
Rational Proofs with Multiple Provers

Jing Chen
Stony Brook University

jingchen@cs.stonybrook.edu

Samuel McCauley
Stony Brook University

smccauley@cs.stonybrook.edu

Shikha Singh
Stony Brook University

shiksingh@cs.stonybrook.edu

Abstract

Interactive proofs model a world where a verifier delegates computation to an untrustworthy prover,
verifying the prover’s claims before accepting them. These proofs have applications to delegation of
computation, probabilistically checkable proofs, crowdsourcing, and more.

In some of these applications, the verifier may pay the prover based on the quality of his work.
Rational proofs, introduced by Azar and Micali (STOC 2012), are an interactive proof model in which
the prover is rational rather than untrustworthy—he may lie, but only to increase his payment. This
allows the verifier to leverage the greed of the prover to obtain better protocols: while rational proofs are
no more powerful than interactive proofs, the protocols are simpler and more efficient. Azar and Micali
posed as an open problem whether multiple provers are more powerful than one for rational proofs.

We provide a model that extends rational proofs to allow multiple provers. In this model, a veri-
fier can cross-check the answers received by asking several provers. The verifier can pay the provers
according to the quality of their work, incentivizing them to provide correct information.

We analyze rational proofs with multiple provers from a complexity-theoretic point of view. We
fully characterize this model by giving tight upper and lower bounds on its power. On the way, we
resolve Azar and Micali’s open problem in the affirmative, showing that multiple rational provers are
strictly more powerful than one (under standard complexity-theoretic assumptions). We further show
that the full power of rational proofs with multiple provers can be achieved using only two provers and
five rounds of interaction. Finally, we consider more demanding models where the verifier wants the
provers’ payment to decrease significantly when they are lying, and fully characterize the power of the
model when the payment gap must be noticeable (i.e., at least 1/p where p is a polynomial).

ar
X

iv
:1

50
4.

08
36

1v
1

 [
cs

.C
C

]
 3

0
A

pr
 2

01
5

1 Introduction

Multi-prover interactive proofs (MIP) [10] and rational interactive proofs (RIP) [5] are two important exten-
sions of interactive proof systems.

In a multi-prover interactive proof, several computationally unbounded, potentially dishonest provers in-
teract with a polynomial time, randomized verifier. The provers can pre-agree on a joint strategy to convince
the verifier of the truth of a proposition. However, once the protocol starts, the provers cannot communicate
with each other. If the proposition is true, the verifier should be convinced with probability 1; otherwise
the verifier should reject with some non-negligible probability. As shown by Babai, Fortnow and Lund,
MIP = NEXP [8], which demonstrates the power of multiple provers compared to one-prover interactive
proofs (recall that IP = PSPACE [28, 30]).

Rational interactive proofs [5] are a variant of interactive proofs, where the verifier makes a payment to
the prover at the end of the protocol. The prover is assumed to be rational, that is, he only acts in ways that
maximize this payment. Thus, in contrast to interactive proofs, the prover does not care whether the verifier
is convinced or not. Rational proofs ensure that the prover’s payment is maximized if and only if the verifier
learns the correct answer to the proposition. Azar and Micali [5] show that, while rational proofs are no
more powerful than interactive proofs (i.e., RIP = PSPACE), the protocols are simpler and more efficient.
Previous work on rational proofs [5, 6, 25] considers a single rational prover.

Many computation-outsourcing applications have ingredients of both of these models: the verifier pays
a team of provers based on their responses. For example, in internet marketplaces such as Amazon’s Me-
chanical Turk [1] and Proof Market [3], the requesters (verifiers) post labor-intensive tasks on the website
along with a monetary compensation they are willing to pay. The providers (provers) accept these offers and
perform the job. In these internet marketplaces and crowdsourcing games [32] correctness is often ensured
by verifying one provider’s answers against another [2, 31]. Thus, the providers collaborate as a team—their
answers need to match, even though they are likely to not know each other and cannot communicate with
each other [26].

Inspired by these applications and previous theoretical work, we introduce multi-prover rational inter-
active proofs, which combines elements of rational proofs and classical multi-prover interactive proofs. This
model aims to answer the following question: what problems can be solved by a team of rational workers
who cannot communicate with each other and get paid based on the joint-correctness of their answers? One
of our main contributions is to completely characterize the power of this model.

Previous Discussions of Multiple Provers in Rational Proofs. The notion of rational proofs with multi-
ple provers has appeared several times in previous work [5, 6, 25]. However, the authors only use multiple
provers to simplify the analysis of single-prover protocols, without formalizing the model. They show that
multiple provers in their protocols can be simulated by a single prover by scaling the payments appropri-
ately. Azar and Micali [5] discuss one of the fundamental challenges of using multiple rational provers:
in a cooperative setting, one prover may lie to give subsequent provers the opportunity to obtain a larger
payment. They pose the following open problem: are multiple provers more powerful than one in rational
proofs? In this paper, we show that, in general, a protocol with multiple rational provers cannot be simulated
by a single-prover protocol under standard complexity-theoretic assumptions.

The Model of Multi-Prover Rational Proofs We briefly summarize our model in order to compare it
with the literature and discuss our results. The model is formally defined in Section 2.

In a multi-prover rational interactive proof, several computationally-unbounded provers communicate
with a polynomial-time randomized verifier who wants to determine the membership of an input string in a
language. The provers can pre-agree on how they plan to respond to the verifier’s queries. However, they

1

PSPACE = IP = RIP

EXP

EXP||NP = MRIP

NEXP = MIP coNEXP

Figure 1: The relative power of rational and classical interactive proof systems. Note that it is widely
believed that PSPACE 6= EXP, EXP 6= NEXP, and NEXP 6= coNEXP.

cannot communicate with each other once the protocol begins. At the end of the protocol, the verifier outputs
the answer and computes a total payment for the provers based on the input, his own randomness, and the
messages exchanged. This total payment may be distributed in any pre-determined way by the verifier or
the provers themselves.

A protocol is an MRIP protocol if any strategy of the provers that maximizes their expected payment
leads the verifier to the correct answer. The class of languages having such protocols is denoted by MRIP.

1.1 Results and Discussions

We state our main results and discuss several interesting aspects of our model.

The Power of Multi-Prover Rational Proofs. We give tight upper and lower bounds on the power of
MRIP protocols. As a warm up, we show that MRIP contains NEXP, using an MIP protocol as a black box
and paying the provers appropriately. A similar technique shows that MRIP also contains coNEXP. In fact,
an important property of MRIP is that it is closed under complement (Lemma 5). Thus, MRIP is strictly
more powerful than RIP (assuming PSPACE 6= NEXP), resolving the question raised in [5]. Furthermore,
MRIP is also more powerful than MIP (assuming NEXP 6= coNEXP), in contrast to the single-prover case
in which the classical and rational proofs have the same power.

These relationships are diagrammed in Figure 1.
We exactly characterize the class MRIP by showing that a language has a multi-prover rational inter-

active proof if and only if it is decidable by a deterministic exponential-time oracle Turing machine with
non-adaptive access to an NP oracle. That is,

Theorem 1. MRIP = EXP||NP.

Our multi-prover rational proof protocol for EXP||NP is inspired by the single-prover protocol for
P||NP [6], but our techniques are different. In particular, (a) we provide a new characterization for EXP||NP

and construct our protocol based on this characterization and (b) in our protocol, the verifier cross-checks
the messages he receives with multiple provers to avoid an exponential blow-up in the number of messages
(which would result from applying the single-prover protocol directly).

2

It is known that any MIP protocol can be simulated using only two provers and one round of com-
munication between the provers and the verifier [14]. Similarly, we show that only two provers and total
five rounds are sufficient to capture the full power of MRIP. That is, denoting by MRIP(p, r) the class of
languages that have p-prover rational proofs with r rounds, we have:

Theorem 2. MRIP = MRIP(2, 5).

Note that we count the number of rounds as the total number of interactions (prover’s message and
verifier’s query are separate rounds), in contrast to the number of pairs of back-and-forth interaction of
MIP [14]. We use this convention to simplify our technical discussion.1 It remains open whether or not the
number of rounds in our protocol can be further reduced (see Section 4 for further discussion).

Utility Gaps. Rational proofs assume that the provers always act to maximize their payment. However,
how much do they lose by lying? The notion of utility gaps, first introduced in [6],measures the loss in
payment (or utility) incurred by a lying prover.2 Notice that a lying prover can either (a) deviate (even
slightly) from the truthful protocol but still lead the verifier to the correct answer or (b) mislead the verifier
to an incorrect answer. The authors of [6] demanded their protocols to be robust against provers of type (a):
that is, any deviation from the prescribed strategy that the verifier intends the provers to follow results in
a significant decrease in the payment. This ideal requirement on utility gaps is quite strong, and even the
protocol in [6] fails to satisfy it, as pointed out by Guo, Hubáček, Rosen and Vald [25]. In this paper, we
follow [25] and consider multi-prover rational proofs robust against cheating provers of type (b): that is, the
provers may respond to some messages of the verifier incorrectly and incur a small payment loss, but if the
verifier learns the answer to the membership question of the input string incorrectly, the provers must suffer
a significant loss in payment. Precise definitions are provided in Section 5.

We show that requiring a noticeable utility gap results in protocols for a different, possibly smaller,
complexity class. In particular, let poly(n)-gap-MRIP be the class of languages that have MRIP protocols
with 1/α(n) utility gap for lying provers, where α(n) is a polynomial in n. We completely characterize it
as the class of languages decidable by a polynomial-time oracle Turing machine with non-adaptive access
to an NEXP oracle. That is,

Theorem 3. poly(n)-gap-MRIP = P||NEXP.

Distribution of Payments. In classical MIP protocols, the provers work collaboratively to convince the
verifier of the truth of a proposition. Similarly, the rational provers in MRIP work as a team to maximize the
total payment received from the verifier. Any pre-specified distribution of this sum is allowed, as long as it
does not depend on the transcript of the protocol (that is, the messages exchanged and the coins flipped).3 For
instance, the division of the payment can be pre-determined by the provers themselves based on the amount
of work each prover must perform, or it can be pre-determined by the verifier based on the reputation of
each prover. We ignore the choice of division in our model and protocols, as it does not affect the choices
made by a rational prover.

In the last part of this paper we initiate the study of multi-prover rational proofs in the non-cooperative
setting, where a prover does not always receive a pre-specified portion of the total payment. In this case,
the provers may not collaborate to maximize their total payment. However, there is still some implicit
collaboration as the answers of the provers may be cross-checked for verification. It is easy to see that
multi-prover rational proofs with non-cooperative provers are at least as powerful as that with cooperative
provers. We conjecture that these two classes of multi-prover rational proofs are equivalent (see Section 6).

1According to the convention of [14] our simulation of any MRIP protocol with two provers would require only three rounds.
2The introductory work on rational proofs [5] did not allow a utility gap, i.e., the provers were sensitive to negligible losses.
3Note that even unbalanced divisions are possible: for example, it may be that one particular prover always receives half the

total payment, and the other provers split the remainder equally.

3

Simple and Efficient MRIP protocol for NEXP. Classical multi-prover interactive proofs for languages
in NEXP rely on the MIP protocol for the NEXP-complete language Oracle-3SAT [8]. This MIP protocol
is (1) complicated, involving techniques such as multilinearity test of functions and arithmetization, and (2)
requires polynomial computation and polynomial rounds of interaction from the verifier. We construct a
simple two prover, six round MRIP protocol for Oracle-3SAT using scoring rules.4 Our protocol is very
efficient: the verifier performs linear computation along with constant number of basic arithmetic operations
to calculate the reward.

Contrasting MRIP with Other Relevant Models. Existing models, such as refereed games, MIP, and
single-prover rational proofs all differ from MRIP in distinct and potentially interesting ways.

Refereed games [16] are interactive proof models consisting of two competing provers, who try to
convince the verifier of the membership (non-membership) of a given input string in a language. However,
only one of them is honest. The model of refereed games captures the strategic nature of the provers, but
does not allow collaboration between them.

Classical multi-prover interactive proofs are robust against arbitrary collaborative provers, who may
be irrational or even malicious. While MIP protocols provide a stronger guarantee, they are often compli-
cated and computationally-intensive (require polynomial-work from the verifier). In contrast, MRIP restricts
provers to be rational, a reasonable assumption in a “mercantile world”, as pointed out in [5]. This restriction
leads to simple and efficient protocols for the single-prover case [6, 25], making rational proofs a meaningful
and interesting model to study.

Finally, MRIP achieves its full power with only five rounds of interaction between the verifier and the
provers. In contrast, RIP is less powerful when restricted to constant rounds.5

1.2 Additional Related Work

Interactive Proofs First introduced by Goldwasser, Micali and Rackoff [22] and in a different form by
Babai and Moran [7], interactive proofs (IP) have been extensively studied (see, e.g., [8, 9, 10, 18, 19, 21, 23,
24]) and precisely characterized: that is, IP = PSPACE [28, 30]. Ben-Or et al. [10] introduced multi-prover
interactive proofs (MIP), which were shown to be exactly equal to NEXP [8]. In fact, two provers and one
round is sufficient; in other words, NEXP = MIP(2, 1) [14] .

Rational Proofs The introductory work by Azar and Micali [5] uses scoring rules in a novel way to
construct simple and efficient single-prover rational protocols. The prover is assumed to be sensitive to
exponentially small losses in payment, that is, a negligible utility gap is sufficient punishment for dishonest
provers. In a follow-up work [6], Azar and Micali strengthen the model by requiring that any prover devi-
ating from the prescribed strategy must suffer a noticeable loss in payment. They construct super-efficient
rational proofs, in which, the verifier performs only logarithmic computation. The power of rational provers
is further demonstrated in the work of Guo, Hubáček, Rosen and Vald [25] on rational arguments, which are
rational proofs with a single computationally-bounded rational prover. They construct efficient (i.e., sub-
linear verification) rational arguments for single-round delegation and mention that a rational proof model
with multiple provers may have interesting implications in such delegation schemes.

4Formally recalled in Section 2, scoring rules are powerful tools to elicit information about probabilistic distributions from
experts, and are a key component of previous work on rational proofs.

5As shown in [5], RIP-O(1) = CH, where RIP-O(1) is the class of languages having constant-round rational proofs and CH is
the counting hierarchy.

4

Game-Theoretic Characterization of Complexity Classes Game-theoretic characterization of complex-
ity classes has been largely studied in the form of refereed games [12, 13, 15, 16, 17, 27, 29].

The classic work of Chandra and Stockmeyer [12] proved that any language in PSPACE is refereeable
by a game of perfect information. Feige and Kilian [13] show this is tight for single-round refereed games
and that the class of languages with polynomial-round refereed games is exactly EXP.

Feigenbaum, Koller and Shor [17] study a related complexity class EXPNP and show that it can be sim-
ulated as a zero-sum refereed game between two computationally unbounded prover with imperfect recall.
Note that imperfect recall is a very strong assumption and makes the unbounded provers act essentially as or-
acles. MRIP consists of collaborative provers having imperfect information (since a prover does not see the
messages exchanged between the verifier and other provers) and perfect recall (since the provers remember
the history of messages exchanged). Notice that imperfect information is necessary for multi-prover proto-
cols, since otherwise the model just reduces to a single-prover setting. Perfect recall gives the provers the
ability to cheat adaptively across messages. With these differences, MRIP is equivalent to EXP||NP (rather
than EXPNP). To the best of our knowledge, this is the first game-theoretic characterization of EXP||NP.

It is worth pointing out that EXPNP is also an important class in the study of circuit lower bounds [33].
It would be interesting to see if the related complexity class EXP||NP emerges in similar contexts.

1.3 Outline of the paper

The paper is organized as follows. In Section 2 we define the class of languages that have multi-prover
rational interactive proofs, MRIP, and discuss some of its properties. We construct MRIP protocols for
NEXP in the same section. We characterize the class MRIP in Section 3. In Section 4 we show how to
simulate any MRIP protocol with two provers and five rounds. In Section 5 we define the notion of utility
gap for dishonest provers and characterize the power of MRIP protocols with a polynomial utility gap. In
Section 6 we discuss multi-prover rational proofs with individual payments. Appendix A contains omitted
proofs and Appendix B provides a glossary of standard terms and definitions used throughout the paper.

2 Multi-Prover Rational Interactive Proofs

In this section we define the model of multi-prover rational interactive proofs and demonstrate several im-
portant properties of the class of languages recognized by these proofs. First, we describe how the verifier
and the provers interact, and introduce necessary notations on the way.

Let L be a language, x a generic string whose membership in L is to be decided, and n = |x|. An
interactive protocol is a pair (V, ~P), where V is the verifier and ~P = (P1, . . . , Pt(n)) is the vector of
provers, with t(n) a polynomial.6 The verifier runs in polynomial time and flips private coins, whereas each
Pi is computationally-unbounded. The verifier and provers all know x. The verifier can communicate with
each prover privately, but no two provers can communicate with each other. In a round, either each prover
sends a message to the verifier, or the verifier sends a message to each prover, and these two cases alternate.
Without loss of generality we assume the first round of messages are sent by the provers, and the first bit
sent by P1, denoted by c, indicates whether x ∈ L (corresponding to c = 1) or not (corresponding to c = 0).
Notice that c does not depend on the randomness used by V .

The length of each message sent and the number of rounds are polynomial in n. Let p(n) be the number
of rounds and r the random string used by V . For each j ∈ {1, 2, . . . , p(n)}, let mij be the message
exchanged between V and Pi in round j. In particular, the first bit of m11 is c. The transcript that each
prover Pi has seen at the beginning of each round j is (mi1,mi2, . . . ,mi(j−1)). Let ~m be the vector of all
messages exchanged in the protocol (therefore ~m is a random variable depending on r).

6That is, we allow polynomially many provers.

5

At the end of the communication, the verifier computes a payment function R based on x, r, and ~m.
We restrict R(x, r, ~m) ∈ [−1, 1] for convenience7 and this value will be the payment given to the provers
as a whole. Moreover, the verifier outputs c as the answer for the membership of x in L: that is, V does not
check the provers’ answer and follows it blindly. As will become clear from our results, this requirement for
the verifier does not change the set of languages that have multi-prover rational interactive proofs. Indeed,
we could have allowed V to compute his answer based on x, r, and ~m as well, but the current model will
ease later discussion on the payment loss of the provers caused by “reporting a wrong answer”. The protocol
followed by V , including the payment function R, is public knowledge.

Each prover Pi can choose a strategy sij : {0, 1}∗ → {0, 1}∗ for each round j, which maps the transcript
he has seen at the beginning of round j to the message he sends in that round.8 Let s̃i = (si1, . . . , sip(n)) be
the vector of strategies Pi uses in rounds 1, . . . , p(n), and s̃ = (s̃1, . . . , s̃t(n)) be the strategy profile of the
provers. Given any input x, randomness r, and strategy profile s̃, we denote by (V, ~P)(x, r, s̃) the vector of
all messages exchanged in the protocol.

The provers are cooperative and jointly act to maximize the (total) expected payment received from
the verifier. Note that this is equivalent to the provers maximizing their own expected payment when each
prover receives a pre-specified division of the payment, that is, Pi receives γiR, where

∑n
i=1 γi = 1 for any

function γi fixed at the beginning of the protocol.
Thus before the protocol starts, the provers pre-agree on a strategy profile s̃ that maximizes

u(V, ~P)(s̃;x) , E
r
R(x, r, (V, ~P)(x, r, s̃)).

When (V, ~P) and x are clear from the context, we write u(s̃) for u(V, ~P)(s̃;x). Using the above notions, we
define MRIP as follows.

Definition 4 (MRIP). For any language L, an interactive protocol (V, ~P) is a multi-prover rational interac-
tive proof (MRIP) protocol for L if, for any x ∈ {0, 1}∗ and any strategy profile s̃ of the provers such that
u(s̃) = maxs̃′ u(s̃′), we have

1. u(s̃) ≥ 0;

2. c = 1 if and only if x ∈ L.

We denote by MRIP the set of languages that have MRIP protocols, and by MRIP(k, p) the set of languages
that have MRIP protocols with k provers and p rounds.

Multi-prover rational interactive proofs possess the following important property.

Lemma 5. MRIP is closed under complement.

To understand the power of multi-prover rational proofs, we first show that MRIP contains NEXP.
Combined with Lemma 5, this implies that MRIP contains coNEXP as well. We show this in two different
ways. First, we show how to construct an MRIP protocol for any language in NEXP using a standard
MIP protocol as a subroutine. Given existing MIP protocols, this method is intuitive and its correctness
is easy to see. However, the computation and communication complexity of the protocol depends on the
corresponding MIP protocol. Second, we show how to construct an MRIP protocol for an NEXP-complete
language without relying on MIP protocols, exploiting the rational nature of the provers instead. This
protocol uses proper scoring rules (which are a key component of rational proofs) to incentivize the provers.
In contrast to MIP, our protocol is very efficient: requires the verifier to perform only linear computation and
linear communication, along with computing the payment using constant number of arithmetic operations.

7The payment can be shifted and scaled so that it is in [0, 1]. Negative payments (or rather, punishments) are used to reflect the
intuition behind our protocols.

8Note that Pi does not send any message sij for an even-numbered round j; these sij’s can be treated as constant functions.

6

2.1 An MRIP Protocol for any Language in NEXP, Based on MIP.

An MIP protocol for a language L in NEXP, first reduces an instance of L to an instance of the NEXP-
complete problem Oracle-3SAT (defined below), and then runs an MIP protocol for Oracle-3SAT [8].

Definition 6 (Oracle-3SAT [8]). Let w be a binary string of length r + 3s. Let B be a 3-CNF of
r + 3s + 3 variables. A Boolean function A : {0, 1}s → {0, 1} is a 3-satisfying oracle for B if
B(w,A(b1), A(b2), A(b3)) is satisfied for all w, where b1b2b3 are the last 3s bits of w. The Oracle-3SAT
problem is to decide, for a given B, if there is a 3-satisfying oracle for B.

We show that MRIP contains NEXP; the proof constructs a simple MRIP protocol by using a blackbox
MIP protocol and an appropriate payment scheme.

Lemma 7. NEXP ⊆ MRIP.

Proof. The MRIP protocol (V, ~P) for L is shown in Figure 2. By construction, the payment to the provers
is always non-negative.

For any input string x, the protocol (V, ~P) works as follows:

1. P1 sends a bit c to V . V outputs c at the end of the protocol.

2. If c = 0 then the protocol ends and the payment given to the provers is R = 1/2;

3. Otherwise, V and ~P run an MIP protocol for proving x ∈ L. If the verifier accepts then R = 1,
else R = 0.

Figure 2: A simple MRIP protocol for NEXP.

Now we show that V outputs 1 if and only if input x ∈ L. On the one hand, for any x ∈ L, if the provers
send c = 1 and execute the MIP protocol with V , then their payment isR = 1;9 while if they send c = 0, the
payment is R = 1/2 < 1. Accordingly, their best strategy profile is to send c = 1 and run the MIP protocol
correctly. On the other hand, for any x 6∈ L, if the provers send c = 1 and run the MIP protocol, then by the
definition of MIP the probability that V accepts is at most 1/3, and the provers’ expected received payment
is at most 1/3; while if they send c = 0, their received payment is 1/2 > 1/3. Accordingly, their best
strategy profile is to send c = 0.

In sum, (V, ~P) is an MRIP protocol for L and Lemma 7 holds.

Remark 8. Since any language L ∈ NEXP has a 2-prover 1-round MIP protocol [14], we automatically
obtain an MRIP protocol for L with 2 provers and 3 rounds of interaction (using our convention, executing
the MIP protocol takes 2 rounds plus one round for the answer bit c). Note that this is the best possible.
However, the computation complexity and the communication complexity of the protocol are both polynomial
(besides the reduction to Oracle-3SAT) and involve complex techniques such as arithmetization and the
multi-linearity test [8].

Using Lemma 7 and Lemma 5 we have the following corollary. Note that, we can obtain a 2-prover
3-round MRIP protocol for coNEXP directly by modifying the protocol of Lemma 7.

Corollary 9. coNEXP ⊆ MRIP.
9If the MIP protocol does not have perfect completeness and accepts x with probability at least 2/3, then the provers’ expected

received payment is at least 2/3. However, this will not affect the correctness of the MRIP protocol.

7

2.2 An MRIP Protocol for any Language in NEXP, Using Scoring Rules.

We now construct an MRIP protocol for any language in NEXP without relying on MIP protocols. Instead,
we use proper scoring rules to compute the payment that should be given to the provers so as to ensure
truthful answers. To begin, we recall the definitions of proper scoring rules in general and the Brier’s scoring
rule in particular, which has been an essential ingredient in the construction of rational proofs [5, 6, 25].

Proper Scoring Rules. Scoring rules are tools to assess the quality of a probabilistic forecast by assigning
a numerical score (that is, a reward to the forecaster) to it based on the predicted distribution and the sample
that materializes. More precisely, given any probability space Σ, letting ∆(Σ) be the set of probability
distributions over Σ, a scoring rule is a function from ∆(Σ) × Σ to R, the set of reals. A scoring rule S is
proper if, for any distribution D over Σ and distribution D′ 6= D, we have∑

ω∈Σ

D(ω)S(D,ω) ≥
∑
ω∈Σ

D(ω)S(D′, ω),

where D(ω) is the probability that ω is drawn from D. A scoring rule S is strictly proper if the above
inequality is strict. Notice that, when the true distribution is D, the forecaster maximizes his expected
payment under a strictly proper scoring rule by reporting D′ = D. For a comprehensive survey on scoring
rules, see [20].

Brier’s Scoring Rule [11]. This classic scoring rule, denoted by BSR, is defined as follows: for any
distribution D and ω ∈ Σ,

BSR(D,ω) = 2D(ω)−
∑
ω∈Σ

D(ω)2 − 1.

It is well known that BSR is strictly proper.
Notice that BSR requires the computation of

∑
ω∈ΣD(ω)2, which can be hard when |Σ| is large. How-

ever, similar to [5, 25], in this paper we shall only evaluate BSR for D ∈ ∆({0, 1}). Also notice that, BSR
has range [−2, 0] and can be shifted and scaled so that (1) the range is non-negative and bounded and (2) the
resulting scoring rule is still strictly proper. In particular, we shall add 2 to the function when using it.

Next, we construct a simple and efficient MRIP protocol for Oracle-3SAT. Similar to the classical
multi-prover case, an MRIP protocol for any language L ∈ NEXP can be obtained by first reducing L to
Oracle-3SAT, and then using our efficient MRIP protocol for Oracle-3SAT. The complexity of the overall
protocol for L will then be the same as the reduction.

The main idea behind the protocol (stated in Figure 3) is as follows: the verifier asks the first prover
for the oracle that maximizes the number of satisfied clauses in the given Oracle-3SAT instance. He then
cross-checks the value of a randomly chosen clause by asking the second prover. The predictions of the
provers are evaluated using Brier’s Scoring Rule and they are paid accordingly.

Lemma 10. Oracle-3SAT has an MRIP protocol with 2 provers and 3 rounds where, for any instance
B of length n, the randomness used by the verifier, the computation complexity, and the communication
complexity of the protocol are all O(n), and the computation of the payment function consists of constant
number of arithmetic operations over O(n)-bit numbers.

Proof. For any instance B with r + 3s + 3 variables (thus n ≥ r + 3s + 3), the provers can, with their
unbounded computation power, find an oracleA∗ that maximizes the number of satisfyingw’s forB. Denote
this number by a∗. If B ∈ Oracle-3SAT then a∗ = 2r+3s, otherwise a∗ < 2r+3s.

8

For any instance B, the protocol (V, ~P) works as follows:

1. P1 sends c ∈ {0, 1} and a ∈ {0, 1, . . . , 2r+3s} to V . V will always output c at the end of the
protocol.

2. If c = 1 and a < 2r+3s, or if c = 0 and a = 2r+3s, then the protocol ends and the payment
R = −1.

3. Otherwise, V randomly chooses two binary strings of length r + 3s, w = (z, b1, b2, b3) and
w′ = (z′, b4, b5, b6), as well as a number k ∈ {1, 2, 3, 4, 5, 6}.
V sends b1, b2, b3, b4, b5, b6 to P1 and bk to P2.

4. P1 sends to V six bits, A(bi) with i ∈ {1, 2, ..., 6}, and P2 sends one bit, A′(bk).

5. The protocol ends and V computes the payment R as follows.

(a) If A(bk) 6= A′(bk) then R = −1.

(b) Otherwise, if B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 0 then R = 0.

(c) Else, let b = B(z′, b4, b5, b6, A(b4), A(b5), A(b6)), p1 = a/2r+3s, and p0 = 1− p1.
V computes R using Brier’s scoring rule:
if b = 1 then R =

2p1−(p21+p20)+1
11 ; otherwise R =

2p0−(p21+p20)+1
11 .

Figure 3: An efficient MRIP protocol for Oracle-3SAT.

Roughly speaking, in our MRIP protocol (V, ~P), the verifier incentivizes the provers to report the correct
value of a∗, so that the membership of B can be decided. The protocol is shown in Figure 3.

To see why this protocol works, first notice that, if the provers send c = 0 and a = 0 in Step 1 and always
send 0’s in Step 4, then the protocol always ends in Steps 5b or 5c, and the provers’ expected payment is
0. Accordingly, the best strategy profile s̃∗ of the provers gives them expected payment at least 0, and
Condition 1 of Definition 4 holds. Moreover, s̃∗ must be such that

either c = 1 and a = 2r+3s, or c = 0 and a < 2r+3s, (1)

since otherwise the provers’ expected payment will be −1.
It remains to show that Condition 2 of Definition 4 holds. Notice that P2 only answers one query of

the verifier (in step 4), thus under any strategy s̃2 and given any c and a, P2 de facto commits to an oracle
A′ : {0, 1}s → {0, 1}. Assume that P1, using a strategy s̃1 and seeing (b1, ..., b6), sends V six bits in step
4 that are not consistent with A′ —that is, there exists i ∈ {1, . . . , 6} such that A(bi) 6= A′(bi). Let q be
the probability that, conditioned on (b1, ..., b6), the verifier chooses a k that catches the provers in step 5a.
We have q ≥ 1/6. Let R be the payment to the provers conditioned on (b1, ..., b6) and on the event that
they are not caught in step 5a. Note that R ≤ 2

11 by the definition of Brier’s scoring rule (after shifting
and scaling). Thus the expected payment to the provers conditioned on (b1, ..., b6) is −q + (1 − q)R < 0.
However, if P1 answers the verifier’s queries consistently with A′, their expected payment conditioned on
(b1, ..., b6) is non-negative. Accordingly, the best strategy profile s̃∗ must be such that, for any c, a, and the
oracle commited by P2, P1’s answers for any (b1, ..., b6) are always consistent with A′. Thus under s̃∗ the
payment is never computed in step 5a.

Furthermore, given b1, b2, b3 and A′, whether B evaluates to 0 in step 5b or not is totally determined. If
B evaluates to 0, then it does not matter what a or c is and the provers’ received payment is 0. If B does

9

not evaluate to 0 in step 5b, then the expected payment to the provers in step 5c is defined by Brier’s scoring
rule: the true distribution of b, denoted by D, is such that D(1) = a′/2r+3s, with a′ being the number of
satisfying w’s for B under oracle A′; and the realized value is b = B(z′, b4, b5, b6, A(b4), A(b5), A(b6)).
Indeed, since b4, b5, b6 are independent from b1, b2, b3, we have that w′ is a uniformly random input to B,
and the probability for b to be 1 is exactly a′/2r+3s. Since Brier’s scoring rule is strictly proper, conditioned
on A′ the provers maximize their expected utility by reporting

a = a′, (2)

which implies (p1, p0) = (D(1), D(0)).
If B 6∈ Oracle-3SAT, then no matter which oracle A′ is committed under s̃∗, we have a′ < 2r+3s. By

Equations 1 and 2, we have a < 2r+3s and c = 0, as desired.
If B ∈ Oracle-3SAT, we show that under s̃∗ the prover P2 commits to the desired 3-satisfying oracle

A∗ (so that a′ = 2r+3s and D(1) = 1). To see why this is true, denote by BSR(D) the expected score for
reporting D under Brier’s scoring rule, when the true distribution is D. We have

BSR(D) = D(1)[2D(1)−D(1)2 − (1−D(1))2 − 1]

+(1−D(1))[2(1−D(1))−D(1)2 − (1−D(1))2 − 1]

= 2(D(1)2 −D(1)).

Thus BSR(D) is symmetric at D(1) = 1/2, strictly decreasing on D(1) ∈ [0, 1/2], strictly increasing on
D(1) ∈ [1/2, 1], and maximized when D(1) = 1 or D(1) = 0. Notice that the shifting and scaling of BSR
in step 5c do not change these properties, but make BSR(D) strictly positive when D(1) = 1 or D(1) = 0.
Accordingly, to maximize their expected payment conditioned on the event that step 5c is reached, P2 should
commit to either an oracle A′ such that D(1) is as small as possible, or an A′ such that D(1) is as large as
possible, whichever makes D(1) further from 1/2.

If there is no oracle A′ such that a′ = 0 given A′, then the only way for the provers to maximize their
expected payment is to commit to the 3-satisfying oracle A∗ (thus a′ = 1), under which step 5c is reached
with probability 1. Again by Equations 1 and 2, we have c = 1 and a = 2r+3s as desired.

If there is both a 3-satisfying oracle A∗ and an oracle A′ such that a′ = 0, we need to make sure that P2

does not commit to A′: indeed, committing to any other oracle will result in an expected payment strictly
smaller than that by committing toA∗, since it increases the probability that the protocol ends at step 5b with
R = 0, and strictly decreases the expected payment conditioned on step 5c being reached. If P2 commits
to A′, then B always evaluates to 0 in step 5b, and step 5c is actually never reached. Thus, even though by
committing to A′ the provers maximize their expected payment in step 5c, their actual expected payment
will be 0. Instead, by committing to A∗, step 5c is reached with probability 1 and the provers get positive
payment. Accordingly, the strategy profile s̃∗ must be such that P2 commits to A∗ and P1 sends a = 2r+3s

and c = 1, as desired. Notice that if there are multiple 3-satisfying oracles for B, then the provers can
pre-agree on any one of them.

In sum, Condition 2 of Definition 4 also holds and (V, ~P) is an MRIP protocol for Oracle-3SAT. More-
over, since n ≥ r+3s+3, it is easy to see that the number of coins flipped by V is at most 2n (for sampling
w, w′, and k) and the number of bits exchanged between V and ~P is at most 3n + 3. Finally, given an
input string w = (z, b1, b2, b3) for B and the 3-bit answers of the oracle for b1, b2, b3, B can be evaluated in
linear time, thus the running time of V is O(n) plus constant number of arithmetic operations to compute
the payment in step 5c. Therefore Lemma 10 holds.

10

3 Characterizing Multi-Prover Rational Interactive Proofs

In this section we prove Theorem 1, that is, MRIP = EXP||NP. We first show that MRIP is the same as
another complexity class, EXP||poly−NEXP, which we define below. We complete the proof of Theorem 1 by
showing EXP||NP = EXP||poly−NEXP.

Definition 11. EXP||poly−NEXP is the class of languages decidable by a deterministic exponential-time Tur-
ing machine with non-adaptive access to an NEXP oracle, such that the length of each oracle query is
polynomial in the length of the input of the Turing machine.

We use two intermediate lemmas to prove the lower bound. The first gives a circuit characterization of
EXP. The second takes advantage of the this characterization to provide an MRIP protocol for EXP. The
full proof of Lemma 13, along with an exposition of DC uniform circuits is in Appendix A.

Lemma 12 ([4]). For any language L, L ∈ EXP if and only if it can be computed by a DC uniform circuit
family of size 2n

O(1)
.

Lemma 13. Every language L in EXP has an MRIP protocol with two provers and five rounds.

Using these two lemmas, we prove the lower bound on MRIP. We describe the main ideas in the sketch.

Lemma 14. EXP||poly−NEXP ⊆ MRIP.

Proof Sketch We start by constructing an MRIP protocol for EXP using 2-provers and 5-rounds (Figure 5).
To do so, we use the characterization of EXP in terms of DC uniform circuits from Lemma 12. We then
combine this protocol with the MRIP protocol for Oracle-3SAT in Figure 2 to obtain the desired MRIP
protocol for EXP||poly−NEXP.10 In particular, we use the protocol for Oracle-3SAT to answer NEXP oracle
queries. This structure is inspired by the single-prover rational proof protocol for P||NP in [6]. However,
the prover in [6] can send the entire proof of a circuit satisfiability problem to the verifier, which is not
feasible for us because our circuit may be exponentially large while our verifier is still of polynomial time.
We overcome this problem by using a second prover to cross-check whether the first prover is answering
questions about the circuit correctly. See Appendix A for the description of the protocols and full proof.

We show that the above lower bound on MRIP is tight, leading to an exact characterization.

Lemma 15. MRIP ⊆ EXP||poly−NEXP.

Proof Sketch An EXP machine considers each possible payment to the provers. It uses the poly-NEXP
oracle to verify that a payment can be generated by some strategy profile of the provers. Thus it is able
to figure out the maximum expected payment the provers can get, and whether or not the corresponding
strategy profile causes the verifier to accept. See Appendix A for the full proof.

We have now established that MRIP = EXP||poly−NEXP. To finish the proof of Theorem 1, we show that
EXP||poly−NEXP is equivalent to EXP||NP using a padding argument.

Lemma 16. EXP||poly−NEXP = EXP||NP.

Proof of Theorem 1. Combining Lemma 14, Lemma 15 and Lemma 16, Theorem 1 holds immediately.
10The MRIP protocol for Oracle-3SAT in Figure 3 can also be used, with appropriate modifications in the computation of the

payment. We use the protocol in Figure 2 to simplify the analysis.

11

4 Simulating MRIP Using Two Provers and Five Rounds

In this section we prove Theorem 2, that is, all languages in MRIP can be simulated using two provers and
five rounds. Essentially, the verifier asks one prover to simulate all other provers in the original protocol,
and uses a second prover to cross-check his answers. We conclude with a discussion on the optimal number
of rounds required to capture the full power of MRIP.

In Figure 4 we show how to simulate any MRIP protocol (V, ~P) with t(n) provers and p(n) rounds
of interaction using a verifier V ′ and two provers P ′1 and P ′2. In the protocol, mij denotes the message of
prover Pi in round j of the protocol. The proof of correctness of the protocol can be found in Appendix A

Given any string x of length n,

1. P ′1 sends c, which is the first bit of m11, to V ′. V ′ outputs c at the end of the protocol.

2. V ′ calculates the random bits r used by V in protocol (V, ~P). V ′ sends r to P ′1.

3. P ′1 uses r to simulate the entire protocol (V, ~P) and sends ~m to V ′.

4. V ′ chooses a round j at random from {1, . . . , p(n)} and a prover index k from {1, . . . , t(n)}.

5. V ′ sends (j, k) and ~mk = (mk1, . . . ,mk(j−1)) (that is, message transcript till j − 1 rounds of
V with Pk) to P ′2.

6. P ′2 simulates Pk on the round j and sends m′kj to V .

7. V computes the payment R′ as follows,
(a) If j = 1 and k = 1, then if the first bit of m′kj is not c, set R′ = −1.
(b) If mkj 6= m′kj , set R′ = −1.
(c) Else, V ′ computes the payment R given by V in the protocol (V, ~P), using ~m.
V ′ then sets R′ = R

2p(n)t(n) .

Figure 4: Simulating MRIP with 2 provers, 5 rounds.

Remark 17. It is worth pointing out that, if we allow 3 provers instead of 2, then the verifier will only need
to interact with each prover exactly once. In particular, V ′ sends r to P ′3 instead of P ′1. This property may
be desirable for applications which do not allow repeated interactions.

Optimal number of rounds. MIP can be simulated using two provers and one round [14], which is clearly
optimal. It would be interesting to obtain a similar result for MRIP. Note that because we count the number
of rounds differently (provers’ messages and verifier’s queries are considered to be separate rounds) and
we assume the first round of messages are always from the provers, any non-trivial MRIP protocol using at
least two provers requires at least three rounds. In other words, in less than three rounds the verifier cannot
crosscheck answers with the second prover (beyond the initial messages received from them), in which case
the protocol reduces to a single-prover protocol.

Currently, the protocol in Figure 4 requires two extra rounds because the verifier’s queries to each prover
are not parallel. The verifier uses the answers from its query to Prover 1 to form its query to Prover 2.
Getting rid of this dependency may result in a 2-prover 3-round protocol for MRIP. Interestingly, note that
our protocols for NEXP and coNEXP only require 3 rounds (Section 2.1), so we know NEXP∪ coNEXP ⊆
MRIP(2, 3). We pose the following closely related open problems: (1) what is the optimal number of rounds
required to capture the full power of MRIP, and (2) what is the exact characterization of MRIP(2, 3)?

12

5 Utility Gaps in MRIP

In our MRIP protocols until now, the provers are sensitive to exponentially small losses in the received
payment (similar to RIP in [5]). In [6] the authors strengthen their model by requiring the prover deviating
from the honest protocol to suffer a non-negligible loss in received payment (either constant or polynomial).
This loss is demanded for any deviation from the prescribed behavior (in other words, the optimal strategy)
and not just for reporting an incorrect answer to the membership of the input.

Formally, let s̃ be the optimal strategy profile and s̃∗ a suboptimal strategy profile of P . Then the ideal
utility gap requires that u(s̃)−u(s̃∗) > 1/α(n), where α(n) is constant or polynomial in n = |x|. Although
an ideal utility gap strongly guarantees that the prover will use his optimal strategy, as pointed out by [25],
such a utility gap appears to be too strong to hold for many meaningful protocols.

To provide some intuition about the ideal utility gap, consider the MRIP protocol for NEXP given in
Figure 2. This protocol does not satisfy the ideal utility gap condition, even though at first glance the gap
appears to be significant. Indeed, the provers who report the incorrect answer always have a constant utility
gap. However, a prover may tell the truth about the membership of x but deviate slightly from the optimal
strategy. For example, the prover could lie so that the verifier accepts with probability 1 − ε, where ε is
exponentially small in |x|. In this situation, the verifier may have an exponentially small probability of
detecting the deviation, and the expected payment would decrease by an exponentially small amount.

The difficulty in achieving the ideal gap can be seen in previous work as well. For example, the rational
proof for MA in [6] fails to satisfy this constraint. Guo, Hubáček, Rosen and Vald in [25] also echo the
concern about the ideal utility gap being strong and define a weaker notion of utility gap. However, they
impose it on their rational arguments, not on rational proofs. They also require that noticeable deviation
leads to noticeable loss: if under a strategy s̃′ of the prover, the probability for the verifier to output the
correct answer is noticeably smaller than 1, then expected payment to the prover under s̃′ is also noticeably
smaller than his optimal expected received payment. While we do not impose this requirement, our notion
of noticeable utility gap as defined below implies it, but not vice-versa (see also, Section 1.2).

We propose a weaker (albeit meaningful) definition that is similar to the one in [25] and allows us to
encompass both the protocol in [6] and the NEXP protocol in Figure 2. Informally, we require the provers
who answer the question about the input’s membership incorrectly to suffer noticeable loss in expected
received payment.

Definition 18 (Utility Gap). Let L be a language in MRIP, (V, ~P) an MRIP protocol for L, s̃ the strategy
profile of ~P that maximizes their expected received payment, and c the first bit sent by P1 according to s̃.
For any other strategy profile s̃′, let c′ be the first bit sent by P1 according to s̃′. We say that (V, ~P) has an
α(n)-utility gap if, whenever c′ 6= c we have

ErR(x, r, (V, ~P)(x, r, s̃))− ErR(x, r, (V, ~P)(x, r, s̃′)) > 1/α(n).

We denote an MRIP protocol with an α(n)-utility gap as an α(n)-gap-MRIP protocol, and we shorten
“polynomial in n” as poly(n). It is easy to see that the protocol for NEXP in Figure 2 has an O(1)-utility
gap. Following the analysis of Lemma 5 we get the same for coNEXP. Thus, we have the following.

Lemma 19. NEXP ⊆ O(1)-gap-MRIP and coNEXP ⊆ O(1)-gap-MRIP.

We have shown that with an exponential utility gap, MRIP = EXP||NP. We now characterize MRIP
protocols with a polynomial utility gap as exactly the class of languages decided by a polynomial-time
oracle Turing machine with non-adaptive access to an NEXP oracle. That is,

Theorem 3. poly(n)-gap-MRIP = P||NEXP.

The proof of Theorem 3 uses similar ideas as the proof of Lemma 15 and can be found in Appendix A.

13

Remark 20. Notice that there is a tradeoff between the utility gap and the computational efficiency in the
two MRIP protocols we constructed for NEXP. On the one hand, the protocol in Figure 2 has a constant
utility gap, but it relies on the standard MIP protocol. On the other hand, the protocol in Figure 3 is very
efficient, but it only has an exponential utility gap. It would be very interesting to see if there exists an MRIP
protocols for NEXP that has a noticeable utility gap and is (almost) as efficient as the one in Figure 3.

6 MRIP with Individual Payments

Finally, we initiate the study of multi-prover rational interactive proofs in which the provers are non-
cooperative, that is, the verifier pays each prover individually rather than assigning them a fixed portion
of the total. Thus, a verifier may pay a prover based on his messages alone, whereas in MRIP the verifier
calculates a total payment depending on the messages sent by all provers.

In this model, one may require the existence of a Nash equilibrium among the provers, under which
the verifier receives the correct solution. However, when the protocol has more than one equilibrium, the
problem of equilibrium selection may cause the provers to end up at a strategy profile that does not give the
verifier the correct answer. One way to fix this is to require that the protocol has a unique Nash equilibrium
(and that the verifier receives the correct answer at this equilibrium). Another way is to require that there is a
maximum equilibrium, in the sense that it simultaneously maximizes all players’ received payments among
all equilibria. Then, all provers will choose a strategy leading to this equilibrium, knowing that the others
will also end up in this equilibrium when maximizing their own payment.

It remains unknown what class of problems can be solved by non-cooperative MRIP protocols (with a
maximum equilibrium), but it is intuitive that it is a superset of MRIP. Indeed, the verifier can give each
prover a fixed portion of the total payment of an MRIP protocol. In this case, maximizing the total payment
is a maximum Nash equilibrium of the protocol.

We conjecture that MRIP with non-cooperative provers (and maximum equilibrium) is no more powerful
than MRIP with cooperative provers. In particular it seems unclear that the verifier can leverage the provers’
personal greed against each other. Note that even though non-cooperative provers are maximizing their own
payment, the verifier may cross-check their answers. Thus, they still have to implicitly agree on the answers,
as in the cooperative setting.

Acknowledgments

We thank several anonymous reviewers for their valuable feedback that helped improve this paper. We also
thank Andrew Drucker, Silvio Micali, Rafael Pass and Sanjoy Das for their helpful comments.

References

[1] Amazon mechanical turk. Online at https://www.mturk.com/mturk.

[2] Effective use of amazon mechanical turk (mturk). Online at http://neerajkumar.org/
writings/mturk/.

[3] Proof market. Online at https://proofmarket.org.

[4] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University
Press, 2009.

14

https://www.mturk.com/mturk
http://neerajkumar.org/writings/mturk/
http://neerajkumar.org/writings/mturk/
https://proofmarket.org

[5] Pablo Daniel Azar and Silvio Micali. Rational proofs. In Proceedings of the Forty-Fourth Annual
Symposium on Theory of Computing (STOC), pages 1017–1028, 2012.

[6] Pablo Daniel Azar and Silvio Micali. Super-efficient rational proofs. In Proceedings of the Fourteenth
Annual ACM conference on Electronic Commerce (EC), pages 29–30, 2013.

[7] László Babai. Trading group theory for randomness. In Proceedings of the Seventeenth annual ACM
symposium on Theory of Computing (STOC), pages 421–429, 1985.

[8] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational complexity, 1(1):3–40, 1991.

[9] László Babai and Shlomo Moran. Arthur-merlin games: a randomized proof system, and a hierarchy
of complexity classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.

[10] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive proofs:
How to remove intractability assumptions. In Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing (STOC), pages 113–131, 1988.

[11] Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly weather review,
78(1):1–3, 1950.

[12] Ashok K Chandra and Larry J Stockmeyer. Alternation. In 17th Annual Symposium on Foundations
of Computer Science (FOCS), pages 98–108, 1976.

[13] Uriel Feige and Joe Kilian. Making games short. In Proceedings of the Twenty-Ninth Annual ACM
Symposium On Theory of Computing (STOC), pages 506–516, 1997.

[14] Uriel Feige and László Lovász. Two-prover one-round proof systems: their power and their problems.
In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing (STOC), pages
733–744, 1992.

[15] Uriel Feige and Adi Shamir. Multi-oracle interactive protocols with constant space verifiers. Journal
of Computer and System Sciences, 44(2):259–271, 1992.

[16] Uriel Feige, Adi Shamir, and Moshe Tennenholtz. The noisy oracle problem. In Proceedings of the
Tenth Annual Conference on Advances in Cryptology (CRYPTO), pages 284–296, 1990.

[17] Joan Feigenbaum, Daphne Koller, and Peter Shor. A game-theoretic classification of interactive com-
plexity classes. In Proceedings of Tenth Annual IEEE Structure in Complexity Theory Conference,
pages 227–237, 1995.

[18] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive protocols.
Theoretical Computer Science, 134(2):545–557, 1994.

[19] Lance Fortnow and Michael Sipser. Are there interactive protocols for co-np languages? Information
Processing Letters (IPL), 28(5):249–251, 1988.

[20] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all
languages in np have zero-knowledge proof systems. Journal of the ACM (JACM), 38(3):690–728,
1991.

15

[22] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1), 1989.

[23] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[24] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof systems.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC), pages
59–68, 1986.

[25] Siyao Guo, Pavel Hubáček, Alon Rosen, and Margarita Vald. Rational arguments: single round del-
egation with sublinear verification. In Proceedings of the Fifth Annual Conference on Innovations in
Theoretical Computer Science (ITCS), pages 523–540, 2014.

[26] Aniket Kittur. Crowdsourcing, collaboration and creativity. ACM Crossroads, 17(2):22–26, 2010.

[27] Daphne Koller and Nimrod Megiddo. The complexity of two-person zero-sum games in extensive
form. Games and economic behavior, 4(4):528–552, 1992.

[28] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

[29] John H Reif. The complexity of two-player games of incomplete information. Journal of Computer
and System Sciences, 29(2):274–301, 1984.

[30] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[31] Luis Von Ahn and Laura Dabbish. Labeling images with a computer game. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 319–326, 2004.

[32] Luis Von Ahn and Laura Dabbish. Designing games with a purpose. Communications of the ACM,
51(8):58–67, 2008.

[33] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM (JACM), 61(1):2, 2014.

A Omitted Proofs

A.1 Multi-Prover Rational Interactive Proofs

MRIP is closed under complement.

Proof of Lemma 5. Let L be a language in MRIP, (V, ~P) an MRIP protocol for L, and R the
payment function computed by V . We construct a verifier V ′ and thus an MRIP protocol (V ′, ~P) for L, as
follows.

• V ′ runs V to compute the messages he should send in each round, except that, whenever V ′ gives
V as an input the first message m′11 sent by P1, he flips the first bit.

• At the end of the communication, V ′ computes a payment function R′: for any x, r, and ~m′,
R′(x, r, ~m′) = R(x, r, ~m), where ~m is ~m′ with the first bit flipped.

16

• V ′ outputs the first bit sent by P1.

For each strategy profile s̃ of the provers in the protocol (V, ~P), consider the following strategy profile s̃′ in
the protocol (V ′, ~P):

• s̃′i = s̃i for each i 6= 1.

• In round 1, s̃′1 outputs the same message as s̃1, except that the first bit is flipped.

• For any odd number k > 1 and any transcript m′1 for P1 at the beginning of round k, s̃′1(m′1) is the
same as s̃1(m1), where m1 is m′1 with the first bit flipped.

It is easy to see that for any x and r, (V ′, ~P)(x, r, s̃′) is the same as (V, ~P)(x, r, s̃) except the first bit.
Thus R′(x, r, (V ′, ~P)(x, r, s̃′)) = R(x, r, (V, ~P)(x, r, s̃)), which implies

u(V ′, ~P)(s̃
′;x) = u(V, ~P)(s̃;x).

Also, it is easy to see that the mapping from s̃ to s̃′ is a bijection. Accordingly, arbitrarily fixing a strategy
profile s̃′ that maximizes u(V ′, ~P)(s̃

′;x), we have that the corresponding s̃ maximizes u(V, ~P)(s̃;x) as well.
Thus

u(V ′, ~P)(s̃
′;x) = u(V, ~P)(s̃;x) ≥ 0,

where the inequality is by Definition 4. Furthermore, x ∈ L if and only if the first bit sent by s̃1 is 1, if and
only if the first bit sent by s̃′1 is 0. That is, x ∈ L if and only if the first bit sent by s̃′1 is 1. Therefore (V ′, ~P)
is an MRIP protocol for L, and Lemma 5 holds.

A.2 Characterizing Multi-Prover Rational Interactive Proofs

MRIP protocol for EXP.

Proof of Lemma 13. To begin, we recall some definitions and results from the literature that we
use in our proof. First of all, a circuit family {Cn}∞n=1 is a sequence of boolean circuits such that
Cn : {0, 1}n → {0, 1}. The gates in the circuits are of type AND, OR, and NOT, with fan-ins 2, 2, and 1
respectively. The input string to a circuit is connected to a special set of “input gates”, one for each bit of
the input, whose output value is always the value of the corresponding bit. The size of a circuit C is the
number of gates (including the input gates) in C. For a circuite C of size g, the set of gates in it is denoted
by {1, 2, ..., g}. Without loss of generality we assume that gate g is the output gate of the whole circuit.
Moreover, if C has input length n, without loss of generality we assume that gates 1, 2, .., n are the input
gates. Notice that the number of wires in C is at most 2g, since each gate has at most 2 fan-ins. The set of
wires is denoted by {1, 2, ..., 2g}.

Definition 21 (DC uniform circuits [4]). A circuit family {Cn}∞n=1 is a Direct Connect uniform (DC uni-
form) family if the following questions can be answered in polynomial time:

1. SIZE(n): what is the size of Cn?

2. INPUT (n, h, i): is wire h an input to gate i in Cn?

3. OUTPUT (n, h, i): is wire h the output of gate i in Cn?

4. TY PE(n, i, t): is t the type of gate i in Cn?

17

That is, the circuits in a DC uniform family may have exponential size, but they have a succinct repre-
sentation in terms of a polynomial-time Turing machine that can answer all the questions in Definition 21.
The class EXP can be characterized by the class of DC uniform circuit families [4]; this is stated formally
in Lemma 12.

Now we are ready to prove Lemma 13.
Following Lemma 12, there exists a DC uniform circuit family {Cn}∞n=1 that computes L. Let g = 2n

k

be the size of each Cn, where k is a constant that may depend on L. For any input string x of length n
and any gate i ∈ {1, 2, ..., g} in Cn, let vi(x) ∈ {0, 1} be the value of i’s output on input x. In particular,
vi(x) = xi for any i ∈ {1, 2, ..., n}. We call a gate i′ in Cn an input gate of i if there is a directed wire from
i′ to i. The MRIP protocol (V, ~P) is shown in Figure 5.

Given any string x of length n,

1. P1 sends one bit c ∈ {0, 1} to V . V will always output c at the end of the protocol.

2. V computes g = SIZE(n), picks a gate i ∈ {1, 2, ..., g} uniformly at random, and sends i to
P1. That is, V queries P1 for:

(a) the type of gate i,

(b) the input gates of i and corresponding input wires, and

(c) the values of gate i and its input gates.

3. P1 sends to V the concatenation of the following strings: type ti ∈ {AND,OR,NOT}; gates
i1, i2 ∈ {1, 2, ..., g}; wires h1, h2 ∈ {1, 2, ..., 2g}; and values vi(x), vi1(x), vi2(x) ∈ {0, 1}.

4. V picks a gate i′ ∈ {i, i1, i2} uniformly at random and sends i′ to P2.

5. P2 sends vi′(x) ∈ {0, 1} to V .

6. The protocol ends and V computes the payment R by verifying the following statements:

(a) If i 6∈ {1, 2, ..., n} (that is, i is not an input gate), then TY PE(n, i, ti) = 1,
INPUT (n, h1, i) = OUTPUT (n, h1, i1) = 1, and, if ti 6= NOT , INPUT (n, h2, i) =
OUTPUT (n, h2, i2) = 1.

(b) If i 6∈ {1, 2, ..., n}, then vi(x) is computed correctly based on type ti from vi1(x) and
(when ti 6= NOT) vi2(x).

(c) If i ∈ {1, 2, ..., n} then vi(x) = xi.

(d) If i = g (that is, the output gate of the circuit) then vi(x) = c.

(e) The answers of P1 and P2 on the value of gate i′ are consistent.

If any of these verifications fails then R = 0; otherwise R = 1.

Figure 5: An MRIP protocol for EXP.

Clearly this protocol has two provers and five rounds. To see why it is an MRIP protocol, notice that
if P1 and P2 always send the correct c and answer V ’s queries correctly according to Cn, their received
payment is always R = 1, irrespective of V ’s coin flips. Thus the expected received payment is 1. Below
we show that any other strategy profile gives them expected received payment strictly less than 1.

First of all, when the gate i chosen by the verifier in step 2 is not an input gate, if any of P1’s answers

18

in step 3 to queries 2a and 2b (namely, about i’s type, input gates and input wires) is incorrect, then the
verification in step 6a will fail, giving the provers a payment R = 0. Accordingly, if there exists such a gate
then the expected payment to the provers will be at most 1− 1/g < 1. Similarly, if there exists a non-input
gate i such that P1 answers queries 2a and 2b correctly but the values vi(x), vi1(x), vi2(x) are inconsistent
with i’s type, then, when i is chosen, step 6b will fail, thus the expected payment to the provers is at most
1− 1/g < 1. Moreover, if there exists an input gate i such that vi(x) 6= xi when i is chosen, or if vg(x) 6= c
when gate g is chosen, then the expected payment to the provers is again at most 1− 1/g < 1.

Next, similar to the analysis of Lemma 10, P2 is only queried once (in step 5). Thus P2 de facto commits
to an oracle A : {1, . . . , g} → {0, 1}, which maps any gate to its value under input x. If there exists a gate
i such that the values vi(x), vi1(x), vi2(x) in step 3 are not consistent with A, then, conditioned on i being
chosen in step 2, with probability 1/3 step 6e will fail. Since i is chosen with probability 1/g, the expected
received payment will be at most 1− 1

3g < 1.
Accordingly, the only strategy profile s̃ that can have expected received payment equal to 1 is exactly

what we want: that is,

(1) P1 and P2 answer queries to the values of gates using the same oracle A : {1, . . . , g} → {0, 1},

(2) A(i) = xi for any input gate i,

(3) A(g) = c, and

(4) for any non-input gate i, A(i) is computed correctly according to i’s type and the values of its input
gates in Cn.

Thus A(g) is computed according to Cn with input x, and A(g) = 1 if and only if x ∈ L. Since c = A(g),
we have that c = 1 if and only if x ∈ L, implying that (V, ~P) is an MRIP protocol for L. Therefore
Lemma 13 holds.

Lower bound on MRIP.

Proof of Lemma 14. For any language L ∈ EXP||poly−NEXP, let M be the exponential-time oracle
Turing machine deciding it and O be the oracle used by M . Without loss of generality we assume
O = Oracle-3SAT. Let q(n) be the number of oracle queries made by M on any input x of length n, and
p(n) be the length of each query. Notice that p(n) is polynomial in n while q(n) can be exponential. Let
`(n) = p(n)q(n). Below we may refer to `(n), p(n), q(n) as `, p, q when the input length n is clear from
the context.

Since the oracle queries are non-adaptive, there exists an exponential-time computable function f :
{0, 1}∗ → {0, 1}∗ such that, for any x ∈ {0, 1}n, f(x) ∈ {0, 1}` and f(x) is the vector of oracle queries
made by M given x. Indeed, we can run M on x until it outputs all queries. Similar to Lemma 12 (or rather,
the way how it is proved), there exists a DC uniform circuit family {Cn}∞n=0 of size 2n

O(1)
that computes f ,

where for any n, Cn has n-bit input and `-bit output.
Moreover, given b ∈ {0, 1}q, the vector of oracle answers corresponding toM ’s queries, the membership

of x can be decided in time exponential in n, by continuing running M . Accordingly, let f ′ : {0, 1}∗ →
{0, 1} be a function such that, given any n + q-bit input (x, b) where |x| = n and b is the vector of oracle
answers M gets with input x, f ′(x, b) is the output of M . Again similar to Lemma 12 and its analysis, f ′ is
computable by a DC uniform circuit family {C ′n}∞n=1 of size 2n

O(1)
, where each C ′n has n+ q-bit input and

1-bit output,11 and the Turing machine that answers questions SIZE, INPUT,OUTPUT, TY PE for C ′n
runs in time polynomial in n rather than n+ q.

11The size of C′
n is exponential in n but may not be exponential in its own input length, since q may be exponential in n.

19

Thus the membership of x inL can be computed by the following three-level “circuit” where, besides the
usual AND,OR,NOT gates, there are q “NEXP” gates that have p bits input and 1 bit output, simulating
the oracle.

• Level 1: Circuit Cn from the circuit family computing f . We denote its output by (φ1, φ2, ..., φq),
where each φi is of p bits and is an instance of Oracle-3SAT. Let g = 2n

k
be the size of Cn, where

k is a constant. Similar as before, the set of gates is {1, 2, ..., g}, the set of input gates is {1, 2, ..., n},
and the set of output gates is {n+1, n+2, ..., n+ `}, where the input and the output gates correspond
to x and (φ1, φ2, ..., φq) in the natural order.

• Level 2: q NEXP gates, without loss of generality denoted by gates g+ 1, g+ 2, ..., g+ q. For each
i ∈ {1, 2, ..., q}, gate g + i takes input φi and output 1 if and only if φi ∈ Oracle-3SAT.

• Level 3: Circuit C ′n from the circuit family computing f ′. Let g′ = 2n
k′

be the size of C ′n, where k′

is a constant. Following our naming convention, the set of gates is {g+q+1, g+q+2, ..., g+q+g′},
the set of input gates is {g+ q+ 1, ..., g+ q+n, g+ q+n+ 1, ..., g+ q+n+ q}, and the output gate
is gate g + q + g′. The first n of the input gates connect to x, and the remaining ones connect to the
outputs of the NEXP gates of Level 2. The output of C ′n is the final output of the whole three-level
circuit.

Given the circuit above, we can compute Level 1, Level 3, and each NEXP gate in Level 2 by using the
protocols in Figure 2 and Figure 5, but we need to show that there exists a protocol (V, ~P) where the verifier
can get a consistent answer to all of them simultaneously. The protocol is specified in Figure 6. Note that
the verifier needs to compute q(n) and p(n). Without loss of generality we can assume q(n) = 2n

d
for

some constant d, so that its binary representation can be computed in time polynomial in n. Since p(n) is a
polynomial in n, it can be computed by V .

To see why this is an MRIP protocol, first notice that for any input string x, conditioned on the gate
i chosen by V in step 2, if the provers always give correct answers according to the computation of Cn,
C ′n, and the NEXP gates, then their received payment is at least R = 1

p+1 ≥ 0. Indeed, it comes from the
case where i is an NEXP gate and its input vector x′ (step 9) is not in Oracle-3SAT, so that the protocol
(V, (P3, P4)) outputs c′ = 0 and R′ = 1/2 as specified in step 2 of Figure 2, and the final payment is
R = 2R′

p+1 = 1
p+1 (step 10).

Conditioned on the same gate i, if P1’s answers in step 3 cause some verifications in step 4 to fail, then
their received payment is R = 0 < 1

p+1 . Thus the best strategy profile of the provers when i is chosen is to
make the verifications in step 4 go through. Since V chooses i uniformly at random, we have the following:

Claim 22. Under the provers’ best strategy profile, P1 makes the verifications in step 4 go through for every
gate i.

Moreover, similar as before, P2 is queried only once (step 6), thus any strategy of P2 in (V, ~P) de facto
commits to an oracle A : {1, 2, ..., g + q + g′} → {0, 1}, mapping each gate in the three-level circuit to its
value under input x. For any gate i that is not an NEXP gate, conditioned on i being chosen in step 2, when
P1’s answers to the values of i and its input gates (step 3) are all consistent with oracle A, the expected
payment is R = 1 (step 8). When there exists an answer that is inconsistent with A, since i′ is chosen
uniformly at random from i and its input gates, and since i has at most 2 fan-ins, with probability r ≥ 1/3 the
protocol will ends in step 7 with payment −1. Thus the expected payment is R ≤ −1/3 + 2/3 = 1/3 < 1.
That is, the best strategy profile of the provers conditioned on i being chosen is to answer the values of i and
its input gates consistently with A. Since i is chosen uniformly at random, we have the following:

Claim 23. Under the provers’ best strategy profile, P1 always answers the value queries to i and its input
gates consistently with A, for every i that is not an NEXP gate.

20

Given any string x of length n,

1. P1 sends one bit c ∈ {0, 1} to V . V will always output c at the end of the protocol.

2. V computes g = SIZE(n) for Cn, g′ = SIZE(n) for C ′n, and q(n).
V picks a gate i ∈ {1, 2, ..., g+q+g′} uniformly at random, and sends i to P1. That is, V queries
P1 for:

(a) the type of gate i, which can be AND,OR,NOT , NEXP, or input.

(b) the input gates of i and corresponding input wires, and

(c) the values of gate i and its input gates.

3. P1 sends to V the following:

(a) type ti ∈ {AND,OR,NOT,NEXP, input};
(b) input gates i1, i2, ..., ip(n) and wires h1, h2, ..., hp(n) (only the correct number of input

gates and wires will be used based on i’s type);

(c) values of i and its input gates: vi(x), vi1(x), vi2(x), ..., vip(x) (again only the correct
number of input gates will be used).

4. V verifies the following:

(a) ti is the correct type of i, by either using the DC uniformity of Cn and C ′n or using the
naming convention when defining the three-level circuit (e.g., if i ∈ {g + 1, ..., g + q} then
ti = NEXP, etc);

(b) the set of input gates of i is correct, again by using DC uniformity or the naming conven-
tion;

(c) if ti 6= NEXP then vi(x) is computed correctly from the values of i’s input gates: that is,
if i is an input gate connected to one bit of x then vi(x) equals the value of that bit, if i is an
input gate of C ′n connected to an NEXP gate then vi(x) = vi1(x), otherwise vi(x) follows
the Boolean logic between i and its input gates;

(d) if i = g + q + g′ (that is, i is the output gate of the whole circuit), then vi(x) = c.

If any of the verifications fails, the protocol ends and R = 0.

5. V picks a gate i′ uniformly at random from the union of {i} and the set of its input gates, and
sends i′ to P2.

6. P2 sends vi′(x) ∈ {0, 1} to V .

7. V verifies that the answers of P1 and P2 on the value of gate i′ are consistent. If not then the
protocol ends and R = −1.

8. If ti 6= NEXP then the protocol ends and R = 1.

9. If ti = NEXP, then V sends x′ = (vi1(x), ..., vip(x)) to P3 and P4 and runs the MRIP protocol
for NEXP in Figure 2 with them, to decide whether x′ ∈ Oracle-3SAT or not, with the result
denoted by c′ and the payment by R′

10. If c′ = vi(x) then R = 2R′

p+1 ; otherwise R = −1.

Figure 6: An MRIP protocol for EXP||poly−NEXP.
21

Combining the above two claims and the construction of step 4 (in particular, step 4c) we have that,
under the provers’ best strategy profile, the oracle A corresponds to the correct computation of Cn with
input x, and the correct computation of C ′n with input string x and A’s own outputs for the NEXP gates in
Level 2. Accordingly, it is left to show that under the provers’ best strategy profile,

(1) A’s own outputs for the NEXP gates are all correct,

(2) for any NEXP gate i, conditioned on i being chosen in step 2, P1’s answers to the values of i and its
input gates are all consistent with A, and

(3) for any NEXP gate i, conditioned on i being chosen in step 2, P3 and P4 use their best strategy
profile to compute the correct c′.

To see why this is the case, notice that if the provers’ strategy profile are such that (1), (2), and (3) all
hold, then conditioned on any NEXP gate i being chosen in step 2, their expected received payment is as
follows:

• R = 2
p+1 when x′ ∈ Oracle-3SAT (R′ = 1 following step 3 of Figure 2);

• R = 1
p+1 when x′ 6∈ Oracle-3SAT (R′ = 1/2 following step 2 of Figure 2).

If (1) and (2) hold but (3) does not hold for some NEXP gate i, then conditioned on i being chosen, either
c′ 6= vi(x) and the payment is R = −1, or c′ = vi(x) but the payment R′ is smaller than what P3 and P4

could have gotten (that is, 1 when x′ ∈ Oracle-3SAT and 1/2 otherwise). Either way the provers’ received
payment conditioned on i being chose is smaller than if (1), (2) and (3) all hold.

If (1) holds but (2) does not hold for some NEXP gate i, then conditioned on i being chosen, with
probability r ≥ 1

p+1 the protocol ends in step 6 with R = −1. Since R′ ∈ [0, 1], the expected payment
conditioned on i being chosen is

R ≤ − 1

p+ 1
+ (1− 1

p+ 1
) · 2R′

p+ 1
≤ − 1

p+ 1
+ (1− 1

p+ 1
) · 2

p+ 1
=

1

p+ 1
− 2

(p+ 1)2
<

1

p+ 1
,

which is strictly smaller than if (1), (2) and (3) all hold.
If (1) does not hold for some NEXP gate i, then conditioned on i being chosen, we distinguish the

following two cases:

Case 1 (2) does not hold for i. Similar to the analysis above, in this case the provers’ expected received
payment is

R ≤ − 1

p+ 1
+ (1− 1

p+ 1
) · 2

p+ 1
<

1

p+ 1
,

strictly smaller than if (1), (2) and (3) all hold.

Case 2 (2) holds for i. In this case, x′ is the correct input to gate i, but vi(x) is not the correct answer for
whether x′ ∈ Oracle-3SAT or not. Therefore no matter what P3 and P4 do, if c′ is the correct answer for x′

then c′ 6= vi(x) and R = −1, or if c′ is wrong then R′ is strictly smaller than what P3 and P4 could have
gotten under their best strategy profile for computing the correct answer. Either way, the provers’ expected
received payment is strictly smaller than if (1), (2) and (3) all hold.

In sum, under the provers’ best strategy profile we have that (1), (2), and (3) all hold, and thusA’s output
for any gate i in the three-level circuit corresponds to the value of i under input x. In particular,A(g+q+g′)
is the correct answer for whether x ∈ L or not. Notice that if c 6= A(g + q + g′), then conditioned on gate
g + q + g′ being chosen in step 2, the verification in step 4d fails. Thus under the provers’ best strategy
profile we have c = A(g + q + g′): that is, c = 1 if and only if x ∈ L. Accordingly, (V, ~P) is an MRIP
protocol for L and Lemma 14 holds.

22

Upper Bound on MRIP.

Proof of Lemma 15. To prove Lemma 15, arbitrarily fix a language L ∈ MRIP and let (V, ~P) be
an MRIP protocol for L. Since V runs in polynomial time, there exists a constant k such that, for any two
payments R and R′ that can be output by V under some input of length n and some randomness, we have

R 6= R′ ⇒ |R−R′| ≥ 1

2nk .

For example, nk can be an upper bound of V ’s running time. Moreover, since V uses polynomially many
random coins, there exists another constant k′ such that, when a payment appears with positive probability
under some input of length n, it must appear with probability at least 1

2nk′ . Accordingly, for any input x of
length n and any two strategy profiles s̃ and s̃′ of the provers, if their expected received payments u(s̃;x)
and u(s̃′;x) are different, then

|u(s̃;x)− u(s̃′;x)| ≥ 1

2nk+k′ . (3)

Consider the following deterministic oracle Turing machineM : Given any input x of length n, it divides
the interval [0, 1] to 2 · 2nk+k′

sub-intervals of length 1

2·2nk+k′ . For any i ∈ {1, ..., 2 · 2nk+k′}, the i-th

interval is [2(i − 1) · 2nk+k′
, 2i · 2nk+k′

]. M then makes 4 · 2nk+k′
oracle queries of the form (i, j), where

i ∈ {1, ..., 2 · 2nk+k′} and j ∈ {0, 1}. Notice that the lengths of the queries are upper bounded by 2 +nk+k′ ,
which is a polynomial as required by the class EXP||poly−NEXP.

For each query (i, j), if j = 0 then the corresponding question is “whether there exists a strategy profile
s̃ of the provers such that u(s̃;x) is in the i-th interval”; and if j = 1 then the corresponding question is
“whether there exists a strategy profile s̃ such that u(s̃;x) is in the i-th interval and the first bit sent by P1 is
c = 1”. Notice that all the queries are indeed non-adaptive. We say that interval i is non-empty if the query
(i, 0) is answered 1, and empty otherwise.

Assume for now all the queries are answered correctly. M finds the highest index i∗ such that the interval
i∗ is non-empty. It accepts if (i∗, 1) is answered 1, and rejects otherwise. M clearly runs in exponential
time. To see why it decides L (given correct oracle answers), notice that by Definition 4, there exists a
strategy profile whose expected received payment is non-negative and thus in [0, 1] (since the payment is
always in [−1, 1]). Thus there exists an interval i such that (i, 0) is answered 1. Also by definition, the best
strategy profile s̃ has the highest expected payment, and thus u(s̃;x) falls into interval i∗.

By Inequality 3, any strategy profile s̃′ with u(s̃′;x) < u(s̃;x) has u(s̃′;x) not in interval i∗, since the
difference between u(s̃′;x) and u(s̃;x) is larger than the length of the interval. Accordingly, all strategy
profiles s̃′ with u(s̃′;x) in interval i∗ satisfies u(s̃′;x) = u(s̃;x): they are all the best strategy profiles of the
provers. Again by Definition 4, P1 sends the same first bit c under all these strategy profiles, c = 1 if and
only if x ∈ L, and there does not exist any other strategy profile whose expected received payment falls into
interval i∗ but the first bit sent by P1 is different from c. Thus the answer to (i∗, 1) always equals c, and M
accepts if and only if c = 1, if and only if x ∈ L, as desired.

It remains to show that the oracle queries can be answered by an NEXP oracle. Recall that in the pro-
tocol (V, ~P) a strategy sij of each prover Pi for each round j is a function mapping the transcript Pi has
seen at the beginning of round j to the message he sends in that round. Since the protocol has polynomially
many provers and polynomially many rounds, by definition a strategy profile consists of polynomially many
functions from {0, 1}∗ to {0, 1}∗, where for each function both the input length and the output length are
polynomial in n (since otherwise the messages cannot be processed by V). Accordingly, it takes exponen-
tially many bits to specify each function: if the input length is p(n) and the output length is q(n), then
2p(n)q(n) bits are sufficient to specify the truth table of the function. Therefore a strategy profile can also

23

be specified by exponentially many bits. Below we construct an exponential-time non-deterministic Turing
machine M ′ that decides the questions corresponding to the queries.

Given any input (i, 0), M ′ non-deterministically chooses a strategy profile s̃, in exponential time. It
then goes through all the realizations of V ’s random string, and for each realization r it runs V with x
and r, and generates the provers’ messages by looking them up in the corresponding truth table in s̃. M ′

computes for each r the payment output by V at the end of the protocol, and by combining these payments
with corresponding probabilities M ′ computes the expected payment u(s̃;x). If u(s̃;x) is in interval i then
M ′ accepts, otherwise it rejects. Since V ’s random string is polynomially long, there are exponentially
many realizations, and each one of them takes exponential time to run: V runs in polynomial time and it
takes M ′ exponential time to look up the truth tables in s̃ to generate a prover’s message. Thus M ′ runs in
non-deterministic exponential time. Also, if interval i is non-empty then there exists a strategy profile s̃ that
makes M ′ accept, and if interval i is empty then M ′ always rejects.

Similarly, given any input (i, 1), M ′ non-deterministically chooses a strategy profile s̃ and computes its
expected payment u(s̃;x). If u(s̃;x) is not in interval i then M ′ rejects; otherwise, M ′ accepts if and only
if the first bit sent by P1 is 1. The correctness and the running time of this part follows immediately.

In sum, there exists an NEXP oracle that answers M ’s queries correctly and Lemma 15 holds.

Equivalence of EXP||poly−NEXP and EXP||NP.

Proof of Lemma 16. First, we show EXP||poly−NEXP ⊆ EXP||NP using a padding argument. Let
M1 be an exponential-time oracle Turing machine with non-adaptive access to an oracle O1 for an NEXP
language, where the lengths of the oracle queries are polynomial in the input length. Let O1 be decided
by a non-deterministic Turing machine MO1 with time complexity 2|q|

k1 , where k1 is a constant and q is
the query to the oracle (thus the input to MO1). We simulate MO1

1 using another exponential-time oracle
Turning machine M2 and another oracle O2, as follows.

Given any input x of length n, M2 runs M1 to generate all the oracle queries. For each query q, M2

generates a query q′ which is q followed by 2|q|
k1 bits of 1. It then gives all the new queries to its own oracle

O2. Given the oracle’s answers, M2 continues running M1 to the end, and accepts if and only if M1 does.
Since |q| is polynomial in n, 2|q|

k1 is exponential in n. Furthermore, since there are exponentially many
queries and M1 runs in exponential time, we have that M2 runs in exponential time as well. It is clear that
(1) M2 makes non-adaptive oracle queries, and (2) MO2

2 decides the same language as MO1
1 if O2’s answer

to each query q′ = (q, 12|q|
k1

) is the same as O1’s answer to the corresponding query q.
We define O2 by constructing a non-deterministic Turing machine MO2 that simulates MO1 . O2 will be

the language decided by MO2 . More specifically, given a query q′ = (q, 12|q|
k1

), MO2 runs MO1 on input
q, makes the same non-deterministic choices as MO1 , and outputs whatever MO1 outputs. Since MO1 runs
in time 2|q|

k1 , MO2’s running time is polynomial (in fact, linear) in its own input length. Thus the language

decided by MO2 is in NP, and q′ = (q, 12|q|
k1

) is in this language if and only if q is in the language decided
by MO1 .

In sum, MO2
2 decides the same language as MO1

1 , and we have EXP||poly−NEXP ⊆ EXP||NP.

Now we show EXP||NP ⊆ EXP||poly−NEXP. The analysis is somewhat symmetric to what we have seen
above. Let M2 be an exponential-time oracle Turing machine with non-adaptive access to an oracle O2

for an NP language. Notice that the queries made by M2 can be exponentially long. Let O2 be decided
by a non-deterministic Turing machine MO2 with time complexity |q|k2 , where k2 is a constant and q is
the query to the oracle (thus the input to MO2). We simulate MO2

2 using another exponential-time oracle
Turning machine M1 and another oracle O1, as follows.

Given any input x of length n, M1 runs M2 to compute the number of oracle queries made by M2,

24

denoted by Q. M1 generates Q oracle queries, with the i-th query being x followed by the binary represen-
tation of i. Since M2 makes at most exponentially many queries, the length of each query made by M1 is
(at most) polynomial in n.

Query i of M1 corresponds to the following question: is the i-th query made by M2 given input x in the
language O2? M1 then gives all its queries to its own oracle O1. Given the oracle’s answers, M1 uses them
to continue running M2, and accepts if and only if M2 does. Since M2 runs in exponential time, M1 runs
in exponential time as well. It is clear that (1) M1 makes non-adaptive oracle queries, and (2) MO1

1 decides
the same language as MO2

2 if O1 answers each query correctly.
We define O1 by constructing a non-deterministic Turing machine MO1 that simulates MO2 . O1 will be

the language decided by MO1 . More specifically, given an input string of the form (x, y), MO1 interprets
the second part as the binary representation of an integer i. It runs M2 on input x to compute its i-th query,
denoted by q. It then runs MO2 on input q, makes the same non-deterministic choices as MO2 , and outputs
whatever MO2 outputs. Since q is at most exponentially long in |x| and MO2’s running time is |q|k2 , the
running time of MO1 is (at most) exponential in its input length. Thus the language decided by MO1 is in
NEXP. Moreover, if q is in the language O2 then there exist non-deterministic choices that make MO2 and
thus MO1 accept; otherwise MO2 and thus MO1 always reject. That is, O1’s answers to M1’s queries under
input x are the same as O2’s answers to M2’s queries under the same input.

In sum, MO1
1 decides the same language as MO2

2 , and we have EXP||NP ⊆ EXP||poly−NEXP.

A.3 Simulating MRIP Using Two Provers and Five Rounds

Proof of Theorem 2. Let (V, ~P) be the MRIP protocol for a language L using ~P = (P1, . . . , Pt(n)) provers
and p(n) rounds of communication. Let ~m denote the complete transcript of the protocol and mij be the
message of prover Pi in round j of the protocol. We simulate this protocol using two provers P ′1 and P ′2 and
verifier V ′ in the protocol (V ′, ~P ′) in Figure 4. Let r denote the random coin flips used by V in protocol
(V, ~P).

To see the correctness of the protocol, notice that,

(a) Even though V ′ sends the random string r of V to P ′1, he uses a different random string r′ 6= r to
select a message in Step 4. Thus, the expected payment to the provers depends on r′, which is not
known to them.

(b) P ′2 does not know r and essentially commits to a transcript ~m′ of (V, ~P) in Step 5.

The provers can lie in the following ways, with the corresponding payments:

1. P ′1 and P ′2 do not commit to the same transcript ~m. Without loss of generality assume that, P ′1 lies
on some message in ~m. V catches this lie in Step 6a with probability 1

p(n)t(n) and gives a payment
R′ = −1.

2. P ′1 and P ′2 agree on the transcript ~m, but ~m does not correspond to the best strategy profile in
protocol (V, ~P). In this case, they get a payment R

2p(n)t(n) , where R is the payment that the original
protocol will generate on this suboptimal transcript ~m.

First of all, we can rule out Case 2 as a possible strategy of rational provers P ′1 and P ′2. This is because
V ′ pays them according to the original protocol (V, ~P). Committing to any dishonest transcript will get
them a payment strictly less than the best possible. This follows from the correctness of the original MRIP
protocol (V, ~P).

Now suppose P ′1 lies on y > 0 messages in ~m —this corresponds to Case 1. The expected payment to
P ′1 would then be,

25

Given any string x of length n,

1. P ′1 sends c, which is the first bit of m11, to V ′. V ′ outputs c at the end of the protocol.

2. V ′ calculates the random bits r used by V in protocol (V, ~P). V ′ sends r to P ′1.

3. P ′1 uses r to simulate the entire protocol (V, ~P) and sends ~m to V ′.

4. V ′ chooses a round j at random from {1, . . . , p(n)} and a prover index k from {1, . . . , t(n)}.

5. V ′ sends (j, k) and ~mk = (mk1, . . . ,mk(j−1)) (that is, message transcript till j − 1 rounds of
V with Pk) to P ′2.

6. P ′2 simulates Pk on the round j and sends m′kj to V .

7. V computes the payment R′ as follows,

(a) If j = 1 and k = 1, then if the first bit of m′kj is not c, set R′ = −1.

(b) If mkj 6= m′kj , set R′ = −1.

(c) Else, V ′ computes the payment R given by V in the protocol (V, ~P), using ~m.

V ′ then sets R′ = R
2p(n)t(n) .

Figure 4: Simulating MRIP with 2 provers, 5 rounds. (Repeated from page 12)

−1

(
y

p(n)t(n)

)
+

R

2p(n)t(n)

(
p(n)t(n)− y
p(n)t(n)

)
≤ 1

p(n)t(n)

(
R

2
− y
)
< 0,

where the last inequality is because R ≤ 1 and y ≥ 1. Thus, it is not rational for P ′1 to lie on any message
in ~m and the result follows.

A.4 Utility Gaps in MRIP

Proof of Theorem 3. First, we show the lower bound: P||NEXP ⊆ poly(n)-gap-MRIP. We note that every
language in P can be decided by a DC-uniform circuit family {Cn}∞n=1 of polynomial size. We run the
protocol from Lemma 14, noting that the Level 1 and Level 3 circuits are polynomially sized. Thus p, g and
g′ are polynomial. A case-by-cases analysis shows that the protocol from Lemma 14 achieves a polynomial
gap.

Now we show poly(n)-gap-MRIP ⊆ P||NEXP. For L ∈ poly(n)-gap-MRIP, let α(n) be the polynomial
in n which gives the utility gap in the protocol (V, ~P) for L. We simulate the protocol using a P||NEXP

Turing machine.
Divide the interval [0, 1] into evenly-sized intervals of size 2α(n). In other words, consider each interval

[i/2α(n), (i + 1)/2α(n)] for each i ∈ {0, . . . , 2α(n) − 1}. Let S̃i be the set of strategy profiles of the
provers ~P with expected received payment in the range [i/α(n), (i + 1)/α(n)]. By Definition 18, if the
strategy profile maximizing the expected payment has c = 1, then all strategy profiles in the same interval
have c = 1.

We modify the ideas in Lemma 15, but we only iterate over a polynomial number of expected-payment
intervals, one for each i. For each interval [i/2α(n), (i + 1)/2α(n)], a polynomial turing machine makes
the following two queries to an NEXP oracle:

26

1. Is S̃i empty (that is, is there a stategy with expected payment in [i/2α(n), (i+ 1)/2α(n)])?

2. Is there a strategy profile with c = 1 in S̃i?

Each of these queries can be solved using an NEXP oracle. The polynomial Turing machine finds the
largest i with a nonempty interval—the first query returned that there is a strategy in i. If the second query
on interval i finds a strategy with c = 1, all strategies in i must have c = 1 by assumption, so we must have
x ∈ L. On the other hand, if the second query does not find a strategy in the interval with c = 1, the optimal
protocol must have c = 0, and x /∈ L.

Note that some queries made above may be unnecessary, but we make all queries to preserve non-
adaptivity.

B Glossary of Definitions and Notions

For completeness, here we recall various terms and definitions used throughout the paper.

Definition 24. The complexity classes used in our paper are as follows.

• EXP =
⋃

k∈NDTIME(2n
k
).

• NEXP =
⋃

k∈NNTIME(2n
k
).

• coNEXP = {L ⊆ {0, 1}∗ | L /∈ NEXP}.

• PSPACE =
⋃

k∈N SPACE(nk).

• P||NEXP is the set of languages decided by a deterministic polynomial-time Turing machine with
non-adaptive access to an NEXP oracle.

• EXP||NP is the set of languages decided by a deterministic exponential-time Turing machine with
non-adaptive access to an NP oracle.

Interactive Proofs Interactive proof protocols consist of computational unbounded provers, denoted by
P1, P2, ..., and a polynomial-time randomized verifier V . With an underlying language L and given an input
string x, the provers try to convince the verifier of the membership of x in L. This involves an exchange
of messages between them, in which the verifier uses his coin flips and the transcript of messages to decide
whether he should accept or reject. In multi-prover interactive proofs the provers cannot communicate with
each other during the protocol, nor can a prover learn the messages exchanged between the verifier and
another prover. They can, however, pre-agree on how to respond to particular queries of the verifier. We
define the two kinds of interactive proofs formally below. Let (V, P)(x) denote the (randomized) transcript
of messages exchanged during the protocol on input x when there is a single prover, and (V, ~P)(x) the
transcript when there are multiple provers ~P = (P1, . . . , Pt), where t is polynomial in |x|.

Definition 25 (Interactive Proofs (IP)). Let k : N→ N be a function with k(n) polynomial in n. A language
L has an interactive proof (IP) protocol with k rounds (that is, L ∈ IP[k]) if there is a Turning machine V
such that, on any input x of length n, V runs in time polynomial in n and,

• (Completeness) x ∈ L =⇒ ∃P s.t. Pr[V accepts (V, P)(x)] ≥ 2/3.

• (Soundness) x /∈ L =⇒ ∀P Pr[V accepts (V, P)(x)] ≤ 1/3.

We denote by IP the set of languages having polynomial-round IP protocols.

27

Definition 26 (Multi-Prover Interactive Proofs (MIP)). Let k : N → N be a function with k(n) polynomial
in n. A language L has a multi-prover interactive proof (MIP) protocol with k rounds (that is, L ∈ MIP[k])
if there is a Turning machine V such that, on any input x of length n, V runs in time polynomial in n and,

• (Completeness) x ∈ L =⇒ ∃~P s.t. Pr[V accepts (V, ~P)(x)] ≥ 2/3.

• (Soundness) x /∈ L =⇒ ∀~P Pr[V accepts (V, ~P)(x)] ≤ 1/3.

We denote by MIP the set of languages having polynomial-round MIP protocols.

Alternatively, one can define IP and MIP with perfect completeness: that is, V accepts with probability
1 when x ∈ L.

Rational Interactive Proofs In rational interactive proof (RIP) protocols, a single computationally un-
bounded prover P interacts with a polynomial-time randomized verifier. P can choose a strategy sj :
{0, 1}∗ → {0, 1}∗ in each round j of the protocol, based on the transcript of messages he has seen so far.
Let s̃ = (s1, . . . , sk) be the vector of strategies P uses in rounds 1, . . . , k, where k : N → N is polynomial
in the length of input x. At the end of the protocol, the verifier computes an output and a payment function
R(x, r, (V, P)(x, r, s̃)), based on the input x, his own randomness r, and the transcript (V, P)(x, r, s̃). P is
rational and chooses a strategy that maximizes his utility,

u(V,P)(s̃;x) , E
r
R(x, r, (V, P)(x, r, s̃)).

For simplicity, we may write u(s̃) for u(V,P)(s̃;x). We can now define the class RIP.

Definition 27 (Rational Interactive Proofs (RIP)). For any language L, an interactive protocol (V, P) is
a rational interactive proof (RIP) protocol for L if, for any x ∈ {0, 1}∗ and any strategy s̃ of P such that
u(s̃) = maxs̃′ u(s̃′), we have

1. u(s̃) ≥ 0;

2. V outputs 1 if and only if x ∈ L.

We denote by RIP the set of languages that have RIP protocols.

Definition 28 (Nash equilibrium). A strategy profile s∗ is a (pure) Nash equilibrium if ui(s∗i , s
∗
−i) ≥

ui(si, s
∗
−i) for each player i and each strategy si in his strategy space.

28

	1 Introduction
	1.1 Results and Discussions
	1.2 Additional Related Work
	1.3 Outline of the paper

	2 Multi-Prover Rational Interactive Proofs
	2.1 An MRIP Protocol for any Language in NEXP, Based on MIP.
	2.2 An MRIP Protocol for any Language in NEXP, Using Scoring Rules.

	3 Characterizing Multi-Prover Rational Interactive Proofs
	4 Simulating MRIP Using Two Provers and Five Rounds
	5 Utility Gaps in MRIP
	6 MRIP with Individual Payments
	A Omitted Proofs
	A.1 Multi-Prover Rational Interactive Proofs
	A.2 Characterizing Multi-Prover Rational Interactive Proofs
	A.3 Simulating MRIP Using Two Provers and Five Rounds
	A.4 Utility Gaps in MRIP

	B Glossary of Definitions and Notions

