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Abstract

In this paper, I study dynamic and sequential fair division problems for players with di-
chotomous preferences and devise a systematic approach of designing efficient, envy-free, and
strategy-proof mechanisms for any generic problem. The mechanisms developed here can ac-
commodate common discount factors to represent players’ time preferences between different
periods. I also show that the mechanisms proposed in the current research outperform in ef-
ficiency the repeated applications of a static strategy-proof mechanism by a factor of the size
of set of players in refined problems with unbounded demands. I also contribute a novel com-
parative statics result on the egalitarian solutions to monotone and concave cooperative games
with transferable utilities in characteristic function form. In the process of doing so, I discover
a duality-like property of the egalitarian solutions and reconcile the seemingly contradictory
process to the objective in the search for them. Finally, I highlight the relative importance of

identifying the correct order of priority over choices of payoffs in the pursuit of equality.



1 Introduction

Many interesting assignment and division problems in reality present themselves in a dynamic or
sequential manner. A production process may be subject to such procedural constraints that the
final product must be produced with several input factors, some of which can be the intermediate
output of other cruder materials. Privately supplied public resources may be available for allocation
for a certain amount of time, beyond which the supply contract may be renegotiated and the allo-
cation of the resources must be redetermined. The most important distinction between static and
dynamic assignment problems manifests itself in scheduling problems. Conference rooms must be
scheduled for meetings among different committees; Landing strips must be scheduled for flights
flown by various airlines; And cloud computing servers must be scheduled to accept competing
computational tasks. In each of these examples, it is fairly unreasonable to require all parties to
appear in front of a central distributor with their demand for the resources over the entire time hori-
zon or the full assembly line. Hence, production tasks of rubber are distributed before those for
the wheels, welfare electricity supplies to low income families are rationed annually, and library
books must be returned and recirculated for each semester. Such problems of dividing resources
or tasks with procedural or periodic constraints are the subject of the current research project.
What complicates the matter even more is the fact that each party’s demand for the resources
is very often her own private information. When workers are about to be assigned to shifts on a
common workstation, the manager (the principal) probably has very little idea on the hours the
workers (the agents) are available for, although the workers will most likely retain this information
from their own calendar!. Clearly, the manager would like the workstation to be occupied and
running as much as possible hence would prefer to assign shifts only to workers who will actually

be available during their assigned shifts, indicating higher efficiency from the workstation. In other

'T thank Baldzs Szentes for suggesting this example.



words, the agents’ private information poses the classical challenge to allocative efficiency. By ex-
tension, full efficiency may become achievable for certain only when the principal can incentivize
the self-interested agents into honest disclosure of their private information. Moreover, to avoid
switching shifts, the principal would most likely prefer to chart the shifts so that no agent is more
available during other’s shift than during her own, i.e. the shifts should induce no envy among
the workers. Therefore, the goal of this paper is to systematically design scheduling or division
mechanisms for dynamic or sequential settings that are efficient, strategy-proof, and envy-free?.
The main contributions of the current study come in two aspects. For applications, I develop
a systematic design of scheduling mechanisms satisfying the aforementioned properties for agents

endowed with dichotomous preferences’

. On a theoretical level, I provide a novel comparative
statics result for the egalitarian solutions of monotone and concave cooperative games with trans-
ferable utilities in characteristic function form. To be expected, the former contribution comes as
an extension and implication of the latter. I shall now briefly discuss these results, starting with
the second. The set of all feasible payoff profiles is convex in a monotone and concave cooperative
game. The egalitarian solution of such a game provides the payoff vector that is more equal than

any other feasible payoff vector in Lorenz terms: the collective payoff of any number of the worst-

off players in the egalitarian solution is higher than the same quantity in any other feasible payoff

%It as been widely documented in the assignment literature that envy-free-ness is the strongest notion of fairness,
implying various others such as proportionality or fair share, where each player receives at least a 1 /n fraction of her
maximum achievable payoff in a population of size n. See Brams and Taylor (1996) for a standard textbook treatment
and introduction. Envy-free-ness was first proposed by Foley (1967). An often cited advantage of adopting envy-
free-ness as a fairness measure is that envy-free-ness does not involve comparisons of the same allocation according
to different players’ preferences. On the exact opposite, envy-free-ness only requires comparing different bundles
according to a given player’s preferences, avoiding the controversy associated with double-standards.

3Extensive computer science literature has also studied similar problems in the context of algorithmic game theory
and mechanism design. For an excellent introduction and/or collection of known results and challenging open ques-
tions, please see Nisan et al. (2007). Problems including scheduling and fair divisions (also known as “cake-cutting”)
in the dynamic mechanism design context have also been discussed in the computer science literature under the topic of
online mechanism design. Finally, dichotomous preferences have also been referred to as piecewise uniform valuation
densities in the computer science parlance.



profile. The comparative statics result shows that, when some single player introduces more payoff
opportunities to a concave game—effectively generating another concave game, this single player
should be given the largest increase in payoff in the egalitarian solution of the new game.

In the process of establishing the comparative statics result, I also discovered an intriguing
duality-like feature of the egalitarian solution. The search for the egalitarian solution was first
accomplished by Dutta and Ray (1989) algorithmically for convex cooperative games and was
later converted for concave cooperative games by Chen et al. (2013). The essence of this pair of
algorithms are roughly as follows: recursively minimizing the average incremental payoffs among
the worst-off of the remaining players leads to the egalitarian solutions in concave games. The
most interesting feature in these algorithms is that minimizing poor agents’ payoffs runs exactly
against the spirit of Lorenz dominance favoring rich-to-poor transfers. Following this route, I will
show that recursively maximizing the average leftover payoffs among the best-off of the remaining
players also lead to the same unique egalitarian solution. I refer to this process as the “dual” of the
aforementioned algorithms for its evident mirroring appearance of the original algorithms.

I reconcile this conflict in the process and result of reaching Lorenz dominance posed by the
original and dual algorithms with the following interpretation. More important than the choice
of payoffs in achieving egalitarianism is the correct order of priority among the players. In all
algorithms, players who end up with lower payoffs also have their joint demands satisfied before
players with higher final payoffs do. In the original algorithms in Dutta and Ray (1989) and Chen
et al. (2013), players are selected to be awarded their demand while bumping players who have
not been chosen yet to lower priority orders. On the other hand, in the dual algorithm presented in
this paper, players are selected to yield to players to be selected later. The endogenous tradeoffs
between the order of priority and payoffs eliminate any potential Lorenz improvement by the way

of rich-to-poor transfers, necessary for the proposed solution concept to be Lorenz dominating any



other feasible payoff profile. Furthermore, Dutta and Ray (1989) showed that any other feasible
payoff vector can be sequentially Lorenz improved to the egalitarian solution, testifying the latter
being the only vector that Lorenz dominates all other payoff vectors. Accompanying the dominant
feature of the egalitarian solution is its nature of being the maximizer of separable, increasing, and
strictly concave functions of the players payoffs. Several previous work including Dasgupta et al.
(1973), Rothschild and Stiglitz (1973), and Shorrocks (1983) have shown the equivalence between
the maximizer of such collective welfare functions and the Lorenz dominant income distribution.

To apply the static comparative statics result to the dynamic setting, I consider a carefully
chosen adjustment of the egalitarian solutions in period ¢ based on the cumulative payoffs of the
players before this period. The correlation between the previous cumulative payoffs and the cur-
rent deviations from the egalitarian solution is designed to be mildly but strictly negative with a
magnitude always strictly less than 1. Hence, higher (lower) previous cumulative payoffs for a
certain player become a handicap (benefit) or punishment (reward) for the current allocation. The
motivation for such a seemingly insignificant and definitely delicate maneuver is two-fold. First,
combined with the collective utility maximizing feature of the egalitarian solution, envy-free-ness
directly translates into dynamic settings, the reason for which is equally transparent: were some
player, say 2, allocated more in some other player, say 1’s, shift than is player 1, it must be the
case that player 2 is currently rewarded for having a much lower previous cumulative payoff than
has player 1 (since the forenamed correlation is small and negative), which implies that player 1’s
cumulative payoff at the end of the current period must be strictly greater than player 2’s.

Much more importantly, for a class of refined division problems, such negative correlations
render truth-telling a strictly dominant strategy, making all players telling the truth the only equilib-
rium. The efficiency implication of achieving such equilibrium selection is much more significant

than the incentive implication. In particular, when compared to the simple repeated application



(a mechanism referred to as %) of the static strategy-proof mechanism presented in Chen et al.
(2013), the minuscule negative correlation rules out a vast range of weakly dominant strategies that
survived Z. For the measure of efficiency, or lack thereof, in %, I adopt the predominant notion
of “price of anarchy”* from the computer science literature. This measure captures the ratio be-
tween the maximum achievable total payoff of a preference profile to the lowest total payoff given
the same preference profile in any pure strategy Nash equilibrium and describes, in general, the
spread between the maximum and minimum total payoffs in any preference profile and equilibrium
combination. Hence, a higher price of anarchy signals a worse efficiency performance. Vis-a-vis
X, the mechanism proposed in this paper achieves full efficiency with a price of anarchy of 1
while the price of anarchy for % is a considerable n, the number of players.

Aside from being greatly inspired by Dutta and Ray (1989) and Chen et al. (2013), to which
the current research owns a tremendous amount, this paper also borrows from several other strands
of literature. The first group of literature deals directly with the problem of fair divisions, with
existence results dating back to Neyman (1946), Steinhaus (1948), and Weller (1985). These
papers address the fundamental issue of the sufficient conditions for the existence of efficient and
envy-free divisions and offer generously affirmative answers in groups of domains. More recent
work in the same realm include Aziz and Ye (2013), Brams et al. (2006), Brams et al. (2008),
Mossel and Tamuz (2010), Procaccia (2013a), and Procaccia (2013b) with an introductory text in
Robertson and Webb (1998) and a more methodological work from Barbanel (2005).

In the extensive study of the assignment problem, also known as the “one-sided matching prob-
lem” in Zhou (1990), Hylland and Zeckhauser (1979) and Bogomolnaia and Moulin (2001) are
two phenomenal contributions. As a matter of fact, the static version of the current research, Tian

(2015), stands right at the intersection of these two papers and offers arbitrarily asymmetric gener-

“The first formal introduction of this notion into the computer science literature is believed to be due to Koutsou-
pias and Papadimitriou (1999).



alizations of the symmetric static mechanism in Chen et al. (2013) where in Tian (2015), strategy-
proof-ness is still maintained. The most recent contribution in assignment problem, Hashimoto
et al. (2014), offers two axiomatic characterizations of the probabilistic serial mechanism first
proposed in Bogomolnaia and Moulin (2001). Other research in this strand include Alkan et al.
(1991), Bogomolnaia and Moulin (2004), Budish et al. (2013), Cres and Moulin (2001), Kojima
and Manea (2010), and Mennle and Seuken (2014).

The current application of the equivalence between Lorenz dominance and the maximization
of a collective welfare function is first inspired by Quah (2007), which is one of the recent contri-
butions in a seminal line of research in the relationship between complementary, super-modularity,
and monotone comparative statics pioneered theoretically by Topkis (1978) and compiled in Topkis
(2001), with a series of other stellar results including Antoniadou (2004a), Antoniadou (2004b),
Antoniadou (2007) (all on consumer’s problem), Athey (2002) (uncertainty), Kukushkin (2011)
(objective versus constraint changes), Milgrom and Shannon (1994), Quah and Strulovici (2009)
(informativeness), Vives (1990) (equilibrium with strategic complementarities), and Vives (2001)
(oligopoly pricing). Finally, an ever growing field of dynamic mechanism design, although all
dealing with dynamic auctions or contracting, provides incredible insights with Athey and Segal
(2013), Bergemann and Vilimiki (2010), Gallien (2006), Gershkov and Moldovanu (2009), Pai
and Vohra (2013), and Pavan et al. (2013).

The rest of the paper is organized as follows: section 2 presents the model and introduces no-
tations; section 3 exhibits the comparative statics result of the egalitarian solutions for monotone
and concave cooperative games with transferable utilities in characteristic function form; section 4
demonstrates the design of the dynamic mechanisms; section 5 discusses the efficiency impli-
cations of the negative correlations between previous cumulative payoffs and current allocations

given by the mechanism in section 4; the last section concludes and proposes future research.



2 The Model

A continuum /, = [0,b) with 0 < b < +eo of heterogeneous indivisible public goods or resources
must be allocated among a finite set of players N ={1,2,3,--- ,n}, with i € N representing a typical
player. For convenience, I shall refer to the distributor of the goods or the mechanism designer in
discussion as player 0—N U {0} will be called the extended set of players. Let /.. = R, the set
of all non-negative real numbers. Each public good or resource r € I, can be assigned to at most
one player simultaneously. Therefore, I refer to any division of the interval /, such that any good
is assigned to at most one player among N as a feasible division. A feasible division C of I}, is
then defined to be a function C : I, — N U {0} where for all r € I, C(r) =i € N means that good
r is assigned to player i according to C. C(r) = 0 means that the good r remains unassigned or
wasted according to C. Clearly, for any feasible division C and r € I, where C(r) = i, the division
C’ generated by letting C'(r) = j #iand C(r') = C'(r'), Vr' # r is still feasible. Let %), represent
the set of all feasible divisions of I,.

In this paper, I focus on the sequential or dynamic division of I, by batches or periods. The
sequential division problem describes scenarios where the entire set [, is available up front for
allocation but must be assigned in a discrete number of steps. The dynamic division setting can
cover more general scenarios where at any point r € I, only a limited interval [r, 7] C I, is available
for division while the rest will become available at 1’ at the latest. To this end, let B, = {b,},T:O
be a strictly increasing sequence such that by =0, 0 < by < b and b; < 4o, V1 <t < T where
1 < T < H4o0. Moreover, when b < +oo, let T < 40 and by = b. In the sequential setting, the
interval [b;,b; 1] C I, represents the batch of goods or resources to be divided among the players
in step (¢ 4 1)—after the interval [0,b;] but before the interval [b,;1,b) are divided, while in the
dynamic setting, [b;, b, 1] represents the interval to be divided in period ¢, with time running from

period O to period (T — 1). Equivalently, elements of B mark the end points of the batches of goods



to be divided together or the start and end points of the time periods between which the resources

must be divided all at once. I require any Bj, = {b;}!_ to be such that

T-1

U [br,br—1] = 1.

t=0

In other words, the sequence of intervals {[b;, bt+1]}lT;01 uniquely defines the batches or periods of
division, the union of which is the entire set of goods to be assigned. Bj; will be referred to as a
segmenting of the underlying 7, from now on. I shall also omit the subscript b from B, and simply
use the notation B since a segmenting completely characterizes an [;, henceforth where |B| =T + 1.

Each player i is endowed with a type 6; C I, that induces some dichotomous preferences among
all feasible divisions of ,. Assume all possible types are unions of potentially infinitely many
mutually disconnected closed intervals within I,. Given a certain segmenting of I, B, let 08 C 2b
represent the set of all possible types of any player, where 2/ is the set of all subsets of I,. Without
loss of generality®, assume I, € ®5. Let 8 = (61,6,---,6,) € (G)B )n be the vector of the players’
types, to which I will refer as the profile of the players’ types or preferences. I use the notation
(6;,0_;) = O to single out player i’s type from the profile 6, where 6_; represents the profile of
all players’ types except for i’s. For any [b;, b, ], define ®F = {0N[b,bi1]:0 € @B} V0 <t <
T — 1. Irefer to ®F as the the restriction of ® to batch (¢ -+ 1) or period ¢ (or simply “to ”*). The
restrictions of 0; and 0 to ¢ is similarly defined to be 6;, = 6; N [b;, b, 1] and 6, = (617,02, , Or).

For tractability, I make the following assumption regarding ®@5:

Assumption 1 (Finite type space). Given any triple (B, T, ®%), |@F } < Foo, V0 <t < (T-1).

Assumption 1 is equivalent to stating that |®5| is finite when T is finite but does not imply

so when T is infinite. It simply limits the variety of the players’ types to a finite set within each

SWere there an I C I;, such that I Z ; for any 6; € ®5, disregard I and consider the problem with I}) = (IL\]).
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batch or period. Moreover, no assumption is implicitly made within Assumption 1 regarding the
richness of ®2 as compared to 21’?+1]_@B can be arbitrarily large, although the finiteness of
|®3| is indispensable. Without loss of generality, also assume that 8 € ®% and 6’ € ® implies
that (0N 6') € ® and (U O') € ®F. Any @F satisfying Assumption 1 will be referred to as a
type space compatible with B. It is worth pointing out that there definitely can be multiple type
spaces compatible with a segmenting.

I interpret such subset types as the players considering goods within their types attractive or
acceptable and those outside unattractive or unacceptable. However, it should be noted that any
goods outside the players’ types do not generate any disutility to the players—the players are
simply indifferent between being assigned such goods and otherwise. Specifically, let ]lic Ay —
{0, 1} be the indicator function for player i generated by a feasible division C such that ]ll-C(r) =1
if C(r)=iand ]lic(r) = 0 otherwise. To accommodate linear substitution between different batches
or time preferences between different periods, given any segmenting B of I, let the sequence

l-B = {ﬁf }zT:_o] represent the marginal utilities of the goods within the respective batches or the
discount factors of respective periods. I will loosely refer to the sequence /3,'8 as being the discount
factor compatible with B for player i—please keep in mind that ﬁl.B also represents the relative
value of the different batches for player i in the sequential background. For players’ utilities to be

well-defined, especially when T is infinite, I make the following assumption:

Assumption 2 (Finite utility). For any triple (B, T, 3?) with B compatible with B for i,
T—1
B >0,v0<t<T—1,and g (B,%) =Y B7 (brs1—b:) < +o.
=0

Given a feasible division C and a segmenting B, let ug (C|6;) represent player i’s period-7 utility

10



with her type being 6;. Therefore,

ug(C|6,~) E/Gﬂ[b , )ﬂic(r)dr.
i 150t+1

Clearly, 0 < u5(C) < (b;+1 — b;). Combined with Assumption 2 and the corresponding B2, let
the player i’s canonical utility with type 6; and certain fixed B and C be defined as the discounted
sum of period utilities: u?(C|6;) = TZI B3 .uB(C|6;). This canonical utility represents the player’s
utilities when they have linear prefet;e(:)nces among the various batches of acceptable goods in the
sequential interpretation and the present discounted amount of resources they receive in a certain
feasible division in the dynamic setting. All results in this paper still hold when players’ utilities

are strictly increasing in their canonical utilities. I may use the symbol xg(C |6;) to stand for the

cumulative utility for player i up to b7. That is,

—1

xB(Cle) =Y (BF-uf(Cl6y)).

t=0

Without loss of generality, normalize x5 (C|6;) = 0 for all (i,C, 6;) € (N x ¢}, x ®F). I shall also
use the symbol ii®(C|) to represent the vector of all players’ period- utilities with the type profile
0 for a feasible cut C and similarly for ?cf (C|0). I make one more crucial assumption regarding the
discount factors serving the emphasis of this paper on allocating the resources to the players who

find them acceptable, while shying away from the possibility of player-specific discount factors.

Assumption 3 (Common discount factors). For any pair (B, T), there exists a vector of discount
factors B% such that BF = B5,Vi € N. BB will be referred to as a common discount factor com-

patible with B for players in N.

Certainly, there can be more than one common discount factor compatible with a segmenting
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B, just like multiple B-compatible type spaces are allowed. As restricting as Assumption 3 for a
common discount factor may seem, it still entertains various interesting applications. For example,
the sequential setting is similar to a sequential auction of multiple objects on which the bidders
share common values. The difference between a sequential auction and sequential divisions is
that players have common relative values between different batches but maintain acceptance or
rejection within a batch in the latter—in a sequential auction, players are generally assumed to
receive different signals. On the other hand, in the dynamic setting and especially when 2 < 1,
V0 <t < T —1, BB can be interpreted as the ex ante (that is, at time 0) probability that the interval
[bs,b;+1] of goods will be available for division at time b, at the latest.

To summarize the various aforementioned elements, I formally define a sequential or dynamic
division problem (henceforth abbreviated as “problem”) IT to be a quintuple (b,B,T,®%,B5)

where B is a segmenting of I, |B| = T + 1, and both ® and % are compatible with B. If T

is finite (infinite), IT will be referred to as a(n) finite (infinite) problem. Given any sequential
or dynamic division problem IT and fixing a type profile 8 € (®%)", a feasible division C of I,
is Pareto efficient at 0 if and only if there does not exist another feasible division C’ # C of I,
such that u? (C'|6;) > u? (C|6;),Vi € N, with the inequality being strict for at least one player i. A
feasible division C of I, is envy-free at 0 if and only if

& (C16) ZTZ:{B I

16(r) dr} } V(i,j) ENXN.
it N[brbrt 1]

Both definitions are conventional: at any given type profile, a feasible division C is Pareto efficient
if and only if there does not exist another feasible division that, at the fixed type profile, strictly
benefits some player without hurting any; C is envy-free at the fixed type profile if, for any player

i, replacing the goods assigned to i with the goods assigned to j never strictly benefits i.

12



I shall now very briefly formulate the information structure of the environment to place such
division problems into the context of mechanism design. Given any problem II, all elements of
[I—b, B, T, ®F, and fB—are common knowledge among the extended set of players N U {0}.
Any player’s type is her own private information, although it could potentially be only partially
revealed to her batch(es) by batch(es) or period(s) by period(s). In particular, 6;; must be revealed
to i before [b;, b, 1] is divided, but no other assumptions are made regarding the revelation of the
batch or period restrictions of the types to the players. For example, 6;(; ) for 0 < ' <(T—-r-1)
can be allowed to be conditional on or correlated with 6;;, embodying the situations where players’
preferences may be evolving in a way depending on their previous types.

Give a problem II, a direct sequential/dynamic division mechanism (henceforth, “mecha-
nism”) is therefore defined to be a function M : (@B )n — %, where recall that %), is the set of
all feasible divisions of I,. Let M(0)(r) = C(r) if and only if M(6) = C,Vr € I,. The range of
any M being only %}, entails that no monetary transfer is allowed in such mechanisms. Due to
the aforementioned uncertain nature of the future types, I restrict attention to mechanisms that are
only history dependent, at least in a payoff-equivalent sense. A mechanism M is sequentially or
dynamically payoff consistent (henceforth, “consistent”) if ¥ (6,8’) € (©%)" x (@%)" and 0 <

t<tr<T-—-1,
(6, =6/, vt <7] = [uP(M(6)|0) =i (M(6")|0"), Vt <7].

That is, for any two type profiles that are identical up to b7, a consistent mechanism must be
choosing the same payoff vectors for all periods up to b7. A consistent mechanism is also consistent
in the sense of cumulative payoffs up to by forall 1 <7 < T.

The efficiency and fairness measures of any mechanism are defined by the natural translation of

13



corresponding properties for the feasible divisions. Specifically, given a problem II, a mechanism
M is Pareto efficient if and only if M(0) is Pareto efficient at 6 for all 6 € (®%)". M is envy-free
if and only if M(8) is envy-free at 6 for all € (©F)". For the strategic property and equilibrium
concept, I strive for the strongest form of truthfulness, namely strategy-proof-ness. Given a prob-
lem IT, a mechanism M is strategy-proof if and only if for all i € N, for all (9, é) € (@B ) " x (@B )n
such that 6; # 6; and 6 = 6 ; for all j # i, then

u? (M(0)]6;) > u? (M (8)6;) .

That is, any unilateral pretense of being different from one’s true type can never strictly benefit the
pretending player—the argument of M(-) represents the types players report to the mechanism
while players’ payoffs are only conditional on their true types. Implicit in the efficiency and
fairness measures of the mechanism is the focus on only when the players are reporting their
true types: no such measures are defined for the off dominant strategy equilibrium deviations from
truth-telling in a strategy-proof mechanism in the central results in this paper. However, efficiency
loss as a result of untruthful reports will be discussed as extensions later.

The goal of this research is to systematically design a class of Pareto efficient, envy-free, and
strategy-proof mechanisms for each problem. I would now first take a crucial detour to introduce
the egalitarian solutions (see Dutta and Ray (1989)) of concave cooperative games with transferable
utilities in characteristic function form (see Chen et al. (2013)) and provide the novel comparative
statics results on this solution concept. For almost all of the following results, the distinction
between subsets (supersets) and proper subsets (proper supersets) can be significant. Hence, it is
worth point out that C and D represent proper subsets and proper supersets, respectively, while C

and DO are symbols for (potentially equal) subsets and supersets, respectively.
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3 The egalitarian solutions of concave cooperative games

3.1 Preliminaries and previous results

A cooperative game with transferable utilities in characteristic function form I" (with the
characteristic function v(-)) is defined to be a pair I' = (N, v(+)), where N is the finite set of players
with |[N| =n < +eo and v: 2V — R. I focus on one family of cooperative games that closely fit the
context of divisions, namely the monotone and concave ones. First of all, let v(0) = 0. Moreover, I"
is called monotone (or “monotonically increasing”) if and only if for all S C T C N, v(S) < v(T).

The game I is called concave if and only if

v(SUT)+v(SNT) <v(S)+v(T),VS, T CN. (1)

Note that if " is monotone and concave®, then v(SUT) > max {v(S),v(T)} and when SNT = 0,
v(SUT) <v(S)+v(T)". Notice that any monotonic linear transformation of a concave cooperative
game I yields another concave game I". Specifically, take a concave I' = (N,v(+)) and for any
i € N, take one fixed x; € R. Now, let I" = (N,V/(+)) with the characteristic function v/(-) given by

V(S)=a-v(S)+ ) xi, VS C N for some a > 0. Clearly®,
icS

5Convex cooperative games, with the inequality in (1) reversed, have been studied much more extensively, starting
most prominently from Shapley (1951).

7Again, the case with the reverse of the inequality here has been predominant in the literature on cooperative
games, a property called “super-additivity”.

8For clarity, keep in mind that for all 7,S C N, TUS = (T\S)U (S\T)U (T NS) and T\S = T\ (T NS), implying

Z X + Z Xj = Z X+ Z X+ Z X+ Z xi:in+Zx,~.

ie(TUS) ie(TNS) ie(T\(TNS)) ie(TNS) i€(S\(TNS)) ie(TNS) i€T i€s
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V(TUS)+V(TNS) =av(TUS)+ Y xi+av(TnS)+ Y x;
i€(TUS) ie(TNS)

=av(TUS)+av(TNS)+ Y xi+ Y x;

ieT €S
< av(T)+av(S)+in+ZXiZV/(T)+V/(S)a
~ ieT i€S

by concavity of I'

which shows I" is concave as well. For any S C N, v(S) is interpreted as the maximum amount
of payoffs that can be shared and divided among the players in S. Dutta and Ray (1989) devised
an algorithm solving for the egalitarian solution of any convex cooperative game, which was later
converted for concave cooperative games by Chen et al. (2013). My first result is an amendment to
Chen et al. (2013) with a formal proof that the algorithm provided by Dutta and Ray (1989) does
offer the egalitarian solution to monotone and concave cooperative games with transferable utilities
in characteristic function form after first formally defining “egalitarian” with Lorenz dominance.
Per Dutta and Ray (1989), take any y € R’ and lety € R", be the vector given by rearranging

the entries of y in a weakly increasing order. y Lorenz dominates y’ € R’, if and only if

The natural interpretation of Lorenz dominance is as follows: if y; represents the income of agent i
in a first economy (similarly for y} in second economy) and if the two economies have the same av-
erage income, the first economy should be considered more egalitarian than the second, in terms of
income, if the total income its [ poorest members is never a lower share of the total income than that

in the second. Shorrocks (1983) extended this standard definition with defining generalized Lorenz
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dominance as follows: y generalized Lorenz dominates y' if and only if Zl: yI > Zl: y;,V1<I<n.
Generalized Lorenz dominance allows for comparisons between two Velc:térs in lt?lia Lorenz sense
without requiring the two vectors in comparison to be on the same hyperplane of the income
space. The motivation for such a definition is straightforward: the first economy should be consid-
ered more prosperous and egalitarian if its / poorest member take home more total income (not as
shares of the total income of the entire first economy) than those in the second. Certainly, implicit
in the definition is that the total income in the first economy cannot be lower than that in the second
(simply let [ = n), hence the notion of being “more prosperous”. I will now introduce an algorithm
that locates the (unique) generalized Lorenz dominant vector from a very slight modification of
both Theorem 2 in Dutta and Ray (1989) and Mechanism 1 in Chen et al. (2013). First of all, de-

fine the following notation: given a monotone and concave cooperative game " with transferable

utilities in characteristic function form, let

v(T) —v(S)

VSCTCN, e(T—8)= 22/
7] =15

where, note that 7 must be a proper superset of S. As a special case, v(S)/|S| = e(S — 0) for all

ies
I-19. Some immediate observations of the structure of e(-) are collected in the following lemma.

S = 0. Moreover, let V = { yeRL: Zyi <v(S), VSCN } V is referred to as the feasible set of

Lemma 1 (Preliminary observations of e(+)). Given any monotone and concave cooperative game
" = (N,v(-)) with transferable utilities in characteristic function form with the characteristic func-

tion given by v(-),

I. VRCSCTCN,e(T—R)=e¢(S—R)=¢e(T—R)=e(S—R)=e(T—2S5);

Not surprisingly, the feasible set V bears an intrinsic characterization of the set of all feasible divisions.
10Clearly, V given by any characteristic function v(-) is closed and bounded hence compact.
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22VRCTCNandRCSCN, where RC (TNS)and T L Sand S L T, such that e(S—R) =

e(T —R), then min{e[(TUS) —R],e[(TNS)—R]} <e(S—R) =e(T —R);

3. VRCTCNandRCSCN, where R=(TNS)and T L Sand S L T, such that e(S—R) =

e(T —R), then e[(TUS)—R] <e(S—R)=e(T —R).
Proof. See Appendix A for the proof of Lemma 1. [

Equipped with Lemma 1, now consider the following algorithm, the objective of which is to

select a vector y € R”} that generalized Lorenz dominates any other y’ in the feasible set V.

Definition 1 (Algorithm &). Given any monotone and concave cooperative game I = (N,v(-))
with transferable utilities in characteristic function form with the characteristic function v(+), run

Algorithm & through the following steps:

1. Set So = 0. In step 1, select S1 where @ C S1 C N such that

e(S1—0) < e(S—0), Y0 C SCN. )

If there are multiple candidates for S, select the smallest one: let Sy be such that, in addition

to satisfying (2), for all S such that @ C S C Sy, e(S—0) > e(S; —0);

If there are multiple smallest candidates, select any one of them and proceed;

2. Let S be subset of N that was selected in step k, for all k > 1. In step (k+ 1), select any of

the smallest Sy, 1 C N such that e (S 1 — Sx) < e(S—Sy) for all S C N where S; C S;
3. Terminate in step K > 1 if the only candidate for Sx is N;

4. After termination, let y* € R’} be the vector generated by setting y; = e (Sg1 —Sk) if i €

(Ska1\Sk); y* will be referred to as the egalitarian solution of T".
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The sequence of subsets {Sk}kK: | selected in the proceedings will be referred to as the se-

quence of subsets of N generated by Algorithm & for I'.

Lemma 1 ensures that Algorithm & is well-defined in each step and the vector y* generated after
termination is unique. Algorithm & also terminates in fewer steps than n = |N| since step k involves
including at fewest one more player into the new set S;. An immediate result regarding Algorithm
& is that players selected later receive higher payoffs (that is, the y;’s) than those selected earlier, a
result I present in the following lemma which is also included in Chen et al. (2013). An alternative

proof to Chen et al. (2013) is deferred to Appendix A.

Lemma 2 (First observation from Algorithm &’). Let S| C S, C --- C Sk = N be the sequence of
subsets of N generated by Algorithm & with K < n= |N| for the monotone and concave cooperative

game I' = (N, v(+)) with transferable utilities in characteristic function form with the characteristic

function v(-). Then V2 <k < (K —1), e(Sx —Sk—1) < e(Sg+1— Sk)-
Proof. See Appendix A for the proof of Lemma 2. [ |

In contrast to Dutta and Ray (1989) and Chen et al. (2013), the selection of a smallest S; in
step k turns out to be instrumental for applying this egalitarian solution concept to a sequential or
dynamic setting, which will be highlighted in the upcoming sections. Regardless of selecting the
largest or the smallest candidate subset in each step, Algorithm &—and the mechanisms in the two
aforementioned papers—partitions N into equivalent classes according to the steps where players
are included in the selected subsets. When always selecting the largest subset, the equivalence class
of any player i is simply the set of players with the same quantities for y; and the resulting partition
is the coarsest of N for the egalitarian solution y*. On the other hand, Algorithm & partitions N

into the finest!!. The following lemma provides the formal statement for this result, for which I

Given a set N, two partitions &2 and %' of N can be compared according the partial order of coarseness with
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adopt the following notations: let y* be the egalitarian solution of I' = (N, v(+)), Vi € N, define

NCBE { JEN:y; < y;f}, the set of players who receive strictly less payoff than i in y*.

Lemma 3 (Finest partition of N). Let y* be the egalitarian solution given by Algorithm & that
terminates in K steps for the monotone and concave game I = (N, v(-)) with transferable utilities
in characteristic function form with the characteristic function v(-). Let &?* be the partition of N
implied by Algorithm &, namely 27* = {(Sk\Sk,l)}szl.

A partition &2 of N is y*-compatible if and only if
1. Forallie Nand jEN,i€S€ P and j €S € & implies that y; = y’;

2. And for any S € 2, Z y;=v(<(y*)us) vies.
JE(<i(y)US)

P* is the finest among all y*-compatible partitions of N. That is, let &2 be a y*-compatible

partition of N. Then any element of & is a union of some elements of #*.
Proof. See Appendix A for the proof of Lemma 3. [

From now on, I shall call the element of £7* that contains i the clique of i at y* with the
symbol Q;(y*). It should be noted that even given the same y*, the finest partition &?* hence
the cliques Q;(y*) may be different for different game I'’s, although in the scope of the current
paper, such multiplicities and abuse of notation will not cause any confusion and the same clarity
also applies to the definition of <i;(y*). All results will be stated in a self-containing manner with
designations clear in the contexts of the corresponding results. The arbitrary selection of one of the
smallest candidates in Definition 1 may also result in multiple sequences of {Sk}kK:1- However, the

resulting partition &7* of N from these potentially different sequences are all the same, highlighting

respect to the following definition: &2 is coarser than &’ (or equivalently, &’ is finer than &) if and only if every
element of 2 is the union of some elements of 9?’. Notice that arbitrary selections that are neither the largest nor
the smallest among the candidate sets such as those made in Chen et al. (2013) lack such features, which may prove
inconvenient in some cases especially because coarseness is a partial ordering.
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the importance of such a finest partition in illustrating the mechanics of Algorithm &. Lemma 3
also implies that, given I, Algorithm & always terminates in the same number of steps, regardless
of the order of the subsets being selected. Of course, same argument can be made for the selection
of the largest candidate adopted in Dutta and Ray (1989).

On the other hand, Lemma 1 does dictate the solution y* to be independent of the selection
among subsets of N within each step with the same values of e(-), which makes selecting the
smallest candidate even more subtle and significant—the resulting vector being the same, only
selecting smallest candidates renders the egalitarian solutions extendable to dynamic settings.

As alluded before, the y* obtained from Algorithm & generalized Lorenz dominates any other
vector y in the feasible set V given by the characteristic function v(-). I record this result, along
with the fact that y* € V, with following lemma. Both results are included Dutta and Ray (1989)

and Chen et al. (2013), either under different contexts or missing formal proofs!2.

Lemma 4 (Feasibility and dominance of y*). Given any monotone and concave cooperative game
I" = (N,v(-)) with transferable utilities in characteristic function form with the characteristic func-
tion v(+) with V being the feasible set given by v(-), the egalitarian solution y* defined by Algorithm

& generalized Lorenz dominates any y €V and y* € V.
Proof. See Appendix A for the proof of Lemma 4. [ |

A quick calculation reveals that forall | <k <K <N, Z yi = v(Sk), because
ieSy

Zyi: Zyi—|—---—|— Z yi=v(51>+v(52)—V(Sl)+"‘+V(Sk)_V(Sk—1):V(Sk)a (3)
ieSk €S iE(Sk\Skfl)

2Dutta and Ray (1989) first developed Algorithm & but for convex cooperative games and adopting Lorenz (in-
stead of generalized Lorenz) dominance and Chen et al. (2013) relied on Dutta and Ray (1989) for both feasibility and
Lorenz dominance. So the current work is either amending their results or providing alternative justifications for some
previously known facts.
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which proves handy in the proof of Lemma 4. Lemma 4 directly leads to the following charac-
terization of the egalitarian solution. This following lemma follows directly from Theorem 2 in

Shorrocks (1983)—the proof is thus entirely omitted.

Lemma 5 (Nash collective utility maximizer). Let f : R, — R be strictly increasing, strictly con-
cave, and continuous on R,. Define F : R, — R as F(y) =YL f(yi) where y = (y1,y2, -+ ,¥n)-
For any two vectors y and y' in R", y generalized Lorenz dominating y' implies that F (y) > F(y').

In particular, given a monotone and concave cooperative game I = (N,v(-)) with transfer-
able utilities in characteristic function form where |N| = n and V' is the feasible set given by the
characteristic function v(-), then

y* = argmaxF(y),
yev

where y* is the egalitarian solution of I" given by Algorithm &.

From now on, I shall refer to the combination of strictly increasing, strictly concave, and con-
tinuous on R (and additive separability) as the regularity conditions for f(-) (and for F(-)). y*
is actually the unique maximizer of F(-) on V'3, With y; representing player i’s payoff, F(-) has
been referred to as the (symmetric) Nash collective utility function—see, for example, Moulin
(2004)—the motivation of which should be quite obvious: y* is the Nash bargaining solution when
the feasible set of the bargaining problem is V4.

Lemma 5 provides a convenient criterion of checking whether a feasible division satisfies envy-
free-ness in applying the egalitarian solutions to the sequential or dynamic scenarios, in addition
to an alternative motivation for the solution concept in the first place. In other words, any fea-
sible allocation that is not envy-free can be easily rejected by the egalitarian solution as a can-

didate maximizer of a Nash collective utility function, guiding toward a direction of designing

13See, for example, Rockafellar (1997).
14See, for example, Osborne and Rubinstein (1990).
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sequential/dynamic envy-free division mechanisms by deploying the maximization of some Nash
collective utility functions batch-by-batch or period-by-period.

As a matter of fact, the additively separable structure of F(-) is adopted in the current paper
almost entirely for the ease of checking envy-free-ness. Shorrocks (1983) proves that generalized
Lorenz dominance is equivalent to the maximizer of a wider range of collective utilities functions,
which includes the current form of F(-). Without indulging in details, the main result (Theorem
2) in Shorrocks (1983) roughly states the following: if a society prefers more income, and given
any vector of income, weakly prefers the average of the permutations of the income vector to the
income vector itself, then an income vector generalized Lorenz dominating another is equivalent to
the first resulting in a higher social welfare than the second. The weak preference for the average of
the permutations over any single one of the permutations is called “.#’-concave” in both Dasgupta
et al. (1973) and Rothschild and Stiglitz (1973), neither of which imposes preferences for higher
incomes. Hence, in Dasgupta et al. (1973) and Rothschild and Stiglitz (1973), the equivalence was
between Lorenz (not generalized Lorenz) dominance and .#’-concavity of social welfare functions.

The egalitarian solution is directly Pareto efficient among all y € V simply because F(-) is
increasing in any y;, holding every other y;’s constant. Algorithm & is also reminiscent of the
serial dictatorship mechanism for assignment problems, with the additional flexible feature that
the order of the players being the dictators are endogenous instead of being chosen by some preset
exogenous randomizing mechanism. Moreover, Algorithm & allows groups of players to share
the same priority hence the same payoff. In the light of collective welfare, the group of players
with the lowest average demand represents the group that will yield the highest marginal collective
welfare for the society, were their constraints to be relaxed first. Hence, players with lower average
demand jointly as a group are given higher order of priority and whose demands are satisfied first.

On the other hand, there exists a tradeoff between any player’s order of priority and her
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payoff—higher order of priority means lower payoff in comparisons between the players. Fur-
thermore, players with lower order of priority, hence higher payoff, must sacrifice payoffs if they
want to be taken with a higher priority, indicating that Algorithm & favors smaller groups of agents
with smaller average demand. I convey these intuitions with the following lemma, part of which

was alluded to in Chen et al. (2013) without formal proofs.

Lemma 6 (Second observation of Algorithm &). Let S C S, C --- C Sk = N be the sequence of
subsets of N generated by Algorithm & with K < n = |N| for the monotone and concave cooperative

game I = (N, v(+)) with transferable utilities in characteristic function form with the characteristic

function v(-). Then V0 <k < (K—1), [SD Sy and |S| > |Si+1|] = e(S—0) > e(Sg+1 —0).
Proof. See Appendix A for the proof of Lemma 6. |

In the next subsection, I will establish a key novel observation regarding y*, leading to a
critical comparative statics result as the cornerstone for strategy-proof-ness in a class of sequen-

tial/dynamic division mechanisms.

3.2 Comparative statics of the egalitarian solution

Consider the following thought experiment: if we consider the characteristic functions as delineat-
ing the boundaries of the payoff possibilities of the cooperative entities and suppose that one single
player suddenly “brings more to the table”, which results in a relaxation of these boundaries. Now,
in this new cooperative game, who should be rewarded with more payoffs, as compared to before
in the original cooperative game, within this new set of boundaries? Should the player who brings
more to the table be given the largest increase in payoff in the egalitarian solution?

More specifically, for such relaxations, it is reasonable to assume that no player i should be

able to increase the maximum amount of payoff for a group of players that excludes i. Moreover,
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any player i’s influence on a larger group (or more precisely, a superset) of players (that includes i,
of course) should be less than that on a smaller group (a subset that, again, includes i/)—otherwise,
the new cooperative game after player i brings more to the table may no longer be concave. The
main comparative statics result in this paper shows that in the egalitarian solution, such relaxations
will result in the largest increase in payoff given to player i. Along with player i, there may be a set
of players who see their payoffs increased as well while some other players, who will have lower
priority than player i in the egalitarian solution of the new game, will see their payoffs (weakly)

decreased. I now formally present this main result with the following theorem.

Theorem 1 (Maximal increase in payoffs). Let I' = (N,v(-)) and I' = (N, (")) be two monotone
and concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i € N such that, for all S C N,
1igS=v(S)=9(S), 22i€S=v(S)<VS); 3.ieSCT=¥%T)—v(T)<9(S)—v(S).

Let y* and §* be the egalitarian solutions of T and T, respectively. Then, for all j € N,

i —yi =3 —j- “4)

Proof. See Appendix A for the proof of Theorem 1 after the proof of Lemma 7. |

It can be quickly confirmed that if the games I and I are linearly transformed to I and I” by
V' (S) = av(S) + ij and V' (S) = ad(S) + ij
JeS jes

for some positive factor a and fixed vector X, then the three conditions above still hold. Hence, the
comparative statics result in Theorem 1 is robust with respect to monotone linear transformations

of the games in discussion. Theorem 1 is established from the following series of observations:
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Players with strictly lower payoffs than i at y* will have the same payoff at y* as at y*; Players with
the same payoff as i at y* but not in i’s clique will have the same payoffs at §* as at y*; Player i’s
payoff will be weakly higher at §* than at y*; Players with higher payoffs than i at §* will have
weakly lower payoffs than they did at y*. The focus of proving Theorem 1 will be on establishing
the last statement: the first two statements above are immediate observations from the definition of
Algorithm &—these players can be arranged to be selected before i is in both I" and I" according
to Algorithm & and since the values of the characteristic functions v(-) and ¥(-) for any subset
excluding i are the same, these players’ payoffs will be exactly the same at y* and at y*.

The third statement follows directly from Proposition 3 in Tian (2015), which actually offers a
bit more than merely ensuring i’s payoff never decreasing from y* to y*. First of all, it applies to
maximizers of any Nash collective utility functions, not just the symmetric ones. It also postulates
that some group of players, rather than just i, will have weakly higher payoffs at * than at y*. In
the current context of the egalitarian solutions, the Proposition implies that all players in i’s clique
at y* will have weakly higher payoffs at *. However, it does not confirm that i’s clique, along
with any other players included in the first two statements above, are the only players with such
properties—the Proposition simply guarantees the existence of a subset of players who will never
see their payoffs decreased from y* to ¥, although there may well be many such groups.

Forward looking to the practice of designing division mechanisms, the appeal of such simulta-
neous and unidirectional movement in a group of players’ payoffs caused by a single player’s re-
laxation of the boundaries are mostly for the objective toward strategy-proof-ness. The concurrent
increase in players’ payoffs are often studied through the optimization of some objective functions
over a lattice structure in the literature!”. Essentially, I wish to build in a moderate degree of com-

plementarity among the players’ payoffs to use other players’ payoff increase to limit that of the

15See, for example, Topkis (1978) and Topkis (2001) for classical treatment or the more recent Quah (2007).
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potentially deviating player!®. The aforementioned papers established that super-modularity of the
objective function may be the most direct answer for such quests, in a very loose sense necessitat-
ing the additively separable structure of the Nash collective utility function while also maintaining
considerable flexibility for the mechanism designers—separability easily promises both super- and
sub-modularity. I will now turn to proving that any player with strictly higher payoff than i has at
v* will have weakly lower payoff than they did at y*. The proof is largely driven by the following

observation regarding Algorithm &

Lemma 7 (Third observation of Algorithm &’). Given a monotone and concave cooperative game
I = (N,v(-)) with transferable utilities in characteristic function form and let {S;}r_, be any

sequence of subsets generated by Algorithm &. Then
V1 <k< K, E(Sk _Sk—l) = maxe(Sk —S)
SCSy

Proof. See Appendix A for the proof of Lemma 7. [

Moreover, the mechanics of Algorithm & also provides the following observation in the mech-
anism design context: suppose one player disturbs the choice of the egalitarian solution by lying
about her type, resulting in a relaxation of the feasible set as described in Theorem 1, will her own

payoff necessarily change? The following lemma gives an affirmative answer.

Lemma 8 (Unilateral disturbance). Let T' = (N,v()) and T' = (N,9(-)) be two monotone and
concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i € N such that, for all S C N,

LidS=v(S)=0(S); 2.i€S=v(S)<HS); 3.i€SCT=d(T)—w(T)<S)—v(S).

16Bear in mind that such complementarity can only demonstrate itself in the solutions, which makes choosing the
“right” objective function the caveat in designing a well-behaved mechanism.
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Let y* and $* be the egalitarian solutions and P* and P* generated by Algorithm & for T and T,

respectively. Then y; = §: = [y* =9 and P* = 9%*} Otherwise,

[9; > 97 and j ¢ Qi (57)] = 97 < ;.

Proof. See Appendix A for the proof of Lemma 8 after the proof of Theorem 1. |

On the other hand, the scope of Lemma 7 extends beyond proving the crucial comparative
statics result in Theorem 1. It suggests that Algorithm & maintains a duality-like property, which

I formalize with the following results. I first present a lemma similar to Lemma 1.

Lemma 9 (Secondary observations of e(+)). Given any monotone and concave cooperative game
" = (N,v(-)) with transferable utilities in characteristic function form with the characteristic func-

tion being given by v(-), then
L. VSCTCRCN, e(R—T)=e(R—S)=e(R—S)=e(R—T) =e(T —S);

2.¥T CRCNandS CRCN such that e(R—S) =e(R—T), then

max{e[R— (T US)|,e[R—(TNS)]} >e(R—S)=e(R—T).

Proof. See Appendix A for the proof of Lemma 9. |
Now, consider the following “dual” algorithm to Algorithm &

Definition 2 (Algorithm &). Given any monotone and concave cooperative game I' = (N, v(-))
with transferable utilities in characteristic function form with the characteristic function v(-), run

Algorithm & through the following steps:
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1. Set 7o = N. In step 1, select 71 where Ty C N such that
e(N—T)>e(N—T), VT CN. 5

If there are multiple candidates for 77, select the largest one: let 77 be such that, in addition

to satisfying (5), forall 7 such that T D Ty, e(N—T) < e(N —T1);

If there are multiple largest candidates, select any one and proceed;

2. Let T} be subset of N that was selected in step &, for all k > 1. In step (k+ 1), select any of

the largest 7.y C Ty such that e (Ty — Tj. 1) > e(T, —T) forall T C T; C N;
3. Terminate in step K > 1 if the only candidate for Tk is 0;

4. After termination, let 7* € R, be the vector generated by setting y; = e (T — Try1) if i €
(Ti\T+1); The sequence of subsets {Tk}f: , selected in the proceedings and the resulting
vector 7 will be referred to as the sequence of subsets generated by Algorithm & and the

dual egalitarian solution of I', respectively.

As with Algorithm &, Lemma 9 ensures that Algorithm & is well-defined. By the way Algo-

rithm & is phrased, the following result should not come as a surprise.

Theorem 2 (“Duality”). Let I' = (N,v(-)) be a monotone and concave cooperative game with

transferable utilities in characteristic function form with the characteristic function v(-). Then

1. Both Algorithm & and Algorithm & terminate in the same number K < N of steps;

2. For any sequence of subsets of N, {S k}szl’ generated by Algorithm &, there exists a sequence

of subsets of N, {Tk}szl, generated by Algorithm &, such that Ty, = Sx_j, V0 < k < K;

3. Moreover, the egalitarian solution y* is equal to the dual egalitarian solution y*;
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4. Furthermore, {(Tk\TkH)}kK;Ol generated by Algorithm & coincides with 2* generated by

Algorithm & as defined in Lemma 3.
Proof. See Appendix A for the proof of Theorem 2. [ |

Theorem 2 appears very counter-intuitive at first sight since it states that recursively maxi-
mizing the average payoff of the best-off among the remaining players will result in a generalized
Lorenz dominant payoff distribution, which goes right against the spirit of Lorenz dominance (gen-
eralized or not) favoring transfers from the rich agents to the poor. As a matter of fact, the same
question can be raised for Algorithm &—how is minimizing the incomes of the poorest agents
supposed to lead to egalitarianism? However, a closer look reveals how Theorem 2 accurately
locates the egalitarian solution. First, it correctly identities the players who contribute more payoff
possibilities to the cooperative game and subsequently allocates higher payoffs to them. To achieve
generalized Lorenz dominance—maximal amount of total payoff and equality, simultaneously—
players who face more relaxed boundaries should receive higher payoffs so as not to compete with
players who face more restraining constraints. Second, although players selected earlier in Algo-
rithm & walk away with higher payoffs, they are assigned the left-overs from the players selected
later since their payoffs are the average incremental from the immediately succeeding players.

Essentially, selecting the egalitarian solution boils down to selecting the set of payoff con-
straints that lead to Lorenz dominance. Both Algorithm & and Algorithm & set the players in
the correct order of priority—the difference being Algorithm & selects the players with minimum
payoffs first while Algorithm & selects those with the maximum. Consider, on the contrary to
Algorithm & and Algorithm &, a “naive” proposal that minimizes the average income of the best-
off players. The example demonstrated in Figure 1 shows how this proposal identifies the wrong
constraints to bind. In both panels, the red dot is the egalitarian solution while the blue dots are

those selected by the “naive” proposal.
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Figure 1: Egalitarian solutions and outcome of the “naive” proposal

y2 o

Example 1. The characteristic functions are, respectively

v({1}) =v({2}) =7.5, v({1,2}) = 10and V' ({1}) =8, V'({2}) =5, V/({1,2}) = 12.

Not surprisingly, the payoff vectors selected by the “naive” proposal is (generalized) Lorenz dom-
inated by the egalitarian solutions. Notice also that in the left panel, there are two distinct “naive”
solutions, although they are equivalent in payoff distributions in the Lorenz sense. The Lorenz
comparisons between the egalitarian solutions and the “naive” solutions are as follows when the

payoffs of the players are sorted in a weakly increasing order:

y=(2575),y = (5,5) andy = (4,8), y" = (5,7).

In both panels, a transfer of payoff from the better-off player to the worse-off in the “naive”
solutions results in the Lorenz improvement to the egalitarian solutions, highlighting the mistake
by the “naive” proposal in placing a higher priority on the payoff to a potentially better-off player

(player 1, in this case) than on that to the other player. Of course, this feature is more evident in
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the right-panel where the Lorenz improvement from the “naive” to the egalitarian solution does
not change the identities of the better- and worse-off players.

Disguised under the two-player examples are the more fatal issue of feasibility. To better under-
stand this, consider the “dual” version of the “naive” proposal. A first group of players are selected
according to the maximum average demand, then a second group is selected according to the maxi-
mum average incremental demand. As mentioned before, this algorithm was adopted first by Dutta
and Ray (1989) for convex cooperative games with transferable utilities. An immediate concern
with such selections when applied to concave games is that the constraints for subsets of the first
group of players may easily be violated. Granted, the focus of egalitarian solutions in convex coop-
erative games is to achieve individual rationality (i.e. respecting participation constraints—hence
the considerable attention paid to defining the concept of Lorenz core in Dutta and Ray (1989))
and maximum equality among the players’ payoffs simultaneously. On the other hand, feasibility
(or more mechanically and more fundamentally, concavity) is the constraint holding the egalitarian
solution together in concave games.

I conclude this section with two quick notes on the relationship between the current work,
especially Theorem 2, and the previous work in Dutta and Ray (1989) and Chen et al. (2013). It
is quite obvious that the current work extended Chen et al. (2013) by offering the insight on the
two different sequences of subsets of N to achieve egalitarianism with Theorem 2. In the light of
this new interpretation, it should be a simple routine to show that the “naive” proposal will become
the “dual” of the algorithm developed by Dutta and Ray (1989) for convex cooperative games.
Finally, the “naive” proposal (or the algorithm in Dutta and Ray (1989)) cannot be directly applied
to concave games because it quickly runs into the issue of multiple candidate solutions even in

instances as simple as Example 1.
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4 Sequential/dynamic fair division mechanisms

In this section, I demonstrate how to construct a Pareto efficient, strategy-proof, and envy-free se-
quential or dynamic division mechanism for any problem, given a set of players N with |[N| =
n < +oo. Recall that, given a set of players N, a problem is defined to be a quintuple IT =
(b,B, T, o8 ) ﬁB ) where the sequence B segments the interval I, = [0,b) into to a partition of size
T, B2 being the sequence of discount factors for the intervals in the partition of I, and ®F the
space of the players’ preferences. For the brevity of discussion, I will fix a problem I from now
on and show how to construct a desired mechanism from the quintuple of parameters of I, hence
devising a systematic strategy of constructing mechanisms for any generic problem.

I start with linking the egalitarian solutions to the division problem. Consider the restriction

6, (@;B )n of a preference profile to [b;, b, 1] for some 0 <t < (T — 1). For any set of players S,

V(S| 6) = / 1dr.
Uies Bir

Lemma 5 in Tian (2015) showed that v(\é,) so defined generates the characteristic functions for
a monotone and concave game for any 6,, i.e. V(SUT|6,)+v(SNT|6,) < v(S|6,) +v(T|6;) and
SCT CN=v(S|6)<v(T|6), V(S,T,6) e <N><N>< (G)?)n> Hence, let y*(6;) and 22*(6,)
represent the egalitarian solutions and the partition of N generated by Algorithm &, respectively,
for the monotone and concave I'(6,) = <N ,v(-\é,)). Similarly, I can extend the definition of the
function e(-) into the context with 6, as

v(T|6;) —v(S16))
] =S|

e(T —5|8,) = ,V(S,T,8) € (2N72N, (@?)”) where § C T.
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In addition, the concept of feasible set can also be easily extended to include 6:
V(G)={ye RY : Zyi <v(S|6,), VSC N p.
=
Definition 3. For any problem IT = (b,B, T,08 B8 ), define the following quantities:
— 3 3 N 5N (@B\"
E = {e(T—S|9t) L (S,T,8,) (2 2V (©F) ) where S € T gN}u{O},
which gives rise to the following quantity

0< ¢ Emin{ﬁtB-\zl—Z2] : (z1,22) EEt2 andzl—zz#O}.

Moreover, for 1 <¢ < T, let

Xt [Zt: [3sB1‘(bs—bs—1)] > 0.
s=1

Finally, recursively select the entries of two sequences {p;}/_,' and {A;}__, as follows:

A 0
1. Set Aj = &p; Select any p; from the interval (O,min{ ! ,—1});
xX1+A1 2

Set Ap =min{(1—p1)A; —p1X1,61 — P11 };

A o)
2. Given A, select any p; from the interval (0, min { ! , i }) ;
Xe+0: 2

Set Ay =min{(1 —ps) A — P X, & — PeXi -

Remark 1. Notice that since ®f is a finite set, E; is a finite set, which means that & is well-defined
for all . Secondly, x; represents the maximum cumulative payoff any player can receive before

any goods in [b;,b) is assigned. Last but not least, it can be easily confirmed that, by definition,
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all entries in the sequence {A,}/_, is strictly positive while all entries in the sequence { p,},T:_l1 is
strictly between 0 and 1. In terms of the mechanics, the sequence {A,}thl is generated to define the

sequence {pt}tT:_ll. Now, consider the following (class of) sequential/dynamic division mechanism.

Definition 4 (Mechanism %). Given any problem I1= (b, B, T,®%, B%) with players N, let { p; tT:_ll
be any sequence selected in Definition 3. Define Mechanism % with the following steps:

Given any preference profile 0,

1. In step 1, select any feasible division C; € %, such that

iig (C1]0) = arg max Y Wi(yi) and r ¢ 6; = Ci(r) #i,Vr €1,
yeV(6o) ieN

for any strictly increasing and strictly concave W; : Ry — R continuous on R ;

2. Instep (t+ 1), given C; with 1 <7 < (T — 1), select any C,+ such that C,1;(r) = C;(r) for

all r < b; and

(Ci1110) = arg max Y Wiy (pr- (G116 + BFyi) =511 ()
yeV(6:)ieN

and r ¢ 6; = C,11(r) # i,Vr € I, for any strictly increasing and strictly concave function

W;+1 : Ry — R continuous on R ;
3. Define Z(8) to be the pointwise limit of the sequence of feasible divisions {C,}’_,.

Remark 2. The pointwise limit of the sequence of functions {C,}IT:1 exists for any 6 since for any
given r € I, there exists a bz > r (recall that the collection of batches/periods [b;, b, ] partitions
Iy), which means that sequence {C;(r)}/_, will simply be constant at C;(r) for ¢ > 7. Of course,

if T is finite, then Z(6) will simply be equal to Cr. The range for all the entries in the sequence
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Table 1: Period and cumulative payoffs given by Mechanism % for preference profile 0

i\t 0 1 2 3 4 5 6 u
Iy 1 0 0 0 0.5003102 0.5000000 0 NA
1x 0 1 1 1 1 1.5003102  2.0003101 | 2.0003101
2y 0 1 0 1/2 0.4996898 0 0.5000000 | NA
2x 0 0 1 1 3/2 1.9996898 1.9996898 | 2.4996898
3y 0 0 1 1/2 0 0.5000000 0.5000000 | NA
3x 0 0 0 1 3/2 3/2 2.0000000 | 2.5000000

of functions {Ct}tT:1 is N, which implies so must be the range for the pointwise limit function
Z(0), which, in turn, implies that the division chosen by Mechanism % is feasible. Therefore,

B (%(0)|6;), with a finite upper bound for u5(-|-) of any feasible division, is well-defined for all

u
players. Furthermore, in each step (1 + 1), V(6;) completely characterizes the set of all feasible

divisions of [b;, b, 1], a fact proven by Proposition 1 in Tian (2015). Mechanism % is well-defined.

The choice of the function W; in step ¢ can be completely arbitrary as long as it satisfies the
conditions stated in Definition 4 due to Lemma 5—any admissible choice of such functions will
not alter the vector of period payoffs chosen, which seemingly makes Lemma 5 a trivial result.
However, as mentioned before, Lemma 5 provides a direct and tractable proof for the fairness

property of Mechanism %. I will now present the main result regarding Mechanism Z.

Proposition 1 (C-PE-EF-SP). For any problem I1 for a given set of player N, Mechanism % as

defined in Definition 4 is consistent, Pareto efficient, envy-free, and strategy-proof.

Proof. See Appendix B for the proof of Proposition 1. |

Mechanism Z is clearly consistent simply by the way it is defined. If two preferences profile

are identical up to some b7, so will the players’ period payoffs up to b7 since the maximizers in
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any step up to 7 is unique according to Lemma 5 and the fact that W;(+) is strictly concave for any
t <t. For Pareto efficiency, a moment of reflection confirms that it is implied by the following two

conditions jointly: a feasible division C is Pareto efficient at a preference profile 0 if
1. Forany r €I, r ¢ 6, = C(r) # i;
2. And for any r € I, if there exists an i € N such that r € 6;, then C(r) # 0.

The first condition states that no good or resource is ever assigned to some player who does not
need it and the second one states that as long as there is some player needing a good or resource,
this good or resource cannot remain unassigned. Obviously, both conditions are satisfied by Z(0)
for any 6 simply by design. Hence, the proof of Proposition 1 will solely focus on envy-free-ness
and strategy-proof-ness. I will now demonstrate the mechanics and properties of Mechanism %
with an example to highlight how the fairness and strategic properties hold, to shed some light on

the proof of these properties.

Example 2. Consider the following simple problem IT:
N={1,2,3}, T=7, [bi,bs1] = [t,t + 1], Bf =1, and ®F = {0, [b;,b,11]}, (6)

11 1
:>E[:{O,§,§,1}:>6t:6,V0§t§6andxt:t, V1<t <6,

which yield a following candidate pair of sequences

_llllllandA_lllllll
p= 13740’ 161’ 806’ 4837 33860 ~ 1671374071617 806 4837733860 [
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Table 2: Period and cumulative payoffs given by Mechanism % for preference profile 0

i\t 0 1 2 3 4 5 6 u
ly 1 0 0 0.3333333  0.5000000 0.4999483 0 NA
1x 0 1 1 1 1.3333333  1.8333333  2.3332816 | 2.3332816
2y 0 1 0 0.3333333 0.5000000 0 0.5000000 | NA
2x 0 0 1 1 1.3333333  1.8333333  1.8333333 | 2.3333333
3y 0 0 1 0.3333333 0 0.5000517 0.5000000 | NA
3x 0 0 0 1 1.3333333  1.3333333  1.8333850 | 2.3333850

Now, consider the following two preference profiles:

0, =[0,1]U[4,6], 6 = [1,2]U[3,5]U[6,7], 65 = [2.4]U[5,7] [6];

6, =[0,11U[3,6], 6, = [1,2]U[3,5]U[6,7], s =[2,4]U[5,7] [6].

The payoffs given by Mechanism % for the two profiles are summarized in Table 1 for 6 and
Table 2 for §. Unshaded cells contain the period payoffs while shaded cells contain cumulatives.
To demonstrate the fairness property of Mechanism %, the interpersonal comparisons of al-
locations and payoffs are given in Table 3. The left panel corresponds to the preference profile
0 and the right to 6. Cell (i, j) represents player i’s payoff if she were allocated with player j’s
allocation. Clearly, entries on the diagonals are greater than those off the diagonals, representing
envy-free-ness. Finally, strategy-proof-ness is presented in Table 4 with the cross preference and
cumulative-payoff comparisons for player 1 between types 6; and ;. Each cell in rows 1, 2, and
4 contains the cumulative payoff corresponding to the preference types and allocations in the first
column. Rows 3 and 5 are the differences between rows 1 and 2 and 1 and 4, respectively, repre-

senting the cumulative allocation and payoff processes for player 1 with type 6, to misrepresent
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Table 3: Fairness property: interpersonal preference-payoff comparisons

1 2 3 1 2 3

uy(-16;) | 2.0003101 0.4996898 0.5000000 w (-161) | 2.3332816 0.8333333 0.8333850
ur(-|65) | 05003102 2.4996898 1.0000000 ur (-162) | 0.8333333 2.3333333 0.8333333

uz(+163) 0.5000000 1.0000000 2.5000000 u3 (-|A3) 0.8332816 0.8333333 2.3333850

himself with type 6, . The first two periods are ignored: they are equal for both #(6) and Z (é)
From rows 3 and 5, by misrepresenting her type, player 1 will initially be allocated more
goods in the period of deviation, which, nevertheless, does not generate any payoff for her since
the interval [3,4] is not contained in her type 6;. This initial bump in the cumulative allocation
decays away as time goes by, demonstrated by the decreasing trend in the absolute value of the
entries in row 3, indicating that in each period after deviation, player 1 is retaining less payoff with
misrepresentation. Row 5 yields the same conclusion with a different narrative. It measures the
cumulative payoff differences between truth-telling and misrepresentation, with all entries being

positive and showing an increasing trend.

Example 2 turns out to be extendable to the general context of any unilateral misrepresentation
of types by any player: the observations of the initial bump in the amount of goods/resources
allocated to the deviating player, which later tapers off in terms of payoffs (a hill-shaped trend
or sorts) as demonstrated in Table 4, are maintained through any arbitrary deviations made by
one single player. The pursuit of such observations motivates limiting the sequence of p;’s to be
strictly less than 1 in each iteration and serves as the basis of the proof of strategy-proof-ness. On
the other hand, the choice of player 1 only deviating for one single period is certainly no accident.
In any problem IT within the scope of this paper, the “one-shot deviation principle” introduced in

Blackwell (1965) directly applies.
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Not equally evident in Example 2 is the reason for the choice of the deviation 6, being a
superset of the true type 0;. This proves to be a sufficient choice, along with considering deviations
as subsets of the true types, for strategy-proof-ness, a result previously documented as Lemma 2
in Tian (2015). The current context requires a very mild extension of this previous result in the
sequential and dynamic settings. However, the applicability of Lemma 2 in Tian (2015) is evident.
Hence, I shall only briefly present the argument for the sufficiency of only considering deviations
as super and subsets instead of documenting a formal result—readers should feel free to refer to
Tian (2015) for the details of the proof.

Without loss of generality, let player 1 be deviating from her true type 0; to some 6, such
that 6; Z 6, and 6, Z 6,. Moreover, by the one-shot deviation principle, let 6; and 6, differ in
only one period ¢. Define él = (91 N él) Also, since other players’ preference profile is constant,
let = (él, 9_1) represent the preference profile obtained by combining 0, with other players’
constant preference profile and similarly for 6. Clearly, player 1’s payoff before period ¢ will be
the same across 61, 8y, and 6, since Mechanism % is only history dependent in terms of payoffs.
On the other hand, let CV, CV, and CV represent the continuation values from period (t+1) when
player 1 is reporting 6y, 8y, and 6, respectively. Different feasible divisions from period (t+1)
can be compared just with the continuation value for player 1 because she reports the same type
beyond period . Now, recall the premise for the sufficiency result is that neither deviations to
supersets nor deviations to subsets of the true type can benefit the deviating agent. The goal is
to show that, in this case, 6; can never be a profitable deviation for player 1. Since any goods

assigned to player 1 outside her type does not contribute to her utility,

u (% (8)161) = uy, (% (8)161) and uy, (% (8) |61) = ur, (% (6) |6y). %)
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Now, consider when player 1’s type is 0;. No profitable deviation to supersets implies that
ui (%#(0)16,) +CV <uy, (% (8)61) +CV.

Moreover, between 0 and 6y, no profitable deviation to subsets implies that
i (% (0)161) +CV <uy, (%(0)]61) +CV.

Combining (7), (8), and (9) yields

A

ur (2 (8)161) +CV_= uy, (% (8)16) +CV_< uy, (% (8)|8)) +CV

<I|

~~—

by (7 by (8)

<
~

ur, (% (6) |61) + CV

{II

~—

<
y (8
< uy (#(0)|6,)+CV,
by (9)

=n
<
—~

~
~

®)

(€))

(10)

showing that 0, can never be a profitable deviation from 0;. This result, along with the one-shot

deviation principle, reduces the potentially very intractable problem of checking incentive compat-

ibility in a sequential or dynamic setting into a comparative statics problem where all potentially

profitable deviations are completely and linearly ordered so that Theorem 1 can be applied. Ob-

serve that the one-shot deviation principle is invoked here only for convenience, since (7) applies

to any comparison between types and even for the cumulative payoffs. I document this result with

the following lemma for the ease of future reference and defer the brief proof to Appendix B.

Lemma 10 (Super-Sub). For any (i,(6;,0_;)) € <N x @8 x (@B)nfl),

ui (Z(6:,6-1)16;) > u;i (%(6,,6-:)16,), V6, C 6; € ®°
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Table 4: Strategic property: individual cross preferences-payoff comparisons

3 4 5 6 7

w1 (%(6)(61) 1.0000000 1.0000000 1.5003102 2.0003101 2.0003101
u (% (6)161) | 1.0000000 1.3333333 1.8333333 2.3332816 2.3332816
Row 1 — Row 2 | 0.0000000 ~0.3333333 ~0.3330232 ~0.3329715 ~0.3329715
w (% (6)161) | 1.0000000 1.0000000 1.5000000 1.9999483 1.9999483
Row 1 — Row 4 | 0.0000000 0.0000000 +0.0003101 +0.0003618 +0.0003618

and
u; (%(9,, 971') ‘9,) > u; (% (5,‘, 97i> |9,) , V@, D6 e @B
jointly implies that u; (% (6;,6-;) |6;) > u; (% (6],0-,) |6;) , V6] # 6; € ®F.
Proof. See Appendix B for the proof of Lemma 10. |

To apply Theorem 1, I provide the following lemma verifying that the conditions in Theorem 1

are met with deviations to supersets of true types.

Lemma 11 (Applicability of Theorem 1). For all preference profiles 6 # 0 € (@B )n such that

there exists a unique i € N with 6; C ; and 0; = éjfor all j #1i,
Li¢S=v(S5|0)=v(S]0); 2.i€S=v(5|0) <v(S]6);
3.i€SCT=v(T|8)—v(T|0) <v(S]8) —v(S|0).
forall ;T CNand0<t<(T—1).

Proof. See Appendix B for the proof of Lemma 11. [

With Lemma 11, I manage to extend Theorem 1 to the dynamic setting and, with the carefully

chosen sequences of {pt}tT:_ll, extrapolate previously known static strategy-proof-ness results to
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encapsulate cumulative payoffs for any periods after deviation. Specifically, consider two prefer-
ence profiles where all players’ preferences are the same except for i’s. Within only one period ¢,
i’s type in one profile is a superset of her type in the second profile. Theorem 1, along with the
sequence {pt}tT;ll defined in Definition 3, ensures that player i is given more goods/resources in
period ¢ and cumulatively for every period after . This first rules out any profitable deviations to
subsets of any player’s true type. On the other hand, the difference in the cumulative amount of
goods or resources assigned to i between the two profiles will decrease over time (nevertheless,
will always stay positive), which implies that the cumulative assignment for i is weakly less in
the second profile than in the first in periods following the deviation. Moreover, i’s assignment in
period ¢ given by the first profile within her type in the second profile will be less than that given
by the second profile, a direct result of Proposition 3 in Tian (2015)!7. Therefore, if player i’s
type is as hers in the second profile (the subset), then a misrepresentation as in the first profile (the

superset) can never benefit her in payoff terms, recovering strategy-proof-ness dynamically.

5 Discussions

5.1 Why are the p;’s so small?

In this subsection, I will discuss the significance in the care taken in choosing the sequence {pt}tT:t
in Mechanism . 1 first demonstrate, through a counterexample, how an arbitrary choice of the
sequence can result in the breakdown of strategy-proof-ness. On the flip side, I show how to refine
any given problem into a new one so that the only undominated strategy for any player is truth-

telling, which has a remarkable impact on the efficiency comparison between Mechanism % and a

17See Theorem 3 in Appendix B for the full statement of Proposition 3 in Tian (2015), presented here as a theorem
for concave cooperative games. Please refer to the original paper for the proof.
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simple repeated deployment of Algorithm &. I start with the following example.

Example 3. Consider the following problem II:
N=1{1,2,3}, T =25, [b,b;11] =[t,t + 1], BE =1, and ©F = {0, [b;,b; 1]} . (1)

Instead of choosing the sequence of p; according to Definition 3, simply choose p; = 1 for all
1 <t <24. That is, this alternated version of Mechanism % will simply run the procedure of
Mechanism % with the cumulative payoffs without being factored by the sequence defined in

Definition 3. Fix the types of players 1 and 2 and consider two different preferences for player 3:

0, =[0,11]U[20,25), 6, = [7,17], 6; = [5,25] [6];

61 =[0,11]U[20,25], 6, =[7,17], & =1[9,25] [8].

The outcome of this alternative mechanism is presented in Table 5. Notice that a player with type
65 will receive a higher payoff by misrepresenting as 63. Observe that player 3 actually deviates in

more than one period in this example.

The spirit of this alternative mechanism is actually identical to that of Mechanism %—both
build in a reward and punishment mechanism when dividing in period ¢ that is based on players’
cumulative payoffs up until b;,. The difference lies in the seemingly insignificantly small reward
or punishment given by Mechanism % that has an ample effect on incentives. Take a deviation
to a subset of the true type as an example such as Table 5 but suppose that the deviating player
only does so in one period . Her cumulative payoff in the first # periods decreases as a result,
which puts her at an advantage according to both the alternative mechanism and Mechanism Z.
However, this lower previous cumulative payoff is discounted in Mechanism % by factors p; with

f >t just enough so that the resulting reward in periods after  is never enough to compensate for
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Table 5: Period and cumulative payoffs by p, = 1 for 6 and 6

i\t |5 6 7 8 9 10 11 12 13 14 15 16.. .20 21 22 23 24 |u
ylo o o o o0 o o0 O O O O O 1 1 1 1 5 |NA
x|5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 8 9 [95
2y 0O 0 1 1 5 5 5 5 5 5 5 5 0 0 0 0 0 |NA
2 /0 0 O 1 2 25 3 35 4 45 5 55 6 6 6 6 6 |6
3y /1t 10 0O 5 5 5 5 5 5 5 5 0 0 0 0 5 |NA
3% |0 1 2 2 2 25 3 35 4 45 5 55 9 9 9 9 9 |95
iyt 1.0 0o o O O O O O O O 1 5 5 5 5 /|NA
x|s e 7 7 7 71 7 7 7 7 1 1 1 8 85 9 95|10
%l o 1 1 o0 O 5 5 5 5 5 5 0 0 0 0 0 |NA
/o0 0 O 1 2 2 2 25 3 35 4 455 5 5 5 5 |5
3% /o 0o o o0 1 1 5 5 5 5 5 5 0 5 5 5 5 |NA
3% /o 0 o0 0 O 1 2 25 3 35 4 45 8 8 85 9 95|10

Periods 1 through 4 and 17 through 19 are ignored since there is only one player (player 1 and 3, respectively)whose
type includes these periods. Periods 1 through 4 and 17 through 19 are ignored since there is only one player (player

1 and 3, respectively) whose type includes these periods.

the loss incurred from the deviation in period ¢.

As simple as it seems, such reward and punishment interpretations actually have more complex
implications. Even a one-shot deviation can affect the deviating player’s final payoff in at least two
different aspects. First of all, the dynamic nature provides the opportunity of recovering previous
losses in future periods. For example, in Table 5, player 3’s payoff before period 9 stands at a loss
of 2 when she deviates to the subset of her true type. However, this loss has already been refilled by
half before period 20, when she starts to compete with player 1 again. Clearly, part of the reason of

such quick recovery lies in the fact that one unit decrease in previous cumulative payoffs directly
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translates into one unit of reward when the current period is up for division.

More importantly, when there are more than three players, a unilateral deviation causes changes
in not only the deviating player’s cumulative payoff but also the overall distribution of cumulative
payoffs of potentially many other players. That is, the effect of a unilateral distribution on the
whole system of cumulative payoffs is not a simple practice of increasing or lowering the deviat-
ing player’s payoff and lowering or increasing one single other player’s. Moreover, by the discrete
nature of Algorithm &, it is even quite intractable to parse out which other players than the deviat-
ing are the “first-order” beneficiary or victim and who else are affected by the more subtle “ripple
effects”. This is can be seen by focusing on period 20 in Table 5, where players 2 and 3 each
contribute one unit of payoff to the two-unit increase for player 1.

Hence, the change in the comparative advantage or handicap between any pair of players as the
result of a single player’s misrepresentation must be carefully taken into account when devising the
reward and punishment schemes to incentivize truth-telling. As the columns beyond period 20 in
Table 5 demonstrate, a simplistic one-to-one correspondence between lower previous cumulative
payoff and current advantage provides and exacerbates player 3’s incentive to sacrifice past payofts
for the future competition against only player 1. Such concerns are exactly what the sequence of
p:’s in Definition 3 are designed to address: it serves as a uniform upper-bound—maybe as a tad bit
too crude as it may seem—on the magnitude of inter-temporal comparative advantage any player

can reap in the future by incurring a previous cost.

5.2  Why are the p;’s not zero?

Given the discussions in the previous subsection, a natural question arises as to why not simply
implementing Algorithm & for I' (5,) in period r—a special case of Mechanism &% with p; =0

for all ¢ and the exact result from Chen et al. (2013): after all, it is known that such repeated
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applications of Algorithm & is Pareto efficient, envy-free, and strategy-proof in the context of fair
divisions with dichotomous preferences. In this section, I provide an efficiency motivated answer
to the significance of the nonzero p;’s. The essence of such choices of p;’s are to rule out the
voluminous non-truth-telling pure strategy Nash equilibria that induce hefty efficiency loss.

Per usual definitions, in a problem II, a pure strategy of player i is a function o; : @% — @5.
Given a type profile 6, let o_;(6_;) represent the profile of the values of the strategies of all
players except for i’s, i.e. (0; (Gj))j ;- A profile of strategies (0i(-)) ey is a pure strategy Nash
equilibrium for a direct mechanism M if and only if, for all player i, there does not exist another

pure strategy o; # o; such that

1

ui (M (0](6;),0-:(6-7)) |6;) > u; (M (0:(6;),0-:(6-:)) |6;),v6 € (©F)",

with the inequality being strict for at least one type profile. Now, since M is a direct mechanism
and no player’s preferences is affected by other players’ types, the definition of pure strategy Nash
equilibrium is equivalent to switching out the strategy profile of other players’ strategies above with
the profile of all the other players’ types. That is, a profile of pure strategies (0;(-));cy constitute
a pure strategy Nash equilibrium if and only if, for all player i, there does not exist another pure

strategy o/ # o; such that
u; (M (0](6;),0-;) 6;) > u; (M (0:(6;),6-;)|6;),v6 € (85",

with the inequality being strict for at least one type profile. By extension, I shall use the symbol
0 (0) to stand for the profile of values for the strategy profile (o;(-)),cy When the players’ types are
given by the profile 8. The goal of the current subsection is to compare the ratios of the maximal to

the minimal achievable efficiency between Mechanism % and repeated applications of Algorithm
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&. Hence, let the refinement of a problem IT be the problem given by enlarging the segmenting B
so that any possible type in @F is a union of the intervals included in the new segmenting. I present

this definition along with its existence result with the following lemma.

Lemma 12 (Refinement of a problem). For any problem I1 = (b,B, T,08 ,BB), there exists a
problem I1 = (b,E’, T, @B,ﬁé> where B is a strictly increasing sequence with by = 0, B is a sub-
sequence of B, tl? = BB if [l_),/, l_7,/+1} C [bs, b1 1), and for each 6; € @B, there exists a subsequence

B'= {B;}ZO of B such that

T/
6= J [b].b711] - (12)
t=0
Proof. See Appendix C for the proof of Lemma 12. [ |

Remark 3. Lemma 12 is not an extra assumption about the type space @, It is simply stating that,
given any problem II, there exists a finer segmenting of the batches or periods in II so that the
batches or periods in the refined problem become the building blocks of players’ preferences so
that any player’s type compatible with the original problem can be represented by the union of the
batches or periods in the refined problem. Hence, notice that type space in the refined problem is
equal to that in the original problem. Also when a problem is defined, the finiteness of ®2 in the

original problem is indispensable and will prove crucial in the proof of Lemma 12.

On the other hand, it should be quite obvious that any given problem has infinitely many refine-
ments since a refinement of the original problem is a new problem while a refinement of the new
problem is definitely yet another refinement of the original problem. However, the existence of a
refinement will be completely constructive—hence, the proof in Appendix C offers the “coarsest”
refinement of the original problem. Furthermore, if a problem II already has the property that (12)
is satisfied for all types in ®5, I will refer to IT as a refined problem. As will be seen shortly, re-

fined problems are the simplest form of division problems and possess the strongest incentive and
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efficiency implications when combined with their corresponding nonzero sequences of p;’s. Since
any problem can be refined into a refined problem (see the proof of Lemma 12 in Appendix C), I
shall focus on refined problems in this subsection and use the symbol I for such refined problems.

From now on, I shall also focus on problems where players’ types are unbounded. When
players’ type are unbounded, there never exists a final period that is included in the players’ types,
where the incentive property and efficiency performance of Mechanism % simply replicates that of
the repeated deployment of Algorithm & . Within this scope, I manage to strengthen the strategy-
proof-ness of Mechanism % so that truth-telling is the only pure strategy Nash equilibrium. I
document this result along with its efficiency implications with Proposition 2, before which I first
discuss the measure of efficiency adopted in this model.

Given any problem IT and direct mechanism M, let X (IT,M) be the set of all pure strategy
Nash equilibria. Let the price of anarchy of M for I1 be defined as the ratio between maximum
collective payoff when the players’ types are public information to that of the minimum collective

payoff among all pure strategy Nash equilibria. That is,

T-1
Z ﬁzB/ 1dr
6 bt7bl‘
POA(H,M) = sup UIEN )ﬂ[ +1]

B mf U; )16
FISC)] cex(ILM) E\’] i | )

The order of computation of the price of anarchy is to fix a type profile first, then select the
worst performing pure strategy Nash equilibrium and compute the ratio between the maximal
achievable collective payoff under perfect information for that profile, then select the type profile
that results in the highest said ratio. Supremum and infimum are adopted since both type space
and the set of pure strategy Nash equilibria can potentially be infinite. However, the maximum

achievable collective payoff is well-defined and only depends on the type profile.
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Clearly, the current definition allows the worst performing equilibrium to vary for differ-
ent type profiles, which offers a lower bound on the collective welfare in equilibrium for any
equilibrium-type-profile combination. However, this does not imply that the current definition
provides the upper bound on the ratio between maximal achievable collective payoffs versus that
in any equilibrium-type-profile combination. In the current definition, the numerator is tied to the
type profile first, then is the worst performing equilibrium selected to calibrate the efficiency loss
due to private information withheld by the players. This order of computation is a sensible choice
in this mechanism design problem since it is unnecessary for the mechanism designer to be con-
cerned about the worst outcome for the worst type profile while unreasonably expecting the best
type profile when computing the achievable collective payoff. Finally, the definition implicitly
stays agnostic on the whether should mechanisms be measured in terms of efficiency when simply
no player is demanding any resources—an extreme scenario safely assumed away within reasons.

I now set out to compare the prices of anarchy of Mechanism % and repeated application of
Algorithm & for each period, effectively setting p; = O for all periods. I shall refer to the latter
mechanism as %. The main result in this subsection below shows that the price of anarchy of %,
for any refined infinite problem with a sufficiently rich type spaces is at least n, the size of the set

of players, while Mechanism % achieves full efficiency with a price of anarchy of 1.

Proposition 2 (Price of anarchy). Let I <+oo,l§, o0, e?f , BE ) be an infinite refined problem with
a finite set of players N, where ©B is the set of all infinite unions of intervals in {[br,brs1]}, =5 The

price of anarchy of %, for Il is at least n = |N|. The price of anarchy of Mechanism % for I is 1.
Proof. See Appendix C for the proof of Proposition 2. [

The outcome of % is very straightforward to calculate for refined problems. Any period or

batch is simply divided among players who demonstrate demand with equal shares. The proof
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in Appendix C even contains direct computation on a candidate lower bound of the price of an-
archy of %, for each type profile. On the other hand, the outcome of Mechanism % is much
more convoluted for any given period, compounded with the limitless type space, making direct
computation impossible. Nevertheless, refined problems offer relatively easy characterization of
candidate sequences of p;’s based on very straightforward computations of the sequence of &’s as
in Definition 3. The proof of Proposition 2 bypasses all these issues by ensuring that in Mechanism
Z, truth-telling is a strictly dominant strategy for all players, making all player telling the truth the
only pure strategy Nash equilibrium. Since Mechanism % is Pareto efficient when players are
honest, its price of anarchy is naturally 1.

Proposition 2 highlights the value of nonzero p,’s: most importantly, it eliminates numerous
undesirable equilibria the static mechanism, even as delicate as Algorithm & is, cannot rule out.
Even more interesting is the magnitude of the working p;’s implied by Proposition 2. Larger
population of players and richer type space result in lower s simply by definition in Definition 3.
However, such complications introduce larger advantage in efficiency performance of Mechanism
Z% as compared to Z. In some sense, Proposition 2 bears the "leverage" interpretation on the role
of p;’s in the working mechanics of Mechanism %: with larger population and richer type space,
the mechanism designer is only allowed to move within an even tighter wiggle room, which they,
if maneuvering carefully, can eventually leverage into a more sizable gain in performance. It is
worth pointing out that the recursive and dynamic but not simply repeated nature of Mechanism %
is the key to such possibilities of equilibrium selection.

The focus on refined problems, on the other hand, is barely motivated by sequential or dy-

namic concerns'®. Recall that deviations that are neither supersets nor subsets of the true types

8Nevertheless, it is worth reiterating that refinement of problems is not an additional assumption of any sort on the
type space—it is merely a rephrase or restructure of the same environment to provide tractability in computing prices
of anarchy of the mechanisms in comparison.
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are dismissed only with weak inequalities in payoffs when establishing strategy-proof-ness. The
unimportant difference between weak and strict inequalities in incentive properties become signif-
icant in efficiency measures. Players may be indifferent between deviations and truth-telling but
the efficiency consequence of such indifference can be considerable, precisely the reason for the
substantial price of anarchy for %,. Notice that such concerns do not exist in a refined problem
since whenever the first period of deviation is, it has to be to either a superset or subset of the true
type. Deviations in future periods are suppressed by the same argument as in Lemma 10 once at
least one strict inequality is established for the first period of deviation in payoff terms.
Furthermore, deviations that are neither supersets nor subsets of the true types induce ambigu-
ous changes in the feasible set of divisions faced by the mechanism, the comparative statics impli-
cations on the amount of goods assigned is yet untraceable, not to mention those on the eventual
payoffs to the deviating player. Consequently, the premises of Lemma 8 collapse hence the result
no longer applies even in the first period of deviation. Compounded with deviations in potentially
multiple periods, the efficiency implications in unrefined problems quickly becomes intractable.
At the core of this impasse is Mechanism % staying agnostic on which compatible feasible di-
vision to choose once a payoff vector is determined—Chen et al. (2013) also acknowledges this
obstacle, to which this current work owns a great deal. It goes without saying that this unanswered

question offers a crucial challenge that any future research is more than encouraged to tackle.

6 Concluding Remarks

I studied the problem of dynamic and sequential fair divisions for players with dichotomous pref-
erences. The major contributions of this project include a systematic design of Pareto efficient,

envy-free, and strategy-proof dynamic division mechanisms for any generic problem. The mecha-
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nism devised in this paper possesses strong incentive properties which enforce truth-telling by all
players to be the only pure strategy Nash equilibrium in infinite problems with unbounded types.
Such strong incentive properties translate into a factor of performance improvement over simple
repeated applications of static strategy-proof mechanisms equal to the size of the set of players.

On a more technical and theoretical level, this paper contributes a novel comparative statics
result on the egalitarian solutions to monotone and concave cooperative games with transferable
utilities in characteristic function form. I also discovered the duality-like property of the algorithms
locating the egalitarian solutions to reconcile the conflict between the process and result in the
pursuit of the egalitarian solutions.

As mentioned before, one immediate future research direction is to develop a tangible way
of translating payoff vectors into appropriate selection of feasible divisions to ridden the shackle
placed on the proof of strategy-proof-ness by Lemma 8. This will most likely be a purely technical
endeavor. For purposes closer to applications, development of measures or indices of envy-free-
ness and strategy-proof-ness, similar to the notion of price of anarchy for efficiency, should be
noted as a valuable potential for later research.

Were the foregoing development of performance measures successful, tradeoffs among these
measures (and, by extension, potentially even a “efficiency-incentive-fairness” frontier of sorts)
are to be better explored. Cho (2014) already represents some of the earliest adventures in such
territories although, unsurprisingly, all of the results so far are negative. However, the ultimate goal
of this direction should not be enumerating theoretical impossibilities with a top-down approach.
On the contrary, a characterization of the exchange competitive economy market mechanism as
the ultimate institute for assignment and division problems on a maximal domain where efficiency,

incentive, and fairness are all compatible should be set as a finish line in sight.
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A Omitted proofs from section 3

Lemma 1 (Preliminary observations of e(+)). Given any monotone and concave cooperative game
" = (N,v(-)) with transferable utilities in characteristic function form with the characteristic func-

tion given by v(-),
1. VRCSCTCN,e(T—R)=e(S—R)=¢e(T—R)=e(S—R)=¢e(T-S5);

22YRCTCNandRCSCN, where RC (TNS)andT  Sand S L T, such that e(S—R) =
e(T —R), then min{e[(TUS) —R],e[(TNS)—R]} <e(S—R) =e(T —R),

3. VRCTCNandRCSCN, where R=(TNS)and T L Sand S L T, such that e(S—R) =

e(T —R), then e[(TUS) —R] <e(S—R)=e(T —R).
Proof. 1. RCSCT = |R| <|S| <|T|. Therefore,

:v(T) —v(R) _ v(T)—v(S)+v(S) —v(R)
7| —[R] 7| —[R]
_v(T)—=v(S) [T[=IS| | v($)—v(R) |S|—IR|
IT|—[S| |T[—IR[ ~ [S[—IR] |T|—|R|
7| S| S| — IR|
7| —[R] 7| —|R|

e(T —R)

—e(T —S)- +e(S—R)-

Recall that ¢(T — R) = e(S — R), which implies

71— IR = (IS| = R])
7] - IR

71181 _
e(T—S)-m =e(T—R)—e(S—R)-

S| IR _
T~ R

e(T—R)-

=e(T—S) =e(T —R).
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2. By concavity of v(-), v(T NS) +v(T US) <v(T)+v(S), which implies

v(T'NS)—v(R)+v(TUS)—v(R) <v(T)—v(R)+v(S)—v(R).

Dividing both sides by (|7 N S|+ |T US| —2|R|) = (|T|+|S| —2|R|).
|ITNS|—|R]|
=e|(TNS)—R|-
elTOS) =Rl S T US| —2/R]
TS| R (13)
+e[(TUS)—R] <e(S—R).

TUS|+|TUS|—2[R| =

Notice that the left-hand side of (13) is a convex combination of ¢[(7 NS) —R] and e[(T U

S) — R}, thus completing the proof.

3. By concavity of v(-), v(T NS) —v(R) +v(T US) —v(R) <v(T) —v(R) +v(S) —v(R). Thus,
=0

e[(TUS)—R]-(ITUS| — |R]) =v(T US) — v(R) < v(T) —v(R) +v(S) — v(R)
=e(T —R)-(|IT|—|R[) +e(S—R)- (IS| = R])
=e(T —R)-(|T|+ S| —2|R]).

——

=e(S—R)

Recall that (TNS) =R = |TNS| —|R|+|T US| —|R| = |T|+|S| — 2|R|. Thus,
=0

e[(TUS)—R] = e(T —R). O

Lemma 2 (First observation from Algorithm &). Let S| C Sy C --- C Sk = N be the sequence of
subsets of N generated by Algorithm & with K < n= |N| for the monotone and concave cooperative

game I = (N, v(-)) with transferable utilities in characteristic function form with the characteristic
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function v(-). Then V2 <k < (K—1), e(Sx —Si—1) < e(Sg+1—Sk)-
Proof. By definition, Sy_1 C S; C Sk 1. Suppose there is a k such that (S, 1 —Si) < e(Sk —Sk—1)-

V(Sk+1) — V(Sk) + V(Sk) — V(Skfl)

e(Skr1—Sk-1) =

Skr1] = [Sk—1]
_V(Skrt) =v(Sk)  ISkea | = I8kl v(Sk) = v(Sk—1) ISkl = ISk—1]
ISkt ] = 1Skl ISkt = Sk—1] 1Skl = [Sk=1]  [Sk1 — Sk—1]
S — 1S
—— [Sk+1 — Sk
<e(Sk—Sk-1)
Sel — |Sk—
+€(Sk _Sk—l) : M < E(Sk—Sk_l).
Sk 1] = 1Sk—1]

This is contradiction to the definition of Sy having the least (S — S;_) among all § D Sy_;. ]

Lemma 3 (Finest partition of N). Let y* be the egalitarian solution given by Algorithm & that
terminates in K steps for the monotone and concave game I' = (N, v(+)) with transferable utilities
in characteristic function form with the characteristic function v(-). Let &7* be the partition of N
implied by Algorithm &, namely " = {(Sk\Sk,l)},Ile.

A partition &2 of N is y*-compatible if and only if
1. Forallic Nand jEN,icS€ P and j €S € & implies that y; =¥i

2. AndforanySe 2, Y. yi=v(<i(y)US),VieS.
Je(<i(y*)us)

P* is the finest among all y*-compatible partitions of N. That is, let &7 be a y*-compatible

partition of N. Then any element of & is a union of some elements of ¥*.

Proof. Let & be any y*-compatible partition of N. It suffices to show that foralli € N,i € S € &*

andi € S’ € & implies that S C §'. Note that i € (SNS’) hence (SNS’) # 0. Suppose S Z §'. Then
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(SNS") C S. By the second requirement of Lemma 3 and Lemma 1,

e [(SNSHU<()) = <ui(y")] = e[(SU()) — <)),

which means that S is nor a smallest candidate for the step in Algorithm & for <;(y*), contradictory

to the definition of &2*, the elements of which are all smallest candidates. O]

Lemma 4 (Feasibility and dominance of y*). Given any monotone and concave cooperative game
I" = (N,v(-)) with transferable utilities in characteristic function form with the characteristic func-
tion v(+) with V being the feasible set given by v(-), the egalitarian solution y* defined by Algorithm

& generalized Lorenz dominates any y € V and y* € V.

Proof. 1 first show the feasibility of y*. That is,
Y vi <Vv(R),YRCN. (14)
i€R

This is done by running an induction on any R C N as compared to the S in the steps of Algorithm
& . Specifically, let K < n be the number steps the Algorithm terminates in. Take any R C N.

First let R C S;. Clearly, if R = S|, Z yi =v(81) by the definition of y*. Hence, suppose, instead,

i€R
R C S;. Keep in mind that, in this case, y; = e(S; —0), Vi € R. I want to show that Z yi <v(R).
IERCS,
By the definition of S,
v(R)
e(S1—0)<e(R—0)= R = |R|-e(S1 —0) <|R|-e(R—0) =v(R).

Therefore, Z v;i =|R|-e(S1 —0) <|R|-e(R—0) = v(R). Thus, the initiation step in the induction
i€R
is completed. Now, suppose for all R C S for some k < (K — 1), (14) holds. In the induction step,

I want to show that (14) holds for all R C Sy, ;. If R C S, then R C S;. 1 and (14) holds trivially by
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the assumption for step k. Suppose otherwise: R Z S. Then it must be the case that S C (RUSy).

In this case, there are two possibilities to consider: RNS; = 0 and RN S # 0.

e RNSy=0and R C Sy imply that R C (Siy1\Sk). Moreover,

= |Sk| + |R|. Then,
yi = e(Sk+1—Sk), Vi € R. Then, by the definition of Sy 1,

Y vi =IR|- e(Sks1 — Sk) < R| - e[(Sk UR) — S¢]
i€R

v(Sr UR) —v(Sk) v(Sr UR) — v(Sk)

=I[R|- = |R|- =v(SrUR) — v(Sk
M s or—gss TR (SR vy
< R)— v(SkNR) =v(R).
< V(R)— v(SkNR) =v(R)
by concavity of I" =0 by SyNR=0

e Now, for RN Sy # 0, remember that for all i € (R\Sk), y7 = e(Sk+1 —Sk) < e[(Sk UR) — S|
by the definition of Sy . Mover, |R\Six| = (|[RUS)| —|Sk|). Then,

<v(SxNR)
* *
Yvi= Y yi+ ¥ =R eSS0+ Y i
i€R ic(R\Sk) ie(RNSy) i€(RNS)
N——

by assumption for step k
<|R\Sk| - e[(Sk UR) — R] +v(SxNR)
=v(SyUR) —v(S SkNR < R).
V(SkUR) —v(Sk) +v(SkNR) < v(R)
by concavity of '

Hence, the induction for step k + 1 is complete and so is the proof for y* € V. |

I will now turn to showing that y* generalized Lorenz dominates every y € V. Take any y €
V. Recall that y and y* are generated from y and y* by rearranging the arguments in a weakly
increasing order, respectively. Among alternative rearrangement, select the ones that respects the

indices of the players. Formally, let v and v* be the permutations of N for the pair of vectors (y,y)
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and (y*,y") such that for alli, j € N

yi<yj=Vv(i)<v(j) Wheny, =y;,i < j <= v(i) < Vv(j);

yi <Y;= V(i) <v*(j); Wheny/ =y}, i<j <= v'(i) <Vv*()).

Let u and u* be the inverse of v and v*, respectively. Thus, (i) and p*(i) are the identities of
the players in N holding the i-th entries in y and y*, respectively. Without loss of generality, let
Yo =¥, = 0. Now, supposed y* does not generalized Lorenz dominates y. The goal of this proof
by contradiction is to show thaty ¢ V.
The assumption of y* not generalized Lorenz dominating y means that there exists an 1 <L <N
L L

such that Z y > Z y;. Let (L+1) be the smallest of such L if there are more than one candidate—
=1 =1

L L
0 <L < (N—1). This implies that Z y; < Z y;, which still holds even when L = 0. Therefore,
=1 =1

L L
Vi~ Y > LY - Y vi>0 (15)

I=1 I=1
Now, let Sy be the largest subset of N such that y; < y}g L Vi € S;. Such S is well-defined
and clearly [S| > (L+1) = (|S¢| —L) > 1 by statement 1 in Lemma 6, the proof of which will
be presented shortly afterwards. Since 7 is a permutation, S| = L. Let S = {n(l): 1 <I <L} (by

definition, § = 0 when L = 0). Let k = [SNSk|. Fori € S\(SNSk), yi <y;., by the definition of

L
y, which implies that Y y;= Y yi+ Y
=1 i€(SNSy) JE(S\(SNSk))

L L
= Z )’iZZYI—ﬂS\—K)‘YZH:ZYI_U:_K)‘YZH'
i€(SNSk) I=1 =1
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Now, for each i € (S¢\S), yi > ¥z - Therefore,

Z}’i > (ISkl = ©) ¥z "‘ZYI —(L=x)yp1 = ZYI+ (ISl =L) - yz41-
ics; =1 I=1

Similar to S, let §* = {n"(l) : 1 <1 < L}. By the definition of S, for any i € (S\S*), i =¥, -
Y oyvi— Y yi> Zw+ IS¢l —L) ¥ — Zy; (IS —=L) -7,
i€Sy i€Sy
y i /
=Y vi— Y v+ (ISk-L)- <YZ+1 —¥; )
=1 =1 — ¢
= >0 by (15)
L L
>Y yi—-Y v+ (yz+1 —yEH) > 0.
=1 =1
Now, recall, by (3), Z y; = v(Sk). Therefore, Z yi > v(Sk) hencey ¢ V. O
i€Sy i€Sy

Lemma 6 (Second observation of Algorithm &). Let S C S, C --- C Sk = N be the sequence of
subsets of N generated by Algorithm & with K < n= |N| for the monotone and concave cooperative
game I = (N, v(+)) with transferable utilities in characteristic function form with the characteristic

function v(-). Then VY0 <k < (K —1), [S D Sy and |S| > |Si+1]] = e(S—0) > e(Sk+1 —0).

Proof. The proof will be carried out on the induction on k. Clearly, for k = 0, the statement is
trivially true by the definition of S;. Suppose the statement is true for some k < (K —2). Fork+ 1,1
want to show that for any S C N such that S D Sy and |S| > |Sk12|, e(S—0) > e(Sk2 —0). First of

all, recall that both S and S, are proper supersets of S;, which means that e(S —0) > e(Sy;1 —0)
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and e(Sg2 —0) > e(Sgr1 —0).

( v(S) _ v(S) = v(Sk+1) +v(Sk+1)
S_m = =
“=0=15 §
S| —1S S
:M -e(S—Sky1) +M -e(Sgr1—0);
N RSy
<e(S—0)
e(Sii2—0) :V(Sk+2) _ V(Sk42) = v(Sk1) +v(Sk+1)
i |Sk+2| |Sis2]
S —18 S
|Sk+2| N e’ |Sk+2| N ——’
( <e(S—Sk+1) <e(Spi2—0)

Notice that in both equations above, the left-hand side is a convex combination of the two compo-

nents on the right-hand side. Hence, e(S — Sg+1) > e(Sk+1 —0) and e(Sgy2 — Skr1) > €(Sk1 — 0).

S =18 S -1
Moreover, |S| > |Si+2| implies that| = ISkl 1Skral = Skl

. Therefore, we have

S| |Sk+2]
S| —1S S
e(S—0) EH‘% e (Skr2 —Skr1) + |‘kT+|1’ -e(Skr1—0)
Sk — Sk Sk
Z‘ +2| _‘ +1|'€(Sk+2_Sk+1)+’ +1‘-e(Sk+1—@):€(Sk+2_Sk+1)' H
|Sk+2| |Sk+2|

Lemma 7 (Third observation of Algorithm &). Given a monotone and concave cooperative game
I' = (N,v(-)) with transferable utilities in characteristic function form and let {S;}x_, be any

sequence of subsets generated by Algorithm &. Then
V1 <k <K, e(Sy—Sk_1) = maxe(Sy — ).
SCSy

Proof. The proof is by induction on k as the index of S;. For k = 1, by definition ¢(S; — 0) <
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e(S—0) forany S C N. Let S C S;. Then,

WS WS —v(S)+v(S)  [Si]—Is] K
S —0) =" — e(S1—8) + ol e(S—0),
510 ="q] 5 s ST g e =0
SIS s Si1—1s
S1—8)=¢e(S;—0 e(S—0 S —0
>e(S1—0)

So the initiation step is complete. Now suppose the statement is true for 1 <k < (K —1). I want

to show in the induction step that
e(Skr1—Sk) > e(Sk1—S), VS C Sppr-

First of all, the statement is trivially true if S = S;. Hence, let S # S;. If S C S, then
S —v(S Se) —v(S
Sy ) Sket) VIS + (50 (S
NN

_ Skrr] — ISk
[Ske1| =18

Skl — 18]

et =8+ 157 T 79)

-e(Sk —S).

Again, the left-hand side is a convex combination of the two terms on the right-hand side so it must
be less than or equal to the larger one of the two on the right-hand side. By the assumption in step
k,e(Sy—S) < e(Sy—Si_1) and by Lemma 2, e(Sg — Sx—1) < e(Sg+1 — Sk), completing this step.

Now, suppose Si1 D S D Sk. Recall that by the definition of S, 1, e(Sg1 —Sk) < e(S— Sk).

1Skt 1] — 18] S| — ||
e(Sip1—=S8) =———me(S 1 =S+ ———F— - e(S—8;) ;
R | Skt — ISk| Bit1 =5) | Skt — ISk| H,_/(( k))
2e(Sk+1—Sk
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|Ski1] =[S |S| — | Sk|
= ————e(Si1—S)=e(Sip1 —Sk) ———————— e (S—8;
|Sk+l|_|Sk| ( +1 ) ( +1 ) |Sk+1’_|Sk| ( )
[Skr1| = IS
<———— e (81— Sk).
ERIETRA

Finally, let S 2 Sy and S Z Sy and S C Sy 1. Then (SUSy) D S and (SN Sy) C Sk. Thus,

v(Skr1) —v(SUSE) - V(Skt1) = v(S) = v(Sk) Fv(SNSk)

|Skr1] = [SUSk| ~~ [Skr1] = 1SUSk| ’
by concavity of I

e(Sk1— (SUSK)) =

[Sk| =[S 1 8]
= e(Sri1 — (SUS + . e(Sy— (SNS;
\( + ‘r( ))/ ’Sk+1|—’SUSk| \( Er ))
<e(Sry1—Sk) since (SUS) D Sk <e(Ski1—Sk) since (SNSy) C Sk
[Sk1] = [S]
= -e Sk I—S .
[Sk1]| = ISUSK] Bit1 =5)

Therefore, for this last case, e(Sk1 — Sk) > e(Sg+1 —S) for S that is neither a superset nor a subset

of Si. Hence, the induction for step (k+ 1) is complete and so is the whole proof. [

Theorem 1 (Maximal increase in payoffs). Let I' = (N,v(-)) and I' = (N, (")) be two monotone
and concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i € N such that, for all S C N,
LigS=v(S)=9(S), 2.i€S=v(S)<¥(S); 3.ieSCT=WT)—v(T)<VHS)—v(S).

Let y* and $* be the egalitarian solutions of T and T, respectively. Then, for all j € N,
Vi =yi 23 -Y;- “)

Proof. 1 first establish, very quickly, an quite obvious fact:

. M(T) = 0(S) _ v(T)—v(S)
ieScT = 7= 5]

) 16
HEE (10)

<
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Simply rearrange the third condition in the statement of the Theorem 1 and (16) is proved.

As mentioned in the main text, any player who has lower payoff than i at y* will receive exactly
the same payoff at §*. Also, i’s payoff is weakly increasing from y* to y* by Proposition 3 in Tian
(2015). Therefore, it suffices to focus on the players who receive strictly more payoffs than i at y*.
Take any such player j. It suffices to show that §% < y7. Suppose j € (Sk+1\Sk) at y* generated by

Algorithm & for I'. By Definition 1,

* _ V(Sk+1) _V<Sk)
/ |Sk1| — |Sk]

Now, focus on the set of players (Sy41\Sk). Let S;+1 be the smallest set in the sequence {SZ}ILZI
generated by Algorithm & for I" that contains the subset (Sy.1\Sk). That is (Sx,1\Sk) C S, but
(Sk1\Sk) Z S;. Thus,

(S1USk41) D Srand (SN Ski1) C Sk1- (17)

D (Si1) =9 (S))
Si

Recall that §7 > §; by assumption. Also, by Lemma 2, > % > 97, implying that

S| =
i € §;. By the definition of ;| according to Algorithm &,

5)\*. < \,}\(SAI+1) —9(§1) < ﬁ(SAlUSkJrl) —ﬁ(ﬁl) < V(SAIUS]C+1) —V(SAI)

|§1+1\—‘§1\ ‘SIUSk+1’_‘§l’ t:y\(_/l-g) |§1U5k+1|—|§1|

<~
by Definition 1
By concavity of I', Lemma 7, and (17),

V(SIUSk+1) —V(SAI) < V(Sk+1> —V(Sk_H ﬁSAI)

- —z < — _
|S1USkr1| — [81] by conomeng of T Skt — [Sk1 N8|
S —v(S
< YSkn) —v(Sy) - O
=~ Sk ] =[Sk
by Lemma 7
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Lemma 8 (Unilateral disturbance). Let T' = (N,v(-)) and "= (N,%(-)) be two monotone and
concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i € N such that, for all S C N,
LigS=v(S)=V(S), 22i€S=v(S)<¥S); 3.ieSCT=WT)—v(T)<VHS)—v(S).

Let y* and * be the egalitarian solutions and P* and * generated by Algorithm & for T and T,

respectively. Then y; = §7 = [y* =9" and P* = @*} Otherwise,
(95 >57 and j ¢ 0;(5")] = 9} <.

Proof. First of all, for any j such that y; <y} or y; = y; and y ¢ Qi(y"), y; =¥;, since there is
a sequence of subsets of players that can include all such players before selecting i according to
Algorithm & and the order of the subsets selected do not change the egalitarian solution. Let § be
the last subset of players selected before i is in I" and notice that there exists a sequence of subsets
of selected players for I" that replicates the sequences for I" up to S. Hence, for I, § is the largest
union of cliques excluding i that contains players with weakly lower payoffs than i at y*. Notice
that since i ¢ S, v(S) = $(S) forany S C §.

Now, consider any T C N that is a proper superset of §. I want to show that
- A v
That is, the clique of i at §* will be exactly the same as that of i at y*. First of all, forany T D S,
p(T)—7(S)

B N phl — *
HECRE R A
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by Lemma 2. Observe that, by the definition of Algorithm & in Definition 1,

T#(Qi(y)US) =e(T=5) >y =J;.

<>
~Ni
SN—

|

<>
I
9%
SN—"

Now, if i ¢ T, then ¥(T) = v(T). Hence, =e(T—S)>y; =3 Thus, let T >i.

Then ¥ (T) > v(T), which implies that

(D)=0(8) N =v(S) vD () g
r | o

Therefore, the clique of i at §*, Q; (§*), must be the same as Q; (y*) when y = §¥, which implies
v(SUQi(y) =9 (SUQi(y)) = v(T) = »(T)

forany T D (S UQ; (y*)) Hence, the subsets of players selected in Algorithm & will be the same
for I" and I, resulting in y* = §*. However, this does not imply that the two games are identical:
beyond the sequences of players selected by Algorithm &', no statement is ever made regarding the
values of the characteristic functions v(-) and ¥(-).

Now, for the second statement, when j ¢ Q;(y*) and y;f <7, )7;“- = y;‘.. So the statement is
satisfied. Hence, I should only focus on j € Q;(y*) or those such that y; > y?. Note that by the
proof of Theorem 1, if )7}5 > y7, then the statement is also satisfied. Hence, the players of interest
are only those in i’s clique at y* but not at ¥* and who receive the same payoff as i does at y*.

When j is not in i’s clique at * but receives weakly higher payoff than i, there must exist a
sequence of subsets of players chosen by Algorithm & for I such that j € (SH 1\§1) and i € S;.
This is achieved by running Algorithm & for I" and always choose the clique of i at §* first among

all players who are about to receive at least as much payoff as i does. Without loss of generality,

72



suppose j € (Sk11\Sx) for some k in the sequence of subsets of players generated by Algorithm &
for I'. Now, as in the proof of Theorem 1, let .§l— 1 be the first subset in the sequence chosen by
Algorithm & for I that contains all players in S1. Since j € (8;:1\S;), it must be the case that
[ > [ which implies that i € § 7. A similar sequence of inequalities as that in the proof of Theorem 1

provides the result and completes the proof. [

Lemma 9 (Secondary observations of e(+)). Given any monotone and concave cooperative game
I" = (N,v(-)) with transferable utilities in characteristic function form with the characteristic func-

tion being given by v(-), then
1. VSCTCRCN,e(R—T)=e¢(R—S)=e(R—S)=e(R—T)=e(T —S5);

2.¥T CRCNandS CRCN such that e(R—S) =e(R—T), then

max{e[R—(TUS)],e[R—(TNS)]} >e(R—S)=e(R—T).

Proof. Part of the proof for Lemma 9 will be very similar to that of Lemma 1, especially for the
second statement. I start with the first statement and consider the following manipulations that is

solely based on the definition of e(-).

R|—|T
1. Simply subtract H -e(R—T) from the equation below
e(R—S$) :v(R) —v(S) _ V(R) —v(T)+v(T)—v(S)
IR =S| IR —1S]
R -7 IT|—|S]
= e(R=T)+ ———-e(T—=S).
IRl =S [R| —1S]

2. By concavity of I', v(R) —v(T US) +v(R) —v(TNS) > v(R) —v(T) +v(R) — v(S). Follow the

same steps in the proof of the second statement in Lemma 1 and the proof is complete. [
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Theorem 2 (“Duality”). Let I' = (N,v(-)) be a monotone and concave cooperative game with

transferable utilities in characteristic function form with the characteristic function v(-). Then
1. Both Algorithm & and Algorithm & terminate in the same number K < N of steps;

2. For any sequence of subsets of N, {Sk}szl, generated by Algorithm &, there exists a sequence

of subsets of N, {Tk}kK:], generated by Algorithm &, such that T, = Sx_j, Y0 < k < K;
3. Moreover, the egalitarian solution y* is equal to the dual egalitarian solution y*;

4. Furthermore, {(T\Tis1)}o_y generated by Algorithm & coincides with 2* generated by

Algorithm & as defined in Lemma 3.

Proof. Note that statement 2 in Theorem 2 implies the rest of the Theorem simply by Definition 1.
Let {Sk}kK:1 be any sequence of subsets generated by Algorithm &. To prove statement 2 of
Theorem 2, it suffices to show that for all 1 < k < K, S;_; is a largest candidate among proper
subsets of Sy in Algorithm &. Suppose, instead, there exists an S C N such that §;_; C S C S; and

e(Sx —S) = e(Sx — Sk—1). Then, by Lemma 9,
e(S—Sk—1) = e(Sk — Sk—1) = e(Sk = S).

Then Sy, is not a smallest candidate among proper supersets of S_; in Algorithm & as defined in

Definition 1, thus completing the proof of Theorem 2. [
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B Omitted proofs and results from section 4
Lemma 10 (Super-Sub). For any (i, (6;,6_,)) € <N x ©F x (@B)”‘l),

w; (#(6;,0_,)6;) > u; (%#(6,,0_;)]6;), V8, C 6, € ©F
and

u; (%(9,’, 9_,') |9,) > Uj (% (5,’, G_i) |9,) , V@, D6 e ef
jointly implies that u; (% (6;,6_;)|6;) > u; (% (6],6-,) |6;) , V6] # 6; € ®F.
Proof. By the same logic as in (7),

U; (% (9{, 9,,') ‘9,') =u; (9? (91-,, 971') ’ (Qiﬂ 9{)) < u; (% ((Qiﬂ 91-/) ,971') | (Qiﬂ 91-,))

=u; (%((9,-06{) ,9,,') ‘91') < u; (%(9)‘91'). O

Lemma 11 (Applicability of Theorem 1). For all preference profiles 6 # 0 € (@B )n such that

there exists a unique i € N with 6; C 0; and 0; = éjfor all j #1i,

1i¢S=v(S|0)=v(S|6); 2.icS=v(5|0) <v(s]0);
3.ieSCT= v(T\é) —v(T10) < v(S\é) —v(816).

forall ;T CNand0<t<(T-—1).

Proof. Note that the first two conditions are immediately established by the definition of v(-|).

Hence, I will only check the third condition. For any R C N such that i € R,

v(R|é)—v(R\9):/ ldr—/ 1dr:/A ldr.
0UUje (ki) 65 6:UUje (ki) 65 (6:\6:)\(Ujerr 1) 67)
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WhenieSCT,

S\{hHcm\iph= U &< U 6
e\ e\

=6\ | U o (6:\6;) \ U
je(S\{i}) Je(T\{i})

V)

Therefore, the third condition is established. O]

Proposition 1 (C-PE-EF-SP). For any problem Il for a given set of player N, Mechanism % as

defined in Definition 4 is consistent, Pareto efficient, envy-free, and strategy-proof.

Proof. 1 start by showing envy-free-ness. Suppose there exists a preference profile 6 such that

there exist a pair of players i # j such that

T—-1
B(%(0)]6)) < {B[/ 12(0) d]}.
w; (%(0)]6;) IZZO B b (r)dr
Recall that, by definition,
T—1 (0
uf (%(0)6) = Y {ﬁ,B- [/ 1 )(r)dr]}.
t=0 0;:N[br,by41)

Then, there must exist a ¢ such that

g a1 e 18)
Gi,ﬁ[bhbH.]) eitm[bhbH-I)

That is, there must be a period r where j is assigned more within 6;; than is i. Of course, there
can be more than one such periods hence let the sequence t = {r,1,,- - - } represent the potentially

infinite sequence such that (18) is true. According to Mechanism %, for any ¢ in t, the division of
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[b,b;41) is determined in step (¢ + 1). Now, in step (¢ + 1), (18) must imply that

paty (@@10) +67| [ 1 Oar

#N[br,bry1) /

(19)
<paf@@loy+p’ | [ 1 O]
OieN[br,br11)

since if the inequality in (19) is reversed to “>", reassigning some goods from j to i, while still re-

maining feasible as mentioned before, will increase the value of the objective function Z Wii1(4)-
iEN
Since 0 < p; < 1 for all #, (19) implies that

\(2(0)]6)). (20)
Consider the sequences
5= {2k, 1) (2(0)16).5 . (#(8)18), -+ }

xjo = {1 1) (2(0)16).4%, ) (2(0)]6)), - .

where x;¢ is strictly greater than x ¢ term-wise. Clearly, both sequences converge with the limit of
x;t strictly less than that of x;¢ by the assumption of i envying j. This is a contradiction to (20)
when applied to the sequences x;¢ and x . Hence, Mechanism % is envy-free. |

I now turn to strategy-proof-ness. I first define several new notations. I represent the triple

<p,,xB ) with the symbol ¢. Define the game I'(¢y) as I'(¢;) = (N,v(-|¢)) where

JGS
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Similarly, define V(¢;) as {x eRY: ij <v(S|¢y), VS C N}. Also, e(-|¢y) is similarly defined
jes

ase < | 5,) was. Moreover, for any S C N and )'c'f , let Xﬁg represent the average of all xf, forall j € S.

Clearly, for each x € V(¢;), there existsay € V (é,) such that x = (p; X8+ BE. y). In each

step (¢ + 1) of Mechanism %, let y* <§,) represent the egalitarian solution of the game I" (5,) and

x*(¢,) represent the egalitarian solution of the game I'(¢,). Consider the cligues of any player j in

these two solutions. I want to show that these cliques are identical for any player j.

Take any S C T C N and S C T’ C N, by the definition of &,

e(T—S\ét)>e<T’—S\ét):>e(T—S]5t)—e< S|9,> ﬁ :
4
By the definition of p; with respect to &,

e(T'=516) —e(T =S|90) = B* - (e (T —516) —e (T - 518)))

Z]ETXB Z]ESXB Z]ET’XB ZJGSXB
T| -S| 7' =S|

S|e,) _p (T S|6t)>

B
‘ZjeT’x?t_Zjeijz

|
rx8 Zjesxjr
\T\ N

/e
7] —|S|

)

—Pr- (
<BE. (e(
<BE. (e(T Sye,)—e(T S|9t>)+2p,xt§—5,+2ptxt<0.
e(T—S|§t) >e(T'—S|§t) = e(T—S|¢)) > e (T' —5|9y).

As a matter of fact, the definition of the sequence {pt}tT:_I1 ensures that all strict inequalities in
period allocations and even cross type profile comparisons will be preserved when combined with

cumulative payoffs, a fact that will be often referred to shortly hence useful to keep in mind.
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Hence, when applying Algorithm & to the game I'(¢;) and T’ (ét), if a subset 7" is selected
before T when facing S in the game I' (é,) with strictly lower average payoffs, then it must also be
so in T'(¢). When two subsets resulting the same payoff in ' <§t) , the tie is broken by choosing
the one with lower average increase in cumulative payoffs discounted by p;. Hence, the cliques of
any player j at y* (é,) is precisely preserved at x*(¢). Since Algorithm & dictates that players in
the same clique have the same payoff, it must be

X (@) =pr 'fo(y*(éf)) +B7 Y] <§t> : (21)

J

Recall that x7(¢r) = ptx_?t + BBy (41 <§t>, which implies that

B A - B x(n
ﬁt yj(t—l—l) (91> =pPr- (foj(y*(ér)) —Xﬁ) +Bt -yj (9;) (22)
and converted into the context of 0:

) (0) =35(0) + By (8) = (1=p0)-B(O) -5y i) (0) 473 (6) . 23)

J

As mentioned before, it suffices to consider two preferences profiles 8 and 6 such that there exists
aunique i € N and 0 < 7 < (T — 1) such that 6; = éj if j #iand 6;; C 6z and 6;; = 6, if 1 # 7.
Now, since (6 N[0,b7)) = (6N [0,b5)), by payoff consistency, x7 (%(6)(6;) = x7. (% () |6;)
for all j € N. Observe that (23) implicitly implies that if two preference profiles are identical up
to br and after b, 1, differ in period ¢, but share the same y* (@) =y* (@)—which implicitly
implies, in turn, the cliques are all the same by Lemma 8—then all the payoff vectors in all periods
will be the same. Therefore, assume otherwise, which immediately implies that y* (éf) <y <§T>

Three conditions jointly will establish strategy-proof-ness: the deviating player cannot get a
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lower cumulative amount of assigned goods in the period of deviation or any future period when
deviating to a superset; the deviating agent must be getting a weakly lower payoff in the period of
deviation; and the difference between the cumulative amount of goods assigned must be lower in
periods after deviation than in the deviating period for the deviating player. I start with ensuring

that player i will not get a strictly higher payoff in period T—the second condition. (23) implies

B e () -3 ()] 2 s (3) -5 (40

(24)

Again, by the definition of pr, y; ((i) > y; <é}> = Vj(14+1) ((3;) > V(1) (é}) Now, consider
the clique of i at y* (§T>: if Q; (y* (é})) = {i}, then i is assigned all she demanded behind the
group <; (y* (é}) ), which will stays the same even when she reports ;. Hence, her payoff cannot
increase. If Q; (y* <5T) ) # {i}, then everyone in her clique at y* <é}> will receive higher payoff at
y* (51) and since the sum of the payoffs to a clique is a constant at any given egalitarian solution,
the deviating player i must be strictly worse off in period 7. Furthermore, (24) directly verifies the
first condition for strategy-proof-ness for the deviating period since y; <5T> > yi (é}) Now, for
the cumulative amount of goods assigned to i, first consider the deviating period.

Recall that according to the definition of ¢, define (137 = <pf,)?f, (i) . Notice now that the games
['(¢;) and T ((]ST) are merely monotone linear transformations of I' (é}) and I’ (5¢> , respectively,
and the comparison between the latter two games satisfies the three conditions in the statement of

Theorem 1 by Lemma 11. Thus, Theorem 1 directly applies to the former two games, i.e.

xﬁr—i—l) (9) _xﬁf—i—l) (6) > x?(’f-i—l) (9) _xf(r-i—l) (6), VjEN. (25)
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Moreover, since any j’s payoffs are the same before period 7 in the two type profiles,

ity (0) =<1y (0) =BE - [yjesn) (6:) = vjienn) (7))

=p2 3 (8¢) -v; ()] @)

Since 6 and 6 will coincide again after by, 1, take any 7’ > (t+1), by (23),

Xig

(8) —8 (0) =(1—p1)- (o) (8) =i (8))

~ N J/
©)

[\

®9

) (27)
101 (e a6, @ e vaeie @)

J/

®

Clearly, both @ and ® are weakly less than rjnez}\)]; { <xf(r/_1) () —xf(f,_l) (9)) }, which implies
that so must be @ as well. Therefore, the difference in cumulative payoff between the superset and
the subset is weakly less in periods after than in the period of the bifurcation, when the maximum
difference in payoff between supersets and subsets is captured by the deviating player by (26)! This
implies that deviating to supersets will result in weakly lower payoffs in periods after deviation.
Combined with the fact already proven that payoff is also weakly lower in the period of deviation,
deviation to supersets can never be profitable.

Now, it only remains to show that deviating to supersets does result in a higher cumulative
amount of goods assigned, which means that @ must be nonnegative for all T’ > (74 1). T will

prove this by an induction on 7’ about the following statement:

5,(0) —x,(6) > Ay > 0. (28)
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Note that the second inequality is by the definition of the sequence {At}thl. When v/ = (t+1),

i (é) _xi/ (0) > 6 — pexr > min{ (1 —pr)Ar — pr)e, 6 — Prie} = Acyi
by the definition of A;; 1. Now, suppose (28) is true for some 7/ > (74 1). For (7' + 1), by (27),

x?(‘l?’-i—l) (é) _xﬁr’ﬂ) (9) = (1 _Pr’) ( it (é) Nt (9))

+pv (ff,Qi(y*(;,» (6) =0, (8.)) (9>) (29)
>(1=py)Ay — pyxy = min{(1 — pr)Ay — pr v, 0y — Pr Yo} = Ay > 0.
This completes the proof for strategy-proof-ness. [

Theorem 3 (Non-inferiority and complementarity for concave cooperative games). Let two coop-
erative games T = (N,v(-)) and I'= (N,9(-)) be concave and such that there exists a unique i such

that, for all S C N
1.i¢gS=v(S)=79(S), 2.i€S=v(S) <HO9).

Forany j €N, let fj : Ry — R be strictly increasing, strictly concave, and continuous on R . Let

y* =argmax ¥ fi(y) and §" = argmax ¥ £;(;).
VeV N eV jen

Then there exists an S* C N such thati € S* and y; >y}, Vj € S".

C Omitted proofs from section 5

Lemma 12 (Refinement of a problem). For any problem I1 = (b,B, T,08 ,,BB), there exists a

problem I1 = (b,B, T,058, [33 > where B is a strictly increasing sequence with by = 0, B is a sub-
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sequence of B, zlf; = ﬁlB if [Bt/, by +1} C [bs, b4 1), and for each 6; € @B, there exists a subsequence

B = {B;}ZO of B such that )
7
o= U (BB (12)
=0
Proof. Notice that since the restrictions of the type space to the different intervals in the original
problem IT are mutually exclusive except for the elements in the sequence B, it suffices to show
that each interval [b;, b, 1] can be partitioned into a collection of intervals so that for all 6; can be
represented in the format of (12). Recall that restriction of @8 to (b1, bry1], G)f , 1s finite, consider

k3

p=1 where no each

a sequence of all the restrictions of all the types in ®F to [b;,b;11], {6i(p)}
restriction appears exactly once. For any subset / of R, that is the union of a collection of discon-
nected intervals, let dp (I) represent the partition of of  into connected intervals that are mutually

disconnected. That is, for all  and 7 in dp (1), there exists an interval [ "C R, such that
I' ¢ [inf {{UT} ,sup{UT}]

Note that dp () is a collection of subsets of I. Moreover, for any collection 1 of subsets of
Ry, let cl(n) be the collection of the closures of the elements of 17. Now, consider the following

sequence of collections of subsets of [b;,b;1]: let n(1) =dp(6;(1)). For any p > 1, let

n(p+1)={LNh, hH\L,L\I, : Iy €n(p), > €dp(6:(p+1))}.

Finally, n (‘@f | + 1) =cl (n (|®§9 D) Clearly, each 6;(p) is the union of elements in 1 (p). Note
thatin n (‘@ﬂ + l), each element is a closed interval and all restriction of types are closed sets. By

construction, the period 7 restriction of any type 6 is the union of intervals in 1 (|®f ‘ + 1). U
Proposition 2 (Price of anarchy). Let I1 (-l—oo,B, o0, ef , ﬁg ) be an infinite refined problem with
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a finite set of players N, where @8 is the set of all infinite unions of intervals in {[b;, by+1] }%- The

price of anarchy of %y for I is at least n = |N|. The price of anarchy of Mechanism % for Il is 1.

Proof. 1 first show that in an infinite refined problem with the type space being the collection
of all infinite unions of the batches or periods, truth-telling is a strictly dominant strategy for all
players in Mechanism %. Hence, all player telling the truth becomes the only pure strategy Nash
equilibrium and the price of anarchy of 1 immediately follows. Given any profile 6_; of players’
types other than the deviating player i’s, consider any 6; # 6; where 6; is i’s true type.

Let period ¢ be the first where é,- and 6; differ. Note that in a refined problem, either éit C 6; or

0;; C éit. Let 6; = é,- Nneo;. If éi, C 6;, by Lemma 10 and strategy-proof-ness of Mechanism %,
ui (% (6,6-)16;) = u; (% (6:,6-:)16;) < u; (% (6:,6-)6;) =u; (% (6,,6-:)16,).  (30)
Now, let 6; be given by replacing 6; = ;, with 6;; and keeping all other periods intact in 6. Then
ui (% (6;,0-:)16;) > u; (% (6;,6_) |6;) = u; (% (6;,6-:) |6;) . (31)

Focus on the comparison between 6; and ;. Note that (28) implies that

u; (% (éi, 9,,') ‘él) > U; (L@ (éi, 9,,') |él) = u; (:@ (éi, 9,,') |9,) . (32)
Combining (30) through (32) shows that truth-telling is strictly dominating 6; when 6; C 6;,. Now,
consider otherwise: 6;; C éi,. Notice that in this case, 6; = 6;. Again, (30) still applies. Now,
define 6; by replacing 0;, with éi, and keeping all other periods intact in 6. Hence, 6; C 0.
Define 5, and Q, by combining 6; and 0,, with the other players’ types in period ¢. Now, it can

easily confirmed that y; (é) <yi (ét> but y’ (5,) > Y] (ét> for all j # i. This implies that the
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cumulative payoffs before [b;1,b; ] is divided is strictly higher only for i at ét but strictly lower
for all other players by (26) and the definition of p;,’s in Definition 3. This, in turn, implies that, by
(27), player i’s cumulative payoff after any period including and beyond (¢ + 1) will strictly lower

than it was after period r when her report is 8,. Therefore, we have
u; (% (Ql-, 9_5) ‘9,) = U; («@ (Ql-, 9_,-) ’él) < U; (% (éi, G_i) |él) = U; (% (éi, O_i) |9,) . (33)

Moreover, by strategy-proof-ness of Mechanism %, u; (% (él-, 9_,-) |6i) <ui (#(6;,0_,)|6;). Also
recall that Mechanism % is payoff consistent and 6; and 6; coincide up to b, while 6 ; and 0; are

the same beyond b ;. Therefore,
ui (% (0;,6-i)|0;) <ui(#(0,,6-:)10;) = u; (% (6;,6-:) |6;) <u; (#(0,,6-:)]6:). (34

Combining (33) and (34) and the strategy-proof-ness of Mechanism % yields truth-telling strictly
dominates é,- when 6;; C é,-,. Thus, truth-telling is a strictly dominant strategy in Mechanism .%7. B
I now turn to show the lower bound on the price of anarchy of %. Given a preference profile

0, define N;(0) to be the set of players whose types include [b;,b; 1] as a subset, i.e.

N;(0)={jE€N:[by,br1] CO;}.

- biy1—b
Now, the division given by % is extremely straightforward: y; (9,) = W if j € N;(0) and
t
zero otherwise. Then, for any player i, any strategy o;(+) such that
0;(6;) 26 (35)
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is a weakly dominant strategy. Consider the strategy profile o such that 6;(6;) =1, forall j € N
and 0; € ®B. That is, all players, regardless of their types, always demonstrate demand for the
entire set of goods to be divided. This is actually one of the most likely scenarios in division of
public resources without monetary transfers, a version of the phenomenon Moulin (2004) referred
to as the “tragedy of the commons”. Hence, it suffices to propose one type profile that results in
ratio in the definition of the price of anarchy being N. This is a very simple task. Simply consider

the following profile of types:

9]' = U [bnz—i-j—l ) bnz+j]'
ze€(NuU{0})

In each period, there is only one player who truly demands the goods but all players demonstrate

need. %, will assign to each player a fair share of 1/n, which results in a price of anarchy of n. [
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