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Abstract

Spoken language allows for rich communication, but the message spaces used in most cheap
talk models and experiments are usually quite restrictive. I show theoretically that introducing
vague messages into a strategic information transmission game a la Crawford and Sobel (1982)
increases communication between boundedly rational players if some senders are moderately
honest. My model treats vague messages as explicitly imprecise messages, e.g., ”the state
is 1, 2, or 3” in contrast to a precise message, which might say ”the state is 2”. Senders
would like to bias the receivers’ beliefs upwards. Theoretically the introduction of vague
messages causes more honest senders in some cases to send a truthful but vague message rather
a precise lie. These message switches replace low-information lies with more informative
message and have an additional indirect effect of making the remaining precise messages more
informative as well. increasing how informative the average message is about the state. I test
this prediction experimentally and find that messages are more likely to be truthful and to
be believed credulously in a treatment where both kinds of messages can be sent. Finally
I structurally estimate the parameters of my model, and find that about half of subjects get
utility from truth-telling equal to around $0.30 (average earnings per round are around $0.70).

Keywords: overcommunication, cheap talk, strategic information transmission, level-k, hon-
esty, imprecise messages, vagueness.
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1 Introduction

A salesman might say that he receives “few complaints” about an appliance he is trying to sell, even

if eight of the twelve customers who bought it in the past had complained. A friend might explain

her absence from a Sunday afternoon gathering she did not wish to attend by saying she was “sick

all weekend”, even if her temperature never went above 99.5 and she felt well enough to go to

a movie. Like these examples, the majority of biased communication in the real world probably

is non-numeric in nature or at least not precise, even if the subject is quantitative.1 In contrast,

the majority of strategic information transmission experiments involve precise communication of

quantitative information.

The salesman or friend chooses from a richer (infinite) set of messages than the participant, and

the salesman or friend can choose ambiguous messages, messages which lack a definite meaning.2

I investigate experimentally and theoretically how allowing players to send explicitly imprecise

messages affects strategic information transmission in a standard one-dimensional biased cheap

talk setting (Crawford and Sobel 1982).

In my experiment, subjects communicate about a state s, an integer between 1 and 5. The

sender observes s and chooses freely from a menu of English-language messages to send about

it.3 In the precise language treatment, the menu consists of every message that specifies the state

precisely, such as “The state is 3.” In the vague language treatment, these five precise messages are

still on the menu, but in addition there are three messages that specify an interval the state is within,

1I am unaware of attempts to measure the forms that biased communication take, but non-precise speech is preva-
lent in every-day life. Notable exceptions to this claim are wine recommendations and stock analysts’ summary
ratings.

2In addition, the salesman can use messages which lack a definite referent, such as a “few”, a description whose
boundaries are fuzzy. In the philosophy literature this is the defining characteristic of vague messages. Lacking a
definite referrent necessarily implies imprecision, though, and arguably imprecision is more important to the nature of
communication in practice.

3Therefore my messages have exogenously given meaning. Much research has focused on fully endogenous mean-
ings instead.
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either 1 to 3, 2 to 4, or 3 to 5; for example, “The state is 1, 2, or 3.” After hearing whatever message

the sender selected, the receiver then chooses an action a. The receiver would like to choose a = s

while the sender would like her to choose a = s+ 2, so they play a partial common interest game

(Blume et al. 2001). Subjects alternate roles and are randomly rematched each period in order to

avoid repeated game effects. Section 2 describes the experimental setup in detail and Appendix A

contains the experimental instructions.

In both treatments, every Nash equilibrium with payoff-maximizing players is a no-communication

one. In these equilibria, no m conveys any information about s. As a result a is independent of m.

This prediction is not borne out in my data, as a higher m predicts a higher s (corr(m, s) = 0.311)

and receivers choose higher a in response to higher m (corr(a,m) = 0.491). These results

are consistent with previous experiments on strategic information transmission, which have typ-

ically found that people “overcommunicate”: messages convey more information than optimal

for senders, and receivers are more trusting of messages than would be optimal if messages were

uninformative (e.g., Cai and Wang (2006) or Duffy et al. (2014)).

The prior literature has identified two sources for this excess communication. First, people

prefer truth-telling (Gneezy 2005; Sanchez-Pages and Vorsatz 2007, 2009). Second, experimental

participants exhibit boundedly rational behaviors which can lead to both more accurate messages

and more trusting responses than the most sophisticated participants would employ (Cai and Wang

2006; Wang et al. 2010). No papers that I am aware of attempt to compare the importance of

these factors. Instead experiments cleanly test one factor and different experiments find support

for both. The first contribution of this paper is to show that both factors are important and that, if

the language available is rich, both can combine together to magnify overcommunication.

The second contribution of this paper is to consider how the option of imprecise messages

affects strategic information transmission given these factors. If players prefer telling the truth,
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they may want to choose a different kind of message rather than telling a precise lie. Subjects

in some cheap talk games choose non-communication over deceptive communication (Sanchez-

Pages and Vorsatz 2007, 2009). However, in these experiments, the sender’s direction of bias is

unknown to the receiver and not communicating does not reveal any information about the true

state. When the sender has a known upward bias and the state space is bounded, in high states the

sender would want to truthfully communicate about and so silence in fact conveys information.

Prior experiments also provide limited guidance on how boundedly rational players respond

to a richer message space, which makes both composing a message and interpreting a message

more complex. Increased complexity could make players who are boundedly rational rely on

simpler strategies, perhaps making their messages more truthful and their actions more trusting.

Alternatively, it might introduce more noise into their decision-making, producing the opposite

effect on accuracy and trust.

In fact, communication is more effective in the vague treatment. 46% (195/424) of messages

are truthful in the vague treatment, compared to 24% (65/268) in the precise treatment. Receivers

are also more trusting in the vague treatment, choosing the same action as the the state specified

in the message 34% (146/424) of the time, as compared to 23% (61/207) of the time in the precise

treatment. Section 3 documents the qualitative differences in communication between the two

treatments.

My reduced-form evidence does not speak to why communication is better in the vague treat-

ment. Therefore in Section 4 I develop a model combining level-k strategic reasoning and het-

erogenous tastes for honesty that teases out distinct implications of honesty and bounded ratio-

nality in strategic information transmission games with imprecise and precise messages. Level-k

models are structural non-equilibrium models of how people reason strategically (Crawford et al.

2013; Stahl and Wilson 1994; Nagel 1995). In these models players have a (typically incorrect)
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belief about how other players are acting, and optimize given their belief. Level 0 (L0) players

act non-strategically – in this context by either being truthful or by being completely credulous –

L1 players believe all players are L0, L2 players believe all players are L1, and so on. Crawford

(2003) first applied level-k to cheap talk and his model was subsequently modified and used to

explain overcommunication in strategic information transmission games by Cai and Wang (2006).

I introduce a second dimension to players’ types: each has an honesty type in addition to a

cognitive type. An honesty type is simply how strong a preference for truth-telling that player

has. If cognitive types and honesty types are independent, my behavioral model has two vectors

of parameters of interest: λ – the distribution of cognitive types – and τ – the distribution of

honesty types. In Section 5 I use maximum likelihood to estimate these parameters. Most of the

subjects in my experiment employed one or two levels of reasoning. About half of the subjects

showed moderate preferences for honesty – getting a utility benefit equivalent to a payment of

30 additional cents per message from being truthful (where the maximum monetary payoff is one

dollar per message). These parameter estimates suggest that honesty is the primary cause of the

increase in communication between treatments; in the absence of honest types, communication is

predicted to be equally effective in both treatments.

About half (192/424) of the messages in the vague treatment were imprecise. This pattern

of use allows me to disentangle honesty from bounded rationality. Extensive use of imprecise

messages is consistent with weakly honest players sending a message “The state is 1, 2, or 3”

when the state really is 1, rather than lying outright and sending the message “The state is 3”.

My model predicts that these players believe that precise lies are more effective deceptions, and

non-honest players would use imprecise messages in fewer circumstances. My other major source

of identification is the pattern of deviations from the predicted behavior of level-k self-interested

players. In my parameter estimation I use a discrete choice model with logit errors, so even if
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truthful messages are not optimal, they are more frequently sent by relatively more honest players.

Three experimental papers are closely related in subject or design to this paper. My experimen-

tal setup in the precise treatment mirrors Cai and Wang (2006).4 They use level-k to explain over-

communication in their experiment, but do not allow preferences for truth-telling in their model.

Agranov and Schotter (2012) is less related in design but more related in subject: a social planner

uses vague language to limit subjects’ information about payoffs in an asymmetric coordination

game, which leads to less coordination failure.5 Finally, Serra-Garcia, van Damme and Potters

(2011) studies experimentally the use of vague messages in a leader-follower public goods game

and finds that the leader uses vagueness strategically to hide information that she would hide by an

outright lie when only precise messages are allowed. Their structure is similar to mine in having a

precise and imprecise treatment, but otherwise the game in their experiment is quite different from

that in mine; for instance, the leader takes an action which is observed by the follower before she

makes her decision. My study complements theirs by showing that vague language is used to avoid

outright lies in a classic strategic information transmission context.

There is also a sizeable theoretical literature related to my subject. Kartik, Ottaviani and Squin-

tani (2007) consider biased strategic information with senders who have costs of misrepresenting

information, which could stem from preferences for truth-telling, and a fraction of receivers who

are credulous. In their environment fully separating equilibria are possible, while behavior in nei-

ther of my treatments resembles a fully separating equilibrium. However, a crucial assumption of

that paper is that the state and message space are unbounded above, while in my experiment the

boundedness of the state space plays an important role (e.g., about half of messages that subjects

4While Cai and Wang allow senders to choose multiple states in their message, note that this was not observed by
receivers. If a sender chose “1 or 2” in Cai and Wang’s experiment, this meant sending each message “1” and “2” with
50% probability. The receiver did not observe the set {1, 2}.

5Interestingly, Agranov and Schotter have both an imprecise (“x ∈ {1, 2, 3}”) and vague (“x is low”) treatment
and find that either form of coarse information is similar.
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sent were that “the state is 5”, which was the highest possible state).6 Chen (2011) similarly as-

sumes a fraction of players are honest senders or naive receivers and characterizes equilibria for

bounded state spaces in their presence. Some of Chen’s qualitative results are consistent with my

findings. However, in my work the cognitive types that perform one level of best-response reason-

ing are the most important both for my theoretical results and in my estimates of the distribution

of cognitive types. In Chen’s model only L0 types and equilibrium types exist. Neither of these

papers considers imprecise messages. In contrast, Blume and Board (2014) model intentional use

of vague messages, which is partly my focus, in their model vague messages are noisy messages

rather than set-valued as in my framework. Nonetheless, my experimental results are consistent

with some of the characteristics of the equilibrium in their paper: namely that vague messages

are not sent in the highest state but are sent in lower states, and that vague messages are sent in

equilibrium. More generally, it is well-known in this literature that noise in the communication

process can actually improve information transmission in equilibrium (Myerson 1997; Blume et

al. 2007). If imprecise messages represent a form of noise, my paper supports this conclusion.

2 Experiment

Before introducing and estimating my structural model, I provide an atheoretical description of

the experiment – this section – and subjects’ behavior – Section 3. The experiment was similar to

Cai and Wang (2006). Each period subjects played a discrete version of the Crawford and Sobel

(1982) cheap talk game. Subjects were paired, with one member of each pair being the sender and

one being the receiver. They communicated about the state of the world, s ∈ S ≡ {1, 2, . . . , 5} in

the following manner:

6It seems natural to think of communication about probabilities, reliability of appliances, or illness as having
bounded spaces (the upper bounds being 1, totally reliable, and dead respectively. For other contexts, such as stock
returns, unbounded spaces may be more natural instead.
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1. Nature draws s. Each element of S is equally likely to be drawn.

2. The sender learns s and chooses m ∈M to send to the receiver.

3. Finally, the receiver learns m and chooses an a ∈ A = S.

Both the sender and receiver monetary payoffs (in pennies) that were functions of a and s:

us(s, a) = 100− 25 ∗ (s− a− 2)1.2

ur(s, a) = 100− 25 ∗ (s− a)1.2

Subjects saw payoffs presented in table form for both roles similarly to Figure 1 below, so payoffs

were common knowledge.

Sender payoffs Receiver payoffs

Receiver action

choice

State State

s=1 s=2 s=3 s=4 s=5 s=1 s=2 s=3 s=4 s=5

a=1 43 7 -32 -72 -115 100 75 43 7 -32

a=2 75 43 7 -32 -72 75 100 75 43 7

a=3 100 75 43 7 -32 43 75 100 75 43

a=4 75 100 75 43 7 7 43 75 100 75

a=5 43 75 100 75 43 -32 7 43 75 100

Figure 1: Payoff Tables

There were three conditions. In the precise message condition, the sender could send only

precise messages of the form “The state is x.”. i.e., MP = {1, 2, 3, 4, 5}. In the vague message
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condition, the sender could choose to send either precise messages or imprecise messages. Impre-

cise messages specified an interval of three numbers that s could be within, such as “The state is

2, 3, or 4.”. MV = {1, 2, 3, 4, 5, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}}.

Finally in the third condition, the noise condition, the sender observed s imperfectly and could

send precise messages or imprecise messages (MN = MV ). Instead of observing s, the sender

observed σ ∈ Σ, where

Σ = {{1}, {2}, {3}, {4}, {5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}},

and s was equally likely to be any element of σ. Therefore in the noise treatment, Pr(s = 1) =

Pr(s = 5) = 0.155, Pr(s = 2) = Pr(s = 4) = 0.211, and Pr(s = 3) = 0.266.

In practice behavior in the noise and vague treatments were similar, and so I add the noise data

to the vague data, setting s = E[s | σ].

Instructions for each treatment were handed out and read aloud at the start of that treatment

(Appendix A contains the experimental instructions). All subjects participated in all conditions,

and the order of the conditions was randomized for each session. There were 8 to 12 rounds

for each condition. Subjects alternated roles and were randomly matched each round. Average

earnings were around $24, which includes a $6 show-up payment.

In total there were 42 subjects who collectively participated in 268 rounds of the precise treat-

ment, 204 rounds of the vague treatment, and 220 rounds of the noise treatment. Note that a round

yields one message choice observation and one action choice observation.
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3 Results

The unique perfect Bayesian equilibrium if players are self-interested and rational is for no com-

munication to occur: for messages to transmit no information about the state and for actions chosen

to be independent of the messages received. Neither of these predictions is borne out.

See Appendix B for raw data.

3.1 Truthfulness

Consider first the fraction of truthful messages in each treatment. Precise messages are truthful if

its literal meaning is true, i.e., m = s.7 There is some ambiguity in which messages are truthful

in the noise and vague message treatments. The definition m = s is narrow, as it classifies all

imprecise messages as false. A wider definition might also include imprecise messages for whicj

s ∈ m. The second definition requires accuracy but not precision, so that the statement “The

state is 1, 2, or 3.” is true if the state is 2. As measured with this definition, senders were more

likely to send true messages in the vague condition than the precise condition. Among the subset

of messages that were precise, there was also more narrowly defined truth-telling in the vague

treatment.

A related question is how informative each message was. Figure 2 shows Bayesian posterior

probabilities Pr(s = x|m, treatment) for each message in the precise and vague treatments. For

m = 1 and m = 2 the modal state from which the message was sent was the true state, while

for m > 2 with the exception of precise m = 4 in the vague treatment, the modal state was

never the true state. While m < 3 were more accurate, they were less common than m ≥ 3

(Pr(m < 3) = 0.172 and Pr(m < 3) = 0.125 in the precise treatment and in the vague treatment

7While Sutter (2009) finds evidence that in some games senders tell the truth deceptively, that seems implausible in
my context with sender bias, and indeed in my model no sender has beliefs that would lead to deceptive truth-telling.
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Table 1: Truthfulness

Treatment

Precise Vague Total
No. % No. % No. %

Truthfulness (strict definition)
False message 203 76% 354 83% 557 80%
Truthful message 65 24% 70 17% 135 20%
Total 268 100% 424 100% 692 100%

Truthfulness (weaker definition)
False message 203 76% 229 54% 432 62%
Truthful message 65 24% 195 46% 260 38%
Total 268 100% 424 100% 692 100%

Truthfulness (strict definition, precise m)
False message 203 76% 162 70% 365 73%
Truthful message 65 24% 70 30% 135 27%
Total 268 100% 232 100% 500 100%

Truthfulness (weaker definition, vague m)
False message – – 67 35% 67 35%
Truthful message – – 125 65% 125 65%
Total – – 192 100% 192 100%

Source: novembexp.dta

respectively).

Messages m = 3 or m = {2, 3, 4} were accurate in neither treatment, being most likely to

have been sent when s = 1. In general, higher messages (m = 4, m = 5, and m = {3, 4, 5}) were

closer to the truth in the vague treatment than corresponding messages in the precise treatment.

Visual comparison of the series shows that the CDF of Pr(s | m) in the vague treatment first-

order stochastically dominate their counterparts in the precise. There is a single crossing point

s̄ above which Pr(s | m, precise) < Pr(s | m, vague) and below which Pr(s | m, precise) >

Pr(s | m, vague). Because high messages make up the majority of messages sent, this regularity

is evidence that senders transmitted more information in the vague treatment.

A final point to take from Figure 2 is that messages were quite noisy in both treatments. With

the exception of m = 1 in the precise treatment, Pr(s | m) < 1/2 for any s, and generally

Pr(s | m) > 1/10 for all s. This noisiness means that usually receivers maximize utility by
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adjusting their action choice inward towards a = 3, and in fact a = 2 and a = 3 maximize

receivers’ payoffs in every case except m = 1 (both conditions) or m = 4 or m = 5 (vague

condition).8

8Optimal action choices are circled on the corresponding series – for instance in the m = 4 figure, a∗(4) (precise
treatment) and a∗({3, 4, 5}) both equal 3, while a∗(4) (vague treatment) is 4.
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Figure 2: Posterior Probabilities Pr(s | m). Red squares are posteriors in precise treatment,
blue circles are posteriors for precise message in vague treatment, and blue triangles are posteriors
for imprecise message in vague treatment. Circled points are optimal action choices by Bayesian
receiver.
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3.2 Trust in Messages

Define a credulous a as an action equal to the message (a = m) for a point message or the average

of the states in the message (a = (
∑
s∈m

s)/3) for an imprecise message. Table 2 shows that credulity

was more widespread in the vague and noise conditions than the precise condition.

Table 2: Credulity

Treatment

Precise Vague Total
No. % No. % No. %

Same a as m
No 207 77% 278 66% 485 70%
Yes 61 23% 146 34% 207 30%
Total 268 100% 424 100% 692 100%

Same a as m (precise m only)
No 207 77% 160 69% 367 73%
Yes 61 23% 72 31% 133 27%
Total 268 100% 232 100% 500 100%

Same a as expected m (imprecise m only)
No – – 118 61% 118 61%
Yes – – 74 39% 74 39%
Total – – 192 100% 192 100%

Source: novembexp.dta

Figure 3 shows the frequency of each action for each message sent, Pr(a | m), in the precise

and vague treatments. In the precise condition, there is widespread discounting of messagesm ≥ 3

by two units, such as choosing a = 1 in response to m = 3. While this phenomenon occurs in

the vague treatment as well, subjects in that treatment more frequently discount by 0 or 1 instead.

In addition, imprecise messages are discounted less than a corresponding precise messages in the

vague treatment. The differences in receivers’ responses between treatments are less pronounced,

though, than the differences in sender behavior in Figure 2.
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Figure 3: Action choice frequencies for each message received. Blue circles are responses to
precise messages in vague treatment, blue triangles are responses to imprecise messages, and red
squares are responses in precise treatment.
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3.3 Correlations between message and action choices

Not done yet.

3.4 Dynamics

There is no evidence that on aggregate players’ strategies changed during the sessions. In particu-

lar, the fraction of imprecise messages is roughly constant in early and late rounds, as is the share

of truthful messages and the degree of discounting by receivers. (More to come.)

4 Model

Level-k models are structural models of how players reason strategically. Instead of strategy

choices being in some form of equilibrium, players have a (typically incorrect) belief about how

other players are acting, and optimize given their belief. Crawford (2003) first applied level-k to

cheap talk and his model was adopted to a discrete version of the canonical Crawford and Sobel

(1982) model of strategic information transmission by Cai and Wang (2006). My main addition to

these earlier models is heterogenous preferences for truth-telling on the part of senders.

In these models, there is a hierarchy of cognitive types. Each type has different beliefs about

the strategy choices of the rest of the population, generally based to how less sophisticated types

behave. Each type reasons strategically based on their beliefs. For instance, in Crawford (2003)’s

model, communication is about a binary state, and L0 senders are truthful (m = s) while L0

receivers are credulous (a = m); then Lk senders best-respond to Lk − 1 receivers while Lk

receivers best-respond to Lk − 1 senders. In communication about a binary state, L1 receivers are

also credulous, L1 senders are liars, L2 receivers invert the message (a = 1 ifm = 0, a = 0 ifm =

1), L2 senders are liars, L3 receivers invert m, and L3 senders deceptively tell the truth. Because

16



senders in my experiment are biased, senders of higher types exaggerate their reports of s more

and more, while receivers discount the senders’ reports more if they are of a higher types. This

exaggeration and discounting occasions a reduction in communication, as sufficiently sophisticated

senders only send the highest message m = 5 and sophisticated recievers then choose a(5) = 3. In

common with the Crawford model, however, is that L0R and L1R behavior is identical, as is L1S

and L2S behavior, and L2R and L3R behavior.9

Formally, players differ in their cognitive type, honesty level, and role. A player’s cognitive

type determines her beliefs about the how players in the other role behave. A type Lks player has

beliefs Bs
k(a,m) over the conditional probabilities Pr(a | m) induced by receiver behavior, and

a type Lkr player has beliefs Br
k(m, s) over the the conditional probabilities Pr(m | s) that she

faces.

A player’s honesty type affects her relative utilities from sending dishonest and honest mes-

sages. Following the weak definition of truthfulness in Section 3.1, an honesty type h acts as if

sending a truthful message is worth giving up h cents:

uhs (s, a, h) =


100− 25 ∗ (s− a− 2)1.2 + h if s = m or s ∈ m

100− 25 ∗ (s− a− 2)1.2 otherwise
.

A receiver’s utility function is not affected by her honesty type.10 I assume that there is a finite set

of honesty types, with every h ∈ H . The vector τ denotes the distribution of honest types, and

9Because sender and receiver behaviora predictions differ, the entire distribution of types can still be estimated
using message and action choices. If I estimate distributions using only one’s roles choices, though, separate estimation
of the identical levels is largely impossible.

Cai and Wang (2006) define types slightly differently: Lk senders best-respond to Lk−1 receivers but Lk receivers
best-respond to Lk senders. As Crawford et al. (2013) notes, these definitions are partly semantic. However, they are
not entirely so for me, as I impose that λRk = λSk .

10While there is evidence that people get disutility from being tricked above and beyond the pecuniary costs, it is
unclear how those preferences would translate into behavior in my experiment.
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I write τh to indicate the fraction of players with honesty type h. Finally I assume H and τ are

common knowledge.

A level k sender chooses for each state a (possibly) mixed strategy over messages σs,k(m | s).

If k ≥ 1 σs,k(s) is a best response to that type’s beliefsBs
k(a,m) about receiver behavior. Likewise

a level k receiver chooses σa,k(a | m) which is a best response to her beliefs Br
k about sender

behavior if if k ≥ 1. k = 0 types are non-strategic and primarily serve as conjectures about

behavior by L1 players.

Definition 1. A type L0S player sends messages such that Pr(s = m | σs,0) = 1 if m is precise,

or Pr(s ∈ m | σs,0) = 1/3, if m is imprecise. A type L0R player chooses actions such that

Pr(a = m | σr,0) = 1 if m is precise or Pr(a = E[s | s ∈ m uniformly distributed]) = 1.

In other words L0s messages are truthful, either exactly or in expectation, and L0r are cred-

ulous.11 These are standard assumptions about non-strategic behavior when applying Lk models

to cheap talk, in contrast to the more typical assumption in other contexts that that L0 randomize

uniformly over their possible actions.

Strategic Lk behavior is then defined inductively as responding optimally to the other role’s

Lk − 1 behavior:

Definition 2. For k ≥ 1, a type Lks player with honesty h has beliefs Bs
k and chooses σs,k that

11For the vague treatment, truthfulness in expectation requires that appropriate fractions of L0s send imprecise
messages so that E[s|m = {1, 2, 3}] = 2 and so on. Generating this property for imprecise messages in fact requires
slightly counterintuitive L0S behavior; for instance, these senders must be three times as likely to send an imprecise
message in s = 3 as in s = 1 to guarantee Pr(s = 1|m = 123) = Pr(s = 2|m = 123) = Pr(s = 3|m = 123).
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follow

Bs
k(a,m) = σr,k−1(a | m) (1)

σs,k(m | s, h) > 0⇒ m ∈ arg max
m

E[uhs (s, a, h) | Bs
k,m] (2)

= arg max
m

∑
a

uhs (s, a)Bs
k(a,m) (3)

and a type Lkr player has beliefs Br
k and chooses σr,k that follow

Br
k(m, s) =

∑
h∈H

τhσs,k−1(m | s, h) (4)

σr,k(a | m) > 0⇒ a ∈ arg max
a

E[ur(s, a) | m,Br
k] (5)

where E[ur(s, a) | Br
k] is calculated via Bayes’ rule:

E[ur(s, a) | m,Br
k] =

∑
s

Pr(s | m,Br
k)ur(s, a) (6)

=
∑
s

(1/5)Br
k(m, s)∑

s′
Br

k(m, s′)
. (7)

This definition of heterogenous sophistication implies that all k ≤ 3 players engage in no

more than two rounds of introspective strategic reasoning. L1 and L2 senders each use one round

of strategic reasoning, best-responding to credulous receiver strategy σr,0 = σr,1, as do L2 and

L3 receivers, who best respond to σs,1 = σs,2.12 L3 senders engage in two rounds of strategic

reasoning, best-responsing to σr,2 which is itself a best-response to σs,1.

Let λ be a vector denoting the frequency of each cognitive type, so λ2 is the frequency of

L2 players. λ and τ together predict frequencies of m and a choices and correlations between

12While L1R’s best-respond to L0S , this leads to effectively non-strategic credulous action choices.
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m and s and a and m. In that sense applying the model to explaining my experimental data is

straightforward. However, interpreting the resulting parameter estimates is made complicated by

the fact that each cognitive type k both serves as a prediction about actual observed behavior, if

Lk types exist in the population, and as a conjecture about behavior by more sophisticated types.

For instance, L1s behavior serves as L2r players’ model of sender behavior. Because L3s players

use L2r behavior as their model of receiver behavior, the L1s behavior influences their conjectures

about strategic behavior as well. However, I next turn to the the general predictions of this model,

first in the absence of honesty and then given the presence of sufficiently honest. After outlining

predictions, I return to the problem of interpretation.

State Sender’s message Message Receiver’s action

L0s L1s and L2s L3s L0r and L1r L2r and L3r L4r and L5r

s = 1 1 3 2, 4, and 5 m = 1 1 1 1
s = 2 2 4 5 m = 2 2 2 1
s = 3 3 5 5 m = 3 3 1 1
s = 4 4 5 5 m = 4 4 2 1
s = 5 5 5 5 m = 5 5 4 3

Table 3: Level-k Model – Precise Treatment if Limited Levels of Honesty (h < 32)

Table 3 shows the predictions of the Lk model for the precise treatment for low k if no honest

type with h > 32 exists. Higher cognitive levels converge to playing m = 5 (if sender and k ≥ 5)

or continue using the L4r type’s strategy (if receiver).

This model matches several aspects of the aggregate behavior in the precise condition: For

m < 3, the messages are truthful and receivers trust them. For m ≥ 3, many messages are

exaggerations by two units and receivers discount them, usually by two units. Finally, most of the

messages arem = 5, but a substantial number arem < 5. In contrast, level-k without honesty does
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a poor job in matching the observed behavior in the vague treatment. Table 4 shows predictions

for that treatment.

State Sender’s message Message Receiver’s action

L0S L1S and L2S L3S L0R and L1R L2R and L3R L4R

s = 1 1 3 and “2, 3, 4” 2, 4, 5, “1, 2, 3”,
and “3, 4, 5”

m = 1 1 1 1

s = 2 2 4 and “3, 4, 5” 5 m = 2 2 2 1
s = 3 3 5 5 m = 3 3 1 1
s = 4 4 5 5 m = 4 4 2 1
s = 5 5 5 5 m = 5 5 4 3

m = {1, 2, 3} 2 2 1
m = {2, 3, 4} 3 1 1
m = {3, 4, 5} 4 2 1

Table 4: Level-k Model – Vague Treatment if Honesty Low (h < 25)

There are three connected ways that the level-k model without honesty fails to predict observed

behavior in the vague treatment. First, many fewer imprecise messages are predicted than are

observed. In addition, imprecise messages are predicted to only be sent from s < 3. Finally,

messages are no more informative than in the precise treatment.

Tables 3 and 4 derive predictions for the model where few players have high h. Adding honest

types with intermediate levels of honesty (25 < h < 57) causes qualitatively significant changes

to the predictions about behavior in the vague conditions without seriously affecting predicted

behavior in the precise condition. Consider the opportunity cost of honesty, the loss in pecuniary

payoff for sending an honest message versus the money-maximizing message. Table 5 shows the

opportunity cost of honesty in the precise treatment given players using the strategies in Tables 3

and 4. On the right side is the opportunity cost in the vague treatment and also whether the optimal
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honest message would be imprecise (i) or precise (p). L3S opportunity costs depend on whether

honest types affect L2R choices; the table reports opportunity costs given the same L1R behavior

as in Tables 3 and 4.

Consider the distribution of messages sent by L1S and L2S if τh fraction of senders have

32 < h < 57, and the remainder of senders have h = 0. Because the opportunity cost is too high,

few of these senders choose honest messages in the precise treatment. However, all of the honest

L1s and L2s choose exaggerated but weakly honest imprecise messages. This implies that both

kinds of message become more informative as τh increases. Consider first m = {2, 3, 4}. L1s with

h < 25 send m = {2, 3, 4} with probability 1/2 in state s = 1 (see Table 4). L1s with h > 25 do

not send that message in s = 1 (they will send m = {1, 2, 3} instead) but do send it in state s = 2.

Hence

E[s | m = {2, 3, 4}] =
1 · (1− τh)/2 + 2τh

(1− τh)/2 + τh
=

1 + 3τh
1 + τh

All 1− τh fraction of the h = 0 senders in the vague treatment send dishonest messages m ≥ 3, so

messages m ≥ 3 also become more informative as τh increases: the number of m = 3 and m = 4

drops, and m = 5 messages become more accurate:

Pr(s = 3 | m = 5) = Pr(s = 4 | m = 5) =
(1/5)(1− τh)

(1/5) + (2/5)(1− τh)
=

1− τh
3− 2τh

Pr(s = 5 | m = 5) =
(1/5)

(1/5) + (2/5)(1− τh)
=

1

3− 2τh

E[s | m = 5] = (3 + 4)

(
1− τh
3− 2τh

)
+ (5)

(
1

3− 2τh

)
=

12− 7τh
3− 2τh

.

e.g., if τh = 1/2, E[s | m = 5] = 4.25 compared to E[s | m = 5] = 4 if no h ≥ 25 types exist in

22



the vague treatment or h ≥ 57 types exist in precise treatment.

State
Cognitive type

L0S L1S and L2S L3S

1 N/A 57 32

2 N/A 57 57

3 N/A 57 107

4 N/A 32 75

5 N/A 0 0

State
Cognitive type

L0S L1S and L2S L3S

1 N/A 25 (i) 57 (i)

2 N/A 25 (i) 57 (i, p)

3 N/A 25 (i) 32 (i)

4 N/A 32 (i, p) 36 (i)

5 N/A 0 0

Table 5: Opportunity cost of honesty in precise treatment (left) and vague treatment (right). For instance,
L1S players with s = 1 in the vague condition believe Pr(a = 2 | m = {1, 2, 3}) = 1 and Pr(a = 3 | m =
3) = 1, so their perceived utility from the optimal non-honest message is E[u(s, a) | m = 3] = 100 and
from the optimal honest message is E[u(s, a) | m = {1, 2, 3}] = 75. If h ≥ 25, they choose m = {1, 2, 3}.

In my structural model, the fraction of honest subjects is partially identified through sufficiently

honest L1s and L2s players’ greater tendency to choose imprecise messages. These players be-

lieve that sending an appropriate precise message can produce any action, yielding a payoff of

100. However, they also believe that sending an imprecise message that is honest but exaggerates

somewhat, such as “1, 2, or 3” when s = 1, is almost as good in pecuniary terms, yielding a mon-

etary payoff of 75, but also produces h utils from honesty. If h > 25, honest and self-interested

L1S and L2S mostly separate. Because L3S usually believe a(m) < E[m] for imprecise messages

and a(m) < m for precise messages, they face higher opportunity costs and so not use truthful

imprecise or precise messages unless h is much higher than 25. The presence of highly honest

players will also affect sender behavior in the precise treatment. Players with honesty type h ≥ 57

send wholly truthful messages, but all less honest players act like h = 0 players.
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Now I return to the issues that arise because cognitive types both serve as a prediction about ac-

tual observed behavior and as conjectural inputs into predicting the behavior of more sophisticated

types. There are two main implications of this dual nature of cognitive type.

The first implication is that any auxiliary assumptions beyond those in the definitions above

are also assumptions both about behaviors and beliefs. Unfortunately, I need to make auxiliary

assumptions because problems arise in applying level-k models to games with more than two mes-

sages that are reminiscent of classical problems with Nash equilibrium concepts. One problem is

that senders are sometimes indifferent between multiple m. In these cases (2) does not determine

a unique strategy, and I assume that senders randomize uniformly over their best messages.13 An-

other problem is that receivers sometimes observe m that they believe are probability 0, so that

Bayes’ rule cannot be used in calculating their expected utility in (7). For example, L2R typically

believe no L1S would ever send m = 1. If a LkR observes an m of this nature, I assume that she

intreprets it as coming from the most sophisticated sender type that would send it, frequently an

L0S . I return briefly to these assumptions in the robustness section.

The second implication is that the presence of honesty types in the population represents both

behavior and beliefs. For instance if τh = 1/2 and h is high enough, then (i) 50% of senders choose

more honest messages but also (ii) all receivers believe that 50% of senders choose more honest

messages.

13This assumption seems trivial for sender behavior. All players in my empirical analysis make logit errors, which
mechanically imply that senders place equal probability on messages that they believe produce the highest payoff. If
one is willing to accept that logit errors are reasonable, uniform randomization for senders follows. However, players
best-respond not to choices with logit errors but to the exact strategy choices.
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5 Structural Estimates

Many papers have structurally estimated level-k models before, but to my knowledge none has

jointly estimated varying cognition levels and varying preferences. One benefit of jointly estimated

λ and τ is that I can answer the counterfactual question of what communication would be like if

no honest types existed.

I assume that subjects choose a or m influenced by logistic errors of precision β, independent

across rounds and treatments. These errors capture that level-k reasoning is subject to error and

that unobserved utility shocks may occur. Hence a level k sender or receiver chooses each m or a

with probability

Pr(m | s, k, h, β, T ) =
exp(β E[us(a, s, h) | m,Bs

k, T ])
5∑

m′=1

exp(β E[us(a, s, h) | m′, Bs
k, T ])

(8)

Pr(a | m, k, β, T ) =
exp(β E[ur(a, s) | Br

k, T ])
5∑

a′=1

exp(β E[ur(a′, s) | Br
k, T ])

(9)

where Br
k is a level-k sender’s beliefs, Br

k is a level-k receiver’s beliefs, T is the treatment, and

h is a sender’s honesty type. β measures the noisiness of player choices. As β → 0 each choice

becomes equally likely, while as β →∞ players best-respond exactly to their beliefs.14

It could be that reasoning about optimal choices by more sophisticated players is more error-

prone as it requires reasoning through multiple rounds of posterior beliefs. Alternatively, less

sophisticated players may be worse at figuring out optimal behavior in addition to being more

limited in strategic reasoning. Therefore I allow choice precision to vary by cognitive type, with

βk being the precision of level k players in both roles.

14Note that L0 players have no beliefs; instead I assume they exactly follow L0r or L0s strategies specified in
Definition 1.
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In addition to the vector β, I also estimate λ, where λk is the frequency of level k players. My

preferred estimates assume λ is the same for both roles. In addition, I assume no L4 or higher

players exist. In my level-k model, the predicted behavior of senders above L3 is only slightly

different from L3. For instance, L4s are behaviorally identical to L3s while L5s differ only in

their m choices in state 1. While L4R behavior is more distinct from that of L3R’s, I find limited

evidence for L3R receivers in my base models already.

Finally, for my preferred estimates I restrict honest types to either having h = 0 (the “not

honest” type) or h = 30 (the “weakly honest” type). Most honest types are behaviorally similar

and so it is hard to precisely identify the frequencies of more two types of honest player. Section

5.2 focuses separately on both these identification issues and what conclusions can be drawn about

the distribution of honesty in my experiment.

Given Ai action choices by subject i, ai,1, . . . , ai,Ai , and Mi messages choices by subject i

mi,1, . . . ,mi,Mi
, the probability of i’s observed choices for a given parameterization is

Li(λ, h, β) =
∑
k∈K

λk
∑
h∈H

hh

(
Mi∏
j=1

Pr(mi,j | s, k, h, β)

)(
Ai∏
j=1

Pr(ai,j | m, k, β)

)
. (10)

Given a set of subjects N , the log likehihood of the observed behavior is

LL(λ, h, β) =
∑
i∈N

logLi(λ, h, β) (11)

I estimate the parameters by maximizing LL.

I derive standard errors and confidence intervals through non-parametric bootstrap. Taking my

set of 42 subjects, I create R = 1000 resampled datasets of 42 subjects by sampling 42 times with

replacement from my dataset. For each resampled dataset, I re-estimate the model parameters.

The actual standard deviation of these estimates is my estimate of the true standard errors (Efron
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1979). Many of my distributions of parameter estimates are not symmetric, so I also calculate

bias-corrected accelerated confidence intervals (DiCiccio and Efron 1996).

Table 6: Base Parameter Estimates.

(1) (2) (3) (4) (5)
base precise only vague only s only r only

λ0 0.0 0.006 0.0 0.0 0.115 ***
[0.0, 0.048] [0.0, 0.082] [0.0, 0.083] [0.0, 0.1] [0.032, 0.205]

λ1 0.12 *** 0.524 *** 0.167 *** 0.398 *** 0.441 ***
[0.034, 0.474] [0.297, 0.722] [0.03, 0.342] [0.19, 0.812] [0.084, 0.716]

λ2 0.436 *** 0.106 0.404 *** 0.138 0.38 **
[0.247, 0.669] [0.0, 0.451] [0.151, 0.724] [0.0, 0.325] [0.206, 0.786]

λ3 0.444 *** 0.364 *** 0.428 *** 0.464 *** 0.064
[0.282, 0.624] [0.127, 0.542] [0.208, 0.723] [0.299, 0.634] [0.0, 0.406]

τ0 0.48 *** 0.484 *** 0.482 *** 0.416 *** 0.783 ***
[0.02, 0.669] [0.01, 1.0] [0.021, 0.669] [0.021, 0.669] [0.013, 0.931]

τ30 0.52 *** 0.516 0.518 *** 0.584 *** 0.217 ***
[0.331, 0.98] [0.0, 0.99] [0.331, 0.979] [0.331, 0.979] [0.069, 0.987]

n 1384 536 848 692 692
logl -2046.145 -652.668 -1383.155 -1061.797 -976.386
BIC 4142.919 1368.177 2826.995 2182.451 2018.168

Maximum likelihood estimates of share of Lk players (λk) and share of players with utility from
honesty h (τh). 95% BCa confidence intervals are reported beneath estimates. * denotes signifi-
cance at 0.1 level, ** significance at 0.05 level, and *** significance at 0.01 level.
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5.1 Basic estimates

Table 6 column 1 reports the maximum likelihood estimates of model parameters for my entire

dataset. Estimates of λ are similar to others in the literature: no L0 players, 12% L1 players,

and roughly equal fractions of L2 and L3 players. Given my definitions of Lk behavior for each

role, these estimates imply that 56% of senders engage in one iteration of strategic reasoning and

44% of senders engage in two iterations, while 12% of receivers do not reason strategically (they

are credulous) and the remaining 88% of receivers engage in one iteration of strategic reasoning.

About half of the subjects have h = 30 and are believed to have h = 30.

The next columns report my model estimated separately on the data from the precise treatment

only (column 2) and the vague treatment only (column 3). Comparing the estimates, reasoning

is more strategically sophisticated in the vague treatment, perhaps because subjects have to think

harder given the multi-dimensional message space and cannot apply a simple heuristic like exag-

gerating and discounting by two units.

While point estimates for τ30 in the single treatment models (2) and (3) are similar to the com-

bined model (1), the estimates of τ30 in model (2) cover the entire interval [0, 1]. This imprecision

is not surprising, because type h = 30 players are behaviorally identical to type h = 0 players in

the precise treatment. The τ30 estimates in model (3) are quite similar to model (1) because the

estimates are identified off the same patterns in the data.

Taken together, the increased strategic sophistication in (3) combined with constant honesty

estimates in the first three models shows that the increase in communication between treatment

stems from prevalent weak honesty combined with the richer message space, rather than increased

confusion or adoption of simpler strategies on the part of subjects. In Section 5.3 I use the param-

eter estimates from model (1) to decompose the importance of honesty and bounded rationality

via a series of counterfactuals such as how much communication would occur if no subject cared
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about honesty (τ30 = 0).

The final two colums in Table 6 report model estimates using only sender choice data (column

4) or receiver choice data (column 5). In other words, model (4) maximizes the product of the

probabilities in (10) ignoring the second parenthetical term, the probability of the observed receiver

choices for each subject.15 Model (5) lends credence to the somewhat strange result of model

(1) that receivers are less strategically sophisticated than senders, despite messages and action

choices coming from the same set of subjects. Model (5) estimates imply even less sophistication

by receivers: 56% behave unstrategically (λ0 + λ1 = 0.556)) and 44% engage in one round of

strategic calculation (λ2 + λ3 = 0.444). Sender behavior in (4) is similar to estimates in (1) on the

other hand (λ0 estimates are comparable, λ1 +λ2 estimates are similar, and λ3 estimates are alike).

An interesting difference that arises between the sender-only and receiver-only models is in the

estimated τ30. In model (4), 58% of players are estimated to be weakly honest, while in model (5),

the corresponding estimate is 22% of players. τ30 in model (5) is a measure of receiver beliefs about

honesty since it is identified off indirect effects of honesty on receiver choices. Hence models (4)

and (5) suggest that many subjects are weakly honest but are hesitant to believe that other subjects

are honest.

The model pair (2) and (3) and the model pair (4) and (5) can be thought of as alternate models

that relax one of the assumptions of my level-k model. (2) and (3) allow λ to vary by treatment

instead of forcing strategic sophistication to be constant. Hence the more general specification (2/3)

nests (1) as a special case, and a likelihood-ratio test can be used to compare the null hypothesis

(1) to the alternate (2/3). The test fails to reject the null (D = 20.64, χ2(7) = 0.170). A similar

likelihood-ratio test comparing the null hypothesis (1) to the alternate model allowing role-specific

λ and τ (4/5) also fails to reject the null (D = 15.94, χ2(7) = 0.336). Comparisons using the

15While there are pairs of behaviorally identical types in each case, e.g., L1s has the same optimal choices as L2s,
the distribution λ can be fully estimated because β1 6= β2.
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Figure 4: Distribution of τ30 estimates for both roles (preferred model – column (1))

Bayesian Information Criterion, which assigns more importance to model parsimony, also strongly

support model (1) (BIC = 4142.9) over either (2/3) (BIC = 4172.9) or (4/5) (BIC = 4177.6).16

5.2 Honesty

Figure 4 shows the distribution of the fraction of weakly honest players from the bootstrap for

my preferred model. There is truncation at τ30 = 1/3, suggesting that the effect of τ30 ≥ 1/3 on

receiver beliefs is an important constraint on thes estimates. Aside from the truncation spike, the

parameter estimates are unimodal and bell-shaped.

Figures 5 and 6 show the same distribution for the sender-only (column (4)) and receiver-only

(column (5)) models. Comparing these to the previous figure, the sender-only distribution of τ30

closely resembles the combined roles distribution, while the receiver-only distribution does not

resemble it. This is suggestive that while at least half of subjects are weakly honest (h = 30), they

believe most other subjects are less honest than themselves.

16Note that each model effectively has 7 parameters: λ1, λ2, λ3, τ30, β1, β2, and β3 as λ0 = 1− λ1 − λ2 − λ3 and
τ0 = 1− τ30.
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Figure 5: Distribution of τ30 estimates for senders (column (4))
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Figure 6: Distribution of τ30 estimates for receivers (column (5))
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Honest but suspicious behavior by subjects is also consistent with the reduced-form evidence

in Section 3, where receivers changed their behavior in the vague treatment less than senders.

Nonetheless, my estimates suggest that half of senders are willing to sacrifice what they believe to

be a 30 cents higher payoff per round in order to be honest.

Identification: The distribution of honesty is identified in two ways. First, there are several

intervals of honesty in which senders with honesty in the interval behave qualitatively in the same

way. Any L1 or L2 sender with h < 25 has the same optimal choices as an h = 0 sender, who

send a mixture of precise and imprecise messages, while for h ≥ 25 these senders send exclusively

imprecise messages in the vague treatment. The other major effect of h on message choice is that

h ≥ 57 senders of all cognitive types send truthful messages exclusively in the precise treatment.

There are a few other cutoffs as well, but none have as widespread an effect on message choices as

these two.

Second, there are some minimum frequencies of minimum level of honesty that affect receiver

behavior; for instance, if more than 1/3 of senders have H > 25, Br
2 and Br

2 beliefs are more

trusting of imprecise messages than if facing less frequent weakly honest types.

Because of the logit errors framework, changes in message frequency produced directly by

variation in us(s, a, h) are continuous in h. For instance, for k = 1 or k = 2 senders, E[us(a, s, h) |

m,Bs
k] is continuous in h because Bs

k is not affected by h – these sender types believe that they

face credulous senders – so the probability they choose a given m defined in equation (8) is also

continuous. However, beliefsBR
2 ,BR

3 , andBS
3 depend on the exact optimal choices of these sender

types σs,1 and σs,2. These σ’s are discontinuous in h, so that L2R, L3R, and L3S predictions are

generally discontinuous in h. In practice these discontinuities only affect a responses to a few

messages, and my numerical minimization routine seems to accomodate them.

Unfortunately, the log-likelihood function is relatively flat with respect to h within each the
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intervals where beliefs are constant, and in fact over the entire interval 25 < h < 57 varies only

from −2044 to −2047. Figure 8 shows the log-likelihood for each h. Because different levels of

honesty have approximately the same explanatory power, pinning down the distribution of honesty

exactly is difficult. I illustrate this problem by estimating my model assuming that people are

either fully self-interested or have a single degree of honesty h. For each h value, Figure 7 shows

the fraction of players estimated to be honest at this level and the 95% confidence intervals. For

relatively weak honesty levels between 25 and 40 at least a fifth of playes can be classified as

honest with 95% confidence.
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Figure 7: Estimated fraction of players who are weakly honest, τh, for varying levels of honesty
h, with 95% confidence intervals.

20 30 40 50 60 70
−2,080

−2,070

−2,060

−2,050

−2,040

h

M
ax

im
um
L
L

LL

Figure 8: Maximum log-likelihood attained for varying levels of honesty.
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Table 7: Parameter Estimates with Multiple Honesty Types or Variant Honesty Type with Multiple
Honesty Types or Variant Honesty Type

1 2 3 4

λ0 0.0 0.0 0.0 0.0
[0.0, 0.072] [0.0, 0.057] [0.0, 0.164] [0.0, 0.079]

λ1 0.117 *** 0.128 *** 0.114 *** 0.132 ***
[0.026, 0.308] [0.039, 0.552] [0.035, 0.581] [0.082, 0.488]

λ2 0.437 *** 0.439 *** 0.463 *** 0.589 ***
[0.22, 0.631] [0.189, 0.651] [0.132, 0.752] [0.328, 0.773]

λ3 0.446 *** 0.433 *** 0.423 *** 0.279 ***
[0.272, 0.686] [0.3, 0.675] [0.166, 0.793] [0.09, 0.499]

τ0 0.547 *** 0.067 *** 0.763 *** 0.1 ***
[0.035, 0.719] [0.021, 0.141] [0.601, 0.838] [0.1, 0.464]

τ30 0.374 0.331 – –
[0.0, 0.941] [0.0, 0.38]

τ20 – 0.602 *** – 0.9 ***
[0.523, 0.9] [0.9, 0.9]

τ60 0.078 – 0.237 *** –
[0.0, 0.404] [0.162, 0.399]

n 1384.0 1384.0 1384.0 1384.0
logl -2045.663 -2043.564 -2048.236 -2068.415
BIC 4149.187 4144.991 4147.1 4187.46

Maximum likelihood estimates of share of Lk players (λk) and share of players with utility
from honesty h (τh). 95% BCa confidence intervals are reported beneath estimates. *
denotes significance at 0.1 level, ** significance at 0.05 level, and *** significance at 0.01
level.
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This problem only becomes worse when trying to estimate a “richer” model that contains two

honest types. Because behavior is fairly similar for any type with H < 57, the parameters h1 and

h2 are colinear and cannot be estimated precisely.17 Therefore my preferred model contains one

honest type, with H chosen to maximize the log-likelihood in Figure 8.

Conclusions about honesty: Table 7 presents several variant assumptions about honesty. Col-

umn (1) is a model with three honesty typesH = {0, 30, 60} and column (2) is another model with

three honesty types, H = {0, 30, 20}. Finally model (3) restricts honest players to h = 60 and

model (4) restricts honest players to h = 20. A likelihood ratio test does not reject my preferred

model in favor of either of the nested models.18 Comparisons of the Bayesian Information Criteria

of the non-nested models strongly supports my preferred model over (4) and moderately supports

it over (3).

Despite the underlying identification problems, I can conclude from my data that a substantial

fraction of subjects have moderate preferences for truth-telling and believe that other subjects do

as well. While I am cannot estimate the exact distribution of honesty in my subjects, I am able

to show both that is not extremely weak (all subjects having h < 25) and that few subjects seem

to have strong levels of honesty (h ≥ 57, the cutoff at which behavior in the precise condition

changes).

5.3 Relative Importance of Honesty and Bounded Rationality

The parameter estimates in my models can be used to ask a series of counterfactual questions that

allow the relative importance of honesty and bounded rationality for each message space to be

17Throwing much more data at the model could solve this problem, but it would require hundreds of subjects.
A different experiment would better address this question, for instance by choosing payoffs and signals that make
distinguishing between H = 20 and H = 40 senders easier.

18Model (1) in Table 7: D = 0.963, χ2(1) = 0.488; model (2): D = 5.162, χ2(1) = 0.108.
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gauged.

Table 8 reports the predicted mean distance between messages and states and between actions

and messages for several assumptions about λ, τ , and β.19 The first row reports on the value of

each statistic in the data. The expected distance between m and s is 20% less and the expected

distance between m and a is 25% less under the vague treatment than under the precise.

The remaining rows reports on the predicted values of these statistics for different parameteri-

zations of my model. The second row shows that my preferred model predicts the informativeness

of messages in each treatment well, but less so how receiver choices, predicting only a 6% reduc-

tion in the distance between m and a.

The parameter set (2) measures how important honesty is for understanding communication

by looking at the predictions of my preferred model if τ0 is constrained to be 1. Without honest

types, less communication is predicted than occurs and the vague treatment effect is predicted to

be smaller than it actually is.

The row for parameter set (3) reports a similar exercise for bounded rationality by counterfac-

tually increasing strategic sophistication. λ is set such that all players are the most sophisticated

type possible (λ3 = 1). Again less communication is predicted to occur than actually occurs, and

the predicted effect of the vague treatment is smaller than the true effect. The error in the predicted

sizes of the treatment effect are smaller for the increased sophistication model than for the no hon-

esty model however, suggesting that honesty is the more important contributor for this comparative

static.20

19E.g., given observations of actions chosen and messages (a1,m1), . . . , (aN ,mN ), the mean distance between
messages and actions is

E[m− a] = 1

N

∑
a∈A

P̂r(a | m)|ai −mi|

where P̂r(a | m) is the predicted conditional probability in equation (9). E[m− a] is a measure of how trusting action
choices are and E[m− s] measures how informative messages are.

20Parameter set (3) predicts a 16% reduction in E[m− s] and a 9% reduction in E[m− a], compared to a predicted
9% reduction in E[m− s] and an 8% increase in E[m− a] for parameter set (2).
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Table 8: Mean Deviation of Messages from Truth and Actions from Claimed State in Data, Preferred
Model, and Counterfactual Predictions. No honesty assumption reports predicted statistics for τ30 = 0 but λ
and β from preferred model. Increased sophistication assumption reports predicted statistics for λ0 = λ1 =
λ2 = 0 and λ3 = 1 but τ and β from preferred model.

Parameter Set Precise Treatment Vague Treatment
E[m− s] E[m− a] E[m− s] E[m− a]

Actual data 1.52 1.30 1.22 0.98
(1) Predicted 1.47 1.20 1.24 1.13
(2) No honesty 1.55 1.20 1.39 1.29
(3) Increased sophistication 1.58 1.28 1.33 1.21

6 Conclusion

Both preferences for truth-telling and bounded rationality have been advanced to explain anoma-

lous overcommunication in strategic information transmission experiments. My analysis shows

that bounded rationality is the major cause of overcommunication if the message space is ex-

tremely restricted relative to spoken language by only allowing precise messages. However, when

the message space is enriched slightly by adding explicitly imprecise messages, preferences for

truth-telling interact with bounded rationality to cause even greater overcommunication. Since

natural language is much richer and capable of nuance than the more expressive message space

I consider, these findings suggest that the external validity of strategic information transmission

experiments can be improved by allowing a wider variety of messages.
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Communication Experiment Instructions

Thank you for participating in the experiment today! As a courtesy to me and the other participants, 
I ask you to observe a few ground rules:

• Focus your attention on the experiment rather than reading, texting, or other activities.
• Do not talk while the experiment is ongoing.
• Do not use other programs on the computers.
• Do not look at other people’s computer screens.

Questions are welcome at any time. If  you have a question, raise your hand and an experimenter 
will come to help.

Timing

Here is what will happen in this session:

1. You read the consent form, ask any questions you have, and return a signed copy to me.
2. You read the instructions, ask questions, and answer comprehension questions on next page. I 

check the comprehension questions when you have finished them.
3. We run the first experiment (described below).
4. We run the  second experiment (similar to first, will be described when we get to this stage).
5. We run the third experiment (similar to first, will be described when we get to this stage).
6. You fill out payment / demographic information on your computer.
7. Your computer displays your earnings, you fill out a receipt, and I pay you as you leave.

Experiment 1 instructions

There are 16 rounds in this experiment. Every round you will be matched with a random participant, 
who will be a different person every round. One person in each pair will be an “A” and the other 
person will be a “B”. You will alternate between being an A and a B.

Each round there will a number s generated for each pair. s is equally likely to be 1, 2, 3, 4, 5. Each 
A learns what the pair’s s is, but B is not shown s.

The A member then chooses a message to send to B. The following messages can be chosen:

• “s is 1.”
• “s is 2.”
• “s is 3.”
• “s is 4.”
• “s is 5.”

After A has finished choosing the message, B gets to read it. B then chooses a number w. w can be 
1, 2, 3, 4, or 5.

A Instructions
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A and B both earn payoffs each round based on s and w. For B, the highest payoff  is when she 
chooses the same w as s. B’s are best off  choosing the average number they think s is. For example, 
if  as a B you think s is equally likely to 1, 2, or 3, you are best off  choosing w equal to 2. For A, the 
highest payoff  is when B chooses w equal to s + 2.  The tables below show A and B’s exact payoffs.

B payoffs

S w is 1 w is 2 w is 3 w is 4 w is 5

s is 1 100 75 43 7 -32

s is 2 75 100 75 43 7

s is 3 43 75 100 75 43

s is 4 7 43 75 100 75

s is 5 -32 7 43 75 100

A payoffs

S w is 1 w is 2 w is 3 w is 4 w is 5

s is 1 43 75 100 75 43

s is 2 7 43 75 100 75

s is 3 -32 7 43 75 100

s is 4 -72 -32 7 43 75

s is 5 -115 -72 -32 7 43

These payoffs are in experimental units. In addition, you receive 200 units at the beginning of  each 
experiment. At the end of  the session, units will be converted to dollars: each unit is worth 1 cent.

Examples

s=2 and w=4. Then B receives 43  and A receives 100.

s=5 and w=3. Then B receives 43  and A loses 32.
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Please complete these questions once you have finished reading the earlier pages. When you have finished them, raise 
your hand. These questions are to make sure that everyone understands how the first experiment works. They do not 
affect your earnings.

Comprehension questions

If  s is 4, then

 B earns the most if  she chooses w equal to  _______

 A earns the most if  B chooses w equal to  _______

If s is 2 and B chooses w to be 5, then

 B receives      _______

 A receives      _______

(More difficult questions)

If  the highest-paying w for A is 2, what is the   _______
highest-paying w for B? 

If  the highest-paying w for B is 4, what is the   _______
highest-paying w for A? 
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Experiment 2 instructions

There are 12 rounds instead of  16 in this experiment.

This experiment has the same basic structure as the previous one. A learns s and sends a message to 
B, who then decides on w. Earnings each round are calculated in exactly the same way and you will 
receive 200 units at the beginning.

The only difference is that now A’s will choose from a different fixed set of  messages. Now the 
message possibilities are:

• “s is 1.”
• “s is 1, 2, or 3.”
• “s is 2.”
• “s is 2, 3, or 4.”
• “s is 3.”
• “s is 3, 4, or 5.”
• “s is 4.”
• “s is 5.”
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Experiment 3 instructions

There are 12 rounds in this experiment.

This experiment has the same basic structure as the previous one. A learns s and sends a message to 
B, who then decides on w. Earnings each round are calculated in exactly the same way and you will 
receive 200 units at the beginning.

The only difference is that now A’s will sometimes not be told s exactly. Half  of  the time, A’s will be 
told s precisely, but the other half  of  the time A’s will only be told one of  the following

• s is 1, 2, or 3.
• s is 2, 3, or 4.
• s is 3, 4, or 5.

These reports are accurate and when A is told that s is in one of  these sets of  numbers, each 
number is equally likely. If  A learns that s is 2, 3, or 4, for example, that means there is a 1-in-3 
chance that s is 1, a 1-in-3 chance that s is 3, and a 1-in-3 chance that s is 4.

The messages A can choose from are the exactly the same as in experiment two:

• “s is 1.”
• “s is 1, 2, or 3.”
• “s is 2.”
• “s is 2, 3, or 4.”
• “s is 3.”
• “s is 3, 4, or 5.”
• “s is 4.”
• “s is 5.”
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Communication Experiment Instructions

Thank you for participating in the experiment today! As a courtesy to me and the other participants, 
I ask you to observe a few ground rules:

• Focus your attention on the experiment rather than reading, texting, or other activities.
• Do not talk while the experiment is ongoing.
• Do not use other programs on the computers.
• Do not look at other people’s computer screens.

Questions are welcome at any time. If  you have a question, raise your hand and an experimenter 
will come to help.

Timing

Here is what will happen in this session:

1. You read the consent form, ask any questions you have, and return a signed copy to me.
2. You read the instructions, ask questions, and answer comprehension questions on next page. I 

check the comprehension questions when you have finished them.
3. We run the first experiment (described below).
4. We run the  second experiment (similar to first, will be described when we get to this stage).
5. We run the third experiment (similar to first, will be described when we get to this stage).
6. You fill out payment / demographic information on your computer.
7. Your computer displays your earnings, you fill out a receipt, and I pay you as you leave.

Experiment 1 instructions

There are 16 rounds in this experiment. Every round you will be matched with a random participant, 
who will be a different person every round. One person in each pair will be an “A” and the other 
person will be a “B”. You will alternate between being an A and a B.

Each round there will a number s generated for each pair. s is equally likely to be 1, 2, 3, 4, 5. Each 
A learns what the pair’s s is, but B is not shown s.

The A member then chooses a message to send to B. The following messages can be chosen:

• “s is 1.”
• “s is 2.”
• “s is 3.”
• “s is 4.”
• “s is 5.”

After A has finished choosing the message, B gets to read it. B then chooses a number w. w can be 
1, 2, 3, 4, or 5. 46



A and B both earn payoffs each round based on s and w. For B, the highest payoff  is when she 
chooses the same w as s. B’s are best off  choosing the average number they think s is. For example, 
if  as a B you think s is equally likely to 1, 2, or 3, you are best off  choosing w equal to 2. For A, the 
highest payoff  is when B chooses w equal to s + 2.  The tables below show A and B’s exact payoffs.

B payoffs

S w is 1 w is 2 w is 3 w is 4 w is 5

s is 1 100 75 43 7 -32

s is 2 75 100 75 43 7

s is 3 43 75 100 75 43

s is 4 7 43 75 100 75

s is 5 -32 7 43 75 100

A payoffs

S w is 1 w is 2 w is 3 w is 4 w is 5

s is 1 43 75 100 75 43

s is 2 7 43 75 100 75

s is 3 -32 7 43 75 100

s is 4 -72 -32 7 43 75

s is 5 -115 -72 -32 7 43

These payoffs are in experimental units. In addition, you receive 200 units at the beginning of  each 
experiment. At the end of  the session, units will be converted to dollars: each unit is worth 1 cent.

Examples

s=2 and w=4. Then B receives 43  and A receives 100.

s=5 and w=3. Then B receives 43  and A loses 32.



Please complete these questions once you have finished reading the earlier pages. When you have finished them, raise 
your hand. These questions are to make sure that everyone understands how the first experiment works. They do not 
affect your earnings.

Comprehension questions

If  s is 4, then

 B earns the most if  she chooses w equal to  _______

 A earns the most if  B chooses w equal to  _______

If s is 2 and B chooses w to be 5, then

 B receives      _______

 A receives      _______

(More difficult questions)

If  the highest-paying w for A is 2, what is the   _______
highest-paying w for B? 

If  the highest-paying w for B is 4, what is the   _______
highest-paying w for A? 



Experiment 2 instructions

There are 12 rounds instead of  16 in this experiment.

This experiment has the same basic structure as the previous one. A learns s and sends a message to 
B, who then decides on w. Earnings each round are calculated in exactly the same way and you will 
receive 200 units at the beginning.

The only difference is that now A’s will choose from a different fixed set of  messages. Now the 
message possibilities are:

• “s is 1.”
• “s is 1, 2, or 3.”
• “s is 2.”
• “s is 2, 3, or 4.”
• “s is 3.”
• “s is 3, 4, or 5.”
• “s is 4.”
• “s is 5.”



Experiment 3 instructions

There are 12 rounds in this experiment.

This experiment has the same basic structure as the previous one. A learns s and sends a message to 
B, who then decides on w. Earnings each round are calculated in exactly the same way and you will 
receive 200 units at the beginning.

The only difference is that now A’s will sometimes not be told s exactly. Half  of  the time, A’s will be 
told s precisely, but the other half  of  the time A’s will only be told one of  the following

• s is 1, 2, or 3.
• s is 2, 3, or 4.
• s is 3, 4, or 5.

These reports are accurate and when A is told that s is in one of  these sets of  numbers, each 
number is equally likely. If  A learns that s is 2, 3, or 4, for example, that means there is a 1-in-3 
chance that s is 1, a 1-in-3 chance that s is 3, and a 1-in-3 chance that s is 4.

The messages A can choose from are the exactly the same as in experiment two:

• “s is 1.”
• “s is 1, 2, or 3.”
• “s is 2.”
• “s is 2, 3, or 4.”
• “s is 3.”
• “s is 3, 4, or 5.”
• “s is 4.”
• “s is 5.”



B Data
Three sessions were conducted in November 2011 with a total of 42 participants. Subjects were
paid a $6 dollar show-up fee plus $0.01 per experimental unit earned. Average earnings were
$24.12, with a minimum of $16 and a maximum of $30.

Signal

1 2 3 4 5 1, 2, or
3

2, 3, or
4

3, 4, or
5

N

No. No. No. No. No. No. No. No. No.

Message (noise condition)
1 2 0 0 0 0 2 0 0 4
2 0 0 1 0 1 0 1 1 4
3 5 3 2 2 1 0 2 3 18
4 2 4 1 5 0 1 0 6 19
5 4 9 9 11 12 4 9 18 76
1, 2, or 3 1 3 1 1 0 6 2 2 16
2, 3, or 4 7 0 1 2 2 5 5 2 24
3, 4, or 5 5 3 8 4 5 13 9 12 59
N 26 22 23 25 21 31 28 44 220

Message (vague condition)
1 2 0 1 1 2 – – – 6
2 3 5 1 1 0 – – – 10
3 10 2 2 0 2 – – – 16
4 0 2 4 3 2 – – – 11
5 8 4 12 17 27 – – – 68
1, 2, or 3 5 4 2 1 1 – – – 13
2, 3, or 4 8 2 3 4 1 – – – 18
3, 4, or 5 3 17 13 16 13 – – – 62
N 39 36 38 43 48 – – – 204

Message (precise condition)
1 9 5 0 0 2 – – – 16
2 8 12 4 4 2 – – – 30
3 16 5 7 2 7 – – – 37
4 10 15 13 5 4 – – – 47
5 17 23 35 31 32 – – – 138
N 60 60 59 42 47 – – – 268

Source: novembexp.dta

Table 9: Sender Choices
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Action

1 2 3 4 5 N
No. No. No. No. No. No.

Message (noise condition)
1 3 0 1 0 0 4
2 1 2 0 1 0 4
3 3 6 6 3 0 18
4 0 8 6 3 2 19
5 2 6 20 27 21 76
1, 2, or 3 3 8 5 0 0 16
2, 3, or 4 2 5 16 1 0 24
3, 4, or 5 0 13 29 15 2 59
N 14 48 83 50 25 220

Message (vague condition)
1 4 1 0 1 0 6
2 1 3 4 2 0 10
3 6 3 5 2 0 16
4 0 4 2 4 1 11
5 3 2 21 21 21 68
1, 2, or 3 6 2 4 1 0 13
2, 3, or 4 2 1 14 1 0 18
3, 4, or 5 2 17 20 19 4 62
N 24 33 70 51 26 204

Message (precise condition)
1 5 7 4 0 0 16
2 5 16 4 5 0 30
3 15 7 7 6 2 37
4 0 20 14 10 3 47
5 8 4 64 39 23 138
N 33 54 93 60 28 268

Source: novembexp.dta

Table 10: Receiver Choices
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