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Abstract

We study online auction settings in which agents arrive and depart dynamically in a random (sec-
retary) order, and each agent’s private type consists of the agent’s arrival and departure times, value
and budget. We consider multi-unit auctions with additive agents for the allocation of both divisible
and indivisible items. For both settings, we devise truthful mechanisms that give a constant approxima-
tion with respect to the auctioneer’s revenue, under a large market assumption. For divisible items, we
devise in addition a truthful mechanism that gives a constant approximation with respect to the liquid
welfare — a natural efficiency measure for budgeted settings introduced by Dobzinski and Paes Leme
[ICALP’14]. Our techniques provide high-level principles for transforming offline truthful mechanisms
into online ones, with or without budget constraints. To the best of our knowledge, this is the first work
that addresses the non-trivial challenge of combining online settings with budgeted agents.

1 Introduction

In a typical setting of sales of online ad slots, advertisers arrive at different times, each with her own prefer-
ences and budget. The auctioneer (e.g., cnn.com) has to make decisions about the allocation of the ad slots
to the advertisers and how much to charge them. Such settings give rise to various optimization problems
associated with different objective functions. The most common objective functions that have been consid-
ered in the literature are (a) social welfare: the sum of the bidders’ valuations from their allocations, and
(b) the auctioneer’s revenue: the total payment the auctioneer derives from the sale.

This scenario inspired the online model studied by Hajiaghayi et al. [20] , who used the random sam-
pling paradigm to design a truthful mechanism for this setting. The random sampling paradigm was first
introduced in the context of selling m identical items in offline settings without budgets [18]. This mecha-
nism divides the agents into two sets, A and B, by tossing a fair coin. Next, it calculates prices pA and pB
(per item) based on the sets A and B, respectively. Finally, it sells m/2 items at price pA to agents in B, in
an arbitrary order, and similarly m/2 items at price pB to agents in A. This mechanism is known to give a
constant approximation with respect to the optimal revenue.

Hajiaghayi et al. [20] managed to apply the random sampling paradigm to the online setting, while
losing only a constant factor in the approximation of the revenue. Their mechanism is based on the following
observations and techniques:
∗This work was partially supported by the European Research Council under the European Union’s Seventh Framework Pro-

gramme (FP7/2007-2013) / ERC grant agreement number 337122.
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• A random partition of the n agents into two sets in the offline setting is equivalent to the following
procedure in the online setting: Given a set of n agents arriving in a random order, place the first j
agents

(
where j is sampled from the binomial distribution B(n, 1/2)

)
in one set, called the sampling

set, and the remaining ones in a second set, called the performance set.

• One can acquire the private types of agents in the sampling set by applying the VCG mechanism on
this set.

• Since the random sampling mechanism sells items in an arbitrary order, it is without loss of generality
that items are sold to agents in the performance set according to their online order of arrival.

Applying the random sampling paradigm to online settings was a big step toward the applicability of
truthful mechanisms. Yet, like many other papers in the mechanism design literature, it ignored the fact
that agents are usually restricted by budget constraints. Since budget constraints have a huge effect on
agent behavior in real-life scenarios, our goal in this paper is to incorporate budgets into the online setting
described above.

The allocation of indivisible items among agents with budget constraints in an offline setting was con-
sidered by Borgs et al. [7]. As identified by [7], budget constraints impose many challenges on auction
settings. For example, the seminal VCG mechanism [19] fails since the utility function is no longer quasi-
linear. Borgs et al. [7] devised a truthful mechanism that adjusted the random sampling mechanism to deal
with budget constraints. Their mechanism approximates the revenue within a constant factor under a large
market assumption.

Budget constraints impose challenges also with respect to the social welfare objective function. It is
well known that if budgets are private, no truthful mechanism can give a non-trivial approximation (better
than n) to the social welfare, even for the case of a single item. This is because any such mechanism must
allocate the item to an agent with a high value relative to all other agents, for any budget she reports. To
make things worse, even if budgets are public, it has been shown in [12] that no truthful auction among n
agents can achieve a better than n approximation to the optimal social welfare.

This problem was recently addressed by Dobzinski and Paes Leme. [12], who introduced the liquid
welfare objective function. A natural interpretation of the social welfare function is the maximum revenue
an omniscient auctioneer can extract. Applying this interpretation to budgeted settings gives rise to the
liquid welfare objective function, defined as follows: For every agent, consider the minimum between her
value for the allocation (i.e., her willingness to pay) and her budget (i.e., her ability to pay), and take the
sum of this minimum over all agents. Dobzinski and Paes Leme considered the allocation of a divisible item
to agents with public budgets (and private values), and devised truthful mechanisms that give a constant
approximation to the optimal liquid welfare. Lu et al. [26] extended this to agents with private budgets
and any monotonically non decreasing valuation function. The mechanism devised in [26] is a probabilistic
combination of a random sampling mechanism and a modified VCG mechanism.

In the present paper, the main challenge is the combination of two non-trivial challenges; namely the
online setting and budgeted agents. From the description above it seems that a lot of the necessary com-
ponents are already in place. First, [7] and [26] devised random sampling based mechanisms that give a
constant approximation with respect to revenue and liquid welfare in budgeted offline settings. Second, [20]
presented a technique that adjusts mechanisms based on the random sampling paradigm to online settings.
A natural approach for dealing with online budgeted settings would be to combine these techniques to ob-
tain nearly-optimal mechanisms. Not surprisingly, as demonstrated in the sequel, this approach fails badly.
Indeed, in order to address the combination of online settings and budget constraints, new ideas are required.
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1.1 Our Model

We consider the combination of the online setting without budgets of [20] and the offline settings with
budgets of [26, 7]. In our setting, there is a set N = {1, . . . , n} of agents. Every agent i ∈ N has a private
type (known only to the agent) that is represented by a tuple (ai, di, vi, bi), where:

• ai and di are the respective arrival and departure time of agent i (clearly, di ≥ ai). The interval [ai, di]
is referred to as agent i’s time frame.

• vi is agent i’s value for receiving a single item within her time frame.

• bi is the budget of agent i.

We consider an online auction with a secretary “flavor.” An adversary states a vector of time frames
([a1, d1] , [a2, d2] , . . . , [an, dn]) such that ai < aj for every i < j, and a vector of pairs (value, budget),
([v1, b1] , [v2, b2] , . . . , [vn, bn]). A random permutation is used to match these pairs and determine the types
of the agents. More formally, let ΠN be the set of all possible permutations on the set N . A permutation
π : N 7→ N is sampled uniformly at random from the set ΠN . Then, agent i’s type is given by the tuple(
ai, di, vπ(i), bπ(i)

)
.

As in standard secretary-like problems, a random order is essential to get any guarantee on the perfor-
mance of the mechanism. As in [20] 1, we assume that arrival times are distinct, but the results also extend
to non-distinct arrival times if agents cannot bid before their real arrival times 2. It should be noted that most
of the papers studying online settings with strategic agents consider restrictive inputs or weaker solution
concepts (e.g., [24, 15, 20, 21, 25, 28]).

In our model, agents can manipulate any component of their type. In particular, they can report earlier
or later arrival and departure times, and arbitrary values and budgets. Upon arrival, agents report their type.
Based on these reports, the mechanism determines an allocation and a payment for each agent. The utility
of agent i for obtaining an allocation of xi, within her real time frame, for a payment of pi is:

ui(xi, pi) =

{
vixi − pi pi ≤ bi
−∞ pi > bi

. (1)

We assume that agents are risk neutral. We consider mechanisms that satisfy the following properties:

• Feasibility: The mechanism does not sell more items than are available.

• Individual Rationality: An agent’s expected utility from an allocation and payment is non-negative.

• Incentive Compatibility: An agent’s expected utility is maximized when she reports her true type.

Since all the mechanisms devised in this paper are trivially feasible and individually rational, our analysis
focuses on incentive compatibility.

1.2 Our Results and Techniques

In Section 2 we establish techniques that constitute high level principles for transforming nearly optimal
offline mechanisms into online ones.

In Section 2.1 we present methods for the allocation of divisible and indivisible items to budgeted agents
who arrive online. We first describe a simple greedy allocation method for divisible items at a given price

1Based on personal communication with the authors, this is essentially what is assumed for the correctness of Mechanism RMk

in Section 6 in [20].
2We refer to Appendix D for a description of the tie-breaking rule for this case.
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per item p, where agents are ordered randomly. Every agent whose value exceeds p is allocated as many
items as she can afford with her budget at a price per item p, limited by the number of remaining items.

In an offline setting, this method can be used for selling indivisible items as well. This is done by
translating fractions of items into lottery tickets with the corresponding probabilities, and resolving the
market via correlated lotteries upon the ”arrival” of the last agent. In an online setting, this method cannot be
applied since by the time the last agent arrives, all previous agents may have already departed. To overcome
this obstacle, we present an allocation method that resolves the agent’s lottery in an online fashion, and loses
only a factor 2 in revenue compared to the offline setting.

In Section 2.2 we present a prototype mechanism that transforms an offline mechanism based on the
random sampling paradigm into an online one. The prototype mechanism receives as input the set of agents,
the number of items to be allocated, a pricing function and an allocation function.

Our starting point is the mechanism devised in [20] for an online setting without budget constraints. This
mechanism splits the agents into a sampling set and a performance set. It induces agents in the sampling
set to reveal their true values by applying VCG on them, and uses this information to extract revenue from
the agents in the performance set. In many settings (such as budgeted settings), VCG cannot be applied. To
mitigate this problem, the prototype mechanism applies a random sampling based method on the sampling
set.

The above technique ensures that in cases where arrival time is public information, agents in the sam-
pling set do not have incentive to misreport their private information (such as the value and budget in our
model). Since we consider models in which arrival time is also private, we need to ensure that agents have
no incentive to manipulate their arrival time either. For agents with unit-demand valuations, this issue is
handled in [20] by ensuring that the price used in the sampling set never exceeds that in the performance set,
and every agent in the sampling set whose value exceeds the price receives it.

This technique, however, does not apply to agents with additive valuations. Indeed, there are cases
where the price used in the performance set is higher than the price used in the sampling set, and yet an
agent in the sampling set may wish to delay her arrival time, in order to receive a larger number of items (as
part of the performance set). In order to ensure an agent cannot gain by delaying her arrival time, we treat
an agent in the performance set as if she was in the sampling set. In particular, an agent in the performance
set receives at most the allocation she would have received had she been in the sampling set, and the same
price.

We demonstrate the broad applicability of this prototype by applying it to settings with budgeted agents
for the allocation of two different types of items (namely, divisible and indivisible) and for two different
objective functions (namely, revenue and liquid welfare maximization).

In Section 3 we devise mechanisms for the allocation of identical items (both divisible and indivisible)
that approximate the optimal revenue. This is done by applying the above prototype using appropriately
chosen pricing and allocation functions. As in [7], without a large market assumption, no truthful mecha-
nism can achieve a constant approximation to the optimal revenue, even for the case of a single item. This is
because an agent whose budget is significantly greater than that of the others must receive the item for any
value she reports. We establish the following theorem:

Theorem: There exist truthful mechanisms for the allocation of divisible and indivisible items among bud-
geted agents with additive valuations in online settings that give a constant approximation to the optimal
revenue, under a large market assumption.

In Section 4 we devise a mechanism for the allocation of identical divisible items that approximates the
optimal liquid welfare.

Theorem: There exists a truthful mechanism for the allocation of divisible items among budgeted agents

4



with additive valuations in online settings that gives a constant approximation to the optimal liquid welfare.

Under a large market assumption, a similar mechanism to the one presented in Section 3 approximates
the optimal liquid welfare to within a constant factor. For liquid welfare, though, we devise a new truthful
mechanism that gives a constant approximation for any market (i.e., without employing large market as-
sumption). As in the offline setting described in [26], our mechanism is a probabilistic combination of a
random sampling based mechanism and a modified VCG mechanism. However, both mechanisms should be
adjusted to the online setting. The random sampling mechanism is adjusted using the prototype mechanism
described in Section 2.2.

The modified VCG mechanism should also be adjusted, since in the original one described in [26], all
bids are received simultaneously, and this is inherently infeasible in online settings. Indeed, when the last
agent arrives, all other agents may have already departed. Therefore, we propose a new modified VCG as
follows: The mechanism places the first n/2 agents in set A and the rest in set B. Upon the arrival of the
last agent in A, it applies the modified VCG mechanism of [26] on the agents in set A, and determines a
threshold value, which is greater than the highest bid in A. With probability 1/2, all the items are allocated
to the winner in A; otherwise, all the items are allocated to the first agent in B that surpasses the threshold.

1.3 Related Work

Online auctions have been the subject of a vast body of work. Lavi and Nisan [24] introduced an online
model in which agents have decreasing marginal valuations over identical indivisible items. While in this
model the agent’s value is private, her arrival time is public. A wide variety of additional online auction
settings, such as digital goods [6, 4] and combinatorial auctions [2], have been studied under the assumption
of private values and public arrival times.

Similarly to our model and the model presented in [20], online settings in which agents arrive in a
random order were also considered in [3, 23, 22].

Friedman and Parkes [15] considered the case where an agent’s arrival time is also part of her private
information, and thus can also be manipulated. Since then, additional auction settings were studied under
the assumption that an agent’s arrival and departure times are private [21, 28, 20, 25, 15].

The reader is referred to [27] for an overview of online mechanism design.
Offline mechanisms for budgeted agents have long been considered, both in the context of revenue max-

imization and of welfare maximization. In the context of revenue maximization, Abrams [1] also considered
the model of [7] where indivisible and identical items are sold to additive agents with hard budget constrains.
She established the relation between the revenue achieved by an optimal mechanism that is allowed to offer
multiple prices and the one of an optimal mechanism who is only allowed to sell at a single price. Maxi-
mizing revenue was also considered in Bayesian settings [8] and with the goal of approximating the optimal
envy free revenue [10, 13].

Considering the welfare maximization objective, as stated before, it is in general impossible to approx-
imate the sum of agents’ welfare using a truthful mechanism. To overcome this obstacle, a more relaxed
solution concept of Pareto efficiency was considered in [5, 9, 11, 14, 17, 16], and in [10] they focus on
approximating the welfare of the optimal envy free mechanism.

The most related works to our model are [20, 7, 12, 26], which are discussed in great detail throughout
the paper.
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2 High Level Techniques

2.1 Divisible and Indivisible Allocation

In this section we present methods for the allocation of divisible and indivisible items in online settings with
budgets. Let S be a set of agents, p a price and k an amount of items. Recall that every agent i is associated
with value vi and budget bi. We define Div Alloc to be a procedure for the allocation of divisible items:

Div Alloc (S, p, k)

1. Initialize k′ ← k, xi ← 0 for every i ∈ S.

2. Let π be a permutation of S chosen uniformly at random from the set of all permutations.

3. For i = 1, 2, . . . , |S|:

• If vπ(i) ≥ p:
xπ(i) ← min{bπ(i)/p, k′}
k′ ← k′ − xπ(i)

4. Return (x, x).

Figure 1: A procedure for the allocation of divisible items.

Div Alloc is a greedy allocation procedure for divisible items at a given price per item p. Note that
Div Alloc returns two allocation vectors: one for the allocation and a second one for purposes of charging.
While in this procedure the two allocations are identical, we keep this format for the sake of uniformity
across divisible and indivisible allocations (see below).

LetM be a mechanism that returns an allocation vector x, such that xi is the allocation of agent i. We
define EM[xi] to be the expected value of xi, where the expectation is taken over the coin flips ofM. We
show the following monotonicity property:

Observation 1. For every two sets of agents S and T , such that T ⊆ S, agent i ∈ T , price p and a (possibly
fractional) number of items k, EDiv Alloc[xTi ] ≥ EDiv Alloc[xSi ] where xT , xS are the allocations returned
by Div Alloc(T, p, k) and Div Alloc(S, p, k), respectively.

Proof. Let BS , BT be the expected sum of the budgets of all agents with value at least p that are processed
before agent i in a random permutation on sets S and T respectively. It is clear that BT ≤ BS .

Budget limitations might prevent the allocation of integral items. In offline settings with indivisible items, a
common solution for this problem is to sell correlated lottery tickets to the agents. Due to the online nature
of our settings, this cannot be done. Therefore, We propose to realize an agent’s allocation within her time
frame, via uncorrelated lotteries, as described in the procedure below.

This procedure calculates the number of items allocated to each agent, when agents arrive in a random
order. The procedure returns two allocation vectors, x and x̃ where x determines the actual allocation, and x̃
determines the allocation agents are charged for. For every agent i, the allocation xi must be integral (since
items are indivisible), while x̃i might be fractional.
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Indiv Alloc (S, p, k)

1. Let π be a random permutation of S.

2. Initialize k′ ← k, xi ← 0 and x̃i ← 0 for every i ∈ S.

3. For i = 1, 2, . . . , |S|:

(a) If vπ(i) ≥ p:

• If k′ ≤ bπ(i)
p :

Set xπ(i) ← k′ and x̃π(i) ← k′.
• Else:

Set x̃π(i) ←
bπ(i)
p .

Set xπ(i) ←

{
d bπ(i)p e with probability

bπ(i)
p − b

bπ(i)
p c.

b bπ(i)p c with probability 1− bπ(i)
p + b bπ(i)p c.

(b) k′ ← k′ − xπ(i).

4. Return (x, x̃).

Figure 2: A procedure for the allocation of indivisible items.

The following lemma shows that by using uncorrelated lotteries we lose at most a factor of 2. The proof
is deferred to Appendix B.

Lemma 1. Let (x, x̃) be the tuple returned by Indiv Alloc (S, p, k) and (x′, x̃′) the tuple returned by
Div Alloc (S, p, k). Then, EIndiv Alloc

[∑
i∈S x̃i

]
≥
∑

i∈S x̃
′
i/2.

2.2 Online Implementation of Random Sampling Based Mechanisms

In this section we present a high level technique for the implementation of random sampling mechanisms in
online settings. In the sequel, we show that by using suitable allocation and pricing functions, this technique
can be used to devise truthful and nearly optimal mechanisms in online budgeted settings. However, as
discussed in Section 1.2, this technique can be used for other settings, with or without budgets.

For every agent i let âi, d̂i be the reported arrival time and departure time of agent i respectively. Let N
be a set of agents and m be an amount of items. Let P be a function that receives a set of agents as input
and returns a price. Let Alloc be a function that receives as input a set of agents, a price per item, and an
amount of items, and returns two allocation vectors, x and x̃, where x is the actual allocation and x̃ is used
for charging the agents. Note that xi and x̃i might be different (e.g., if Alloc runs lotteries).

Mechanism RS Online works as follows: Toss a fair coin n− 1 times, and let j be the number of tails
plus one. Place the first j agents in set A and the rest in set B. Upon the arrival of the last agent in set A,
apply the random sampling paradigm on the set A. Upon the arrival of each agent in set B, place her into
set B1 or B2, by tossing a fair coin. For each agent placed in B1, give her allocation as if she was in set
A1, and charge her a price computed according to set A2. Apply an analogous allocation and charging for
agents in set B2.
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RS Online (N,m,P, Alloc)

Partition:
1. Toss a fair coin n− 1 times independently. Let j be the number of tails plus 1.

Let t0 ← âj (the reported arrival time of the j-th agent).

2. Let A be the set of the first j agents (based on reported arrival time) and let B be N \A.

Sampling phase: (Based on set A)
1. At time t0, partition the agents in A into two sets A1 and A2 by tossing an independent fair coin

for each agent. Assume without loss of generality that agent j belongs to A2.

2. Let (x, x̃) be the tuple returned by Alloc(A1,P(A2),
m
4 ) and (x′, x̃′) the tuple returned by

Alloc(A2,P(A1),
m
4 ).

3. Resolve the allocation and payments of the sampling set:

(a) For every agent i ∈ A1, if d̂i ≥ t0 (i.e., agent i did not depart yet), allocate to agent i xi items
and charge her x̃i · P(A2).

(b) Apply an analogous procedure for agents in A2, i.e., for every agent i ∈ A2, if d̂i ≥ t0,
allocate to agent i x′i items and charge her x̃′i · P(A1).

Revenue collection phase: (Based on set B)
1. Let m1 ← m

4 , m2 ← m
4 .

2. For every agent i ∈ B, once she arrives, toss a fair coin.

(a) If she turns heads:

i. Assign agent i to set B1.
ii. Let (x′, x̃′) be the tuple returned by Alloc

(
{A1 ∪ i},P(A2 − j), m4

)
.

iii. Let xi ← min{x′i,m1},x̃i ← min{x̃′i,m1}.
iv. Allocate to agent i xi items at a price of x̃i · P(A2 − j).
v. Update m1 ← m1 − xi.

(b) If the coin turns tails:

i. Assign agent i to set B2.
ii. Let (x′, x̃′) be the tuple returned by Alloc

(
{A2 ∪ i} − j,P(A1),

m
4

)
.

iii. Let xi ← min{x′i,m2}, x̃i ← min{x̃′i,m2}.
iv. Allocate To agent i xi items at a price of x̃i · P(A1).
v. Update m2 ← m2 − xi.

Figure 3: A random sampling based online mechanism.

Let N ′ = N − {j}. The following observation shows that sets A1, A2 − j, B1 and B2 form a random
partition of the agents in N ′.

Observation 2. Mechanism RS Online places each agent i ∈ N ′ randomly and independently in either
sets A1, A2 − j, B1 or B2 with equal probability.

Proof. Observe that |N ′| = n− 1 and |A− j| ∼ B(n− 1, 1/2). Since the agents of N ′ arrive in a random
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order, the sets A − j and B form a uniformly-sampled random partition of N ′. Moreover, agents in A − j
are divided into sets A1 and A2 − j uniformly at random, and agents in set B are divided into sets B1 and
B2 in a similar manner.

3 Revenue Maximization

In this Section we study mechanisms for the allocation of identical items (both divisible and indivisible)
with constant approximation to the optimal revenue under a large market assumption.

Let S be a set of agents, p a price and k a number of items. We define p∗S,k =

argmaxp

{
min

(∑
i∈S,vi≥p

bi
p , k

)
· p
}

, i.e., p∗S,k is the price that maximizes the revenue of selling at most

k items to agents in S at a uniform price. Let OPT (S, k) = min
(∑

i∈S,vi≥p∗S,k
bi
p , k

)
· p∗S,k, i.e., the

optimal revenue from selling at most k items to agent in S at a uniform price. Let OPT ∗(S, k) be the
optimal revenue from selling at most k items to agents in S at heterogeneous prices. The following theorem
from [1] shows that a mechanism that gives a constant approximation to OPT (S, k) also gives a constant
approximation with respect to OPT ∗(S, k).

Theorem 1. [1] For every set of agents S and k items, OPT (S, k) ≥ OPT ∗(S,k)
2 .

3.1 The Mechanism

For the allocation of divisible and indivisible items we apply the RS Online mechanism described in
the previous section. For divisible items, we define Rev Div = RS Online(N,m,Pmrev,Div Alloc),
where Pmrev(S) = p∗S,m

4
, and Div Alloc is as defined in Section 2.1. For indivisible items, we define

Rev Indiv = RS Online(N,m,Pmrev, Indiv Alloc), where Pmrev is as above, and Indiv Alloc is as
defined in Section 2.1.

Recall that without a large market assumption, no truthful mechanism can achieve a constant approxi-
mation to the revenue. Similarly to [7], we characterize the size of the market by ε, described as follows:
Let bmax

S = max{bi}i∈S be the maximum budget of any agent in set S; ε(S, k) =
bmax
S

OPT (S,k) . Intuitively, a
smaller ε implies a larger market. The main result of this section is:

Theorem 2. Rev Indiv is a truthful mechanism that allocates indivisible items and gives a 32-approximation
to the optimal revenue as ε tends to 0. In addition, Rev Div is a truthful mechanism that allocates divisible
items and gives a 16-approximation to the optimal revenue as ε tends to 0.

In what follows we prove the theorem for the allocation of indivisible items. It is not difficult to observe
that proving 32-approximation for indivisible items directly implies 16-approximation for divisible items.
This is because our analysis goes through the allocation of divisible items and then applies Lemma 1 to
show that the transition to indivisible items loses at most a factor 2 in the approximation.

3.2 Analysis

Theorem 3. Mechanism Rev Indiv is truthful, i.e., each agent maximizes her utility by reporting her true
type.

Proof. Let i be any agent. We prove that the utility of agent i can only decrease if she misreports her type.

Misreporting vi, bi: Agents in set A and B cannot change their price or position by misreporting their
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value or budget. Since given a fixed price and a position the mechanism allocates the best possible alloca-
tion, agents do not have the incentive to misreport their bids.

Misreporting di: Agents in B are being allocated upon arrival. Hence, misreporting di has no effect.
Agents in A are being allocated at time t0. Therefore, by reporting an earlier departure time, agent i might
depart before time t0. By delaying her departure time, agent imight receive the items outside her time frame.

Misreporting ai: We analyze the following cases.

1. The mechanism places agent i in set B according to both her true arrival time and reported arrival
time. Recall that agents in B are being allocated upon arrival. By reporting an earlier arrival time,
agent i receives the items outside her time frame. By delaying her arrival time, the agent might receive
less items (since other agents might be allocated before agent i).

2. The mechanism places agent i in set B according to her true arrival time and in set A according to
her reported arrival time. Since agent i is placed in set B according to her true arrival time, ai > t0.
Hence, when agent i is placed in set A she receives the items outside her time frame.

3. The mechanism places agent i in set A according to both her true arrival time and reported arrival
time. Since agent i is placed in set A, by misreporting her arrival time she can only affect the arrival
order and the time t0. Observe that the mechanism allocates the agents in a random order and takes
into consideration departed agents (although they do not receive items).

4. The mechanism places agent i in set A according to her true arrival time and in set B according to
her reported arrival time. Note that by moving to set B, agent i caused agent j to move to set A.
Let (x, x̃) be the tuple returned by M1 = Indiv Alloc

(
{A1 ∪ i}, p∗A2−j,m4

, m4

)
. Let (x′, x̃′) be

the tuple returned by M2 = Indiv Alloc
(
{A2 ∪ i} − j, p∗A1,

m
4
, m4

)
. If agent i had been reporting

her true arrival time, she would have been placed in set A1 with probability 1
2 , and in set A2 with

probability 1
2 .

Note that EM1 [xi] = EM1 [x̃i] and EM1 [x′i] = EM1 [x̃′i]. Therefore, by reporting her true arrival time,
with probability 1

2 , agent i receives an expected amount of EM1 [xi] items at a price of EM1 [xi]·pA2−j ,
and with probability 1

2 , agent i receives an expected amount of EM2 [x′i] items at a price of EM2 [x′i] ·
pA1 . Since agent i misreported her arrival time, she is placed in set B1 with probability 1

2 and placed
in set B2 with probability of 1

2 . Hence, with probability 1
2 , agent i receive an expected amount of

x ≤ EM1 [xi] items at an expected price of x · pA2−j , and with probability 1
2 , agent i receives an

expected amount of x ≤ EM2 [x′i] items at an expected price of x · pA1 (recall that for set B the
allocation is bounded by the remaining amount of the item). It is clear that the expected utility of
agent i can only decrease by misreporting her arrival time.

Recall that N ′ = N − j. Let OPT ∗ = OPT ∗(N,m), OPT = OPT (N,m), ε = ε(N,m), OPT ′ =
OPT (N ′,m), ε′ = ε(N ′,m). The following lemma shows that there is no significant difference between
OPT ′ and OPT :

Lemma 2. Pr [OPT ′ ≥ OPT/2] ≥ 1− 1/n.

Proof. There can be at most a single agent that can contribute more then OPT/2 to the optimal revenue
from set N . Since agent j is chosen uniformly at random from set N (recall that the agents arrive in a
random order), the probability that such an agent (if exists) is not in N − j is 1/n.
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Our analysis uses theorems from [7]. Their mechanism, which we will refer to as Rev Offline is based
on the random sampling paradigm. The mechanism divides the agents into two sets S1 and S2 uniformly at
random. Then it calculates the optimal uniform price for selling at most k/2 items to agents in sets S1 and
S2, denoted by p1 and p2 respectively. As a final step, the mechanism sells k/2 items to agents in S1 at a
price per item p2, and k/2 items to agents in S2 at a price per item p1. For a formal description see Figure 5
at Appendix A.

Let ε = ε(S, k). Borgs et al. showed the following:

Theorem 4. 3 [7] Let rS1 be the revenue from selling at most k/2 items to set S1 at a price of p∗S,k. Let rS2

be the revenue from selling at most k/2 items to set S2 at a price of p∗S,k. For any δ ∈ [0, 1], the probability

that both rS1 ≥ 1−δ
2 OPT (S, k) and rS2 ≥ 1−δ

2 OPT (S, k) is at least 1− 2e−δ
2/(4ε).

Theorem 5. 4 [7] Let rS1 be the revenue of mechanism Rev Offline from agents in set S1. Then, for any
δ ∈ [0, 13 ], the probability that rS1 ≥ 1−3δ

2 OPT (S, k) is at least 1− 2e−δ
2/(4ε).

Mechanism Rev Offline sells items in an arbitrary order, in particular, according to the online arrival
order. Moreover, according to Observation 2 (see Section 2.2), our mechanism partition the agents into sets
in an equivalent way to mechanism Rev Offline. Therefore, we can use the theorems from [7] in our
analysis.

Let N1 = B1 ∪ A2 − j and N2 = B2 ∪ A1. Let OPT1 = OPT (N1,m/2), ε1 = ε(N1,m/2),
OPT2 = OPT (N2,m/2) and ε2 = ε(N2,m/2). The following lemma proves that with high probability
both sets receive a significant fraction of N ′.

Lemma 3. Pr
[
OPT1 ≥ 1

4OPT
′, OPT2 ≥ 1

4OPT
′, ε1 ≤ 4ε′, ε2 ≤ 4ε′

]
≥ 1− 2e−1/16ε

′
.

Proof. Using Observation 2, we get that N1 and N2 form a uniformly sampled partition of N ′. Hence, we
can apply Theorem 4 with δ = 1

2 , S = N ′, S1 = N1, S2 = N2, k = m. Therefore, with probability
of 1 − 2e−1/16ε

′
we get that OPT1 ≥ rN1 ≥ 1

4OPT
′, OPT2 ≥ rN2 ≥ 1

4OPT
′. Since bmax

N1
≤ bmax

N ′

and bmax
N2
≤ bmax

N ′ we achieve the bounds for ε1 and ε2 stated in the assertion of the lemma
(
recall that

ε(S, k) =
bmax
S

OPT (S,k)

)
.

Our mechanism, as opposed to offline random sampling based mechanisms, calculates the allocation for
each agent in set B1 as if she was in a random permutation in set A1 (and applies an analogous procedure
for sets B2 and A2 − j). This modification is vital for the truthfulness of the mechanism.

The following lemma is used to show that we lose only a constant factor due to this modification. Let
x be the allocation returned by Div Alloc(S, p, k). Sell Div(S, p, k) (see Figure 6 at Appendix A) is a
mechanism that allocates the items according to x and charges a price of p per item. Sell Modif(S, p, k, z)
(see Figure 7 at Appendix A) is a mechanism that sells according to the modification described above, i.e.,
it divides set S into sets S1 and S2 such that each agent has a probability of z to be placed in set S1 and a
probability of 1− z to be placed in set S2. Then it sells the items to agents in set S1 in a random order at a
fixed price p per item. The allocation for each agent is calculated as if the agent was in a random permutation
in set S2.

Lemma 4. For every set S, price p, fraction of item k and a probability z, the expected revenue from mech-
anism Sell Modif(S, p, k, z) is at least z times the expected revenue from mechanism Sell Div(S, p, k).

3Note that this is stronger than the statement of Lemma 5.2 in [7], but this is essentially what they proved.
4Note that this result is shown in proof of Theorem 5.1 in [7].
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Proof. Let r be the expected revenue from mechanism Sell Div(S, p, k). For the sake of the analysis,
assume that mechanism Sell Div(S, p, k) begins by placing each agent i ∈ S in S1 and S2 with respective
probability z and 1 − z (as mechanism Sell Modif(S, p, k, z) does). Since each agent has a probability
of z to be placed in S1, the expected revenue extracted from agents in S1 is z · r. Therefore, it is sufficient
to show that for each partition of S into S1 and S2, the expected revenue from Sell Modif(S, p, k, z)
equals to at least the expected revenue of Sell Div(S, p, k) from agents in set S1. There are two cases.
If Sell Modif(S, p, k, z) allocated the entire fraction of the item, then it collected the maximal revenue
possible from price p and the claim is obviously true.

Otherwise, for each agent i ∈ S1, min{x′i,m} = x′i at step 3a of mechanism Sell Modif . We prove
that for each such an agent i, her expected revenue in Sell Modif(S, p, k) (denoted by ri,2) equal at
least her expected revenue in Sell Div(S, p, k) (denoted by ri,1). Since min{x′i,m} = x′i then ri,2 =
EDiv Alloc[x̄i] ·p where x̄ is the allocation returned by Div Alloc({S2∪ i}, p, k). ri,1 = EDiv Alloc[x̃i] ·p
where x̃ is the allocation returned by Div Alloc(S, p, k). Since {S2 ∪ i} ⊆ S, then according Observation
1 EDiv Alloc[x̄i] ≥ EDiv Alloc[x̃i]. This complete the proof.

We are now ready to prove the main technical lemma of this section.

Lemma 5. For every δ ∈ [0, 13 ], the probability that the expected revenue obtained from mechanism
Rev Indiv(N,m) is greater than (1−3δ)OPT ′

16 is at least(
1− 2e−1/16ε

′
)(

1− 4e−δ
2/(16ε′)

)
.

Proof. We calculate the expected revenue only for the event that OPT1 ≥ 1
4OPT

′ and OPT2 ≥ 1
4OPT

′

(and therefore also ε1 ≤ 4ε′, ε2 ≤ 4ε′). Let r be the expected revenue from mechanism Sell Div(B1, p
∗
A2−j,m4

, m4 ).
Note that each agent i ∈ S1 is randomly and independently placed to either B1 or A2 − j with equal
probability. Hence, we can apply Theorem 5 with S1 = B1, S2 = A2 − j and get that the proba-
bility that r ≥ 1−3δ

2 OPT1 ≥ 1−3δ
8 OPT ′ is at least 1 − 2e−δ

2/(4ε1) ≥ 1 − 2e−δ
2/(16ε′). Note that

the expected revenue from mechanism Sell Div(B1 ∪ A1, p
∗
A2−j,m4

, m4 ) is at least the expected revenue
from mechanism Sell Div(B1, p

∗
A2−j,m4

, m4 ), since the agents in set B1 ∪ A1 with value at least p∗A2−j,m4
are a superset of the ones in set B1. Hence, the probability that the expected revenue from mechanism
Sell Div(B1 ∪A1, p

∗
A2−j,m4

, m4 ) is at least 1−3δ
8 OPT ′ is at least 1− 2e−δ

2/(16ε′).

By applying Lemma 4 with S = B1 ∪ A1, S1 = B1, S2 = A1, p = p∗A2−j,m4
, k = m

4 and z = 1
2 we

get the following. The probability that the expected revenue from Sell Modif(B1 ∪A1, p
∗
A2−j,m4

, m4 ,
1
2) is

greater than 1
2 ·

1−3δ
8 OPT ′ = 1−3δ

16 OPT ′ is at least 1− 2e−δ
2/(16ε′). By a symmetric argument we get that

the probability that the expected revenue from mechanism Sell Modif(B2∪A2−j, p∗A1,
m
4
, m4 ,

1
2) is greater

than 1−3δ
16 OPT ′ is at least 1−2e−δ

2/(16ε′). Using a union bound we get that the probability that the expected
revenue from mechanism Sell Modif(B1∪A1, p

∗
A2−j,m4

, m4 ,
1
2) and mechanism Sell Modif(B2 ∪A2−

j, p∗A1,
m
4
, m4 ,

1
2) is greater than 1−3δ

8 OPT ′ is at least 1−4e−δ
2/(16ε′). Note that we can use Lemma 4 although

we enforce that OPT1 ≥ 1
4OPT

′ and OPT2 ≥ 1
4OPT

′ (which implies restrictions on N1 = B1 ∪ A2−j
and N2 = B2 ∪A1), since this conditions are symmetric.

One can easily observe that the expected revenue from mechanism Rev Div(N,m) is at least the ex-
pected revenue from mechanism Sell Modif(B1∪A1, p

∗
A2−j,m4

, m4 ,
1
2) and mechanism Sell Modif(B2∪

A2 − j, p∗A1,
m
4
, m4 ,

1
2). To bound the expected revenue from mechanism Rev Indiv(N,m) we apply

Lemma 1 and lose an additional factor of 2 in the revenue. Combining the above with Lemma 3, we
get the desired result.
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We now use Theorem 1 and Lemma 2, to bound the expected revenue from mechanism Rev Indiv with
respect to OPT ∗.

Theorem 6. For every δ ∈ [0, 13 ], the probability that the expected revenue obtained from mechanism
Rev Indiv(N,m) is greater than (1−3δ)OPT ∗

64 is at least

(1− 1/n)
(
1− 2e−1/32ε

) (
1− 4e−δ

2/(32ε)
)

.

Proof. According to Lemma 2, Pr [OPT ′ ≥ OPT/2] ≥ 1 − 1/n. Combining OPT ′ ≥ OPT/2 and
ε′ ≤ 2ε with the bound from Lemma 5 and Theorem 1 yields the desire result.

We our now ready to show the main result of this section.

Proof of Theorem 2: By definition, when ε tends to 0, OPT ′ approaches to OPT . Therefore, the bound
from Lemma 5 becomes: for every δ ∈ [0, 13 ], the probability that the expected revenue obtained from mech-

anism Rev Indiv(N,m) is greater than (1−3δ)OPT ∗
32 is at least

(
1− 2e−1/32ε

) (
1− 4e−δ

2/(32ε)
)

. Since ε

tends to 0, for every δ,
(
1− 2e−1/32ε

) (
1− 4e−δ

2/(32ε)
)

tends to 1.

4 Liquid Welfare Maximization

In the liquid welfare setting the seller has a single divisible item5. Let ṽi (xi) = min (vixi, bi). The liquid
welfare from an allocation vector x is W̃ (x) =

∑
i ṽi (xi). LetOPT denote the optimal liquid welfare. For

an agent i ∈ N we define v̄i = min{vi, bi} to be the liquid value of the agent. We refer to an agent whose
liquid value is a constant fraction of OPT as a “dominant” agent.

Our mechanism, which we refer to as Liquid Div, is composed of two mechanisms. It runs mechanism
MVCG(N) with probability µ and mechanism RS Liquid with probability 1− µ, where the exact value
of µ will be determined in the analysis.

We define RS Liquid = RS Online(N, 1, P̄ ,Div Alloc), where Div Alloc is as defined in Sec-
tion 2.1, and P̄ is described as follows: Let S be a set of n′ agents such that vi1 ≥ vi2 ... ≥ vin′ . Let k be
the maximum integer such that

∑k
j=1 bij ≤ vik . The function P̄ (S) is the market clearing price6 defined as

follows: P̄ (S) = max{
∑k

j=1 bij , vik+1
}.

Mechanism MVCG(N), which is defined in Figure 4, achieves a constant approximation to the op-
timal liquid welfare if there is a single dominant agent, and Mechanism RS Liquid achieves a constant
approximation in all other cases. The main result of this section is:

Theorem 7. Mechanism Liquid Div is a truthful mechanism for the allocation of a divisible item that
gives a constant approximation to the optimal liquid welfare.

5By normalization, this is equivalent to m divisible items.
6 Market clearing price is a term taken from the general equilibrium theory. In the special case of a songle type of good, market

clearing price is the maximum price satisfying that each agent can be assigned an optimal fraction of the good such that there is no
deficiency or surplus.
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MVCG (N)

1. Let A be the set of the first n
2 agents (based on reported arrival time) and let B be N \ A. Let

t0.5 = ân
2

(the reported arrival time of the n
2 -th agent).

2. At time t0.5: Order the agents in set A according to their liquid value such that v̄i1 ≥ v̄i2 ... ≥ v̄in
2

.
Set p2 = γ · v̄i2 and p1 = γ · v̄i1 . Toss a fair coin.

• If it turns heads, then if v̄i1 ≥ p2 and di1 ≥ t0.5, allocate the entire item to agent i1 at a price
p2.

• If the coin turns tail, then wait for the first agent j ∈ B such that v̄j ≥ p1 (if exists) and
allocate to her the entire item at a price p1.

Figure 4: Online modified VCG mechanism.

The value of γ > 1 is determined in the analysis.

4.1 Analysis

Theorem 8. The mechanism is truthful for any γ > 1, i.e., each agent maximizes her utility by reporting
her true type.

The proof of the above theorem is deferred to Appendix C
We now bound the performance guarantee of the mechanism. Some parts of the analysis resemble the

analysis from [26]. We bound the performance guarantee for several cases. For some of them we prefer to
bound the expected revenue instead of bounding the expected liquid welfare. The relation between revenue
and liquid welfare is stated in Lemma 3.4 from [26].

Lemma 6. [26] The liquid welfare produced by any truthful and budget feasible mechanism is at least the
revenue of the auctioneer.

We introduce the following definitions. Recall that j is the last agent in set A (according to her reported
arrival time), where j ∼ B(n− 1, 1/2) + 1. Let N ′ = N − j. Let p∗ = P̄ (N ′) be the market clearing price
of the total set of agents without agent j. Let OPT and OPT ′ be the optimal liquid welfare for sets N and
N ′ respectively. Let V = {i ∈ N |vi ≥ p∗} and V ′ = {i ∈ N ′|vi ≥ p∗}. For every set of agents T ⊂ N ′ we
define BT =

∑
i∈T bi, B

′
T =

∑
i∈T∩V ′ bi. By definition, B′V ≥ p∗ (Recall that the market clearing price is

the maximal price such that there is no deficiency or surplus of any good. Hence, it is clear that the budget
of the agent from set V ′ is at least p∗).

The following lemma proves some relations regarding the market clearing price. In particular, it proves
that the market clearing price is a good approximation for the optimal liquid welfare. This Lemma was
stated and proved by Lu and Xiao in an earlier version of [26], and removed in the latest version. We state
and prove it here for the sake of completeness.

Lemma 7 (From a previous version of [26]7). Let S and T ⊆ S be two sets of agents and let W be the
optimal liquid welfare from the set S. Then:

1. P̄ (S) ≥ 1
2W .

2. P̄ (T ) ≤ P̄ (S).

7The previous version can be found in http://arxiv.org/pdf/1407.8325v2.pdf.
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Proof. Let S = {1, . . . , n}, v1 ≥ v2 ≥ . . . vn and let k be the maximum integer such that
∑k

i=1 bi ≤ vk. By
the definition of the market clearing price we have that P̄ (S) = max{

∑k
i=1 bi, vk+1}. Let x∗ = {x∗i }i∈S be

an allocation that maximizes the social welfare of the agents in S. First we prove the first part of the lemma:

W =
∑
i∈S

min{vix∗i , bi} ≤
k∑
i=1

bi +

n∑
i=k+1

vix
∗
i ≤

k∑
i=1

bi + vk+1

n∑
i=k+1

x∗i ≤
k∑
i=1

bi + vk+1 ≤ 2P̄ (S),

where the first inequality is derived from the definition of the min function, the third inequality is due to the
fact that only one items is allocated and the fourth inequality results from the definition of clearing market
price.

Now we prove the second part of the lemma. Let T = {i1, i2, . . . , in′} such that vi1 ≥ vi2 ≥ . . . vin′ .
Let k′ be the maximum i ∈ {1, . . . , k} such that k′ ∈ T . Let kT the maximum integer such that

∑kT
j=1 bij ≤

vikT (i.e., P̄ (T ) = max{
∑kT

i=1 bi, vkT+1}). Since k′ ≤ k, according to the definition of k,
∑k′

j=1 bj ≤
vk′ . Combining with the fact that T is a subset of S we have that either ikT = k′ or ikT > k. For the
first case we have that P̄ (T ) = max{

∑kT
j=1 bij , vikT+1

} ≤ max{
∑k

j=1 bj , vk+1} = P̄ (S) since ikT =

k′ ≤ k and ikT+1 > k (according to the definition of k′). On the other hand, if ikT > k then P̄ (T ) =

max{
∑kT

j=1 bij , vikT+1
} ≤ vikT ≤ vk+1 ≤ max{

∑k
j=1 bj , vk+1} = P̄ (S). When the first inequality results

from the definition of the clearing market price.
This complete the proof of the lemma.

As a corollary of the Lemma 7, we get that p∗ ≥ 1
2OPT

′, pA1 ≤ p∗ and pA2−j ≤ p∗. The following lemma
shows that there is not a significant difference between OPT ′ and OPT .

Lemma 8. Pr
[
OPT ′ ≥

(
1− 1

k+1

)
OPT

]
≥ 1− k

n .

Proof. Let x∗ be an optimal allocation. Let Ik be the set of the k agents with the highest liquid welfare under
x∗. Note that for every agent ` ∈ (N \ Ik), we have that ṽ`(x∗` ) ≤

OPT
k+1 ; otherwise,

∑
i∈(Ik+`) ṽi(x

∗
i ) >

(k + 1)OPTk+1 = OPT for some ` ∈ (N \ Ik). Since agent j is chosen uniformly at random from set N
(recall that the agents arrive in a random order), the probability that j ∈ Ik is k

n . In case that j ∈ (N \ Ik),
we get that

OPT ′ ≥
∑
i∈N−j

ṽi(x
∗
j ) ≥ OPT −

OPT

k + 1
=

(
1− 1

k + 1

)
OPT.

Using Observation 2, we get that every agent of V ′ is in each of the sets A1, A2 − j, B1 and B2 with an
equal and independent probability. Let Q = A1 ∪B1 ∪B2. Hence, each agent of V ′ is placed in set Q with
a probability of 3

4 and in set A2 − j with a probability of 1
4 .

For simplicity, we normalize p∗ = 1. The following lemma shows that if all the agents in set V ′ have a
relatively small budget, both Q and A2 − j get a significant fraction of the budget of the agents in set V ′.

Lemma 9. If maxi∈V ′ bi ≤ γ
10 then Pr

[
min{B′Q, B′A2−j} ≥

1
15

]
≥ 1− 135

242γ.

Proof. Recall that BV ′ ≥ p∗ = 1. Assume that BV ′ = 1 (if BV ′ > 1, we can decrease some of the budgets,
and the claim only gets stronger). Let Ii be a random indicator such that Ii = 1 if agent i belongs to set Q
and Ii = 0 otherwise. Therefore, B′Q =

∑
i∈V ′ biIi, E

[
B′Q

]
= 3

4 and

V ar
[
B′Q
]

=
∑
i∈V ′

V ar [biIi] =
∑
i∈V ′

(
E
[
(biIi)2

]
− E [biIi]2

)
=

∑
i∈V ′

3

16
b2i ≤

1

(γ/10)

3

16
· (γ/10)2 =

3

160
γ,

15



where the inequality holds since setting bi = γ/10 for every i ∈ V ′ maximizes
∑

i∈V ′ b
2
i under the con-

straints maxi∈V ′ bi ≤ γ/10 and
∑

i∈V ′ bi = 1. Using Chebyshev’s inequality we get:

Pr

[∣∣∣∣B′Q − 3

4

∣∣∣∣ ≥ 11/60

]
≤
V ar

[
B′Q

]
(
11
60

)2 ≤ 135

242
γ.

When |B′Q−
3
4 | ≤

11
60 then 17

30 ≤ B
′
Q ≤

14
15 . Since B′Q +B′A2−j = B′V = 1, we get that B′A2−j ≥

1
15 , which

completes the proof.

In the following theorem we uses the relation between mechanisms Sell Div and Sell Modif (see
Figures 6 and 7) presented in Section 3. Recall that Sell Div(S, p, k) is a mechanism that allocates the
item according to Div Alloc(S, p, k) and charges a price of p per the entire item. Sell Modif(S, p, k, z)
is a mechanism that sells according to the following modification. It divides a set S into sets S1 and S2 such
that each agent has a probability of z to be placed in set S1 and a probability of 1− z to be placed in set S2.
It then sells the items to agents in set S1 in a random order at a price p per the entire item. The allocation
for each agent is calculated as if the agent was in a random permutation in set S2.

Note that for n < 100, devising an 100-approximation truthful mechanism is trivial — allocate the entire
item to a randomly chosen agent. Therefore, from now on we assume that n ≥ 100. Now we are ready to
prove our main result of this section:

Theorem 9. Setting µ = 1/10 and γ = 1.0001, mechanism Liquid Div gives a 2443-approximation to
the optimal liquid welfare.

Proof. We bound the expected welfare for the event that OPT ′ ≥ 9
10OPT occurs. In this case OPT ≤

10
9 OPT

′ ≤ 20
9 p
∗ = 20

9 , where he second inequality stems from Lemma 7.
We bound the performance of the mechanism for three different cases. Assume by renaming that 1 and

2 are the agents with the highest liquid value and the second highest liquid value in set N respectively.

Case A (no “dominant” agent): maxi∈V bi ≤ γ/10.
We bound the expected revenue from mechanism RS Liquid(Q, pA2−j ,

1
4); by Lemma 6 it is sufficient. It

is clear that maxi∈V ′ bi ≤ γ/10. We calculate the expected revenue for the event that min{B′Q, B′A2−j} ≥
1/15 occurs. In this case, by Lemma 7, pA2−j = P̄ (A2 − j) ≥ B′A2−j/2 ≥

1
30 . First we calculate the ex-

pected revenue from Sell Div(Q, pA2−j ,
1
4). There are two possible outcomes. If the entire 1

4 fraction was
sold, then the revenue is at least 1

4·30 = 1
120 . Otherwise, the entire budget of the agents with value at least

pA2−j was exhausted. According to Lemma 7, pA2−j ≤ p∗. Therefore, the budget of agents in set Q ∩ V ′
was exhausted and the revenue is at least B′Q ≥

1
15 . Combining the two cases we get that the expected

revenue from mechanism RS Liquid(Q, pA2−j ,
1
4) is at least min{ 1

120 ,
1
15} = 1

120 . Applying Lemma 4
with S = Q and z = 1/3 we get that the expected revenue from mechanism Sell Modif(Q, pA2−j ,

1
4 ,

1
3)

is at least 1
3·120 = 1

360 .
Observe that the expected revenue obtained from agents in setB1 by running mechanism RS Liquid(N)

is at least the expected revenue from Sell Modif(Q, pA2−j ,
1
4 ,

1
3), since when running mechanism RS Liquid(N)

the agents in setB1 are competing only against agents from setA1 and when running Sell Modif(Q, pA2−j ,
1
4 ,

1
3)

they have to compete against agents from set A1 ∪ B2. We get that the expected revenue is at least
(1− µ)(1− 145

242γ)/360 ≥ 1/1000.

Case B (More than one “dominant” agent): maxi∈V bi > γ/10 and v̄1 < γv̄2.
We bound the expected revenue from mechanism RS Liquid. Since maxi∈V bi ≥ γ/10, v̄1 ≥ min{1, γ/10} =

16



γ/10 (recall that p∗ is normalized to 1). Moreover, v̄2 > v̄1/γ ≥ 1/10. Let i′ be the agent with the highest
liquid value in set V . Clearly, v̄i′ ≥ γ/10.

Next, we bound the probability that agent j is not one of the agents i′, 1, 2. Recall that the number of
agents is at least 100. We assume that OPT ′ ≥ 9

10OPT , and therefore, j is not one of the 9 agents with the
highest welfare in the optimal allocation. It is clear that the worst case is when agents i′, 1, 2 are not among
the 9 agents with the highest welfare. Hence, this probability is at least 88

91 .
Let Q1 = A1 ∪ B1 and Q2 = A2 − j ∪ B2. Note that at least one of the agents 1, 2 is not agent i′.

Assume without lost of generality that agent 2 is different than agent i′ (the other case is similar).
We inspect the case where either 2 ∈ A1 ∧ i′ ∈ Q2 or 2 ∈ A2 − j ∧ i′ ∈ Q1. This happens with

probability 1/4 (recall that each agent in set N ′ has the same independent probability of being placed in
either A1, B1, A2 − j or B2).

Assume without loss of generality that 2 ∈ A1 and i′ ∈ Q2 (the other case is symmetric). Us-
ing the same argument as in the previous section, we have that the expected revenue from mechanism
Sell Div(Q2, pA1 , 1/4) is at least min{ 1

80 ,
γ
10} = 1

80 . By using Lemma 4 with S = Q2 and z = 1/2 we
get that the expected revenue out of agents in B2 in RS Liquid is at least 1

160 . Therefore, the expected
revenue in this case is at least (1− µ) 88

91·4·160 ≥
13

10000 .

Case C (one “dominant” agent): maxi∈V bi > γ/10 and v̄1 < γv̄2.
We bound the expected liquid welfare from mechanism MVCG. With probability 1/4 agent 1 is placed
in set B and agent 2 is placed in set A, and with probability 1/2 the item is sold in the second phase of
mechanism MVCG. Hence, the expected liquid welfare is at least γ

2·4·10µ = 1
80µγ = 1250125

1000000000 .

We conclude that the expected liquid welfare is at least min{ 1
1000 ,

13
10000 ,

1250125
1000000} = 1

1000 . Recall that
in the event that OPT ′ ≥ 9

10OPT , OPT ≤ 20
9 . According to Lemma 8, Pr[OPT ′ ≥ 9

10OPT ] ≥ 91/100.

Therefore, the approximation ratio is at most
20
9

1
1000

91
100

< 2443.
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A Omitted Mechanisms

Rev Offline (S, k)

1. Partition the agents in set S into two sets S1 and S2, by tossing an independent fair coin for each
agent. Set p1 ← p∗S1,m/2

and p2 ← p∗S2,m/2
.

2. Let x be the allocation returned by Div Alloc(S1, p2, k/2) and x′ be the allocation returned by
Div Alloc(S2, p1, k/2).

3. For every agent i ∈ S1: Allocate to agent i xi items at a price of xi · p2.

4. For every agent i ∈ S2: Allocate to agent i x′i items at a price of x′i · p1.

5. Run a correlated lottery between the agents who received fractions of items to resolve the real
allocation.

Figure 5: The offline mechanism presented in [7] for selling indivisible items and maximizing revenue.

Sell Div (S, p, k)

1. Let x be the allocation returned by Div Alloc (S, p, k).

2. For each agent i ∈ S allocate xi items at price of xi · p.

Figure 6: A mechanism for selling divisible items at a given price.

Sell Modif (S, p, k, z)

1. Initialize m← k.

2. For each agent i ∈ S: With probability of z place i in set S1 and with probability of 1 − z in set
S2.

3. For each agent i ∈ S1 (for an arbitrary order of the agents):

(a) Let x′ be the allocation returned by Div Alloc ({S2 ∪ i}, p, k). Let xi ← min{x′i,m}.
Allocate to agent i xi items at a price of xi · p.

(b) Update m← m− xi.

Figure 7: A mechanism defined solely for the analysis of our mechanisms.
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B Proof of Lemma 1

We consider only the case where each agent in S has a budget smaller than p (it is clear that for the inte-
gral part of bi

p , mechanisms Indiv Alloc and Div Alloc will allocate the same amount of items). Let
S′ = {i ∈ S : vi ≥ p} (agents in S \ S′ have no effect on the allocation). Let BS′ =

∑
i∈S′ bi. We analyze

the following cases:

Case A: k = 1 and BS′ ≥ p. It is clear that in this case
∑

i∈S x̃
′
i = 1 (mechanism Div Alloc sells

the entire item). EIndiv Alloc

[∑
i∈S x̃i

]
is the expected amount of items charged by Indiv Alloc before

the item is sold. Let j be the size of set S and assume by renaming that 1, . . . , j is the order in which
mechanism Indiv Alloc iterates the agents in set S′. Every time an agent i ∈ S′ is accessed before the
item is sold, she is charged for a x̃i = bi/p fraction, and gets the item with probability x̃i.

Let Pi be the probability that agent i ∈ S′ is accessed before the item is sold. Clearly, X =
∑j

i=1 Pi · x̃i
is the expected number of items the agents of S′ are charged for before the item is sold.

For the sake of the analysis, consider the following. Let r = min{t ∈ S′ :
∑t

i=1 x̃i ≥ 1}. Set yi = x̃i
for every i < r, yr = 1 −

∑r−1
i=1 yi and yi = 0 for every i > r. Let z ∼ U [0, 1] be a uniformly sampled

number between 0 and 1. Let j̃ = min{t ∈ S′ :
∑t

i=1 yi ≥ z}, and let X ′ =
∑j̃

i=1 yi. Since E[z] = 1/2,
we have that E[X ′] ≥ 1/2. Let P ′i be the probability that i ≤ j̃. Therefore, E[X ′] =

∑j
i=1 P

′
i · yi.

To complete this case we show by induction that Pi ≥ P ′i for every i ∈ S′. Clearly P1 = P ′1 = 1. For
i > 1, by definition Pi = Pi−1 · (1− x̃i−1). On the other hand,

P ′i = P ′i−1 ·

(
1− yi−1∑j

t=i−1 yt

)
≤ Pi−1 · (1− yi−1) = Pi−1 · (1− x̃i−1) = Pi,

where the inequality stems from the induction hypothesis. Since x̃i ≥ yi for any i ∈ S′, we conclude that
X ≥ E[X ′] ≥ 1/2.

Case B: k ≥ 1 and BS′ ≤ p (agents can afford at most a single item). By a similar analysis to that of
the Case A, we get that EIndiv Alloc

[∑
i∈S x̃i

]
≥
∑

i∈S x̃
′
i/2.

Case C: k ≥ 2 and
∑

i∈S x̃
′
i = k′ > 1. For simplicity we assume that k′ is integral, but a similar argument

can be applied to the fractional case. Recall that mechanism Indiv Alloc sells the items sequentially. Let
BS′,` be the sum of the budgets of the agents in set S′, after mechanism Indiv Alloc sells item `− 1 (for
` = 1 clearly BS′,` = BS′). We consider the following cases:

1. Mechanism Indiv Alloc sold at least k′ − 1 items and BS′,k−1 ≥ p. Therefore, before selling each
of the items 1, . . . , k′, we have that the sum of the budgets of agent in S′ is at least p. Hence, we can
apply the analysis of Case A and conclude that EIndiv Alloc

[∑
i∈S x̃i

]
≥ k′/2.

2. Mechanism Indiv Alloc sold less then k′ − 1 items or BS′,k−1 < p. In this case, agents in S were
charged for at least k′ − 1 items (i.e.

∑
i∈S x̃i ≥ k′ − 1). Since k′ ≥ 2, k′ − 1 ≥ k′/2. This complete

the proof.
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C Proof of Theorem 8

Since the mechanism is a probabilistic combination of two mechanism, it is sufficient to show that each of
the mechanisms is truthful.

RS Liquid Mechanism
One can easily verify that mechanism RS Liquid is almost identical to mechanism Rev Indiv. The only
differences between the mechanisms are the prices and the allocation method which does not use lotteries.
Hence, the proof is similar to the proof of Theorem 3.

MVCG Mechanism
Most of the cases have a similar proof as in mechanism Rev Indiv. We describe only the cases with a
different proof. Let i be any agent. We prove that the utility of agent i can only decrease if she misreports
her type.

Misreporting vi, bi: Agents in set B cannot change their price or position by misreporting their value
or budget. Since given a fixed price and a position the mechanism allocates the best possible allocation,
agents do not have the incentive to misreport their bids.

For agent i ∈ A, if v̄i ≥ γ · v̄i2 then the agent has a probability of 1
2 to receive the item at a price of

γ · v̄i2 . Agent i cannot affect the price or the probability to win the item by misreporting v̄i. If v̄i < γ · v̄i2 ,
then to win the item agent i has to bid at least γ · v̄i2 and to exceed her budget or value.

Misreporting ai: We analyze the following case (analogous to case 4 of misreporting ai in Rev Indiv).
The mechanism places agent i in set A according to her true arrival time and in set B according to her
reported arrival time. Let v̄i1 ≥ v̄i2 ... ≥ v̄in

2
be the agents in set A ordered according to their liquid value,

assuming that agent i reported her real arrival time. If v̄i < γ · v̄i2 , agent i will not receive the item whether
she is in set A or in set B. If v̄i ≥ γ · v̄i2 , then the agent receives the item at price γ · v̄i2 with probability 1/2
whether she is in set A or in set B (note that in this case, if agent i is placed in set B then agent i2 becomes
the agent with the highest liquid value in set A).

D Tie Breaking

In this section we show how to perform tie breaking when an agents is allowed to report the same arrival
time as another agent, but cannot report an earlier arrival time than her real arrival time. The tie breaking
rule we present is as follows — whenever an agent i arrives at time ai, the mechanism chooses a uniformly
at random value ãi ∼ [0, 1] and sets agent i’s arrival time to be 〈ai, ãi〉. The mechanism orders the agents
according to the following rule: Agent i precedes agent j if ai < aj or if ai = aj and ãi < ãj .

We change mechanisms Rev Indiv, Rev Div, MVCG and RS Liquid according to the above
rule. We claim that these mechanisms are truthful. The only problematic case is when an agent reports an
earlier arrival time such that she is placed in set A instead of being placed is set B (the proof all all the other
cases is similar to the proof of Theorem 3). Since an agent cannot affect the random value assigned to her,
and since we specifically prevent an agent from reporting an earlier arrival time, this is impossible.
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