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Abstract

In this paper, I study dynamic and sequential fair division problems for players with di-

chotomous preferences and devise a systematic approach of designing efficient, envy-free, and

strategy-proof mechanisms for any generic problem. The mechanisms developed here can ac-

commodate common discount factors to represent players’ time preferences between different

periods. I also show that the mechanisms proposed in the current research outperform in ef-

ficiency the repeated applications of a static strategy-proof mechanism by a factor of the size

of set of players in refined problems with unbounded demands. I also contribute a novel com-

parative statics result on the egalitarian solutions to monotone and concave cooperative games

with transferable utilities in characteristic function form. In the process of doing so, I discover

a duality-like property of the egalitarian solutions and reconcile the seemingly contradictory

process to the objective in the search for them. Finally, I highlight the relative importance of

identifying the correct order of priority over choices of payoffs in the pursuit of equality.

1



1 Introduction

Many interesting assignment and division problems in reality present themselves in a dynamic or

sequential manner. A production process may be subject to such procedural constraints that the

final product must be produced with several input factors, some of which can be the intermediate

output of other cruder materials. Privately supplied public resources may be available for allocation

for a certain amount of time, beyond which the supply contract may be renegotiated and the allo-

cation of the resources must be redetermined. The most important distinction between static and

dynamic assignment problems manifests itself in scheduling problems. Conference rooms must be

scheduled for meetings among different committees; Landing strips must be scheduled for flights

flown by various airlines; And cloud computing servers must be scheduled to accept competing

computational tasks. In each of these examples, it is fairly unreasonable to require all parties to

appear in front of a central distributor with their demand for the resources over the entire time hori-

zon or the full assembly line. Hence, production tasks of rubber are distributed before those for

the wheels, welfare electricity supplies to low income families are rationed annually, and library

books must be returned and recirculated for each semester. Such problems of dividing resources

or tasks with procedural or periodic constraints are the subject of the current research project.

What complicates the matter even more is the fact that each party’s demand for the resources

is very often her own private information. When workers are about to be assigned to shifts on a

common workstation, the manager (the principal) probably has very little idea on the hours the

workers (the agents) are available for, although the workers will most likely retain this information

from their own calendar1. Clearly, the manager would like the workstation to be occupied and

running as much as possible hence would prefer to assign shifts only to workers who will actually

be available during their assigned shifts, indicating higher efficiency from the workstation. In other

1I thank Balázs Szentes for suggesting this example.
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words, the agents’ private information poses the classical challenge to allocative efficiency. By ex-

tension, full efficiency may become achievable for certain only when the principal can incentivize

the self-interested agents into honest disclosure of their private information. Moreover, to avoid

switching shifts, the principal would most likely prefer to chart the shifts so that no agent is more

available during other’s shift than during her own, i.e. the shifts should induce no envy among

the workers. Therefore, the goal of this paper is to systematically design scheduling or division

mechanisms for dynamic or sequential settings that are efficient, strategy-proof, and envy-free2.

The main contributions of the current study come in two aspects. For applications, I develop

a systematic design of scheduling mechanisms satisfying the aforementioned properties for agents

endowed with dichotomous preferences3. On a theoretical level, I provide a novel comparative

statics result for the egalitarian solutions of monotone and concave cooperative games with trans-

ferable utilities in characteristic function form. To be expected, the former contribution comes as

an extension and implication of the latter. I shall now briefly discuss these results, starting with

the second. The set of all feasible payoff profiles is convex in a monotone and concave cooperative

game. The egalitarian solution of such a game provides the payoff vector that is more equal than

any other feasible payoff vector in Lorenz terms: the collective payoff of any number of the worst-

off players in the egalitarian solution is higher than the same quantity in any other feasible payoff

2It as been widely documented in the assignment literature that envy-free-ness is the strongest notion of fairness,
implying various others such as proportionality or fair share, where each player receives at least a 1/n fraction of her
maximum achievable payoff in a population of size n. See Brams and Taylor (1996) for a standard textbook treatment
and introduction. Envy-free-ness was first proposed by Foley (1967). An often cited advantage of adopting envy-
free-ness as a fairness measure is that envy-free-ness does not involve comparisons of the same allocation according
to different players’ preferences. On the exact opposite, envy-free-ness only requires comparing different bundles
according to a given player’s preferences, avoiding the controversy associated with double-standards.

3Extensive computer science literature has also studied similar problems in the context of algorithmic game theory
and mechanism design. For an excellent introduction and/or collection of known results and challenging open ques-
tions, please see Nisan et al. (2007). Problems including scheduling and fair divisions (also known as “cake-cutting”)
in the dynamic mechanism design context have also been discussed in the computer science literature under the topic of
online mechanism design. Finally, dichotomous preferences have also been referred to as piecewise uniform valuation
densities in the computer science parlance.
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profile. The comparative statics result shows that, when some single player introduces more payoff

opportunities to a concave game—effectively generating another concave game, this single player

should be given the largest increase in payoff in the egalitarian solution of the new game.

In the process of establishing the comparative statics result, I also discovered an intriguing

duality-like feature of the egalitarian solution. The search for the egalitarian solution was first

accomplished by Dutta and Ray (1989) algorithmically for convex cooperative games and was

later converted for concave cooperative games by Chen et al. (2013). The essence of this pair of

algorithms are roughly as follows: recursively minimizing the average incremental payoffs among

the worst-off of the remaining players leads to the egalitarian solutions in concave games. The

most interesting feature in these algorithms is that minimizing poor agents’ payoffs runs exactly

against the spirit of Lorenz dominance favoring rich-to-poor transfers. Following this route, I will

show that recursively maximizing the average leftover payoffs among the best-off of the remaining

players also lead to the same unique egalitarian solution. I refer to this process as the “dual” of the

aforementioned algorithms for its evident mirroring appearance of the original algorithms.

I reconcile this conflict in the process and result of reaching Lorenz dominance posed by the

original and dual algorithms with the following interpretation. More important than the choice

of payoffs in achieving egalitarianism is the correct order of priority among the players. In all

algorithms, players who end up with lower payoffs also have their joint demands satisfied before

players with higher final payoffs do. In the original algorithms in Dutta and Ray (1989) and Chen

et al. (2013), players are selected to be awarded their demand while bumping players who have

not been chosen yet to lower priority orders. On the other hand, in the dual algorithm presented in

this paper, players are selected to yield to players to be selected later. The endogenous tradeoffs

between the order of priority and payoffs eliminate any potential Lorenz improvement by the way

of rich-to-poor transfers, necessary for the proposed solution concept to be Lorenz dominating any
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other feasible payoff profile. Furthermore, Dutta and Ray (1989) showed that any other feasible

payoff vector can be sequentially Lorenz improved to the egalitarian solution, testifying the latter

being the only vector that Lorenz dominates all other payoff vectors. Accompanying the dominant

feature of the egalitarian solution is its nature of being the maximizer of separable, increasing, and

strictly concave functions of the players payoffs. Several previous work including Dasgupta et al.

(1973), Rothschild and Stiglitz (1973), and Shorrocks (1983) have shown the equivalence between

the maximizer of such collective welfare functions and the Lorenz dominant income distribution.

To apply the static comparative statics result to the dynamic setting, I consider a carefully

chosen adjustment of the egalitarian solutions in period t based on the cumulative payoffs of the

players before this period. The correlation between the previous cumulative payoffs and the cur-

rent deviations from the egalitarian solution is designed to be mildly but strictly negative with a

magnitude always strictly less than 1. Hence, higher (lower) previous cumulative payoffs for a

certain player become a handicap (benefit) or punishment (reward) for the current allocation. The

motivation for such a seemingly insignificant and definitely delicate maneuver is two-fold. First,

combined with the collective utility maximizing feature of the egalitarian solution, envy-free-ness

directly translates into dynamic settings, the reason for which is equally transparent: were some

player, say 2, allocated more in some other player, say 1’s, shift than is player 1, it must be the

case that player 2 is currently rewarded for having a much lower previous cumulative payoff than

has player 1 (since the forenamed correlation is small and negative), which implies that player 1’s

cumulative payoff at the end of the current period must be strictly greater than player 2’s.

Much more importantly, for a class of refined division problems, such negative correlations

render truth-telling a strictly dominant strategy, making all players telling the truth the only equilib-

rium. The efficiency implication of achieving such equilibrium selection is much more significant

than the incentive implication. In particular, when compared to the simple repeated application
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(a mechanism referred to as R0) of the static strategy-proof mechanism presented in Chen et al.

(2013), the minuscule negative correlation rules out a vast range of weakly dominant strategies that

survived R0. For the measure of efficiency, or lack thereof, in R0, I adopt the predominant notion

of “price of anarchy”4 from the computer science literature. This measure captures the ratio be-

tween the maximum achievable total payoff of a preference profile to the lowest total payoff given

the same preference profile in any pure strategy Nash equilibrium and describes, in general, the

spread between the maximum and minimum total payoffs in any preference profile and equilibrium

combination. Hence, a higher price of anarchy signals a worse efficiency performance. Vis-à-vis

R0, the mechanism proposed in this paper achieves full efficiency with a price of anarchy of 1

while the price of anarchy for R0 is a considerable n, the number of players.

Aside from being greatly inspired by Dutta and Ray (1989) and Chen et al. (2013), to which

the current research owns a tremendous amount, this paper also borrows from several other strands

of literature. The first group of literature deals directly with the problem of fair divisions, with

existence results dating back to Neyman (1946), Steinhaus (1948), and Weller (1985). These

papers address the fundamental issue of the sufficient conditions for the existence of efficient and

envy-free divisions and offer generously affirmative answers in groups of domains. More recent

work in the same realm include Aziz and Ye (2013), Brams et al. (2006), Brams et al. (2008),

Mossel and Tamuz (2010), Procaccia (2013a), and Procaccia (2013b) with an introductory text in

Robertson and Webb (1998) and a more methodological work from Barbanel (2005).

In the extensive study of the assignment problem, also known as the “one-sided matching prob-

lem” in Zhou (1990), Hylland and Zeckhauser (1979) and Bogomolnaia and Moulin (2001) are

two phenomenal contributions. As a matter of fact, the static version of the current research, Tian

(2015), stands right at the intersection of these two papers and offers arbitrarily asymmetric gener-

4The first formal introduction of this notion into the computer science literature is believed to be due to Koutsou-
pias and Papadimitriou (1999).
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alizations of the symmetric static mechanism in Chen et al. (2013) where in Tian (2015), strategy-

proof-ness is still maintained. The most recent contribution in assignment problem, Hashimoto

et al. (2014), offers two axiomatic characterizations of the probabilistic serial mechanism first

proposed in Bogomolnaia and Moulin (2001). Other research in this strand include Alkan et al.

(1991), Bogomolnaia and Moulin (2004), Budish et al. (2013), Crès and Moulin (2001), Kojima

and Manea (2010), and Mennle and Seuken (2014).

The current application of the equivalence between Lorenz dominance and the maximization

of a collective welfare function is first inspired by Quah (2007), which is one of the recent contri-

butions in a seminal line of research in the relationship between complementary, super-modularity,

and monotone comparative statics pioneered theoretically by Topkis (1978) and compiled in Topkis

(2001), with a series of other stellar results including Antoniadou (2004a), Antoniadou (2004b),

Antoniadou (2007) (all on consumer’s problem), Athey (2002) (uncertainty), Kukushkin (2011)

(objective versus constraint changes), Milgrom and Shannon (1994), Quah and Strulovici (2009)

(informativeness), Vives (1990) (equilibrium with strategic complementarities), and Vives (2001)

(oligopoly pricing). Finally, an ever growing field of dynamic mechanism design, although all

dealing with dynamic auctions or contracting, provides incredible insights with Athey and Segal

(2013), Bergemann and Välimäki (2010), Gallien (2006), Gershkov and Moldovanu (2009), Pai

and Vohra (2013), and Pavan et al. (2013).

The rest of the paper is organized as follows: section 2 presents the model and introduces no-

tations; section 3 exhibits the comparative statics result of the egalitarian solutions for monotone

and concave cooperative games with transferable utilities in characteristic function form; section 4

demonstrates the design of the dynamic mechanisms; section 5 discusses the efficiency impli-

cations of the negative correlations between previous cumulative payoffs and current allocations

given by the mechanism in section 4; the last section concludes and proposes future research.
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2 The Model

A continuum Ib ≡ [0,b) with 0 < b ≤ +∞ of heterogeneous indivisible public goods or resources

must be allocated among a finite set of players N ≡{1,2,3, · · · ,n}, with i∈N representing a typical

player. For convenience, I shall refer to the distributor of the goods or the mechanism designer in

discussion as player 0—N∪{0} will be called the extended set of players. Let I+∞ ≡ R+, the set

of all non-negative real numbers. Each public good or resource r ∈ Ib can be assigned to at most

one player simultaneously. Therefore, I refer to any division of the interval Ib such that any good

is assigned to at most one player among N as a feasible division. A feasible division C of Ib is

then defined to be a function C : Ib→ N ∪{0} where for all r ∈ Ib, C(r) = i ∈ N means that good

r is assigned to player i according to C. C(r) = 0 means that the good r remains unassigned or

wasted according to C. Clearly, for any feasible division C and r ∈ Ib where C(r) = i, the division

C′ generated by letting C′(r) = j 6= i and C(r′) =C′(r′), ∀r′ 6= r is still feasible. Let Cb represent

the set of all feasible divisions of Ib.

In this paper, I focus on the sequential or dynamic division of Ib by batches or periods. The

sequential division problem describes scenarios where the entire set Ib is available up front for

allocation but must be assigned in a discrete number of steps. The dynamic division setting can

cover more general scenarios where at any point r ∈ Ib, only a limited interval [r,r′]⊆ Ib is available

for division while the rest will become available at r′ at the latest. To this end, let Bb ≡ {bt}T
t=0

be a strictly increasing sequence such that b0 = 0, 0 < bt ≤ b and bt < +∞, ∀1 ≤ t ≤ T where

1 ≤ T ≤ +∞. Moreover, when b < +∞, let T < +∞ and bT = b. In the sequential setting, the

interval [bt ,bt+1] ⊆ Ib represents the batch of goods or resources to be divided among the players

in step (t + 1)—after the interval [0,bt ] but before the interval [bt+1,b) are divided, while in the

dynamic setting, [bt ,bt+1] represents the interval to be divided in period t, with time running from

period 0 to period (T −1). Equivalently, elements of B mark the end points of the batches of goods

8



to be divided together or the start and end points of the time periods between which the resources

must be divided all at once. I require any Bb = {bt}T
t=0 to be such that

T−1⋃
t=0

[bt ,bt−1] = Ib.

In other words, the sequence of intervals {[bt ,bt+1]}T−1
t=0 uniquely defines the batches or periods of

division, the union of which is the entire set of goods to be assigned. Bb will be referred to as a

segmenting of the underlying Ib from now on. I shall also omit the subscript b from Bb and simply

use the notation B since a segmenting completely characterizes an Ib henceforth where |B|= T +1.

Each player i is endowed with a type θi⊆ Ib that induces some dichotomous preferences among

all feasible divisions of Ib. Assume all possible types are unions of potentially infinitely many

mutually disconnected closed intervals within Ib. Given a certain segmenting of Ib, B, let ΘB ⊆ 2Ib

represent the set of all possible types of any player, where 2Ib is the set of all subsets of Ib. Without

loss of generality5, assume Ib ∈ΘB. Let θ ≡ (θ1,θ2, · · · ,θn) ∈
(
ΘB)n be the vector of the players’

types, to which I will refer as the profile of the players’ types or preferences. I use the notation

(θi,θ−i) = θ to single out player i’s type from the profile θ , where θ−i represents the profile of

all players’ types except for i’s. For any [bt ,bt+1], define Θ
B
t ≡

{
θ ∩ [bt ,bt+1] : θ ∈Θ

B} ,∀0≤ t ≤

T−1. I refer to ΘB
t as the the restriction of ΘB to batch (t+1) or period t (or simply “to t”). The

restrictions of θi and θ to t is similarly defined to be θit ≡ θi∩ [bt ,bt+1] and~θt ≡ (θ1t ,θ2t , · · · ,θnt).

For tractability, I make the following assumption regarding ΘB
t :

Assumption 1 (Finite type space). Given any triple (B,T,ΘB),
∣∣ΘB

t
∣∣<+∞,∀0≤ t ≤ (T −1).

Assumption 1 is equivalent to stating that |ΘB| is finite when T is finite but does not imply

so when T is infinite. It simply limits the variety of the players’ types to a finite set within each

5Were there an I ⊂ Ib such that I 6⊆ θi for any θi ∈ΘB, disregard I and consider the problem with Îb̂ ≡ (Ib\I).
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batch or period. Moreover, no assumption is implicitly made within Assumption 1 regarding the

richness of ΘB
t as compared to 2[bt ,bt+1]—ΘB

t can be arbitrarily large, although the finiteness of

|ΘB
t | is indispensable. Without loss of generality, also assume that θ ∈ ΘB and θ ′ ∈ ΘB implies

that (θ ∩ θ
′) ∈ Θ

B and (θ ∪ θ
′) ∈ Θ

B. Any ΘB satisfying Assumption 1 will be referred to as a

type space compatible with B. It is worth pointing out that there definitely can be multiple type

spaces compatible with a segmenting.

I interpret such subset types as the players considering goods within their types attractive or

acceptable and those outside unattractive or unacceptable. However, it should be noted that any

goods outside the players’ types do not generate any disutility to the players—the players are

simply indifferent between being assigned such goods and otherwise. Specifically, let 1C
i : Ib →

{0,1} be the indicator function for player i generated by a feasible division C such that 1C
i (r) = 1

if C(r) = i and 1C
i (r) = 0 otherwise. To accommodate linear substitution between different batches

or time preferences between different periods, given any segmenting B of Ib, let the sequence

β
B
i ≡

{
β

B
it
}T−1

t=0 represent the marginal utilities of the goods within the respective batches or the

discount factors of respective periods. I will loosely refer to the sequence β B
i as being the discount

factor compatible with B for player i—please keep in mind that β B
i also represents the relative

value of the different batches for player i in the sequential background. For players’ utilities to be

well-defined, especially when T is infinite, I make the following assumption:

Assumption 2 (Finite utility). For any triple (B,T,β B
i ) with β B

i compatible with B for i,

β
B
it ≥ 0, ∀0≤ t ≤ T −1, and χ

(
B,β B)≡ T−1

∑
t=0

β
B
it · (bt+1−bt)<+∞.

Given a feasible division C and a segmenting B, let uB
it(C|θi) represent player i’s period-t utility
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with her type being θi. Therefore,

uB
it(C|θi)≡

∫
θi∩[bt ,bt+1)

1C
i (r)dr.

Clearly, 0 ≤ uB
it(C) ≤ (bt+1− bt). Combined with Assumption 2 and the corresponding β B

i , let

the player i’s canonical utility with type θi and certain fixed B and C be defined as the discounted

sum of period utilities: uB
i (C|θi)≡

T−1

∑
t=0

β
B
it ·uB

it(C|θi). This canonical utility represents the player’s

utilities when they have linear preferences among the various batches of acceptable goods in the

sequential interpretation and the present discounted amount of resources they receive in a certain

feasible division in the dynamic setting. All results in this paper still hold when players’ utilities

are strictly increasing in their canonical utilities. I may use the symbol xB
it̄(C|θi) to stand for the

cumulative utility for player i up to bt̄ . That is,

xB
it̄(C|θi)≡

t̄−1

∑
t=0

(
β

B
it ·uB

it(C|θi)
)
.

Without loss of generality, normalize xB
i0(C|θi) = 0 for all (i,C,θi) ∈ (N×Cb×ΘB). I shall also

use the symbol~uB
t (C|θ) to represent the vector of all players’ period-t utilities with the type profile

θ for a feasible cut C and similarly for~xB
t̄ (C|θ). I make one more crucial assumption regarding the

discount factors serving the emphasis of this paper on allocating the resources to the players who

find them acceptable, while shying away from the possibility of player-specific discount factors.

Assumption 3 (Common discount factors). For any pair (B,T ), there exists a vector of discount

factors β B such that β
B
i = β

B,∀i ∈ N. β B will be referred to as a common discount factor com-

patible with B for players in N.

Certainly, there can be more than one common discount factor compatible with a segmenting
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B, just like multiple B-compatible type spaces are allowed. As restricting as Assumption 3 for a

common discount factor may seem, it still entertains various interesting applications. For example,

the sequential setting is similar to a sequential auction of multiple objects on which the bidders

share common values. The difference between a sequential auction and sequential divisions is

that players have common relative values between different batches but maintain acceptance or

rejection within a batch in the latter—in a sequential auction, players are generally assumed to

receive different signals. On the other hand, in the dynamic setting and especially when β B
t ≤ 1,

∀0≤ t ≤ T −1, β B
t can be interpreted as the ex ante (that is, at time 0) probability that the interval

[bt ,bt+1] of goods will be available for division at time bt at the latest.

To summarize the various aforementioned elements, I formally define a sequential or dynamic

division problem (henceforth abbreviated as “problem”) Π to be a quintuple (b,B,T,ΘB,β B)

where B is a segmenting of Ib, |B| = T + 1, and both ΘB and β B are compatible with B. If T

is finite (infinite), Π will be referred to as a(n) finite (infinite) problem. Given any sequential

or dynamic division problem Π and fixing a type profile θ ∈ (ΘB)n, a feasible division C of Ib

is Pareto efficient at θ if and only if there does not exist another feasible division C′ 6= C of Ib

such that uB
i
(
C′|θi

)
≥ uB

i (C|θi) ,∀i ∈ N, with the inequality being strict for at least one player i. A

feasible division C of Ib is envy-free at θ if and only if

uB
i (C|θi)≥

T−1

∑
t=0

{
β

B
t ·
[∫

θit∩[bt ,bt+1]
1C

j (r)dr
]}

,∀(i, j) ∈ N×N.

Both definitions are conventional: at any given type profile, a feasible division C is Pareto efficient

if and only if there does not exist another feasible division that, at the fixed type profile, strictly

benefits some player without hurting any; C is envy-free at the fixed type profile if, for any player

i, replacing the goods assigned to i with the goods assigned to j never strictly benefits i.
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I shall now very briefly formulate the information structure of the environment to place such

division problems into the context of mechanism design. Given any problem Π, all elements of

Π—b, B, T , ΘB, and β B—are common knowledge among the extended set of players N ∪{0}.

Any player’s type is her own private information, although it could potentially be only partially

revealed to her batch(es) by batch(es) or period(s) by period(s). In particular, θit must be revealed

to i before [bt ,bt+1] is divided, but no other assumptions are made regarding the revelation of the

batch or period restrictions of the types to the players. For example, θi(t+t ′) for 0 < t ′ ≤ (T − t−1)

can be allowed to be conditional on or correlated with θit , embodying the situations where players’

preferences may be evolving in a way depending on their previous types.

Give a problem Π, a direct sequential/dynamic division mechanism (henceforth, “mecha-

nism”) is therefore defined to be a function M :
(
Θ

B)n → Cb, where recall that Cb is the set of

all feasible divisions of Ib. Let M(θ)(r) ≡ C(r) if and only if M(θ) = C,∀r ∈ Ib. The range of

any M being only Cb entails that no monetary transfer is allowed in such mechanisms. Due to

the aforementioned uncertain nature of the future types, I restrict attention to mechanisms that are

only history dependent, at least in a payoff-equivalent sense. A mechanism M is sequentially or

dynamically payoff consistent (henceforth, “consistent”) if ∀
(
θ ,θ ′

)
∈
(
Θ

B)n×
(
Θ

B)n
and 0 <

t ≤ t̄ ≤ T −1,

[
θt = θ

′
t , ∀t ≤ t̄

]
⇒
[
~uB

t (M(θ)|θ) =~uB
t (M(θ ′)|θ ′), ∀t ≤ t̄

]
.

That is, for any two type profiles that are identical up to bt̄ , a consistent mechanism must be

choosing the same payoff vectors for all periods up to bt̄ . A consistent mechanism is also consistent

in the sense of cumulative payoffs up to bt̄ for all 1≤ t̄ ≤ T .

The efficiency and fairness measures of any mechanism are defined by the natural translation of
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corresponding properties for the feasible divisions. Specifically, given a problem Π, a mechanism

M is Pareto efficient if and only if M(θ) is Pareto efficient at θ for all θ ∈
(
ΘB)n. M is envy-free

if and only if M(θ) is envy-free at θ for all θ ∈
(
ΘB)n. For the strategic property and equilibrium

concept, I strive for the strongest form of truthfulness, namely strategy-proof-ness. Given a prob-

lem Π, a mechanism M is strategy-proof if and only if for all i∈N, for all
(
θ , θ̂

)
∈
(
Θ

B)n×
(
Θ

B)n

such that θi 6= θ̂i and θ j = θ̂ j for all j 6= i, then

uB
i (M(θ)|θi)≥ uB

i
(
M
(
θ̂
)
|θi
)
.

That is, any unilateral pretense of being different from one’s true type can never strictly benefit the

pretending player—the argument of M(·) represents the types players report to the mechanism

while players’ payoffs are only conditional on their true types. Implicit in the efficiency and

fairness measures of the mechanism is the focus on only when the players are reporting their

true types: no such measures are defined for the off dominant strategy equilibrium deviations from

truth-telling in a strategy-proof mechanism in the central results in this paper. However, efficiency

loss as a result of untruthful reports will be discussed as extensions later.

The goal of this research is to systematically design a class of Pareto efficient, envy-free, and

strategy-proof mechanisms for each problem. I would now first take a crucial detour to introduce

the egalitarian solutions (see Dutta and Ray (1989)) of concave cooperative games with transferable

utilities in characteristic function form (see Chen et al. (2013)) and provide the novel comparative

statics results on this solution concept. For almost all of the following results, the distinction

between subsets (supersets) and proper subsets (proper supersets) can be significant. Hence, it is

worth point out that ⊂ and ⊃ represent proper subsets and proper supersets, respectively, while ⊆

and ⊇ are symbols for (potentially equal) subsets and supersets, respectively.
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3 The egalitarian solutions of concave cooperative games

3.1 Preliminaries and previous results

A cooperative game with transferable utilities in characteristic function form Γ (with the

characteristic function v(·)) is defined to be a pair Γ≡ (N,v(·)), where N is the finite set of players

with |N|= n <+∞ and v : 2N →R. I focus on one family of cooperative games that closely fit the

context of divisions, namely the monotone and concave ones. First of all, let v( /0) = 0. Moreover, Γ

is called monotone (or “monotonically increasing”) if and only if for all S⊆ T ⊆ N, v(S)≤ v(T ).

The game Γ is called concave if and only if

v(S∪T )+ v(S∩T )≤ v(S)+ v(T ),∀S,T ⊆ N. (1)

Note that if Γ is monotone and concave6, then v(S∪T )≥max{v(S),v(T )} and when S∩T = /0,

v(S∪T )≤ v(S)+v(T )7. Notice that any monotonic linear transformation of a concave cooperative

game Γ yields another concave game Γ′. Specifically, take a concave Γ = (N,v(·)) and for any

i ∈ N, take one fixed xi ∈ R. Now, let Γ′ ≡ (N,v′(·)) with the characteristic function v′(·) given by

v′(S)≡ a · v(S)+∑
i∈S

xi, ∀S⊆ N for some a > 0. Clearly8,

6Convex cooperative games, with the inequality in (1) reversed, have been studied much more extensively, starting
most prominently from Shapley (1951).

7Again, the case with the reverse of the inequality here has been predominant in the literature on cooperative
games, a property called “super-additivity”.

8For clarity, keep in mind that for all T,S⊆ N, T ∪S = (T\S)∪ (S\T )∪ (T ∩S) and T\S = T\(T ∩S), implying

∑
i∈(T∪S)

xi + ∑
i∈(T∩S)

xi = ∑
i∈(T\(T∩S))

xi + ∑
i∈(T∩S)

xi + ∑
i∈(S\(T∩S))

xi + ∑
i∈(T∩S)

xi = ∑
i∈T

xi +∑
i∈S

xi.
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v′(T ∪S)+ v′(T ∩S) =av(T ∪S)+ ∑
i∈(T∪S)

xi +av(T ∩S)+ ∑
i∈(T∩S)

xi

=av(T ∪S)+av(T ∩S)+ ∑
i∈T

xi +∑
i∈S

xi

≤︸︷︷︸
by concavity of Γ

av(T )+av(S)+ ∑
i∈T

xi +∑
i∈S

xi = v′(T )+ v′(S),

which shows Γ′ is concave as well. For any S ⊆ N, v(S) is interpreted as the maximum amount

of payoffs that can be shared and divided among the players in S. Dutta and Ray (1989) devised

an algorithm solving for the egalitarian solution of any convex cooperative game, which was later

converted for concave cooperative games by Chen et al. (2013). My first result is an amendment to

Chen et al. (2013) with a formal proof that the algorithm provided by Dutta and Ray (1989) does

offer the egalitarian solution to monotone and concave cooperative games with transferable utilities

in characteristic function form after first formally defining “egalitarian” with Lorenz dominance.

Per Dutta and Ray (1989), take any y ∈ Rn
+ and let y ∈ Rn

+ be the vector given by rearranging

the entries of y in a weakly increasing order. y Lorenz dominates y′ ∈ Rn
+ if and only if

n

∑
l=1

yl =
n

∑
l=1

y′l and
l̄

∑
l=1

yl ≥
l̄

∑
l=1

y′l,∀1≤ l̄ ≤ n.

The natural interpretation of Lorenz dominance is as follows: if yi represents the income of agent i

in a first economy (similarly for y′i in second economy) and if the two economies have the same av-

erage income, the first economy should be considered more egalitarian than the second, in terms of

income, if the total income its l̄ poorest members is never a lower share of the total income than that

in the second. Shorrocks (1983) extended this standard definition with defining generalized Lorenz
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dominance as follows: y generalized Lorenz dominates y′ if and only if
l̄

∑
l=1

yl ≥
l̄

∑
l=1

y′l,∀1≤ l̄ ≤ n.

Generalized Lorenz dominance allows for comparisons between two vectors in the Lorenz sense

without requiring the two vectors in comparison to be on the same hyperplane of the income

space. The motivation for such a definition is straightforward: the first economy should be consid-

ered more prosperous and egalitarian if its l̄ poorest member take home more total income (not as

shares of the total income of the entire first economy) than those in the second. Certainly, implicit

in the definition is that the total income in the first economy cannot be lower than that in the second

(simply let l̄ = n), hence the notion of being “more prosperous”. I will now introduce an algorithm

that locates the (unique) generalized Lorenz dominant vector from a very slight modification of

both Theorem 2 in Dutta and Ray (1989) and Mechanism 1 in Chen et al. (2013). First of all, de-

fine the following notation: given a monotone and concave cooperative game Γ with transferable

utilities in characteristic function form, let

∀S⊂ T ⊆ N, e(T −S)≡ v(T )− v(S)
|T |− |S|

,

where, note that T must be a proper superset of S. As a special case, v(S)/|S| = e(S− /0) for all

S 6= /0. Moreover, let V ≡

{
y ∈ Rn

+ : ∑
i∈S

yi ≤ v(S), ∀S⊆ N

}
. V is referred to as the feasible set of

Γ9,10. Some immediate observations of the structure of e(·) are collected in the following lemma.

Lemma 1 (Preliminary observations of e(·)). Given any monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form with the characteristic func-

tion given by v(·),

1. ∀R⊂ S⊂ T ⊆ N, e(T −R) = e(S−R)⇒ e(T −R) = e(S−R) = e(T −S);

9Not surprisingly, the feasible set V bears an intrinsic characterization of the set of all feasible divisions.
10Clearly, V given by any characteristic function v(·) is closed and bounded hence compact.
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2. ∀R⊂ T ⊆ N and R⊂ S⊆ N, where R⊂ (T ∩S) and T 6⊆ S and S 6⊆ T , such that e(S−R) =

e(T −R), then min{e [(T ∪S)−R] ,e [(T ∩S)−R]} ≤ e(S−R) = e(T −R);

3. ∀R⊂ T ⊆ N and R⊂ S⊆ N, where R = (T ∩S) and T 6⊆ S and S 6⊆ T , such that e(S−R) =

e(T −R), then e[(T ∪S)−R]≤ e(S−R) = e(T −R).

Proof. See Appendix A for the proof of Lemma 1. �

Equipped with Lemma 1, now consider the following algorithm, the objective of which is to

select a vector y ∈ Rn
+ that generalized Lorenz dominates any other y′ in the feasible set V .

Definition 1 (Algorithm E ). Given any monotone and concave cooperative game Γ = (N,v(·))

with transferable utilities in characteristic function form with the characteristic function v(·), run

Algorithm E through the following steps:

1. Set S0 = /0. In step 1, select S1 where /0⊂ S1 ⊆ N such that

e(S1− /0)≤ e(S− /0), ∀ /0⊂ S⊆ N. (2)

If there are multiple candidates for S1, select the smallest one: let S1 be such that, in addition

to satisfying (2), for all S such that /0⊂ S⊂ S1, e(S− /0)> e(S1− /0);

If there are multiple smallest candidates, select any one of them and proceed;

2. Let Sk be subset of N that was selected in step k, for all k ≥ 1. In step (k+1), select any of

the smallest Sk+1 ⊆ N such that e(Sk+1−Sk)≤ e(S−Sk) for all S⊆ N where Sk ⊂ S;

3. Terminate in step K ≥ 1 if the only candidate for SK is N;

4. After termination, let y∗ ∈ Rn
+ be the vector generated by setting y∗i = e(Sk+1−Sk) if i ∈

(Sk+1\Sk); y∗ will be referred to as the egalitarian solution of Γ.
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The sequence of subsets {Sk}K
k=1 selected in the proceedings will be referred to as the se-

quence of subsets of N generated by Algorithm E for Γ.

Lemma 1 ensures that Algorithm E is well-defined in each step and the vector y∗ generated after

termination is unique. Algorithm E also terminates in fewer steps than n= |N| since step k involves

including at fewest one more player into the new set Sk. An immediate result regarding Algorithm

E is that players selected later receive higher payoffs (that is, the y∗i ’s) than those selected earlier, a

result I present in the following lemma which is also included in Chen et al. (2013). An alternative

proof to Chen et al. (2013) is deferred to Appendix A.

Lemma 2 (First observation from Algorithm E ). Let S1 ⊂ S2 ⊂ ·· · ⊂ SK = N be the sequence of

subsets of N generated by Algorithm E with K≤ n= |N| for the monotone and concave cooperative

game Γ= (N,v(·)) with transferable utilities in characteristic function form with the characteristic

function v(·). Then ∀2≤ k ≤ (K−1), e(Sk−Sk−1)≤ e(Sk+1−Sk).

Proof. See Appendix A for the proof of Lemma 2. �

In contrast to Dutta and Ray (1989) and Chen et al. (2013), the selection of a smallest Sk in

step k turns out to be instrumental for applying this egalitarian solution concept to a sequential or

dynamic setting, which will be highlighted in the upcoming sections. Regardless of selecting the

largest or the smallest candidate subset in each step, Algorithm E —and the mechanisms in the two

aforementioned papers—partitions N into equivalent classes according to the steps where players

are included in the selected subsets. When always selecting the largest subset, the equivalence class

of any player i is simply the set of players with the same quantities for y∗i and the resulting partition

is the coarsest of N for the egalitarian solution y∗. On the other hand, Algorithm E partitions N

into the finest11. The following lemma provides the formal statement for this result, for which I

11Given a set N, two partitions P and P ′ of N can be compared according the partial order of coarseness with
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adopt the following notations: let y∗ be the egalitarian solution of Γ = (N,v(·)), ∀i ∈ N, define

Ci(y∗)≡
{

j ∈ N : y∗j < y∗i
}

, the set of players who receive strictly less payoff than i in y∗.

Lemma 3 (Finest partition of N). Let y∗ be the egalitarian solution given by Algorithm E that

terminates in K steps for the monotone and concave game Γ = (N,v(·)) with transferable utilities

in characteristic function form with the characteristic function v(·). Let P∗ be the partition of N

implied by Algorithm E , namely P∗ ≡ {(Sk\Sk−1)}K
k=1.

A partition P of N is y∗-compatible if and only if

1. For all i ∈ N and j ∈ N, i ∈ S ∈P and j ∈ S ∈P implies that y∗i = y∗j;

2. And for any S ∈P , ∑
j∈(Ci(y∗)∪S)

y∗j = v(Ci(y∗)∪S), ∀i ∈ S.

P∗ is the finest among all y∗-compatible partitions of N. That is, let P be a y∗-compatible

partition of N. Then any element of P is a union of some elements of P∗.

Proof. See Appendix A for the proof of Lemma 3. �

From now on, I shall call the element of P∗ that contains i the clique of i at y∗ with the

symbol Qi(y∗). It should be noted that even given the same y∗, the finest partition P∗ hence

the cliques Qi(y∗) may be different for different game Γ’s, although in the scope of the current

paper, such multiplicities and abuse of notation will not cause any confusion and the same clarity

also applies to the definition of Ci(y∗). All results will be stated in a self-containing manner with

designations clear in the contexts of the corresponding results. The arbitrary selection of one of the

smallest candidates in Definition 1 may also result in multiple sequences of {Sk}K
k=1. However, the

resulting partition P∗ of N from these potentially different sequences are all the same, highlighting

respect to the following definition: P is coarser than P ′ (or equivalently, P ′ is finer than P) if and only if every
element of P is the union of some elements of P ′. Notice that arbitrary selections that are neither the largest nor
the smallest among the candidate sets such as those made in Chen et al. (2013) lack such features, which may prove
inconvenient in some cases especially because coarseness is a partial ordering.
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the importance of such a finest partition in illustrating the mechanics of Algorithm E . Lemma 3

also implies that, given Γ, Algorithm E always terminates in the same number of steps, regardless

of the order of the subsets being selected. Of course, same argument can be made for the selection

of the largest candidate adopted in Dutta and Ray (1989).

On the other hand, Lemma 1 does dictate the solution y∗ to be independent of the selection

among subsets of N within each step with the same values of e(·), which makes selecting the

smallest candidate even more subtle and significant—the resulting vector being the same, only

selecting smallest candidates renders the egalitarian solutions extendable to dynamic settings.

As alluded before, the y∗ obtained from Algorithm E generalized Lorenz dominates any other

vector y in the feasible set V given by the characteristic function v(·). I record this result, along

with the fact that y∗ ∈ V , with following lemma. Both results are included Dutta and Ray (1989)

and Chen et al. (2013), either under different contexts or missing formal proofs12.

Lemma 4 (Feasibility and dominance of y∗). Given any monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form with the characteristic func-

tion v(·) with V being the feasible set given by v(·), the egalitarian solution y∗ defined by Algorithm

E generalized Lorenz dominates any y ∈V and y∗ ∈V .

Proof. See Appendix A for the proof of Lemma 4. �

A quick calculation reveals that for all 1≤ k ≤ K ≤ N, ∑
i∈Sk

y∗i = v(Sk), because

∑
i∈Sk

yi = ∑
i∈S1

yi + · · ·+ ∑
i∈(Sk\Sk−1)

yi = v(S1)+ v(S2)− v(S1)+ · · ·+ v(Sk)− v(Sk−1) = v(Sk), (3)

12Dutta and Ray (1989) first developed Algorithm E but for convex cooperative games and adopting Lorenz (in-
stead of generalized Lorenz) dominance and Chen et al. (2013) relied on Dutta and Ray (1989) for both feasibility and
Lorenz dominance. So the current work is either amending their results or providing alternative justifications for some
previously known facts.
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which proves handy in the proof of Lemma 4. Lemma 4 directly leads to the following charac-

terization of the egalitarian solution. This following lemma follows directly from Theorem 2 in

Shorrocks (1983)—the proof is thus entirely omitted.

Lemma 5 (Nash collective utility maximizer). Let f : R+→ R be strictly increasing, strictly con-

cave, and continuous on R+. Define F : Rn
+→ R as F(y) = ∑

n
i=1 f (yi) where y = (y1,y2, · · · ,yn).

For any two vectors y and y′ in Rn
+, y generalized Lorenz dominating y′ implies that F(y)≥ F(y′).

In particular, given a monotone and concave cooperative game Γ = (N,v(·)) with transfer-

able utilities in characteristic function form where |N| = n and V is the feasible set given by the

characteristic function v(·), then

y∗ = argmax
y∈V

F(y),

where y∗ is the egalitarian solution of Γ given by Algorithm E .

From now on, I shall refer to the combination of strictly increasing, strictly concave, and con-

tinuous on R+ (and additive separability) as the regularity conditions for f (·) (and for F(·)). y∗

is actually the unique maximizer of F(·) on V 13. With yi representing player i’s payoff, F(·) has

been referred to as the (symmetric) Nash collective utility function—see, for example, Moulin

(2004)—the motivation of which should be quite obvious: y∗ is the Nash bargaining solution when

the feasible set of the bargaining problem is V 14.

Lemma 5 provides a convenient criterion of checking whether a feasible division satisfies envy-

free-ness in applying the egalitarian solutions to the sequential or dynamic scenarios, in addition

to an alternative motivation for the solution concept in the first place. In other words, any fea-

sible allocation that is not envy-free can be easily rejected by the egalitarian solution as a can-

didate maximizer of a Nash collective utility function, guiding toward a direction of designing
13See, for example, Rockafellar (1997).
14See, for example, Osborne and Rubinstein (1990).
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sequential/dynamic envy-free division mechanisms by deploying the maximization of some Nash

collective utility functions batch-by-batch or period-by-period.

As a matter of fact, the additively separable structure of F(·) is adopted in the current paper

almost entirely for the ease of checking envy-free-ness. Shorrocks (1983) proves that generalized

Lorenz dominance is equivalent to the maximizer of a wider range of collective utilities functions,

which includes the current form of F(·). Without indulging in details, the main result (Theorem

2) in Shorrocks (1983) roughly states the following: if a society prefers more income, and given

any vector of income, weakly prefers the average of the permutations of the income vector to the

income vector itself, then an income vector generalized Lorenz dominating another is equivalent to

the first resulting in a higher social welfare than the second. The weak preference for the average of

the permutations over any single one of the permutations is called “S -concave” in both Dasgupta

et al. (1973) and Rothschild and Stiglitz (1973), neither of which imposes preferences for higher

incomes. Hence, in Dasgupta et al. (1973) and Rothschild and Stiglitz (1973), the equivalence was

between Lorenz (not generalized Lorenz) dominance and S -concavity of social welfare functions.

The egalitarian solution is directly Pareto efficient among all y ∈ V simply because F(·) is

increasing in any yi, holding every other y j’s constant. Algorithm E is also reminiscent of the

serial dictatorship mechanism for assignment problems, with the additional flexible feature that

the order of the players being the dictators are endogenous instead of being chosen by some preset

exogenous randomizing mechanism. Moreover, Algorithm E allows groups of players to share

the same priority hence the same payoff. In the light of collective welfare, the group of players

with the lowest average demand represents the group that will yield the highest marginal collective

welfare for the society, were their constraints to be relaxed first. Hence, players with lower average

demand jointly as a group are given higher order of priority and whose demands are satisfied first.

On the other hand, there exists a tradeoff between any player’s order of priority and her
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payoff—higher order of priority means lower payoff in comparisons between the players. Fur-

thermore, players with lower order of priority, hence higher payoff, must sacrifice payoffs if they

want to be taken with a higher priority, indicating that Algorithm E favors smaller groups of agents

with smaller average demand. I convey these intuitions with the following lemma, part of which

was alluded to in Chen et al. (2013) without formal proofs.

Lemma 6 (Second observation of Algorithm E ). Let S1 ⊂ S2 ⊂ ·· · ⊂ SK = N be the sequence of

subsets of N generated by Algorithm E with K≤ n= |N| for the monotone and concave cooperative

game Γ= (N,v(·)) with transferable utilities in characteristic function form with the characteristic

function v(·). Then ∀0≤ k ≤ (K−1), [S⊃ Sk and |S|> |Sk+1|]⇒ e(S− /0)≥ e(Sk+1− /0).

Proof. See Appendix A for the proof of Lemma 6. �

In the next subsection, I will establish a key novel observation regarding y∗, leading to a

critical comparative statics result as the cornerstone for strategy-proof-ness in a class of sequen-

tial/dynamic division mechanisms.

3.2 Comparative statics of the egalitarian solution

Consider the following thought experiment: if we consider the characteristic functions as delineat-

ing the boundaries of the payoff possibilities of the cooperative entities and suppose that one single

player suddenly “brings more to the table”, which results in a relaxation of these boundaries. Now,

in this new cooperative game, who should be rewarded with more payoffs, as compared to before

in the original cooperative game, within this new set of boundaries? Should the player who brings

more to the table be given the largest increase in payoff in the egalitarian solution?

More specifically, for such relaxations, it is reasonable to assume that no player i should be

able to increase the maximum amount of payoff for a group of players that excludes i. Moreover,
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any player i’s influence on a larger group (or more precisely, a superset) of players (that includes i,

of course) should be less than that on a smaller group (a subset that, again, includes i)—otherwise,

the new cooperative game after player i brings more to the table may no longer be concave. The

main comparative statics result in this paper shows that in the egalitarian solution, such relaxations

will result in the largest increase in payoff given to player i. Along with player i, there may be a set

of players who see their payoffs increased as well while some other players, who will have lower

priority than player i in the egalitarian solution of the new game, will see their payoffs (weakly)

decreased. I now formally present this main result with the following theorem.

Theorem 1 (Maximal increase in payoffs). Let Γ = (N,v(·)) and Γ̂ = (N, v̂(·)) be two monotone

and concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i ∈ N such that, for all S⊆ N,

1. i /∈ S⇒ v(S) = v̂(S); 2. i ∈ S⇒ v(S)≤ v̂(S); 3. i ∈ S⊂ T ⇒ v̂(T )− v(T )≤ v̂(S)− v(S).

Let y∗ and ŷ∗ be the egalitarian solutions of Γ and Γ̂, respectively. Then, for all j ∈ N,

ŷ∗i − y∗i ≥ ŷ∗j − y∗j . (4)

Proof. See Appendix A for the proof of Theorem 1 after the proof of Lemma 7. �

It can be quickly confirmed that if the games Γ and Γ̂ are linearly transformed to Γ′ and Γ̂′ by

v′(S) = av(S)+ ∑
j∈S

x j and v̂′(S) = av̂(S)+ ∑
j∈S

x j

for some positive factor a and fixed vector~x, then the three conditions above still hold. Hence, the

comparative statics result in Theorem 1 is robust with respect to monotone linear transformations

of the games in discussion. Theorem 1 is established from the following series of observations:
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Players with strictly lower payoffs than i at y∗ will have the same payoff at ŷ∗ as at y∗; Players with

the same payoff as i at y∗ but not in i’s clique will have the same payoffs at ŷ∗ as at y∗; Player i’s

payoff will be weakly higher at ŷ∗ than at y∗; Players with higher payoffs than i at ŷ∗ will have

weakly lower payoffs than they did at y∗. The focus of proving Theorem 1 will be on establishing

the last statement: the first two statements above are immediate observations from the definition of

Algorithm E —these players can be arranged to be selected before i is in both Γ and Γ̂ according

to Algorithm E and since the values of the characteristic functions v(·) and v̂(·) for any subset

excluding i are the same, these players’ payoffs will be exactly the same at y∗ and at ŷ∗.

The third statement follows directly from Proposition 3 in Tian (2015), which actually offers a

bit more than merely ensuring i’s payoff never decreasing from y∗ to ŷ∗. First of all, it applies to

maximizers of any Nash collective utility functions, not just the symmetric ones. It also postulates

that some group of players, rather than just i, will have weakly higher payoffs at ŷ∗ than at y∗. In

the current context of the egalitarian solutions, the Proposition implies that all players in i’s clique

at y∗ will have weakly higher payoffs at ŷ∗. However, it does not confirm that i’s clique, along

with any other players included in the first two statements above, are the only players with such

properties—the Proposition simply guarantees the existence of a subset of players who will never

see their payoffs decreased from y∗ to ŷ∗, although there may well be many such groups.

Forward looking to the practice of designing division mechanisms, the appeal of such simulta-

neous and unidirectional movement in a group of players’ payoffs caused by a single player’s re-

laxation of the boundaries are mostly for the objective toward strategy-proof-ness. The concurrent

increase in players’ payoffs are often studied through the optimization of some objective functions

over a lattice structure in the literature15. Essentially, I wish to build in a moderate degree of com-

plementarity among the players’ payoffs to use other players’ payoff increase to limit that of the

15See, for example, Topkis (1978) and Topkis (2001) for classical treatment or the more recent Quah (2007).
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potentially deviating player16. The aforementioned papers established that super-modularity of the

objective function may be the most direct answer for such quests, in a very loose sense necessitat-

ing the additively separable structure of the Nash collective utility function while also maintaining

considerable flexibility for the mechanism designers—separability easily promises both super- and

sub-modularity. I will now turn to proving that any player with strictly higher payoff than i has at

ŷ∗ will have weakly lower payoff than they did at y∗. The proof is largely driven by the following

observation regarding Algorithm E .

Lemma 7 (Third observation of Algorithm E ). Given a monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form and let {Sk}K
k=1 be any

sequence of subsets generated by Algorithm E . Then

∀1≤ k ≤ K, e(Sk−Sk−1) = max
S⊂Sk

e(Sk−S).

Proof. See Appendix A for the proof of Lemma 7. �

Moreover, the mechanics of Algorithm E also provides the following observation in the mech-

anism design context: suppose one player disturbs the choice of the egalitarian solution by lying

about her type, resulting in a relaxation of the feasible set as described in Theorem 1, will her own

payoff necessarily change? The following lemma gives an affirmative answer.

Lemma 8 (Unilateral disturbance). Let Γ = (N,v(·)) and Γ̂ = (N, v̂(·)) be two monotone and

concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i ∈ N such that, for all S⊆ N,

1. i /∈ S⇒ v(S) = v̂(S); 2. i ∈ S⇒ v(S)≤ v̂(S); 3. i ∈ S⊂ T ⇒ v̂(T )− v(T )≤ v̂(S)− v(S).

16Bear in mind that such complementarity can only demonstrate itself in the solutions, which makes choosing the
“right” objective function the caveat in designing a well-behaved mechanism.
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Let y∗ and ŷ∗ be the egalitarian solutions and P∗ and P̂∗ generated by Algorithm E for Γ and Γ̂,

respectively. Then y∗i = ŷ∗i ⇒
[
y∗ = ŷ∗ and P∗ = P̂∗

]
. Otherwise,

[
ŷ∗j ≥ ŷ∗i and j /∈ Qi (ŷ∗)

]
⇒ ŷ∗j ≤ y∗j .

Proof. See Appendix A for the proof of Lemma 8 after the proof of Theorem 1. �

On the other hand, the scope of Lemma 7 extends beyond proving the crucial comparative

statics result in Theorem 1. It suggests that Algorithm E maintains a duality-like property, which

I formalize with the following results. I first present a lemma similar to Lemma 1.

Lemma 9 (Secondary observations of e(·)). Given any monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form with the characteristic func-

tion being given by v(·), then

1. ∀S⊂ T ⊂ R⊆ N, e(R−T ) = e(R−S)⇒ e(R−S) = e(R−T ) = e(T −S);

2. ∀T ⊂ R⊆ N and S⊂ R⊆ N such that e(R−S) = e(R−T ), then

max{e [R− (T ∪S)] ,e [R− (T ∩S)]} ≥ e(R−S) = e(R−T ).

Proof. See Appendix A for the proof of Lemma 9. �

Now, consider the following “dual” algorithm to Algorithm E .

Definition 2 (Algorithm Ē ). Given any monotone and concave cooperative game Γ = (N,v(·))

with transferable utilities in characteristic function form with the characteristic function v(·), run

Algorithm Ē through the following steps:
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1. Set T0 = N. In step 1, select T1 where T1 ⊂ N such that

e(N−T1)≥ e(N−T ), ∀T ⊂ N. (5)

If there are multiple candidates for T1, select the largest one: let T1 be such that, in addition

to satisfying (5), for all T such that T ⊃ T1, e(N−T )< e(N−T1);

If there are multiple largest candidates, select any one and proceed;

2. Let Tk be subset of N that was selected in step k, for all k ≥ 1. In step (k+1), select any of

the largest Tk+1 ⊂ Tk such that e(Tk−Tk+1)≥ e(Tk−T ) for all T ⊂ Tk ⊆ N;

3. Terminate in step K ≥ 1 if the only candidate for TK is /0;

4. After termination, let ȳ∗ ∈ Rn
+ be the vector generated by setting ȳ∗i = e(Tk−Tk+1) if i ∈

(Tk\Tk+1); The sequence of subsets {Tk}K
k=1 selected in the proceedings and the resulting

vector ȳ∗ will be referred to as the sequence of subsets generated by Algorithm Ē and the

dual egalitarian solution of Γ, respectively.

As with Algorithm E , Lemma 9 ensures that Algorithm Ē is well-defined. By the way Algo-

rithm Ē is phrased, the following result should not come as a surprise.

Theorem 2 (“Duality”). Let Γ = (N,v(·)) be a monotone and concave cooperative game with

transferable utilities in characteristic function form with the characteristic function v(·). Then

1. Both Algorithm E and Algorithm Ē terminate in the same number K ≤ N of steps;

2. For any sequence of subsets of N, {Sk}K
k=1, generated by Algorithm E , there exists a sequence

of subsets of N, {Tk}K
k=1, generated by Algorithm Ē , such that Tk = SK−k, ∀0≤ k ≤ K;

3. Moreover, the egalitarian solution y∗ is equal to the dual egalitarian solution ȳ∗;
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4. Furthermore, {(Tk\Tk+1)}K−1
k=0 generated by Algorithm Ē coincides with P∗ generated by

Algorithm E as defined in Lemma 3.

Proof. See Appendix A for the proof of Theorem 2. �

Theorem 2 appears very counter-intuitive at first sight since it states that recursively maxi-

mizing the average payoff of the best-off among the remaining players will result in a generalized

Lorenz dominant payoff distribution, which goes right against the spirit of Lorenz dominance (gen-

eralized or not) favoring transfers from the rich agents to the poor. As a matter of fact, the same

question can be raised for Algorithm E —how is minimizing the incomes of the poorest agents

supposed to lead to egalitarianism? However, a closer look reveals how Theorem 2 accurately

locates the egalitarian solution. First, it correctly identities the players who contribute more payoff

possibilities to the cooperative game and subsequently allocates higher payoffs to them. To achieve

generalized Lorenz dominance—maximal amount of total payoff and equality, simultaneously—

players who face more relaxed boundaries should receive higher payoffs so as not to compete with

players who face more restraining constraints. Second, although players selected earlier in Algo-

rithm Ē walk away with higher payoffs, they are assigned the left-overs from the players selected

later since their payoffs are the average incremental from the immediately succeeding players.

Essentially, selecting the egalitarian solution boils down to selecting the set of payoff con-

straints that lead to Lorenz dominance. Both Algorithm E and Algorithm Ē set the players in

the correct order of priority—the difference being Algorithm E selects the players with minimum

payoffs first while Algorithm Ē selects those with the maximum. Consider, on the contrary to

Algorithm E and Algorithm Ē , a “naive” proposal that minimizes the average income of the best-

off players. The example demonstrated in Figure 1 shows how this proposal identifies the wrong

constraints to bind. In both panels, the red dot is the egalitarian solution while the blue dots are

those selected by the “naive” proposal.
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Figure 1: Egalitarian solutions and outcome of the “naive” proposal

y1

y2

y1

y2

Example 1. The characteristic functions are, respectively

v({1}) = v({2}) = 7.5, v({1,2}) = 10 and v′({1}) = 8, v′({2}) = 5, v′({1,2}) = 12.

Not surprisingly, the payoff vectors selected by the “naive” proposal is (generalized) Lorenz dom-

inated by the egalitarian solutions. Notice also that in the left panel, there are two distinct “naive”

solutions, although they are equivalent in payoff distributions in the Lorenz sense. The Lorenz

comparisons between the egalitarian solutions and the “naive” solutions are as follows when the

payoffs of the players are sorted in a weakly increasing order:

y = (2.5,7.5), y∗ = (5,5) and y′ = (4,8), y′∗ = (5,7).

In both panels, a transfer of payoff from the better-off player to the worse-off in the “naive”

solutions results in the Lorenz improvement to the egalitarian solutions, highlighting the mistake

by the “naive” proposal in placing a higher priority on the payoff to a potentially better-off player

(player 1, in this case) than on that to the other player. Of course, this feature is more evident in
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the right-panel where the Lorenz improvement from the “naive” to the egalitarian solution does

not change the identities of the better- and worse-off players.

Disguised under the two-player examples are the more fatal issue of feasibility. To better under-

stand this, consider the “dual” version of the “naive” proposal. A first group of players are selected

according to the maximum average demand, then a second group is selected according to the maxi-

mum average incremental demand. As mentioned before, this algorithm was adopted first by Dutta

and Ray (1989) for convex cooperative games with transferable utilities. An immediate concern

with such selections when applied to concave games is that the constraints for subsets of the first

group of players may easily be violated. Granted, the focus of egalitarian solutions in convex coop-

erative games is to achieve individual rationality (i.e. respecting participation constraints—hence

the considerable attention paid to defining the concept of Lorenz core in Dutta and Ray (1989))

and maximum equality among the players’ payoffs simultaneously. On the other hand, feasibility

(or more mechanically and more fundamentally, concavity) is the constraint holding the egalitarian

solution together in concave games.

I conclude this section with two quick notes on the relationship between the current work,

especially Theorem 2, and the previous work in Dutta and Ray (1989) and Chen et al. (2013). It

is quite obvious that the current work extended Chen et al. (2013) by offering the insight on the

two different sequences of subsets of N to achieve egalitarianism with Theorem 2. In the light of

this new interpretation, it should be a simple routine to show that the “naive” proposal will become

the “dual” of the algorithm developed by Dutta and Ray (1989) for convex cooperative games.

Finally, the “naive” proposal (or the algorithm in Dutta and Ray (1989)) cannot be directly applied

to concave games because it quickly runs into the issue of multiple candidate solutions even in

instances as simple as Example 1.
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4 Sequential/dynamic fair division mechanisms

In this section, I demonstrate how to construct a Pareto efficient, strategy-proof, and envy-free se-

quential or dynamic division mechanism for any problem, given a set of players N with |N| =

n < +∞. Recall that, given a set of players N, a problem is defined to be a quintuple Π ≡(
b,B,T,ΘB,β B) where the sequence B segments the interval Ib ≡ [0,b) into to a partition of size

T , β B being the sequence of discount factors for the intervals in the partition of Ib, and ΘB the

space of the players’ preferences. For the brevity of discussion, I will fix a problem Π from now

on and show how to construct a desired mechanism from the quintuple of parameters of Π, hence

devising a systematic strategy of constructing mechanisms for any generic problem.

I start with linking the egalitarian solutions to the division problem. Consider the restriction

~θt ∈
(
Θ

B
t
)n

of a preference profile to [bt ,bt+1] for some 0≤ t ≤ (T −1). For any set of players S,

v(S| ~θt)≡
∫
⋃

i∈S θit

1dr.

Lemma 5 in Tian (2015) showed that v(·|~θt) so defined generates the characteristic functions for

a monotone and concave game for any ~θt , i.e. v(S∪T |~θt)+ v(S∩T |~θt) ≤ v(S|~θt)+ v(T |~θt) and

S ⊂ T ⊆ N ⇒ v(S|~θt) ≤ v(T |~θt), ∀(S,T,~θt) ∈
(

N×N×
(
Θ

B
t
)n
)

. Hence, let y∗(~θt) and P∗(~θt)

represent the egalitarian solutions and the partition of N generated by Algorithm E , respectively,

for the monotone and concave Γ(~θt) ≡
(

N,v(·|~θt)
)

. Similarly, I can extend the definition of the

function e(·) into the context with ~θt as

e(T −S|~θt)≡
v(T |~θt)− v(S|~θt)

|T |− |S|
, ∀(S,T,~θt) ∈

(
2N ,2N ,

(
Θ

B
t
)n
)

where S⊂ T.
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In addition, the concept of feasible set can also be easily extended to include ~θt :

V (~θt)≡

{
y ∈ Rn

+ : ∑
i∈S

yi ≤ v(S|~θt), ∀S⊆ N

}
.

Definition 3. For any problem Π =
(
b,B,T,ΘB,β B), define the following quantities:

Et ≡
{

e(T −S|~θt) : (S,T,~θt) ∈
(

2N ,2N ,
(
Θ

B
t
)n
)

where S⊂ T ⊆ N
}
∪{0} ,

which gives rise to the following quantity

0 < δt ≡min
{

β
B
t · |z1− z2| : (z1,z2) ∈ E2

t and z1− z2 6= 0
}
.

Moreover, for 1≤ t ≤ T , let

χt ≡

[
t

∑
s=1

β
B
s−1 · (bs−bs−1)

]
> 0.

Finally, recursively select the entries of two sequences {ρt}T−1
t=1 and {∆t}T

t=1 as follows:

1. Set ∆1 = δ0; Select any ρ1 from the interval
(

0,min
{

∆1

χ1 +∆1
,

δ1

2χ1

})
;

Set ∆2 = min{(1−ρ1)∆1−ρ1χ1,δ1−ρ1χ1};

2. Given ∆t , select any ρt from the interval
(

0,min
{

∆t

χt +∆t
,

δt

2χt

})
;

Set ∆t+1 = min{(1−ρt)∆t−ρt χt ,δt−ρt χt}.

Remark 1. Notice that since ΘB
t is a finite set, Et is a finite set, which means that δt is well-defined

for all t. Secondly, χt represents the maximum cumulative payoff any player can receive before

any goods in [bt ,b) is assigned. Last but not least, it can be easily confirmed that, by definition,
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all entries in the sequence {∆t}T
t=1 is strictly positive while all entries in the sequence {ρt}T−1

t=1 is

strictly between 0 and 1. In terms of the mechanics, the sequence {∆t}T
t=1 is generated to define the

sequence {ρt}T−1
t=1 . Now, consider the following (class of) sequential/dynamic division mechanism.

Definition 4 (Mechanism R). Given any problem Π=
(
b,B,T,ΘB,β B)with players N, let {ρt}T−1

t=1

be any sequence selected in Definition 3. Define Mechanism R with the following steps:

Given any preference profile θ ,

1. In step 1, select any feasible division C1 ∈ Cb such that

~uB
0 (C1|θ) = arg max

y∈V (~θ0)
∑
i∈N

W1(yi) and r /∈ θi⇒C1(r) 6= i,∀r ∈ Ib

for any strictly increasing and strictly concave W1 : R+→ R continuous on R+;

2. In step (t +1), given Ct with 1 ≤ t ≤ (T −1), select any Ct+1 such that Ct+1(r) =Ct(r) for

all r ≤ bt and

~uB
t (Ct+1|θ) = arg max

y∈V (~θt)
∑
i∈N

Wt+1
(
ρt · xB

it(Ct |θi)+β
B
t yi
)
≡~yt+1

(
~θt

)

and r /∈ θi ⇒ Ct+1(r) 6= i,∀r ∈ Ib, for any strictly increasing and strictly concave function

Wt+1 : R+→ R continuous on R+;

3. Define R(θ) to be the pointwise limit of the sequence of feasible divisions {Ct}T
t=1.

Remark 2. The pointwise limit of the sequence of functions {Ct}T
t=1 exists for any θ since for any

given r ∈ Ib, there exists a bt̄+1 > r (recall that the collection of batches/periods [bt ,bt+1] partitions

Ib), which means that sequence {Ct(r)}T
t=1 will simply be constant at Ct̄(r) for t ≥ t̄. Of course,

if T is finite, then R(θ) will simply be equal to CT . The range for all the entries in the sequence
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Table 1: Period and cumulative payoffs given by Mechanism R for preference profile θ

i\t 0 1 2 3 4 5 6 u

1y 1 0 0 0 0.5003102 0.5000000 0 NA

1x 0 1 1 1 1 1.5003102 2.0003101 2.0003101

2y 0 1 0 1/2 0.4996898 0 0.5000000 NA

2x 0 0 1 1 3/2 1.9996898 1.9996898 2.4996898

3y 0 0 1 1/2 0 0.5000000 0.5000000 NA

3x 0 0 0 1 3/2 3/2 2.0000000 2.5000000

of functions {Ct}T
t=1 is N, which implies so must be the range for the pointwise limit function

R(θ), which, in turn, implies that the division chosen by Mechanism R is feasible. Therefore,

uB
i (R(θ)|θi), with a finite upper bound for uB

i (·|·) of any feasible division, is well-defined for all

players. Furthermore, in each step (t + 1), V (~θt) completely characterizes the set of all feasible

divisions of [bt ,bt+1], a fact proven by Proposition 1 in Tian (2015). Mechanism R is well-defined.

The choice of the function Wt in step t can be completely arbitrary as long as it satisfies the

conditions stated in Definition 4 due to Lemma 5—any admissible choice of such functions will

not alter the vector of period payoffs chosen, which seemingly makes Lemma 5 a trivial result.

However, as mentioned before, Lemma 5 provides a direct and tractable proof for the fairness

property of Mechanism R. I will now present the main result regarding Mechanism R.

Proposition 1 (C-PE-EF-SP). For any problem Π for a given set of player N, Mechanism R as

defined in Definition 4 is consistent, Pareto efficient, envy-free, and strategy-proof.

Proof. See Appendix B for the proof of Proposition 1. �

Mechanism R is clearly consistent simply by the way it is defined. If two preferences profile

are identical up to some bt̄ , so will the players’ period payoffs up to bt̄ since the maximizers in
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any step up to t̄ is unique according to Lemma 5 and the fact that Wt(·) is strictly concave for any

t ≤ t̄. For Pareto efficiency, a moment of reflection confirms that it is implied by the following two

conditions jointly: a feasible division C is Pareto efficient at a preference profile θ if

1. For any r ∈ Ib, r /∈ θi⇒C(r) 6= i;

2. And for any r ∈ Ib, if there exists an i ∈ N such that r ∈ θi, then C(r) 6= 0.

The first condition states that no good or resource is ever assigned to some player who does not

need it and the second one states that as long as there is some player needing a good or resource,

this good or resource cannot remain unassigned. Obviously, both conditions are satisfied by R(θ)

for any θ simply by design. Hence, the proof of Proposition 1 will solely focus on envy-free-ness

and strategy-proof-ness. I will now demonstrate the mechanics and properties of Mechanism R

with an example to highlight how the fairness and strategic properties hold, to shed some light on

the proof of these properties.

Example 2. Consider the following simple problem Π:

N = {1,2,3} , T = 7, [bt ,bt+1] = [t, t +1], β
B
t = 1, and Θ

B
t = { /0, [bt ,bt+1]} , (6)

⇒ Et =

{
0,

1
3
,
1
2
,1
}
⇒ δt =

1
6
, ∀0≤ t ≤ 6 and χt = t, ∀1≤ t ≤ 6,

which yield a following candidate pair of sequences

ρ =

{
1

13
,

1
40

,
1

161
,

1
806

,
1

4837
,

1
33860

}
and ∆ =

{
1
6
,

1
13

,
1

40
,

1
161

,
1

806
,

1
4837

,
1

33860

}
.
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Table 2: Period and cumulative payoffs given by Mechanism R for preference profile θ̂

i\t 0 1 2 3 4 5 6 u

1y 1 0 0 0.3333333 0.5000000 0.4999483 0 NA

1x 0 1 1 1 1.3333333 1.8333333 2.3332816 2.3332816

2y 0 1 0 0.3333333 0.5000000 0 0.5000000 NA

2x 0 0 1 1 1.3333333 1.8333333 1.8333333 2.3333333

3y 0 0 1 0.3333333 0 0.5000517 0.5000000 NA

3x 0 0 0 1 1.3333333 1.3333333 1.8333850 2.3333850

Now, consider the following two preference profiles:


θ1 = [0,1]∪ [4,6], θ2 = [1,2]∪ [3,5]∪ [6,7], θ3 = [2,4]∪ [5,7] [θ ] ;

θ̂1 = [0,1]∪ [3,6], θ̂2 = [1,2]∪ [3,5]∪ [6,7], θ̂3 = [2,4]∪ [5,7]
[
θ̂
]
.

The payoffs given by Mechanism R for the two profiles are summarized in Table 1 for θ and

Table 2 for θ̂ . Unshaded cells contain the period payoffs while shaded cells contain cumulatives.

To demonstrate the fairness property of Mechanism R, the interpersonal comparisons of al-

locations and payoffs are given in Table 3. The left panel corresponds to the preference profile

θ and the right to θ̂ . Cell (i, j) represents player i’s payoff if she were allocated with player j’s

allocation. Clearly, entries on the diagonals are greater than those off the diagonals, representing

envy-free-ness. Finally, strategy-proof-ness is presented in Table 4 with the cross preference and

cumulative-payoff comparisons for player 1 between types θ1 and θ̂1. Each cell in rows 1, 2, and

4 contains the cumulative payoff corresponding to the preference types and allocations in the first

column. Rows 3 and 5 are the differences between rows 1 and 2 and 1 and 4, respectively, repre-

senting the cumulative allocation and payoff processes for player 1 with type θ1 to misrepresent
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Table 3: Fairness property: interpersonal preference-payoff comparisons

1 2 3

u1(·|θ1) 2.0003101 0.4996898 0.5000000

u2(·|θ2) 0.5003102 2.4996898 1.0000000

u3(·|θ3) 0.5000000 1.0000000 2.5000000

1 2 3

u1
(
·|θ̂1
)

2.3332816 0.8333333 0.8333850

u2
(
·|θ̂2
)

0.8333333 2.3333333 0.8333333

u3
(
·|θ̂3
)

0.8332816 0.8333333 2.3333850

himself with type θ̂1. The first two periods are ignored: they are equal for both R(θ) and R
(
θ̂
)
.

From rows 3 and 5, by misrepresenting her type, player 1 will initially be allocated more

goods in the period of deviation, which, nevertheless, does not generate any payoff for her since

the interval [3,4] is not contained in her type θ1. This initial bump in the cumulative allocation

decays away as time goes by, demonstrated by the decreasing trend in the absolute value of the

entries in row 3, indicating that in each period after deviation, player 1 is retaining less payoff with

misrepresentation. Row 5 yields the same conclusion with a different narrative. It measures the

cumulative payoff differences between truth-telling and misrepresentation, with all entries being

positive and showing an increasing trend.

Example 2 turns out to be extendable to the general context of any unilateral misrepresentation

of types by any player: the observations of the initial bump in the amount of goods/resources

allocated to the deviating player, which later tapers off in terms of payoffs (a hill-shaped trend

or sorts) as demonstrated in Table 4, are maintained through any arbitrary deviations made by

one single player. The pursuit of such observations motivates limiting the sequence of ρt’s to be

strictly less than 1 in each iteration and serves as the basis of the proof of strategy-proof-ness. On

the other hand, the choice of player 1 only deviating for one single period is certainly no accident.

In any problem Π within the scope of this paper, the “one-shot deviation principle” introduced in

Blackwell (1965) directly applies.
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Not equally evident in Example 2 is the reason for the choice of the deviation θ̂1 being a

superset of the true type θ1. This proves to be a sufficient choice, along with considering deviations

as subsets of the true types, for strategy-proof-ness, a result previously documented as Lemma 2

in Tian (2015). The current context requires a very mild extension of this previous result in the

sequential and dynamic settings. However, the applicability of Lemma 2 in Tian (2015) is evident.

Hence, I shall only briefly present the argument for the sufficiency of only considering deviations

as super and subsets instead of documenting a formal result—readers should feel free to refer to

Tian (2015) for the details of the proof.

Without loss of generality, let player 1 be deviating from her true type θ1 to some θ̂1 such

that θ1 6⊆ θ̂1 and θ̂1 6⊆ θ1. Moreover, by the one-shot deviation principle, let θ1 and θ̂1 differ in

only one period t. Define θ̃1 ≡
(
θ1∩ θ̂1

)
. Also, since other players’ preference profile is constant,

let θ̂ ≡
(
θ̂1,θ−1

)
represent the preference profile obtained by combining θ̂1 with other players’

constant preference profile and similarly for θ̃ . Clearly, player 1’s payoff before period t will be

the same across θ1, θ̂1, and θ̃1 since Mechanism R is only history dependent in terms of payoffs.

On the other hand, let CV , ĈV , and C̃V represent the continuation values from period (t +1) when

player 1 is reporting θ1, θ̂1, and θ̃1, respectively. Different feasible divisions from period (t + 1)

can be compared just with the continuation value for player 1 because she reports the same type

beyond period t. Now, recall the premise for the sufficiency result is that neither deviations to

supersets nor deviations to subsets of the true type can benefit the deviating agent. The goal is

to show that, in this case, θ̂1 can never be a profitable deviation for player 1. Since any goods

assigned to player 1 outside her type does not contribute to her utility,

u1t
(
R
(
θ̂
)
|θ1
)
= u1t

(
R
(
θ̂
)
|θ̃1
)

and u1t
(
R
(
θ̃
)
|θ̃1
)
= u1t

(
R
(
θ̃
)
|θ1
)
. (7)
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Now, consider when player 1’s type is θ̃1. No profitable deviation to supersets implies that

u1t
(
R
(
θ̂
)
|θ̃1
)
+ĈV ≤ u1t

(
R
(
θ̃
)
|θ̃1
)
+C̃V . (8)

Moreover, between θ1 and θ̃1, no profitable deviation to subsets implies that

u1t
(
R
(
θ̃
)
|θ1
)
+C̃V ≤ u1t (R (θ) |θ1)+CV . (9)

Combining (7), (8), and (9) yields

u1t
(
R
(
θ̂
)
|θ1
)
+ĈV =︸︷︷︸

by (7)

u1t
(
R
(
θ̂
)
|θ̃1
)
+ĈV ≤︸︷︷︸

by (8)

u1t
(
R
(
θ̃
)
|θ̃1
)
+C̃V

=︸︷︷︸
by (7)

u1t
(
R
(
θ̃
)
|θ1
)
+C̃V ≤︸︷︷︸

by (9)

u1t (R (θ) |θ1)+CV ,

(10)

showing that θ̂1 can never be a profitable deviation from θ1. This result, along with the one-shot

deviation principle, reduces the potentially very intractable problem of checking incentive compat-

ibility in a sequential or dynamic setting into a comparative statics problem where all potentially

profitable deviations are completely and linearly ordered so that Theorem 1 can be applied. Ob-

serve that the one-shot deviation principle is invoked here only for convenience, since (7) applies

to any comparison between types and even for the cumulative payoffs. I document this result with

the following lemma for the ease of future reference and defer the brief proof to Appendix B.

Lemma 10 (Super-Sub). For any (i,(θi,θ−i)) ∈
(

N×Θ
B×
(
Θ

B)n−1
)

,

ui (R (θi,θ−i) |θi)≥ ui (R (θ i,θ−i) |θi) , ∀θ i ⊂ θi ∈Θ
B
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Table 4: Strategic property: individual cross preferences-payoff comparisons

3 4 5 6 7

u1(R(θ)|θ1) 1.0000000 1.0000000 1.5003102 2.0003101 2.0003101

u1
(
R
(
θ̂
)
|θ̂1
)

1.0000000 1.3333333 1.8333333 2.3332816 2.3332816

Row 1 − Row 2 0.0000000 −0.3333333 −0.3330232 −0.3329715 −0.3329715

u1
(
R
(
θ̂
)
|θ1
)

1.0000000 1.0000000 1.5000000 1.9999483 1.9999483

Row 1 − Row 4 0.0000000 0.0000000 +0.0003101 +0.0003618 +0.0003618

and

ui (R (θi,θ−i) |θi)≥ ui
(
R
(
θ i,θ−i

)
|θi
)
, ∀θ i ⊃ θi ∈Θ

B

jointly implies that ui (R (θi,θ−i) |θi)≥ ui
(
R
(
θ
′
i ,θ−i

)
|θi
)
, ∀θ ′i 6= θi ∈Θ

B.

Proof. See Appendix B for the proof of Lemma 10. �

To apply Theorem 1, I provide the following lemma verifying that the conditions in Theorem 1

are met with deviations to supersets of true types.

Lemma 11 (Applicability of Theorem 1). For all preference profiles θ 6= θ̂ ∈
(
ΘB)n such that

there exists a unique i ∈ N with θi ⊆ θ̂i and θ j = θ̂ j for all j 6= i,

1. i /∈ S⇒ v(S|θ) = v
(
S|θ̂
)
; 2. i ∈ S⇒ v(S|θ)≤ v

(
S|θ̂
)
;

3. i ∈ S⊂ T ⇒ v
(
T |θ̂

)
− v(T |θ)≤ v

(
S|θ̂
)
− v(S|θ).

for all S,T ⊆ N and 0≤ t ≤ (T −1).

Proof. See Appendix B for the proof of Lemma 11. �

With Lemma 11, I manage to extend Theorem 1 to the dynamic setting and, with the carefully

chosen sequences of {ρt}T−1
t=1 , extrapolate previously known static strategy-proof-ness results to
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encapsulate cumulative payoffs for any periods after deviation. Specifically, consider two prefer-

ence profiles where all players’ preferences are the same except for i’s. Within only one period t,

i’s type in one profile is a superset of her type in the second profile. Theorem 1, along with the

sequence {ρt}T−1
t=1 defined in Definition 3, ensures that player i is given more goods/resources in

period t and cumulatively for every period after t. This first rules out any profitable deviations to

subsets of any player’s true type. On the other hand, the difference in the cumulative amount of

goods or resources assigned to i between the two profiles will decrease over time (nevertheless,

will always stay positive), which implies that the cumulative assignment for i is weakly less in

the second profile than in the first in periods following the deviation. Moreover, i’s assignment in

period t given by the first profile within her type in the second profile will be less than that given

by the second profile, a direct result of Proposition 3 in Tian (2015)17. Therefore, if player i’s

type is as hers in the second profile (the subset), then a misrepresentation as in the first profile (the

superset) can never benefit her in payoff terms, recovering strategy-proof-ness dynamically.

5 Discussions

5.1 Why are the ρt’s so small?

In this subsection, I will discuss the significance in the care taken in choosing the sequence {ρt}T
t=t

in Mechanism R. I first demonstrate, through a counterexample, how an arbitrary choice of the

sequence can result in the breakdown of strategy-proof-ness. On the flip side, I show how to refine

any given problem into a new one so that the only undominated strategy for any player is truth-

telling, which has a remarkable impact on the efficiency comparison between Mechanism R and a

17See Theorem 3 in Appendix B for the full statement of Proposition 3 in Tian (2015), presented here as a theorem
for concave cooperative games. Please refer to the original paper for the proof.
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simple repeated deployment of Algorithm E . I start with the following example.

Example 3. Consider the following problem Π:

N = {1,2,3} , T = 25, [bt ,bt+1] = [t, t +1], β
B
t = 1, and Θ

B
t = { /0, [bt ,bt+1]} . (11)

Instead of choosing the sequence of ρt according to Definition 3, simply choose ρt = 1 for all

1 ≤ t ≤ 24. That is, this alternated version of Mechanism R will simply run the procedure of

Mechanism R with the cumulative payoffs without being factored by the sequence defined in

Definition 3. Fix the types of players 1 and 2 and consider two different preferences for player 3:


θ1 = [0,11]∪ [20,25], θ2 = [7,17], θ3 = [5,25] [θ ] ;

θ̂1 = [0,11]∪ [20,25], θ̂2 = [7,17], θ̂3 = [9,25]
[
θ̂
]
.

The outcome of this alternative mechanism is presented in Table 5. Notice that a player with type

θ3 will receive a higher payoff by misrepresenting as θ̂3. Observe that player 3 actually deviates in

more than one period in this example.

The spirit of this alternative mechanism is actually identical to that of Mechanism R—both

build in a reward and punishment mechanism when dividing in period t that is based on players’

cumulative payoffs up until bt . The difference lies in the seemingly insignificantly small reward

or punishment given by Mechanism R that has an ample effect on incentives. Take a deviation

to a subset of the true type as an example such as Table 5 but suppose that the deviating player

only does so in one period t. Her cumulative payoff in the first t periods decreases as a result,

which puts her at an advantage according to both the alternative mechanism and Mechanism R.

However, this lower previous cumulative payoff is discounted in Mechanism R by factors ρt̄ with

t̄ > t just enough so that the resulting reward in periods after t is never enough to compensate for
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Table 5: Period and cumulative payoffs by ρt = 1 for θ and θ̂

i\t 5 6 7 8 9 10 11 12 13 14 15 16... ...20 21 22 23 24 u

1y 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 .5 NA

1x 5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 8 9 9.5

2y 0 0 1 1 .5 .5 .5 .5 .5 .5 .5 .5 0 0 0 0 0 NA

2x 0 0 0 1 2 2.5 3 3.5 4 4.5 5 5.5 6 6 6 6 6 6

3y 1 1 0 0 .5 .5 .5 .5 .5 .5 .5 .5 0 0 0 0 .5 NA

3x 0 1 2 2 2 2.5 3 3.5 4 4.5 5 5.5 9 9 9 9 9 9.5

1̂y 1 1 0 0 0 0 0 0 0 0 0 0 1 .5 .5 .5 .5 NA

1̂x 5 6 7 7 7 7 7 7 7 7 7 7 7 8 8.5 9 9.5 10

2̂y 0 0 1 1 0 0 .5 .5 .5 .5 .5 .5 0 0 0 0 0 NA

2̂x 0 0 0 1 2 2 2 2.5 3 3.5 4 4.5 5 5 5 5 5 5

3̂y 0 0 0 0 1 1 .5 .5 .5 .5 .5 .5 0 .5 .5 .5 .5 NA

3̂x 0 0 0 0 0 1 2 2.5 3 3.5 4 4.5 8 8 8.5 9 9.5 10

Periods 1 through 4 and 17 through 19 are ignored since there is only one player (player 1 and 3, respectively)whose

type includes these periods. Periods 1 through 4 and 17 through 19 are ignored since there is only one player (player

1 and 3, respectively) whose type includes these periods.

the loss incurred from the deviation in period t.

As simple as it seems, such reward and punishment interpretations actually have more complex

implications. Even a one-shot deviation can affect the deviating player’s final payoff in at least two

different aspects. First of all, the dynamic nature provides the opportunity of recovering previous

losses in future periods. For example, in Table 5, player 3’s payoff before period 9 stands at a loss

of 2 when she deviates to the subset of her true type. However, this loss has already been refilled by

half before period 20, when she starts to compete with player 1 again. Clearly, part of the reason of

such quick recovery lies in the fact that one unit decrease in previous cumulative payoffs directly
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translates into one unit of reward when the current period is up for division.

More importantly, when there are more than three players, a unilateral deviation causes changes

in not only the deviating player’s cumulative payoff but also the overall distribution of cumulative

payoffs of potentially many other players. That is, the effect of a unilateral distribution on the

whole system of cumulative payoffs is not a simple practice of increasing or lowering the deviat-

ing player’s payoff and lowering or increasing one single other player’s. Moreover, by the discrete

nature of Algorithm E , it is even quite intractable to parse out which other players than the deviat-

ing are the “first-order” beneficiary or victim and who else are affected by the more subtle “ripple

effects”. This is can be seen by focusing on period 20 in Table 5, where players 2 and 3 each

contribute one unit of payoff to the two-unit increase for player 1.

Hence, the change in the comparative advantage or handicap between any pair of players as the

result of a single player’s misrepresentation must be carefully taken into account when devising the

reward and punishment schemes to incentivize truth-telling. As the columns beyond period 20 in

Table 5 demonstrate, a simplistic one-to-one correspondence between lower previous cumulative

payoff and current advantage provides and exacerbates player 3’s incentive to sacrifice past payoffs

for the future competition against only player 1. Such concerns are exactly what the sequence of

ρt’s in Definition 3 are designed to address: it serves as a uniform upper-bound—maybe as a tad bit

too crude as it may seem—on the magnitude of inter-temporal comparative advantage any player

can reap in the future by incurring a previous cost.

5.2 Why are the ρt’s not zero?

Given the discussions in the previous subsection, a natural question arises as to why not simply

implementing Algorithm E for Γ

(
~θt

)
in period t—a special case of Mechanism R with ρt = 0

for all t and the exact result from Chen et al. (2013): after all, it is known that such repeated
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applications of Algorithm E is Pareto efficient, envy-free, and strategy-proof in the context of fair

divisions with dichotomous preferences. In this section, I provide an efficiency motivated answer

to the significance of the nonzero ρt’s. The essence of such choices of ρt’s are to rule out the

voluminous non-truth-telling pure strategy Nash equilibria that induce hefty efficiency loss.

Per usual definitions, in a problem Π, a pure strategy of player i is a function σi : ΘB→ ΘB.

Given a type profile θ , let σ−i (θ−i) represent the profile of the values of the strategies of all

players except for i’s, i.e.
(
σ j
(
θ j
))

j 6=i. A profile of strategies (σi(·))i∈N is a pure strategy Nash

equilibrium for a direct mechanism M if and only if, for all player i, there does not exist another

pure strategy σ ′i 6= σi such that

ui
(
M
(
σ
′
i (θi),σ−i (θ−i)

)
|θi
)
≥ ui (M (σi(θi),σ−i (θ−i)) |θi) ,∀θ ∈

(
Θ

B)n
,

with the inequality being strict for at least one type profile. Now, since M is a direct mechanism

and no player’s preferences is affected by other players’ types, the definition of pure strategy Nash

equilibrium is equivalent to switching out the strategy profile of other players’ strategies above with

the profile of all the other players’ types. That is, a profile of pure strategies (σi(·))i∈N constitute

a pure strategy Nash equilibrium if and only if, for all player i, there does not exist another pure

strategy σ ′i 6= σi such that

ui
(
M
(
σ
′
i (θi),θ−i

)
|θi
)
≥ ui (M (σi(θi),θ−i) |θi) ,∀θ ∈

(
Θ

B)n
,

with the inequality being strict for at least one type profile. By extension, I shall use the symbol

σ(θ) to stand for the profile of values for the strategy profile (σi(·))i∈N when the players’ types are

given by the profile θ . The goal of the current subsection is to compare the ratios of the maximal to

the minimal achievable efficiency between Mechanism R and repeated applications of Algorithm
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E . Hence, let the refinement of a problem Π be the problem given by enlarging the segmenting B

so that any possible type in ΘB is a union of the intervals included in the new segmenting. I present

this definition along with its existence result with the following lemma.

Lemma 12 (Refinement of a problem). For any problem Π =
(
b,B,T,ΘB,β B), there exists a

problem Π̄ =
(

b, B̄, T̄ ,ΘB,β B̄
)

where B̄ is a strictly increasing sequence with b̄0 = 0, B is a sub-

sequence of B̄, β B̄
t ′ = β B

t if
[
b̄t ′, b̄t ′+1

]
⊆ [bt ,bt+1], and for each θi ∈ΘB, there exists a subsequence

B̄′ ≡
{

b̄′t
}T̄ ′

t=0 of B̄ such that

θi =
T̄ ′⋃

t=0

[
b̄′t , b̄

′
t+1
]
. (12)

Proof. See Appendix C for the proof of Lemma 12. �

Remark 3. Lemma 12 is not an extra assumption about the type space ΘB. It is simply stating that,

given any problem Π, there exists a finer segmenting of the batches or periods in Π so that the

batches or periods in the refined problem become the building blocks of players’ preferences so

that any player’s type compatible with the original problem can be represented by the union of the

batches or periods in the refined problem. Hence, notice that type space in the refined problem is

equal to that in the original problem. Also when a problem is defined, the finiteness of ΘB
t in the

original problem is indispensable and will prove crucial in the proof of Lemma 12.

On the other hand, it should be quite obvious that any given problem has infinitely many refine-

ments since a refinement of the original problem is a new problem while a refinement of the new

problem is definitely yet another refinement of the original problem. However, the existence of a

refinement will be completely constructive—hence, the proof in Appendix C offers the “coarsest”

refinement of the original problem. Furthermore, if a problem Π already has the property that (12)

is satisfied for all types in ΘB, I will refer to Π as a refined problem. As will be seen shortly, re-

fined problems are the simplest form of division problems and possess the strongest incentive and
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efficiency implications when combined with their corresponding nonzero sequences of ρt’s. Since

any problem can be refined into a refined problem (see the proof of Lemma 12 in Appendix C), I

shall focus on refined problems in this subsection and use the symbol Π̄ for such refined problems.

From now on, I shall also focus on problems where players’ types are unbounded. When

players’ type are unbounded, there never exists a final period that is included in the players’ types,

where the incentive property and efficiency performance of Mechanism R simply replicates that of

the repeated deployment of Algorithm E . Within this scope, I manage to strengthen the strategy-

proof-ness of Mechanism R so that truth-telling is the only pure strategy Nash equilibrium. I

document this result along with its efficiency implications with Proposition 2, before which I first

discuss the measure of efficiency adopted in this model.

Given any problem Π and direct mechanism M, let Σ(Π,M) be the set of all pure strategy

Nash equilibria. Let the price of anarchy of M for Π be defined as the ratio between maximum

collective payoff when the players’ types are public information to that of the minimum collective

payoff among all pure strategy Nash equilibria. That is,

POA(Π,M)≡ sup
θ∈ΘB


T−1

∑
t=0

β
B
t

∫
(
⋃

i∈N θi)∩[bt ,bt+1]
1dr

inf
σ∈Σ(Π,M)

∑
i∈N

ui (M (σ(θ)) |θi)

 .

The order of computation of the price of anarchy is to fix a type profile first, then select the

worst performing pure strategy Nash equilibrium and compute the ratio between the maximal

achievable collective payoff under perfect information for that profile, then select the type profile

that results in the highest said ratio. Supremum and infimum are adopted since both type space

and the set of pure strategy Nash equilibria can potentially be infinite. However, the maximum

achievable collective payoff is well-defined and only depends on the type profile.
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Clearly, the current definition allows the worst performing equilibrium to vary for differ-

ent type profiles, which offers a lower bound on the collective welfare in equilibrium for any

equilibrium-type-profile combination. However, this does not imply that the current definition

provides the upper bound on the ratio between maximal achievable collective payoffs versus that

in any equilibrium-type-profile combination. In the current definition, the numerator is tied to the

type profile first, then is the worst performing equilibrium selected to calibrate the efficiency loss

due to private information withheld by the players. This order of computation is a sensible choice

in this mechanism design problem since it is unnecessary for the mechanism designer to be con-

cerned about the worst outcome for the worst type profile while unreasonably expecting the best

type profile when computing the achievable collective payoff. Finally, the definition implicitly

stays agnostic on the whether should mechanisms be measured in terms of efficiency when simply

no player is demanding any resources—an extreme scenario safely assumed away within reasons.

I now set out to compare the prices of anarchy of Mechanism R and repeated application of

Algorithm E for each period, effectively setting ρt = 0 for all periods. I shall refer to the latter

mechanism as R0. The main result in this subsection below shows that the price of anarchy of R0

for any refined infinite problem with a sufficiently rich type spaces is at least n, the size of the set

of players, while Mechanism R achieves full efficiency with a price of anarchy of 1.

Proposition 2 (Price of anarchy). Let Π̄

(
+∞, B̄,+∞,ΘB̄,β B̄

)
be an infinite refined problem with

a finite set of players N, where ΘB̄ is the set of all infinite unions of intervals in {[bt ,bt+1]}+∞

t=0. The

price of anarchy of R0 for Π̄ is at least n = |N|. The price of anarchy of Mechanism R for Π̄ is 1.

Proof. See Appendix C for the proof of Proposition 2. �

The outcome of R0 is very straightforward to calculate for refined problems. Any period or

batch is simply divided among players who demonstrate demand with equal shares. The proof
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in Appendix C even contains direct computation on a candidate lower bound of the price of an-

archy of R0 for each type profile. On the other hand, the outcome of Mechanism R is much

more convoluted for any given period, compounded with the limitless type space, making direct

computation impossible. Nevertheless, refined problems offer relatively easy characterization of

candidate sequences of ρt’s based on very straightforward computations of the sequence of δt’s as

in Definition 3. The proof of Proposition 2 bypasses all these issues by ensuring that in Mechanism

R, truth-telling is a strictly dominant strategy for all players, making all player telling the truth the

only pure strategy Nash equilibrium. Since Mechanism R is Pareto efficient when players are

honest, its price of anarchy is naturally 1.

Proposition 2 highlights the value of nonzero ρt’s: most importantly, it eliminates numerous

undesirable equilibria the static mechanism, even as delicate as Algorithm E is, cannot rule out.

Even more interesting is the magnitude of the working ρt’s implied by Proposition 2. Larger

population of players and richer type space result in lower δt’s simply by definition in Definition 3.

However, such complications introduce larger advantage in efficiency performance of Mechanism

R as compared to R0. In some sense, Proposition 2 bears the "leverage" interpretation on the role

of ρt’s in the working mechanics of Mechanism R: with larger population and richer type space,

the mechanism designer is only allowed to move within an even tighter wiggle room, which they,

if maneuvering carefully, can eventually leverage into a more sizable gain in performance. It is

worth pointing out that the recursive and dynamic but not simply repeated nature of Mechanism R

is the key to such possibilities of equilibrium selection.

The focus on refined problems, on the other hand, is barely motivated by sequential or dy-

namic concerns18. Recall that deviations that are neither supersets nor subsets of the true types

18Nevertheless, it is worth reiterating that refinement of problems is not an additional assumption of any sort on the
type space—it is merely a rephrase or restructure of the same environment to provide tractability in computing prices
of anarchy of the mechanisms in comparison.
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are dismissed only with weak inequalities in payoffs when establishing strategy-proof-ness. The

unimportant difference between weak and strict inequalities in incentive properties become signif-

icant in efficiency measures. Players may be indifferent between deviations and truth-telling but

the efficiency consequence of such indifference can be considerable, precisely the reason for the

substantial price of anarchy for R0. Notice that such concerns do not exist in a refined problem

since whenever the first period of deviation is, it has to be to either a superset or subset of the true

type. Deviations in future periods are suppressed by the same argument as in Lemma 10 once at

least one strict inequality is established for the first period of deviation in payoff terms.

Furthermore, deviations that are neither supersets nor subsets of the true types induce ambigu-

ous changes in the feasible set of divisions faced by the mechanism, the comparative statics impli-

cations on the amount of goods assigned is yet untraceable, not to mention those on the eventual

payoffs to the deviating player. Consequently, the premises of Lemma 8 collapse hence the result

no longer applies even in the first period of deviation. Compounded with deviations in potentially

multiple periods, the efficiency implications in unrefined problems quickly becomes intractable.

At the core of this impasse is Mechanism R staying agnostic on which compatible feasible di-

vision to choose once a payoff vector is determined—Chen et al. (2013) also acknowledges this

obstacle, to which this current work owns a great deal. It goes without saying that this unanswered

question offers a crucial challenge that any future research is more than encouraged to tackle.

6 Concluding Remarks

I studied the problem of dynamic and sequential fair divisions for players with dichotomous pref-

erences. The major contributions of this project include a systematic design of Pareto efficient,

envy-free, and strategy-proof dynamic division mechanisms for any generic problem. The mecha-
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nism devised in this paper possesses strong incentive properties which enforce truth-telling by all

players to be the only pure strategy Nash equilibrium in infinite problems with unbounded types.

Such strong incentive properties translate into a factor of performance improvement over simple

repeated applications of static strategy-proof mechanisms equal to the size of the set of players.

On a more technical and theoretical level, this paper contributes a novel comparative statics

result on the egalitarian solutions to monotone and concave cooperative games with transferable

utilities in characteristic function form. I also discovered the duality-like property of the algorithms

locating the egalitarian solutions to reconcile the conflict between the process and result in the

pursuit of the egalitarian solutions.

As mentioned before, one immediate future research direction is to develop a tangible way

of translating payoff vectors into appropriate selection of feasible divisions to ridden the shackle

placed on the proof of strategy-proof-ness by Lemma 8. This will most likely be a purely technical

endeavor. For purposes closer to applications, development of measures or indices of envy-free-

ness and strategy-proof-ness, similar to the notion of price of anarchy for efficiency, should be

noted as a valuable potential for later research.

Were the foregoing development of performance measures successful, tradeoffs among these

measures (and, by extension, potentially even a “efficiency-incentive-fairness” frontier of sorts)

are to be better explored. Cho (2014) already represents some of the earliest adventures in such

territories although, unsurprisingly, all of the results so far are negative. However, the ultimate goal

of this direction should not be enumerating theoretical impossibilities with a top-down approach.

On the contrary, a characterization of the exchange competitive economy market mechanism as

the ultimate institute for assignment and division problems on a maximal domain where efficiency,

incentive, and fairness are all compatible should be set as a finish line in sight.
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A Omitted proofs from section 3

Lemma 1 (Preliminary observations of e(·)). Given any monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form with the characteristic func-

tion given by v(·),

1. ∀R⊂ S⊂ T ⊆ N, e(T −R) = e(S−R)⇒ e(T −R) = e(S−R) = e(T −S);

2. ∀R⊂ T ⊆ N and R⊂ S⊆ N, where R⊂ (T ∩S) and T 6⊆ S and S 6⊆ T , such that e(S−R) =

e(T −R), then min{e [(T ∪S)−R] ,e [(T ∩S)−R]} ≤ e(S−R) = e(T −R);

3. ∀R⊂ T ⊆ N and R⊂ S⊆ N, where R = (T ∩S) and T 6⊆ S and S 6⊆ T , such that e(S−R) =

e(T −R), then e[(T ∪S)−R]≤ e(S−R) = e(T −R).

Proof. 1. R⊂ S⊂ T ⇒ |R|< |S|< |T |. Therefore,

e(T −R) =
v(T )− v(R)
|T |− |R|

=
v(T )− v(S)+ v(S)− v(R)

|T |− |R|

=
v(T )− v(S)
|T |− |S|

· |T |− |S|
|T |− |R|

+
v(S)− v(R)
|S|− |R|

· |S|− |R|
|T |− |R|

=e(T −S) · |T |− |S|
|T |− |R|

+ e(S−R) · |S|− |R|
|T |− |R|

.

Recall that e(T −R) = e(S−R), which implies

e(T −S) · |T |− |S|
|T |− |R|

= e(T −R)− e(S−R) · |S|− |R|
|T |− |R|

= e(T −R) · |T |− |R|− (|S|− |R|)
|T |− |R|

⇒ e(T −S) = e(T −R).

60



2. By concavity of v(·), v(T ∩S)+ v(T ∪S)≤ v(T )+ v(S), which implies

v(T ∩S)− v(R)+ v(T ∪S)− v(R)≤ v(T )− v(R)+ v(S)− v(R).

Dividing both sides by (|T ∩S|+ |T ∪S|−2|R|) = (|T |+ |S|−2|R|),

⇒e[(T ∩S)−R] · |T ∩S|− |R|
|T ∩S|+ |T ∪S|−2|R|

+ e[(T ∪S)−R] · |T ∩S|− |R|
|T ∪S|+ |T ∪S|−2|R|

≤ e(S−R).
(13)

Notice that the left-hand side of (13) is a convex combination of e[(T ∩ S)−R] and e[(T ∪

S)−R], thus completing the proof.

3. By concavity of v(·), v(T ∩S)− v(R)︸ ︷︷ ︸
=0

+v(T ∪S)− v(R)≤ v(T )− v(R)+ v(S)− v(R). Thus,

e[(T ∪S)−R] · (|T ∪S|− |R|) =v(T ∪S)− v(R)≤ v(T )− v(R)+ v(S)− v(R)

=e(T −R) · (|T |− |R|)+ e(S−R) · (|S|− |R|)

=e(T −R)︸ ︷︷ ︸
=e(S−R)

·(|T |+ |S|−2|R|).

Recall that (T ∩S) = R⇒ |T ∩S|− |R|︸ ︷︷ ︸
=0

+|T ∪S|− |R|= |T |+ |S|−2|R|. Thus,

e[(T ∪S)−R] = e(T −R).

Lemma 2 (First observation from Algorithm E ). Let S1 ⊂ S2 ⊂ ·· · ⊂ SK = N be the sequence of

subsets of N generated by Algorithm E with K≤ n= |N| for the monotone and concave cooperative

game Γ= (N,v(·)) with transferable utilities in characteristic function form with the characteristic
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function v(·). Then ∀2≤ k ≤ (K−1), e(Sk−Sk−1)≤ e(Sk+1−Sk).

Proof. By definition, Sk−1⊂ Sk ⊂ Sk+1. Suppose there is a k such that e(Sk+1−Sk)< e(Sk−Sk−1).

e(Sk+1−Sk−1) =
v(Sk+1)− v(Sk)+ v(Sk)− v(Sk−1)

|Sk+1|− |Sk−1|

=
v(Sk+1)− v(Sk)

|Sk+1|− |Sk|
· |Sk+1|− |Sk|
|Sk+1−Sk−1|

+
v(Sk)− v(Sk−1)

|Sk|− |Sk−1|
· |Sk|− |Sk−1|
|Sk+1−Sk−1|

=e(Sk+1−Sk)︸ ︷︷ ︸
<e(Sk−Sk−1)

· |Sk+1|− |Sk|
|Sk+1−Sk−1|

+ e(Sk−Sk−1) ·
|Sk|− |Sk−1|
|Sk+1|− |Sk−1|

< e(Sk−Sk−1).

This is contradiction to the definition of Sk having the least e(S−Sk−1) among all S⊃ Sk−1.

Lemma 3 (Finest partition of N). Let y∗ be the egalitarian solution given by Algorithm E that

terminates in K steps for the monotone and concave game Γ = (N,v(·)) with transferable utilities

in characteristic function form with the characteristic function v(·). Let P∗ be the partition of N

implied by Algorithm E , namely P∗ ≡ {(Sk\Sk−1)}K
k=1.

A partition P of N is y∗-compatible if and only if

1. For all i ∈ N and j ∈ N, i ∈ S ∈P and j ∈ S ∈P implies that y∗i = y∗j;

2. And for any S ∈P , ∑
j∈(Ci(y∗)∪S)

y∗j = v(Ci(y∗)∪S), ∀i ∈ S.

P∗ is the finest among all y∗-compatible partitions of N. That is, let P be a y∗-compatible

partition of N. Then any element of P is a union of some elements of P∗.

Proof. Let P be any y∗-compatible partition of N. It suffices to show that for all i∈N, i∈ S ∈P∗

and i ∈ S′ ∈P implies that S⊆ S′. Note that i ∈ (S∩S′) hence (S∩S′) 6= /0. Suppose S 6⊆ S′. Then
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(S∩S′)⊂ S. By the second requirement of Lemma 3 and Lemma 1,

e
[
((S∩S′)∪Ci(y∗))−Ci(y∗)

]
= e [(S∪Ci(y∗))−Ci(y∗)] ,

which means that S is not a smallest candidate for the step in Algorithm E forCi(y∗), contradictory

to the definition of P∗, the elements of which are all smallest candidates.

Lemma 4 (Feasibility and dominance of y∗). Given any monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form with the characteristic func-

tion v(·) with V being the feasible set given by v(·), the egalitarian solution y∗ defined by Algorithm

E generalized Lorenz dominates any y ∈V and y∗ ∈V .

Proof. I first show the feasibility of y∗. That is,

∑
i∈R

y∗i ≤ v(R),∀R⊆ N. (14)

This is done by running an induction on any R⊆ N as compared to the Sk in the steps of Algorithm

E . Specifically, let K ≤ n be the number steps the Algorithm terminates in. Take any R ⊆ N.

First let R⊆ S1. Clearly, if R = S1, ∑
i∈R

y∗i = v(S1) by the definition of y∗. Hence, suppose, instead,

R⊂ S1. Keep in mind that, in this case, y∗i = e(S1− /0), ∀i∈ R. I want to show that ∑
i∈R⊂S1

y∗i ≤ v(R).

By the definition of S1,

e(S1− /0)≤ e(R− /0) =
v(R)
|R|
⇒ |R| · e(S1− /0)≤ |R| · e(R− /0) = v(R).

Therefore, ∑
i∈R

y∗i = |R| · e(S1− /0)≤ |R| · e(R− /0) = v(R). Thus, the initiation step in the induction

is completed. Now, suppose for all R⊆ Sk for some k ≤ (K−1), (14) holds. In the induction step,

I want to show that (14) holds for all R⊆ Sk+1. If R⊆ Sk, then R⊆ Sk+1 and (14) holds trivially by
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the assumption for step k. Suppose otherwise: R 6⊆ Sk. Then it must be the case that Sk ⊂ (R∪Sk).

In this case, there are two possibilities to consider: R∩Sk = /0 and R∩Sk 6= /0.

• R∩ Sk = /0 and R ⊆ Sk+1 imply that R ⊆ (Sk+1\Sk). Moreover, |Sk ∪R| = |Sk|+ |R|. Then,

y∗i = e(Sk+1−Sk), ∀i ∈ R. Then, by the definition of Sk+1,

∑
i∈R

y∗i =|R| · e(Sk+1−Sk)≤ |R| · e[(Sk∪R)−Sk]

=|R| · v(Sk∪R)− v(Sk)

|Sk∪R|− |Sk|
= |R| · v(Sk∪R)− v(Sk)

|R|
= v(Sk∪R)− v(Sk)

≤︸︷︷︸
by concavity of Γ

v(R)− v(Sk∩R)︸ ︷︷ ︸
=0 by Sk∩R= /0

= v(R).

• Now, for R∩Sk 6= /0, remember that for all i ∈ (R\Sk), y∗i = e(Sk+1−Sk) ≤ e[(Sk ∪R)−Sk]

by the definition of Sk+1. Mover, |R\Sk|= (|R∪Sk|− |Sk|). Then,

∑
i∈R

y∗i = ∑
i∈(R\Sk)

y∗i + ∑
i∈(R∩Sk)

y∗i = |R\Sk| · e(Sk+1−Sk)+

≤v(Sk∩R)︷ ︸︸ ︷
∑

i∈(R∩Sk)

y∗i︸ ︷︷ ︸
by assumption for step k

≤|R\Sk| · e[(Sk∪R)−R]+ v(Sk∩R)

=v(Sk∪R)− v(Sk)+ v(Sk∩R) ≤︸︷︷︸
by concavity of Γ

v(R).

Hence, the induction for step k+1 is complete and so is the proof for y∗ ∈V . �

I will now turn to showing that y∗ generalized Lorenz dominates every y ∈ V . Take any y ∈

V . Recall that y and y∗ are generated from y and y∗ by rearranging the arguments in a weakly

increasing order, respectively. Among alternative rearrangement, select the ones that respects the

indices of the players. Formally, let ν and ν∗ be the permutations of N for the pair of vectors (y,y)
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and (y∗,y∗) such that for all i, j ∈ N


yi < y j⇒ ν(i)< ν( j); When yi = y j, i < j ⇐⇒ ν(i)< ν( j);

y∗i < y∗j ⇒ ν
∗(i)< ν

∗( j); When y∗i = y∗j , i < j ⇐⇒ ν
∗(i)< ν

∗( j).

Let µ and µ∗ be the inverse of ν and ν∗, respectively. Thus, µ(i) and µ∗(i) are the identities of

the players in N holding the i-th entries in y and y∗, respectively. Without loss of generality, let

y0 = y∗0 = 0. Now, supposed y∗ does not generalized Lorenz dominates y. The goal of this proof

by contradiction is to show that y /∈V .

The assumption of y∗ not generalized Lorenz dominating y means that there exists an 1≤ L≤N

such that
L

∑
l=1

yl >
L

∑
l=1

y∗l . Let (L̃+1) be the smallest of such L if there are more than one candidate—

0 ≤ L̃ ≤ (N−1). This implies that
L̃

∑
l=1

yl ≤
L̃

∑
l=1

y∗l , which still holds even when L̃ = 0. Therefore,

yL̃+1−y∗L̃+1 >
L̃

∑
l=1

y∗l −
L̃

∑
l=1

yl ≥ 0. (15)

Now, let Sk be the largest subset of N such that y∗i ≤ y∗L̃+1, ∀i ∈ Sk. Such Sk is well-defined

and clearly |Sk| ≥ (L̃+ 1)⇒
(
|Sk|− L̃

)
≥ 1 by statement 1 in Lemma 6, the proof of which will

be presented shortly afterwards. Since π is a permutation, |S|= L̃. Let S≡
{

π(l) : 1≤ l ≤ L̃
}

(by

definition, S = /0 when L̃ = 0). Let κ ≡ |S∩Sk|. For i ∈ S\(S∩Sk), yi ≤ yL̃+1 by the definition of

y, which implies that
L̃

∑
l=1

yl = ∑
i∈(S∩Sk)

yi + ∑
j∈(S\(S∩Sk))

yi

⇒ ∑
i∈(S∩Sk)

yi ≥
L̃

∑
l=1

yl− (|S|−κ) ·yL̃+1 =
L̃

∑
l=1

yl−
(
L̃−κ

)
·yL̃+1.
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Now, for each i ∈ (Sk\S), yi ≥ yL̃+1. Therefore,

∑
i∈Sk

yi ≥ (|Sk|−κ)yL̃+1 +
L̃

∑
l=1

yl−
(
L̃−κ

)
·yL̃+1 =

L̃

∑
l=1

yl +
(
|Sk|− L̃

)
·yL̃+1.

Similar to S, let S∗ ≡
{

π
∗(l) : 1≤ l ≤ L̃

}
. By the definition of Sk, for any i ∈ (Sk\S∗), yi = y∗L̃+1.

∑
i∈Sk

yi− ∑
i∈Sk

y∗i ≥
L̃

∑
l=1

yl +
(
|Sk|− L̃

)
·yL̃+1−

L̃

∑
l=1

y∗l −
(
|Sk|− L̃

)
·y∗L̃+1

=
L̃

∑
l=1

yl−
L̃

∑
l=1

y∗l +
(
|Sk|− L̃

)︸ ︷︷ ︸
≥1

·
(

yL̃+1−y∗L̃+1

)
︸ ︷︷ ︸
≥0 by (15)

≥
L̃

∑
l=1

yl−
L̃

∑
l=1

y∗l +
(

yL̃+1−y∗L̃+1

)
> 0.

Now, recall, by (3), ∑
i∈Sk

y∗i = v(Sk). Therefore, ∑
i∈Sk

yi > v(Sk) hence y /∈V .

Lemma 6 (Second observation of Algorithm E ). Let S1 ⊂ S2 ⊂ ·· · ⊂ SK = N be the sequence of

subsets of N generated by Algorithm E with K≤ n= |N| for the monotone and concave cooperative

game Γ= (N,v(·)) with transferable utilities in characteristic function form with the characteristic

function v(·). Then ∀0≤ k ≤ (K−1), [S⊃ Sk and |S|> |Sk+1|]⇒ e(S− /0)≥ e(Sk+1− /0).

Proof. The proof will be carried out on the induction on k. Clearly, for k = 0, the statement is

trivially true by the definition of S1. Suppose the statement is true for some k≤ (K−2). For k+1, I

want to show that for any S⊆N such that S⊃ Sk+1 and |S|> |Sk+2|, e(S− /0)≥ e(Sk+2− /0). First of

all, recall that both S and Sk+2 are proper supersets of Sk, which means that e(S− /0)≥ e(Sk+1− /0)
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and e(Sk+2− /0)≥ e(Sk+1− /0).



e(S− /0) =
v(S)
|S|

=
v(S)− v(Sk+1)+ v(Sk+1)

|S|

=
|S|− |Sk+1|
|S|

· e(S−Sk+1)+
|Sk+1|
|S|
· e(Sk+1− /0)︸ ︷︷ ︸
≤e(S− /0)

;

e(Sk+2− /0) =
v(Sk+2)

|Sk+2|
=

v(Sk+2)− v(Sk+1)+ v(Sk+1)

|Sk+2|

=
|Sk+2|− |Sk+1|
|Sk+2|

· e(Sk+2−Sk+1)︸ ︷︷ ︸
≤e(S−Sk+1)

+
|Sk+1|
|Sk+2|

· e(Sk+1− /0)︸ ︷︷ ︸
≤e(Sk+2− /0)

.

Notice that in both equations above, the left-hand side is a convex combination of the two compo-

nents on the right-hand side. Hence, e(S−Sk+1)≥ e(Sk+1− /0) and e(Sk+2−Sk+1)≥ e(Sk+1− /0).

Moreover, |S|> |Sk+2| implies that
|S|− |Sk+1|
|S|

>
|Sk+2|− |Sk+1|
|Sk+2|

. Therefore, we have

e(S− /0)≥|S|− |Sk+1|
|S|

· e(Sk+2−Sk+1)+
|Sk+1|
|S|
· e(Sk+1− /0)

≥|Sk+2|− |Sk+1|
|Sk+2|

· e(Sk+2−Sk+1)+
|Sk+1|
|Sk+2|

· e(Sk+1− /0) = e(Sk+2−Sk+1) .

Lemma 7 (Third observation of Algorithm E ). Given a monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form and let {Sk}K
k=1 be any

sequence of subsets generated by Algorithm E . Then

∀1≤ k ≤ K, e(Sk−Sk−1) = max
S⊂Sk

e(Sk−S).

Proof. The proof is by induction on k as the index of Sk. For k = 1, by definition e(S1− /0) ≤
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e(S− /0) for any S⊆ N. Let S⊂ S1. Then,

e(S1− /0) =
v(S1)

|S1|
=

v(S1)− v(S)+ v(S)
|S1|

=
|S1|− |S|
|S1|

· e(S1−S)+
|S|
|S1|
· e(S− /0),

⇒ |S1|− |S|
|S1|

· e(S1−S) = e(S1− /0)− |S|
|S1|
· e(S− /0)︸ ︷︷ ︸
≥e(S1− /0)

≤ |S1|− |S|
|S1|

· e(S1− /0).

So the initiation step is complete. Now suppose the statement is true for 1 ≤ k ≤ (K−1). I want

to show in the induction step that

e(Sk+1−Sk)≥ e(Sk+1−S), ∀S⊂ Sk+1.

First of all, the statement is trivially true if S = Sk. Hence, let S 6= Sk. If S⊂ Sk, then

e(Sk+1−S) =
v(Sk+1)− v(Sk)+ v(Sk)− v(S)

|S1|− |S|

=
|Sk+1|− |Sk|
|Sk+1|− |S|

· e(Sk+1−Sk)+
|Sk|− |S|
|Sk+1|− |S|

· e(Sk−S).

Again, the left-hand side is a convex combination of the two terms on the right-hand side so it must

be less than or equal to the larger one of the two on the right-hand side. By the assumption in step

k, e(Sk−S)≤ e(Sk−Sk−1) and by Lemma 2, e(Sk−Sk−1)≤ e(Sk+1−Sk), completing this step.

Now, suppose Sk+1 ⊃ S⊃ Sk. Recall that by the definition of Sk+1, e(Sk+1−Sk)≤ e(S−Sk).

e(Sk+1−Sk) =
|Sk+1|− |S|
|Sk+1|− |Sk|

· e(Sk+1−S)+
|S|− |Sk|
|Sk+1|− |Sk|

· e(S−Sk)︸ ︷︷ ︸
≥e(Sk+1−Sk)

;
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⇒ |Sk+1|− |S|
|Sk+1|− |Sk|

· e(Sk+1−S) =e(Sk+1−Sk)−
|S|− |Sk|
|Sk+1|− |Sk|

· e(S−Sk)

≤ |Sk+1|− |S|
|Sk+1|− |Sk|

· e(Sk+1−Sk) .

Finally, let S 6⊇ Sk and S 6⊆ Sk and S⊂ Sk+1. Then (S∪Sk)⊃ Sk and (S∩Sk)⊂ Sk. Thus,

e(Sk+1− (S∪Sk)) =
v(Sk+1)− v(S∪Sk)

|Sk+1|− |S∪Sk|
≥︸︷︷︸

by concavity of Γ

v(Sk+1)− v(S)− v(Sk)+ v(S∩Sk)

|Sk+1|− |S∪Sk|
;

⇒ e(Sk+1− (S∪Sk))︸ ︷︷ ︸
≤e(Sk+1−Sk) since (S∪Sk)⊃ Sk

+
|Sk|− |S∩Sk|
|Sk+1|− |S∪Sk|

· e(Sk− (S∩Sk))︸ ︷︷ ︸
≤e(Sk+1−Sk) since (S∩Sk)⊂ Sk

≥ |Sk+1|− |S|
|Sk+1|− |S∪Sk|

· e(Sk+1−S) .

Therefore, for this last case, e(Sk+1−Sk)≥ e(Sk+1−S) for S that is neither a superset nor a subset

of Sk. Hence, the induction for step (k+1) is complete and so is the whole proof.

Theorem 1 (Maximal increase in payoffs). Let Γ = (N,v(·)) and Γ̂ = (N, v̂(·)) be two monotone

and concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i ∈ N such that, for all S⊆ N,

1. i /∈ S⇒ v(S) = v̂(S); 2. i ∈ S⇒ v(S)≤ v̂(S); 3. i ∈ S⊂ T ⇒ v̂(T )− v(T )≤ v̂(S)− v(S).

Let y∗ and ŷ∗ be the egalitarian solutions of Γ and Γ̂, respectively. Then, for all j ∈ N,

ŷ∗i − y∗i ≥ ŷ∗j − y∗j . (4)

Proof. I first establish, very quickly, an quite obvious fact:

i ∈ S⊂ T ⇒ v̂(T )− v̂(S)
|T |− |S|

≤ v(T )− v(S)
|T |− |S|

. (16)
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Simply rearrange the third condition in the statement of the Theorem 1 and (16) is proved.

As mentioned in the main text, any player who has lower payoff than i at y∗ will receive exactly

the same payoff at ŷ∗. Also, i’s payoff is weakly increasing from y∗ to ŷ∗ by Proposition 3 in Tian

(2015). Therefore, it suffices to focus on the players who receive strictly more payoffs than i at ŷ∗.

Take any such player j. It suffices to show that ŷ∗j ≤ y∗j . Suppose j ∈ (Sk+1\Sk) at y∗ generated by

Algorithm E for Γ. By Definition 1,

y∗j =
v(Sk+1)− v(Sk)

|Sk+1|− |Sk|
.

Now, focus on the set of players (Sk+1\Sk). Let Ŝl+1 be the smallest set in the sequence
{

Ŝl
}L

l=1

generated by Algorithm E for Γ̂ that contains the subset (Sk+1\Sk). That is (Sk+1\Sk) ⊆ Ŝl+1 but

(Sk+1\Sk) 6⊆ Ŝl . Thus, (
Ŝl ∪Sk+1

)
⊃ Sl and

(
Ŝl ∩Sk+1

)
⊂ Sk+1. (17)

Recall that ŷ∗j > ŷ∗i by assumption. Also, by Lemma 2,
v̂
(
Ŝl+1

)
− v̂
(
Ŝl
)∣∣Ŝl+1

∣∣− ∣∣Ŝl
∣∣ ≥ ŷ∗j > ŷ∗i , implying that

i ∈ Ŝl . By the definition of Ŝl+1 according to Algorithm E ,

ŷ∗j ≤
v̂
(
Ŝl+1

)
− v̂
(
Ŝl
)∣∣Ŝl+1

∣∣− ∣∣Ŝl
∣∣ ≤︸︷︷︸

by Definition 1

v̂
(
Ŝl ∪Sk+1

)
− v̂
(
Ŝl
)∣∣Ŝl ∪Sk+1

∣∣− ∣∣Ŝl
∣∣ ≤︸︷︷︸

by (16)

v
(
Ŝl ∪Sk+1

)
− v
(
Ŝl
)∣∣Ŝl ∪Sk+1

∣∣− ∣∣Ŝl
∣∣ .

By concavity of Γ, Lemma 7, and (17),

v
(
Ŝl ∪Sk+1

)
− v
(
Ŝl
)∣∣Ŝl ∪Sk+1

∣∣− ∣∣Ŝl
∣∣ ≤︸︷︷︸

by concavity of Γ

v(Sk+1)− v
(
Sk+1∩ Ŝl

)
|Sk+1|−

∣∣Sk+1∩ Ŝl
∣∣

≤︸︷︷︸
by Lemma 7

v(Sk+1)− v(Sk)

|Sk+1|− |Sk|
= y∗j .
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Lemma 8 (Unilateral disturbance). Let Γ = (N,v(·)) and Γ̂ = (N, v̂(·)) be two monotone and

concave cooperative games with transferable utilities in characteristic function form such that

there exists a unique i ∈ N such that, for all S⊆ N,

1. i /∈ S⇒ v(S) = v̂(S); 2. i ∈ S⇒ v(S)≤ v̂(S); 3. i ∈ S⊂ T ⇒ v̂(T )− v(T )≤ v̂(S)− v(S).

Let y∗ and ŷ∗ be the egalitarian solutions and P∗ and P̂∗ generated by Algorithm E for Γ and Γ̂,

respectively. Then y∗i = ŷ∗i ⇒
[
y∗ = ŷ∗ and P∗ = P̂∗

]
. Otherwise,

[
ŷ∗j ≥ ŷ∗i and j /∈ Qi (ŷ∗)

]
⇒ ŷ∗j ≤ y∗j .

Proof. First of all, for any j such that y∗j < y∗i or y∗j = y∗i and y /∈ Qi(y∗), y∗j = ŷ∗j , since there is

a sequence of subsets of players that can include all such players before selecting i according to

Algorithm E and the order of the subsets selected do not change the egalitarian solution. Let S̄ be

the last subset of players selected before i is in Γ and notice that there exists a sequence of subsets

of selected players for Γ̂ that replicates the sequences for Γ up to S̄. Hence, for Γ, S̄ is the largest

union of cliques excluding i that contains players with weakly lower payoffs than i at y∗. Notice

that since i /∈ S̄, v(S) = v̂(S) for any S⊆ S̄.

Now, consider any T̄ ⊆ N that is a proper superset of S̄. I want to show that

T̄ 6=
(
Qi (y∗)∪ S̄

)
⇒

v̂(T̄ )− v̂
(
S̄
)

|T̄ |−
∣∣S̄∣∣ > y∗i = ŷ∗i .

That is, the clique of i at ŷ∗ will be exactly the same as that of i at y∗. First of all, for any T̄ ⊃ S̄,

v̂(T̄ )− v̂
(
S̄
)

|T̄ |−
∣∣S̄∣∣ ≥max

j∈S̄

{
ŷ∗j
}
= max

j∈S̄

{
y∗j
}

71



by Lemma 2. Observe that, by the definition of Algorithm E in Definition 1,

T̄ 6=
(
Qi (y∗)∪ S̄

)
⇒ e

(
T̄ − S̄

)
> y∗i = ŷ∗i .

Now, if i /∈ T̄ , then v̂(T̄ ) = v(T̄ ). Hence,
v̂(T̄ )− v̂

(
S̄
)

|T̄ |− |S̄|
= e

(
T̄ − S̄

)
> y∗i = ŷ∗i . Thus, let T̄ 3 i.

Then v̂(T̄ )≥ v(T̄ ), which implies that

v̂(T̄ )− v̂
(
S̄
)

|T̄ |−
∣∣S̄∣∣ =

v̂(T̄ )− v
(
S̄
)

|T̄ |−
∣∣S̄∣∣ ≥ v(T̄ )− v

(
S̄
)

|T̄ |−
∣∣S̄∣∣ = e

(
T̄ − S̄

)
> y∗i = ŷ∗i .

Therefore, the clique of i at ŷ∗, Qi (ŷ∗), must be the same as Qi (y∗) when y∗i = ŷ∗i , which implies

v
(
S̄∪Qi (y∗)

)
= v̂
(
S̄∪Qi (y∗)

)
⇒ v(T ) = v̂(T )

for any T ⊃
(
S̄∪Qi (y∗)

)
. Hence, the subsets of players selected in Algorithm E will be the same

for Γ and Γ̂, resulting in y∗ = ŷ∗. However, this does not imply that the two games are identical:

beyond the sequences of players selected by Algorithm E , no statement is ever made regarding the

values of the characteristic functions v(·) and v̂(·).

Now, for the second statement, when j /∈ Qi (y∗) and y∗j ≤ y∗i , ŷ∗j = y∗j . So the statement is

satisfied. Hence, I should only focus on j ∈ Qi (y∗) or those such that y∗j > y∗i . Note that by the

proof of Theorem 1, if ŷ∗j > ŷ∗i , then the statement is also satisfied. Hence, the players of interest

are only those in i’s clique at y∗ but not at ŷ∗ and who receive the same payoff as i does at ŷ∗.

When j is not in i’s clique at ŷ∗ but receives weakly higher payoff than i, there must exist a

sequence of subsets of players chosen by Algorithm E for Γ̂ such that j ∈
(
Ŝl+1\Ŝl

)
and i ∈ Ŝl .

This is achieved by running Algorithm E for Γ̂ and always choose the clique of i at ŷ∗ first among

all players who are about to receive at least as much payoff as i does. Without loss of generality,
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suppose j ∈ (Sk+1\Sk) for some k in the sequence of subsets of players generated by Algorithm E

for Γ. Now, as in the proof of Theorem 1, let Ŝl̄+1 be the first subset in the sequence chosen by

Algorithm E for Γ̂ that contains all players in Sk+1. Since j ∈
(
Ŝl+1\Ŝl

)
, it must be the case that

l̄ ≥ l which implies that i ∈ Ŝl̄ . A similar sequence of inequalities as that in the proof of Theorem 1

provides the result and completes the proof.

Lemma 9 (Secondary observations of e(·)). Given any monotone and concave cooperative game

Γ = (N,v(·)) with transferable utilities in characteristic function form with the characteristic func-

tion being given by v(·), then

1. ∀S⊂ T ⊂ R⊆ N, e(R−T ) = e(R−S)⇒ e(R−S) = e(R−T ) = e(T −S);

2. ∀T ⊂ R⊆ N and S⊂ R⊆ N such that e(R−S) = e(R−T ), then

max{e [R− (T ∪S)] ,e [R− (T ∩S)]} ≥ e(R−S) = e(R−T ).

Proof. Part of the proof for Lemma 9 will be very similar to that of Lemma 1, especially for the

second statement. I start with the first statement and consider the following manipulations that is

solely based on the definition of e(·).

1. Simply subtract
|R|− |T |
|R|− |S|

· e(R−T ) from the equation below

e(R−S) =
v(R)− v(S)
|R|− |S|

=
v(R)− v(T )+ v(T )− v(S)

|R|− |S|

=
|R|− |T |
|R|− |S|

· e(R−T )+
|T |− |S|
|R|− |S|

· e(T −S).

2. By concavity of Γ, v(R)−v(T ∪S)+v(R)−v(T ∩S)≥ v(R)−v(T )+v(R)−v(S). Follow the

same steps in the proof of the second statement in Lemma 1 and the proof is complete.
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Theorem 2 (“Duality”). Let Γ = (N,v(·)) be a monotone and concave cooperative game with

transferable utilities in characteristic function form with the characteristic function v(·). Then

1. Both Algorithm E and Algorithm Ē terminate in the same number K ≤ N of steps;

2. For any sequence of subsets of N, {Sk}K
k=1, generated by Algorithm E , there exists a sequence

of subsets of N, {Tk}K
k=1, generated by Algorithm Ē , such that Tk = SK−k, ∀0≤ k ≤ K;

3. Moreover, the egalitarian solution y∗ is equal to the dual egalitarian solution ȳ∗;

4. Furthermore, {(Tk\Tk+1)}K−1
k=0 generated by Algorithm Ē coincides with P∗ generated by

Algorithm E as defined in Lemma 3.

Proof. Note that statement 2 in Theorem 2 implies the rest of the Theorem simply by Definition 1.

Let {Sk}K
k=1 be any sequence of subsets generated by Algorithm E . To prove statement 2 of

Theorem 2, it suffices to show that for all 1 ≤ k ≤ K, Sk−1 is a largest candidate among proper

subsets of Sk in Algorithm Ē . Suppose, instead, there exists an S⊆ N such that Sk−1 ⊂ S⊂ Sk and

e(Sk−S) = e(Sk−Sk−1). Then, by Lemma 9,

e(S−Sk−1) = e(Sk−Sk−1) = e(Sk−S).

Then Sk is not a smallest candidate among proper supersets of Sk−1 in Algorithm E as defined in

Definition 1, thus completing the proof of Theorem 2.
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B Omitted proofs and results from section 4

Lemma 10 (Super-Sub). For any (i,(θi,θ−i)) ∈
(

N×Θ
B×
(
Θ

B)n−1
)

,

ui (R (θi,θ−i) |θi)≥ ui (R (θ i,θ−i) |θi) , ∀θ i ⊂ θi ∈Θ
B

and

ui (R (θi,θ−i) |θi)≥ ui
(
R
(
θ i,θ−i

)
|θi
)
, ∀θ i ⊃ θi ∈Θ

B

jointly implies that ui (R (θi,θ−i) |θi)≥ ui
(
R
(
θ
′
i ,θ−i

)
|θi
)
, ∀θ ′i 6= θi ∈Θ

B.

Proof. By the same logic as in (7),

ui
(
R
(
θ
′
i ,θ−i

)
|θi
)
=ui

(
R
(
θ
′
i ,θ−i

)
|
(
θi∩θ

′
i
))
≤ ui

(
R
((

θi∩θ
′
i
)
,θ−i

)
|
(
θi∩θ

′
i
))

=ui
(
R
((

θi∩θ
′
i
)
,θ−i

)
|θi
)
≤ ui (R (θ) |θi) .

Lemma 11 (Applicability of Theorem 1). For all preference profiles θ 6= θ̂ ∈
(
ΘB)n such that

there exists a unique i ∈ N with θi ⊆ θ̂i and θ j = θ̂ j for all j 6= i,

1. i /∈ S⇒ v(S|θ) = v
(
S|θ̂
)
; 2. i ∈ S⇒ v(S|θ)≤ v

(
S|θ̂
)
;

3. i ∈ S⊂ T ⇒ v
(
T |θ̂

)
− v(T |θ)≤ v

(
S|θ̂
)
− v(S|θ).

for all S,T ⊆ N and 0≤ t ≤ (T −1).

Proof. Note that the first two conditions are immediately established by the definition of v(·|·).

Hence, I will only check the third condition. For any R⊆ N such that i ∈ R,

v
(
R|θ̂
)
− v(R|θ) =

∫
θ̂i∪

⋃
j∈(R\i) θ j

1dr−
∫

θi∪
⋃

j∈(R\i) θ j

1dr =
∫
(θ̂i\θi)\(

⋃
j∈(R\{i}) θ j)

1dr.
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When i ∈ S⊂ T ,

(S\{i})⊂ (T\{i})⇒
⋃

j∈(S\{i})
θ j ⊆

⋃
j∈(T\{i})

θ j

⇒

(θ̂i\θi
)
\

 ⋃
j∈(S\{i})

θ j

⊇
(θ̂i\θi

)
\

 ⋃
j∈(T\{i})

θ j

 .
Therefore, the third condition is established.

Proposition 1 (C-PE-EF-SP). For any problem Π for a given set of player N, Mechanism R as

defined in Definition 4 is consistent, Pareto efficient, envy-free, and strategy-proof.

Proof. I start by showing envy-free-ness. Suppose there exists a preference profile θ such that

there exist a pair of players i 6= j such that

uB
i (R(θ)|θi)<

T−1

∑
t=0

{
β

B
t ·
[∫

θit∩[bt ,bt+1)
1

R(θ)
j (r)dr

]}
.

Recall that, by definition,

uB
i (R(θ)|θi) =

T−1

∑
t=0

{
β

B
t ·
[∫

θit∩[bt ,bt+1)
1

R(θ)
i (r)dr

]}
.

Then, there must exist a t such that

β
B
t ·
[∫

θit∩[bt ,bt+1)
1

R(θ)
j (r)dr

]
> β

B
t ·
[∫

θit∩[bt ,bt+1)
1

R(θ)
i (r)dr

]
. (18)

That is, there must be a period t where j is assigned more within θit than is i. Of course, there

can be more than one such periods hence let the sequence t≡ {t1, t2, · · ·} represent the potentially

infinite sequence such that (18) is true. According to Mechanism R, for any t in t, the division of
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[bt ,bt+1) is determined in step (t +1). Now, in step (t +1), (18) must imply that

ρtxB
jt
(
R(θ)|θ j

)
+β

B
t ·
[∫

θit∩[bt ,bt+1)
1

R(θ)
j (r)dr

]
≤ρtxB

it (R(θ)|θi)+β
B
t ·
[∫

θit∩[bt ,bt+1)
1

R(θ)
i (r)dr

] (19)

since if the inequality in (19) is reversed to “>”, reassigning some goods from j to i, while still re-

maining feasible as mentioned before, will increase the value of the objective function ∑
i∈N

Wt+1(·).

Since 0 < ρt < 1 for all t, (19) implies that

xB
i(t+1)(R(θ)|θi)> xB

j(t+1)(R(θ)|θ j). (20)

Consider the sequences


xit ≡

{
xB

i(t1+1)(R(θ)|θi),xB
i(t2+1)(R(θ)|θi), · · ·

}
,

x jt ≡
{

xB
j(t1+1)(R(θ)|θ j),xB

j(t2+1)(R(θ)|θ j), · · ·
}
,

where xit is strictly greater than x jt term-wise. Clearly, both sequences converge with the limit of

xit strictly less than that of x jt by the assumption of i envying j. This is a contradiction to (20)

when applied to the sequences xit and x jt. Hence, Mechanism R is envy-free. �

I now turn to strategy-proof-ness. I first define several new notations. I represent the triple(
ρt ,~xB

t ,~θt

)
with the symbol φt . Define the game Γ(φt) as Γ(φt)≡ (N,v(·|φt)) where

∀S⊆ N, v(S|φt)≡ ρt ·∑
j∈S

xB
jt +β

B
t · v

(
S|~θt

)
.
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Similarly, define V (φt) as

{
x ∈ Rn

+ : ∑
j∈S

x j ≤ v(S|φt), ∀S⊆ N

}
. Also, e(·|φt) is similarly defined

as e
(
·|~θt

)
was. Moreover, for any S⊆N and~xB

t , let x̄B
tS represent the average of all xB

jt for all j ∈ S.

Clearly, for each x ∈ V (φt), there exists a y ∈ V
(
~θt

)
such that x =

(
ρt ·~xB

t +β
B
t · y

)
. In each

step (t +1) of Mechanism R, let y∗
(
~θt

)
represent the egalitarian solution of the game Γ

(
~θt

)
and

x∗(φt) represent the egalitarian solution of the game Γ(φt). Consider the cliques of any player j in

these two solutions. I want to show that these cliques are identical for any player j.

Take any S⊂ T ⊆ N and S⊂ T ′ ⊆ N, by the definition of δt ,

e
(

T −S|~θt

)
> e
(

T ′−S|~θt

)
⇒ e

(
T −S|~θt

)
− e
(

T ′−S|~θt

)
≥ δt

β B
t
.

By the definition of ρt with respect to δt ,

e
(
T ′−S|φt

)
−e(T −S|φt) = β

B
t ·
(

e
(

T ′−S|~θt

)
− e
(

T −S|~θt

))
−ρt ·

(
∑ j∈T xB

jt−∑ j∈S xB
jt

|T |− |S|
−

∑ j∈T ′ xB
jt−∑ j∈S xB

jt

|T ′|− |S|

)

≤β
B
t ·
(

e
(

T ′−S|~θt

)
− e
(

T −S|~θt

))
+ρt ·

(∣∣∣∣∣∑ j∈T xB
jt−∑ j∈S xB

jt

|T |− |S|

∣∣∣∣∣+
∣∣∣∣∣∑ j∈T ′ xB

jt−∑ j∈S xB
jt

|T ′|− |S|

∣∣∣∣∣
)

≤β
B
t ·
(

e
(

T ′−S|~θt

)
− e
(

T −S|~θt

))
+2ρt χt ≤−δt +2ρt χt < 0.

∴ e
(

T −S|~θt

)
> e
(

T ′−S|~θt

)
⇒ e(T −S|φt)> e

(
T ′−S|φt

)
.

As a matter of fact, the definition of the sequence {ρt}T−1
t=1 ensures that all strict inequalities in

period allocations and even cross type profile comparisons will be preserved when combined with

cumulative payoffs, a fact that will be often referred to shortly hence useful to keep in mind.
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Hence, when applying Algorithm E to the game Γ(φt) and Γ

(
~θt

)
, if a subset T ′ is selected

before T when facing S in the game Γ

(
~θt

)
with strictly lower average payoffs, then it must also be

so in Γ(φt). When two subsets resulting the same payoff in Γ

(
~θt

)
, the tie is broken by choosing

the one with lower average increase in cumulative payoffs discounted by ρt . Hence, the cliques of

any player j at y∗
(
~θt

)
is precisely preserved at x∗(φt). Since Algorithm E dictates that players in

the same clique have the same payoff, it must be

x∗j (φt) = ρt · x̄B
tQ j(y∗(~θt))

+β
B
t · y∗j

(
~θt

)
. (21)

Recall that x∗j(φt) = ρtxB
jt +β

B
t y j(t+1)

(
~θt

)
, which implies that

β
B
t y j(t+1)

(
~θt

)
= ρt ·

(
x̄B

tQ j(y∗(~θt))
− xB

jt

)
+β

B
t · y∗j

(
~θt

)
(22)

and converted into the context of θ :

xB
j(t+1) (θ) = xB

jt(θ)+β
B
t y j(t+1)

(
~θt

)
= (1−ρt) ·xB

jt(θ)+ρt · x̄B
tQ j(y∗(~θt))

(θ)+β
B
t ·y∗j

(
~θt

)
. (23)

As mentioned before, it suffices to consider two preferences profiles θ and θ̂ such that there exists

a unique i ∈ N and 0 ≤ τ ≤ (T −1) such that θ j = θ̂ j if j 6= i and θiτ ⊂ θ̂iτ and θit = θ̂it if t 6= τ .

Now, since (θ ∩ [0,bτ)) =
(
θ̂ ∩ [0,bτ)

)
, by payoff consistency, xB

jτ
(
R(θ)|θ j

)
= xB

jτ
(
R
(
θ̂
)
|θ̂ j
)

for all j ∈ N. Observe that (23) implicitly implies that if two preference profiles are identical up

to bτ and after bτ+1, differ in period t, but share the same y∗
(
~θτ

)
= y∗

(
~̂
θτ

)
—which implicitly

implies, in turn, the cliques are all the same by Lemma 8—then all the payoff vectors in all periods

will be the same. Therefore, assume otherwise, which immediately implies that y∗
(
~θτ

)
< y∗

(
~̂
θτ

)
.

Three conditions jointly will establish strategy-proof-ness: the deviating player cannot get a
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lower cumulative amount of assigned goods in the period of deviation or any future period when

deviating to a superset; the deviating agent must be getting a weakly lower payoff in the period of

deviation; and the difference between the cumulative amount of goods assigned must be lower in

periods after deviation than in the deviating period for the deviating player. I start with ensuring

that player i will not get a strictly higher payoff in period τ—the second condition. (23) implies

β
B
τ

[
y j(τ+1)

(
~̂
θτ

)
− y j(τ+1)

(
~θτ

)]
=β

B
τ

[
y∗j
(
~̂
θτ

)
− y∗j

(
~θτ

)]
+ρt

[
x̄B

τQ j(y∗(~θτ))

(
θ̂
)
− x̄B

τQ j

(
y∗
(
~̂
θτ

))(θ)
]
.

(24)

Again, by the definition of ρτ , y∗j
(
~̂
θτ

)
> y∗j

(
~θτ

)
⇒ y j(τ+1)

(
~̂
θτ

)
> y j(τ+1)

(
~θτ

)
. Now, consider

the clique of i at y∗
(
~θτ

)
: if Qi

(
y∗
(
~θτ

))
= {i}, then i is assigned all she demanded behind the

groupCi

(
y∗
(
~θτ

))
, which will stays the same even when she reports θ̂i. Hence, her payoff cannot

increase. If Qi

(
y∗
(
~θτ

))
6= {i}, then everyone in her clique at y∗

(
~θτ

)
will receive higher payoff at

y∗
(
~̂
θτ

)
and since the sum of the payoffs to a clique is a constant at any given egalitarian solution,

the deviating player i must be strictly worse off in period τ . Furthermore, (24) directly verifies the

first condition for strategy-proof-ness for the deviating period since y∗i
(
~̂
θτ

)
> y∗i

(
~θτ

)
. Now, for

the cumulative amount of goods assigned to i, first consider the deviating period.

Recall that according to the definition of φt , define φ̂τ =
(

ρτ ,~xτ ,
~̂
θτ

)
. Notice now that the games

Γ(φτ) and Γ
(
φ̂τ

)
are merely monotone linear transformations of Γ

(
~θτ

)
and Γ

(
~̂
θτ

)
, respectively,

and the comparison between the latter two games satisfies the three conditions in the statement of

Theorem 1 by Lemma 11. Thus, Theorem 1 directly applies to the former two games, i.e.

xB
i(τ+1)

(
θ̂
)
− xB

i(τ+1) (θ)≥ xB
j(τ+1)

(
θ̂
)
− xB

j(τ+1) (θ) , ∀ j ∈ N. (25)
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Moreover, since any j’s payoffs are the same before period τ in the two type profiles,

xB
j(τ+1)

(
θ̂
)
− xB

j(τ+1) (θ) =β
B
τ ·
[
y j(τ+1)

(
~̂
θτ

)
− y j(τ+1)

(
~θτ

)]
=β

B
τ

[
y∗j
(
~̂
θτ

)
− y∗j

(
~θτ

)]
+ρτ

[
x̄B

τQ j(y∗(~θτ))

(
θ̂
)
− x̄B

τQ j

(
y∗
(
~̂
θτ

))(θ)
] (26)

Since θ and θ̂ will coincide again after bτ+1, take any τ ′ > (τ +1), by (23),

xB
iτ ′
(
θ̂
)
− xB

iτ ′ (θ)︸ ︷︷ ︸
¬

=(1−ρτ ′−1) ·
(

xB
i(τ ′−1)

(
θ̂
)
− xB

i(τ ′−1) (θ)
)

︸ ︷︷ ︸
­

+ρτ ′−1 ·
(

x̄B
(τ ′−1)Qi(y∗(~θτ ′−1))

(
θ̂
)
− x̄B

(τ ′−1)Qi(y∗(~θτ ′−1))
(θ)

)
︸ ︷︷ ︸

®

.
(27)

Clearly, both ­ and ® are weakly less than max
j∈N

{(
xB

j(τ ′−1)
(
θ̂
)
− xB

j(τ ′−1) (θ)
)}

, which implies

that so must be ¬ as well. Therefore, the difference in cumulative payoff between the superset and

the subset is weakly less in periods after than in the period of the bifurcation, when the maximum

difference in payoff between supersets and subsets is captured by the deviating player by (26)! This

implies that deviating to supersets will result in weakly lower payoffs in periods after deviation.

Combined with the fact already proven that payoff is also weakly lower in the period of deviation,

deviation to supersets can never be profitable.

Now, it only remains to show that deviating to supersets does result in a higher cumulative

amount of goods assigned, which means that ¬ must be nonnegative for all τ ′ ≥ (τ + 1). I will

prove this by an induction on τ ′ about the following statement:

xB
iτ ′
(
θ̂
)
− xB

iτ ′ (θ)≥ ∆τ ′ > 0. (28)
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Note that the second inequality is by the definition of the sequence {∆t}T
t=1. When τ ′ = (τ +1),

xB
iτ ′
(
θ̂
)
− xB

iτ ′ (θ)≥ δτ −ρτ χτ ≥min{(1−ρτ)∆τ −ρτ χτ ,δτ −ρτ χτ}= ∆τ+1

by the definition of ∆τ+1. Now, suppose (28) is true for some τ ′ ≥ (τ +1). For (τ ′+1), by (27),

xB
i(τ ′+1)

(
θ̂
)
−xB

i(τ ′+1) (θ) = (1−ρτ ′)
(
xB

iτ ′
(
θ̂
)
− xB

iτ ′ (θ)
)

+ρτ ′

(
x̄B

τ ′Qi(y∗(~θτ ′))

(
θ̂
)
− x̄B

τ ′Qi(y∗(~θτ ′))
(θ)

)
≥(1−ρτ ′)∆τ ′−ρτ ′χτ ′ ≥min{(1−ρτ ′)∆τ ′−ρτ ′χτ ′,δτ ′−ρτ ′χτ ′}= ∆τ ′+1 > 0.

(29)

This completes the proof for strategy-proof-ness.

Theorem 3 (Non-inferiority and complementarity for concave cooperative games). Let two coop-

erative games Γ = (N,v(·)) and Γ̂ = (N, v̂(·)) be concave and such that there exists a unique i such

that, for all S⊆ N

1. i /∈ S⇒ v(S) = v̂(S); 2. i ∈ S⇒ v(S)≤ v̂(S).

For any j ∈ N, let f j : R+→ R be strictly increasing, strictly concave, and continuous on R+. Let

y∗ ≡ argmax
y∈V

∑
j∈N

f j(y j) and ŷ∗ ≡ argmax
y∈V̂

∑
j∈N

f j(y j).

Then there exists an S∗ ⊆ N such that i ∈ S∗ and ŷ∗j ≥ y∗j , ∀ j ∈ S∗.

C Omitted proofs from section 5

Lemma 12 (Refinement of a problem). For any problem Π =
(
b,B,T,ΘB,β B), there exists a

problem Π̄ =
(

b, B̄, T̄ ,ΘB,β B̄
)

where B̄ is a strictly increasing sequence with b̄0 = 0, B is a sub-

82



sequence of B̄, β B̄
t ′ = β B

t if
[
b̄t ′, b̄t ′+1

]
⊆ [bt ,bt+1], and for each θi ∈ΘB, there exists a subsequence

B̄′ ≡
{

b̄′t
}T̄ ′

t=0 of B̄ such that

θi =
T̄ ′⋃

t=0

[
b̄′t , b̄

′
t+1
]
. (12)

Proof. Notice that since the restrictions of the type space to the different intervals in the original

problem Π are mutually exclusive except for the elements in the sequence B, it suffices to show

that each interval [bt ,bt+1] can be partitioned into a collection of intervals so that for all θi can be

represented in the format of (12). Recall that restriction of ΘB to [bt ,bt+1], ΘB
t , is finite, consider

a sequence of all the restrictions of all the types in ΘB to [bt ,bt+1], {θit(p)}|Θ
B
t |

p=1 where no each

restriction appears exactly once. For any subset I of R+ that is the union of a collection of discon-

nected intervals, let dp(I) represent the partition of of I into connected intervals that are mutually

disconnected. That is, for all Î and Ĩ in dp(I), there exists an interval I′ ⊆ R+ such that

I′ 6⊆
[
inf
{

Î∪ Ĩ
}
,sup

{
Î∪ Ĩ

}]
Note that dp(I) is a collection of subsets of I. Moreover, for any collection η of subsets of

R+, let cl(η) be the collection of the closures of the elements of η . Now, consider the following

sequence of collections of subsets of [bt ,bt+1]: let η(1) = dp(θit(1)). For any p≥ 1, let

η(p+1) = {I1∩ I2, I1\I2, I2\I1 : I1 ∈ η(p), I2 ∈ dp(θit(p+1))} .

Finally, η
(∣∣ΘB

t
∣∣+1

)
= cl

(
η
(∣∣ΘB

t
∣∣)). Clearly, each θit(p) is the union of elements in η(p). Note

that in η
(∣∣ΘB

t
∣∣+1

)
, each element is a closed interval and all restriction of types are closed sets. By

construction, the period t restriction of any type θit is the union of intervals in η
(∣∣ΘB

t
∣∣+1

)
.

Proposition 2 (Price of anarchy). Let Π̄

(
+∞, B̄,+∞,ΘB̄,β B̄

)
be an infinite refined problem with
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a finite set of players N, where ΘB̄ is the set of all infinite unions of intervals in {[bt ,bt+1]}+∞

t=0. The

price of anarchy of R0 for Π̄ is at least n = |N|. The price of anarchy of Mechanism R for Π̄ is 1.

Proof. I first show that in an infinite refined problem with the type space being the collection

of all infinite unions of the batches or periods, truth-telling is a strictly dominant strategy for all

players in Mechanism R. Hence, all player telling the truth becomes the only pure strategy Nash

equilibrium and the price of anarchy of 1 immediately follows. Given any profile θ−i of players’

types other than the deviating player i’s, consider any θ̂i 6= θi where θi is i’s true type.

Let period t be the first where θ̂i and θi differ. Note that in a refined problem, either θ̂it ⊂ θit or

θit ⊂ θ̂it . Let θ̃i = θ̂i∩θi. If θ̂it ⊂ θi, by Lemma 10 and strategy-proof-ness of Mechanism R,

ui
(
R
(
θ̂i,θ−i

)
|θi
)
= ui

(
R
(
θ̂i,θ−i

)
|θ̃i
)
≤ ui

(
R
(
θ̃i,θ−i

)
|θ̃i
)
= ui

(
R
(
θ̃i,θ−i

)
|θi
)
. (30)

Now, let θ̄i be given by replacing θ̃it = θ̂it with θit and keeping all other periods intact in θ̃ . Then

ui (R (θi,θ−i) |θi)≥ ui
(
R
(
θ̄i,θ−i

)
|θi
)
= ui

(
R
(
θ̄i,θ−i

)
|θ̄i
)
. (31)

Focus on the comparison between θ̄i and θ̃i. Note that (28) implies that

ui
(
R
(
θ̄i,θ−i

)
|θ̄i
)
> ui

(
R
(
θ̃i,θ−i

)
|θ̄i
)
= ui

(
R
(
θ̃i,θ−i

)
|θi
)
. (32)

Combining (30) through (32) shows that truth-telling is strictly dominating θ̂i when θ̂it ⊂ θit . Now,

consider otherwise: θit ⊂ θ̂it . Notice that in this case, θ̃it = θit . Again, (30) still applies. Now,

define θ i by replacing θ̃it with θ̂it and keeping all other periods intact in θ̃it . Hence, θit ⊂ θ it .

Define ~̃
θt and ~θ t by combining θ̃it and θ it with the other players’ types in period t. Now, it can

easily confirmed that y∗i
(
~̃
θt

)
< y∗i

(
~θ t

)
but y∗j

(
~̃
θt

)
> y∗j

(
~θ t

)
for all j 6= i. This implies that the
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cumulative payoffs before [bt+1,bt+2] is divided is strictly higher only for i at~θ t but strictly lower

for all other players by (26) and the definition of ρt’s in Definition 3. This, in turn, implies that, by

(27), player i’s cumulative payoff after any period including and beyond (t +1) will strictly lower

than it was after period t when her report is θ i. Therefore, we have

ui (R (θ i,θ−i) |θi) = ui
(
R (θ i,θ−i) |θ̃i

)
< ui

(
R
(
θ̃i,θ−i

)
|θ̃i
)
= ui

(
R
(
θ̃i,θ−i

)
|θi
)
. (33)

Moreover, by strategy-proof-ness of Mechanism R, ui
(
R
(
θ̃i,θ−i

)
|θi
)
≤ ui (R (θi,θ−i) |θi). Also

recall that Mechanism R is payoff consistent and θ i and θ̂i coincide up to bt+1 while θ i and θ̃i are

the same beyond bt+1. Therefore,

ui
(
R
(
θ̂i,θ−i

)
|θ i
)
≤ ui (R (θ i,θ−i) |θ i)⇒ ui

(
R
(
θ̂i,θ−i

)
|θ̃i
)
≤ ui

(
R (θ i,θ−i) |θ̃i

)
. (34)

Combining (33) and (34) and the strategy-proof-ness of Mechanism R yields truth-telling strictly

dominates θ̂i when θit ⊂ θ̂it . Thus, truth-telling is a strictly dominant strategy in Mechanism R. �

I now turn to show the lower bound on the price of anarchy of R0. Given a preference profile

θ , define Nt(θ) to be the set of players whose types include [bt ,bt+1] as a subset, i.e.

Nt (θ)≡
{

j ∈ N : [bt ,bt+1]⊂ θ j
}
.

Now, the division given by R0 is extremely straightforward: y∗j
(
~θt

)
=

bt+1−bt

|Nt(θ)|
if j ∈ Nt(θ) and

zero otherwise. Then, for any player i, any strategy σi(·) such that

σi (θi)⊇ θi (35)
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is a weakly dominant strategy. Consider the strategy profile σ such that σ j(θ j) = Ib for all j ∈ N

and θ j ∈ ΘB̄. That is, all players, regardless of their types, always demonstrate demand for the

entire set of goods to be divided. This is actually one of the most likely scenarios in division of

public resources without monetary transfers, a version of the phenomenon Moulin (2004) referred

to as the “tragedy of the commons”. Hence, it suffices to propose one type profile that results in

ratio in the definition of the price of anarchy being N. This is a very simple task. Simply consider

the following profile of types:

θ j =
⋃

z∈(N∪{0})
[bnz+ j−1,bnz+ j].

In each period, there is only one player who truly demands the goods but all players demonstrate

need. R0 will assign to each player a fair share of 1/n, which results in a price of anarchy of n.
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