle
at the point p; increases. With Lemma 3.10 and the discussion following it we
thus obtain the following result.

Corollary 3.12. Let N = {i,j,k}, N| = 3, and let p € PN. Then for each
i€N,
m — A pipiPk

27 ’

The case with an arbitrary number of players now follows easily.

QZ(N7 U‘Nap) = @i(N7 UN7p) =

Corollary 3.13. Let (N,un,p) be a spatial game without dummies and let
i,7,k € N such that p; and py are adjacent to p;. Then

T — A Dpip;
(I)z(NauN,p) = SOi(N,UN,p) = # .
Proof. By PI and DP, ¢;(N,un,p) = ¢i({i, ], k}, ugi ey (Pi,ps k). The
claim now follows from Corollary 3.12. -

Proof of Theorem 3.1 By Lemmas 3.2 and 3.3, ® satisfies all the axioms in the
theorem. The converse follows from Corollary 3.13 and Lemma 3.5, combined
with Lemma 3.4. (]

3.3 Independence of the axioms

The following spatial power indices show that the axioms in Theorem 3.1 are
logically independent.
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(1) For a spatial game (N, v,p) let a(N, v, p) denote the number of terms in the
summation in Lemma 3.4. Define

1

1

% (vaap)zi Z (I)(Nauumeij7p)7
N, v, p) 0AIC{1,....k}

for every spatial game (N, v, p), where T1, ..., T} are the minimal winning coali-
tions in (N,v). Then ¢! satisfies all the axioms in Theorem 3.1 except EPC.

(2) Define p?(N,v,p) = 1/|N| for every spatial game (N, v, p) and every i € N.
Then ? satisfies all the axioms in Theorem 3.1 except DP.

(3) For every spatial game (N, v, p) let Npq(N,v, p) be the set of non-dummies.
Let 3 assign 1 to player i € N such that i = min{j | j € Nq(N,v,p)} and 0
to every other player. Then ¢ satisfies all the axioms in Theorem 3.1 except
AN.

(4) For every spatial game (N,v,p), let p* assign 1 to player i such that p;
is lexicographically maximal among all p;, 7 € N (so p; has maximal second
coordinate among all points p; with maximal first coordinate). Let ©* assign 0
to all other players. Then ¢* satisfies all the axioms in Theorem 3.1 except RI.

(5) Define

1 .
T N,
5 _ )Nl 1€ Npd ,
>(N,v,p) =
i ') {0, otherwise .

Then ¢° satisfies all the axioms in Theorem 3.1 except RI.

Remark 3.14. We conclude this section by showing that also the (implicit)
nonnegativity requirement on a spatial power index cannot be dispensed with.
Recall that this condition is (only) used in the proof of Lemma 3.11, which shows
that the power of a player i decreases if the angle at the extreme point p; of the
polytope of the player positions increases. Without Lemma 3.11 we still have
that ¢;(N,un,p) = 3(1 — ¢) for a spatial game (N,uy,p) without dummies,
if the angle at p; is equal to g for some ¢ = m/2", h,m € N, m < 2". We
will now define a power index which still satisfies this property and all axioms
in Theorem 3.1, with sum of the powers of the players equal to one, but which
violates nonnegativity. To this end, let g : R — R be an additive function (i.e.,
gl +y) = g(z) + g(y) for all z,y € R) such that g(z) = « for all z € Q but
not for all z € R.* We construct a spatial power index 9 by defining it for all
(N,un,p), N CN, such that no player i € N is a dummy. By DP and EPC, 1
is then extended to all spatial games. Let (IV,un,p) be a spatial game without
dummies. Let the angle at p;, i € N, be x;m. Then we define ¥;(N,uy,p) =
%(1 —g(z;)) for all i € N. Since ¢ depends only on the angles in the polytope
determined by the constellation p, it follows that i satisfies AN, RI, and PI.
Also, ey (N, unsp) = L(IN|—g(X ey @) = (NI~ (N ~2)) = 1, where
the first equality follows from additivity of g. Since g(x) # x for some = € R, it
follows that ¢ # ®. Consequently, nonnegativity is violated.

4The existence of such a function g can be shown using the Axiom of Choice.
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4 Concluding remarks

We characterized the Owen-Shapley spatial power index by means of five axioms.
A limitation of our approach is that it is restricted to constellations and issues
in R2. Tt is straightforward to extend the axioms to the case of constellations
and issues in R™ for m > 2, and it is safe to conjecture that the Owen-Shapley
spatial power index satisfies these extended axioms. A proof of an eventual
converse, however, seems to be more involved.

As far as we are aware, this is a first axiomatic characterization of a spatial
power index. Further research may concern characterizations of alternative
power indexes, as proposed in the literature.
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