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Abstract

We first propose a general game-theoretic framework for studying engineering systems consisting of interacting

(sub)systems. Our framework enables us to capture the delays often present in engineering systems as well as asyn-

chronous operations of systems. We model the interactions among the systems using a repeated game and provide a

new simple learning rule for the players representing the systems. We show that if all players update their actions via

the proposed learning rule, their action profile converges to a pure-strategy Nash equilibrium with probability one.

Further, we demonstrate that the expected convergence time is finite by proving that the probability that the players

have not converged to a pure-strategy Nash equilibrium decays geometrically with time.

1 Introduction

We are interested in studying learning in games – In particular, we examine a scenario where a set of agents or players

interact with each other repeatedly and update their decisions based on the observed payoff history. This setting may

be applicable to a wide range of applications in engineering fields, e.g., [1, 3, 9]. In many engineering systems, it is

desirable or even necessary to ensure that the system reaches a desired operating point with limited communication

and feedback without a centralized controller due to various system constraints.

A popular solution concept that is frequently adopted to approximate the desired operating point in engineering

applications is a (pure-strategy) Nash equilibrium (PSNE). By now, there are several classes of learning rules that

researchers proposed to help the agents learn through interactions and reach a PSNE under different settings. A set of

closely related learning rules are summarized in Section 2 for the interested reader.

A key motivation for our study here is that, in many engineering systems, there are delays experienced by infor-

mation exchanges or observations. Moreover, (the controllers of) various systems are not necessarily synchronized.
∗This work was supported in part by National Institute of Standards and Technology and National Science Foundation.
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Therefore, a common assumption in the literature that agents update their actions (nearly) simultaneously and observe

consistent information, i.e., the payoffs generated by the same action profile for all agents, needs to be revisited. We

take a first step towards addressing this issue in engineering systems. More specifically, we first introduce a general

framework that enables us to capture the effects of both time-varying delays and asynchrony present in many engi-

neering systems. Secondly, we propose a new simple adaptation strategy or learning rule with provable convergence

properties. The proposed rule is quite intuitive in that agents may change their actions only when they have an incentive

to do so or are exploring the game structure.

We prove that, if all agents employ the proposed rule, under a set of mild technical assumptions, the action profile

selected by the agents converges to a PSNE almost surely (or with probability one). Furthermore, the probability that

the agents have not reached a PSNE decays geometrically with time, thereby proving that the expected convergence

time is finite. To the best of our knowledge, our work is the first one that (i) introduces a general framework for

modeling more realistic engineering systems with delays and asynchronous operation of systems and (ii) proposes a

simple learning rule with provable almost sure convergence to a PSNE in the presence of delays.

The rest of the paper is organized as follows: Section 2 provides a short summary of works that are closely related

to our study. Section 3 describes the strategic-form repeated game setting we adopt. The system model, specifically

the mathematical formulation of the delayed setting, is discussed in Section 4. The proposed rule is described in

Section 5, followed by the main results in Section 6.

2 Related Literature

There is already a large volume of literature on learning in games; some of the earlier models and results can be

found in, for instance, a manuscript by Fudenberg and Levine [5], and more recent works are well documented in

a manuscript by Bianchi and Lugosi [2]. Learning rules in games in general aim to help agents learn equilibrium

conditions in games, oftentimes with special structure, e.g., identical interest games, potential games (PGs), weakly

acyclic games (WAGs), and congestion games.

While a PSNE is not guaranteed to exist in an arbitrary game, it is shown to exist for PGs [20]. This led to further

research in this field with problems being formulated as PGs. For instance, Arslan et al. [1] model the autonomous

vehicle-target assignment problem as a PG and also discuss procedures for vehicle utility design. They present two

learning rules and show their convergence to PSNEs. In [13], Marden et al. study large-scale games with many players

with large strategy spaces. They generalize the notion of PGs and propose a learning rule that ensures convergence to

a PSNE in the class of games they consider with applications to congestion games.

The WAGs were first studied in a systemic manner in [24]. Since then, there has been considerable interest in

WAGs. For instance, Marden et al. [10] establish the relations between cooperative control problems (e.g., consensus

problem) and game theoretic models. They propose the better-reply-with-inertia dynamics and apply it to a class

of games, which they call sometimes weakly acyclic games, to address time-varying objective functions and action

sets. We note that there are other payoff-based learning rules with provable convergence to Nash equilibria (with
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high probability) in WAGs, e.g., [12, 14]. In [17], Pal and La consider a generalization of WAGs, called generalized

weakly acyclic games (GWAGs), which contain WAGs as special cases. They also propose a simple learning rule that

guarantees almost sure convergence of agents’ action profile to a PSNE in GWAGs.

Another well-known class of learning rules is based on regrets. Regrets capture the additional payoff an agent

could have received by playing a different action. There are several regret-based learning rules, e.g., [6, 7, 8], which

guarantee convergence to either Nash equilibria or correlated equilibria in an appropriate sense. In [11], Marden et al.

propose regret-based dynamics that achieve almost sure convergence to a strict PSNE in WAGs.

The study of (distributed) systems with delays has been of significant interest to the control theory community;

please see [21] for a model of asynchronous distributed computation that motivated our work to some extent. Fang

and Antsaklis [4] study the consensus problem of discrete-time multi-agent systems in an asynchronous framework.

Xiao and Wang [22] extend the above work by investigating consensus problems in the presence of time-varying

communication network topologies and information delays. In addition to the studies in control theoretic settings,

researchers also studied the effects of delays in evolutionary games, e.g., [16, 23]. In this paper we consider the

repeated game setting and study the convergence of action profile to a PSNE under an asynchronous framework

motivated by the earlier studies.

3 Learning in games

In this section, we first define the strategic-form repeated game we adopt for our study.

A. Finite stage game: Let P = {1, 2, . . . , n} be the set of agents or players of a finite game G. The pure action

space of agent i ∈ P and the joint action space of all agents are denoted by Ai = {1, 2, . . . , Ai} and A :=
∏
i∈P Ai,

respectively.1 The payoff function of agent i is given by Ui : A → IR := (−∞,∞).

An agent i ∈ P chooses its action according to a probability distribution pi ∈ ∆(Ai), where ∆(Ai) denotes the

probability simplex over Ai. If the probability distribution pi is degenerate, i.e., it puts probability of one on a single

action, it is called a pure strategy. Otherwise, agent i is said to play a mixed strategy.

Given an action profile a = (a1, a2, . . . , an) ∈ A, a−i denotes the action profile of all the agents other than agent

i, i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an). Similarly, given J ⊂ P , aJ = (aj , j ∈ J) denotes the set of actions

picked by agents in J . An action profile a? ∈ A is a PSNE of G if, for every agent i ∈ P ,

Ui(a
?
i ,a

?
−i) ≥ Ui(ai,a?−i) for all ai ∈ Ai \ {a?i }. (1)

The PSNE is said to be strict if the inequality in (1) is strict for all agents i ∈ P .

B. Infinitely repeated game: In an (infinitely) repeated game, the above finite stage game G is repeated at each

time t ∈ IN := {1, 2, . . .}. At time t, agent i ∈ P chooses its action ai(t) according to a strategy pi(t) ∈ ∆(Ai).

We denote the action profile chosen by the agents at time t by a(t) = (ai(t), i ∈ P). Based on the selected action

1It is reasonable to assume that the action spaces are finite because, in many cases, both the observations and actions are quantized to facilitate

the information exchange in real systems.
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profile a(t), each agent i ∈ P receives a payoff Ui (a(t)) at time t. The agents are allowed to adapt their strategies

based on the history of payoff information.

4 System model

As mentioned in Section 1, we are interested in scenarios in which the actions adopted by agents may not take effect

immediately and/or the payoff information generated by the system(s) may not be observable to the agents right away.

Obviously, there are many different ways in which one can capture and model the effects of such delays. In this

section, we describe the system model we assume for our study.

First, we assume that there are multiple (sub)systems: For each agent i ∈ P , there is a separate (sub)system

that is responsible for generating the payoff of the agent. We call it system i. This model describes, for instance, a

large system consisting of multiple interacting systems, where the agents can be viewed as (controllers of) interacting

systems that comprise the overall system. An example with three systems is shown in Figure 1. In such scenarios,

depending on the structure of the system, the new actions taken by various systems may experience varying delays

before affecting other systems.

System 1 System 2

System 3 Controller 3

Controller 1 Controller 2

Figure 1: System model.

In the system model, there are two types of delays – (i) forward delays and (ii) feedback delays. The forward

delays refer to the amount of time that elapses before agents’ actions go into effect after they are adopted. On the other

hand, the feedback delays are the amount of time it takes for payoff information to become available for the agents to

observe (after it is generated). These are illustrated in Figure 2 with two systems. In the figure, after agent i, i = 1, 2,

updates its action, the forward delay experienced before system i sees the new action is shown as a (red or green) solid

arrow (with label ‘A’), whereas the time that elapsed before the other system sees it appears as a dotted arrow. The

feedback experienced by payoff information generated by a system before the corresponding agent sees it is shown as

a (blue or purple) solid arrow (with label ‘F’).

We shall model these delays using sequences of random variables (rvs) as follows. First, we assume that the agents
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Agent 1

Agent 2

SYSTEM 1

A
F

A
F

A
F

A A
F F

update update

SYSTEM 2

Figure 2: Forward and feedback delays in the system.

choose their initial actions a(1) = (ai(1); i ∈ P) according to some (joint) distribution G. The times at which each

agent updates its action are given by some discrete-time stochastic process: For each i ∈ P , let T i := {T ik; k ∈ IN}

be a strictly increasing sequence of times at which agent i updates its action with T i1 = 1. In other words, T ik is the

time at which agent i chooses its action for the kth time.

The inter-update times are denoted by U ik := T ik+1 − T ik, k ∈ IN. Each inter-update time U ik is given by a sum

of two rvs – Xi
k and Y ik . The rv Xi

k models the forward delay experienced by the kth action of agent i chosen at

time T ik, i.e., ai(T ik); we assume that the kth action a(T ik) goes into effect at system i after experiencing a forward

delay of Xi
k at time T ik + Xi

k =: Rik, at which point system i generates payoff feedback information. This payoff

feedback experiences a delay of Y ik and is received by agent i at time T ik+1(= Rik + Y ik ), which agent i uses to select

the (k + 1)th action at time T ik+1. For notational simplicity, we denote the pair (Xi
k, Y

i
k ) by Zik and the sequences

{Zik, k ∈ IN} and {Ri,jk , k ∈ IN} by Zi andRi,j , respectively.

Similarly, the actions chosen by agent i at time T ik may not be seen by system j, j 6= i, immediately; instead, it

takes effect at system j at time T ik + V i,jk =: Ri,jk , where V i,jk is the forward delay that action ai(T ik) experiences

before it begins to affect system j. For every i, j ∈ P, i 6= j, let Vi,j = {V i,jk , k ∈ IN}.

Because the initial actions chosen by the agents at time t = 1 may not take effect at the systems right away, in

order to complete the system model, we impose the following initial conditions: For each system i, we assume that

there is some action profile āi ∈ A that is in effect at the system. In other words, for each i ∈ P , system i sees action

āii from agent i till Ri1 = 1 +Xi
1 and āij from agent j, j 6= i, till Rj,i1 = 1 + V j,i1 .

In order to describe how the payoff feedback is generated by the systems for each agent i ∈ P , we introduce the
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following variables. For all t ∈ IN and i, j ∈ P ,

τ ij(t) =

 max{T ik ∈ T i | T ik ≤ t} if i = j,

max{Rj,ik ∈ Rj,i | R
j,i
k ≤ t} if i 6= j.

In other words, τ ij(t), j 6= i, denotes the last time a new action of agent j went into effect at system i prior to time t.

Otherwise, τ ii (t) is the last time agent i updated its action before time t. For notational ease, we define ai(t), t ∈ IN,

to be the action profile of other agents, which is in effect at system i at time t, i.e., ai(t) = (aj(τ
i
j(t)), j ∈ P \ {i}).

Therefore, the payoff feedback generated for agent i at time t is based on ai(t).

In order to make progress, we assume that the following assumptions hold.

A1 The rvs {Zi,Vi,j , j 6= i} for different agents i ∈ P are mutually independent.

A2. For every i ∈ P ,

P
[
U ik <∞, V

i,j
k <∞ for all j 6= i and k ∈ IN

]
= 1.

A3. For all i, j ∈ P , j 6= i,

P
[
Ri,jk < Ri,jk+1 for all k ∈ IN

]
= 1.

A4. Let F ik :=
(
(Zi`, V

i,j
` , j 6= i), 1 ≤ ` ≤ k

)
. There exist η > 0 and ∆η < ∞ such that, for all i ∈ P , k ∈ IN and

τ ∈ Z+ := {0, 1, 2, . . .}, with probability one (w.p.1)

P
[
U ik+1 ≤ ∆η + τ, V i,jk+1 ≤ ∆η + τ for all j 6= i | U ik+1 ≥ τ,F ik

]
≥ η.

Assumption A1 states that all forward and backward delays experienced by actions picked by different agents are

mutually independent. Assumption A2 ensures that they are proper random variables. Assumption A3 guarantees that

every system sees the actions from an agent in the same order they were adopted. Assumption A4 essentially implies

that the distributions of rvs {U ik, V
i,j
k , j 6= i} do not have a heavy tail.

We feel that, while these assumptions are technical, they are not very restrictive and likely to hold in many cases

of practical interest. For example, constant delays and geometric delays satisfy the aforementioned assumptions.

5 Proposed Algorithm

In this section, we present our proposed algorithm, called the Reduced Simple Experimentation with Monitoring

(RSEM), which can be viewed as a special case of the SEM algorithm outlined in [18]. Under the RSEM algorithm, at

each time t ∈ IN, every agent is at one of two possible states – Explore (E) or Converged (C). We denote the state of

agent i ∈ P at time t by si(t). Let S := {E,C}n, and the state vector s(t) := (si(t), i ∈ P) ∈ S. The rule governing

the update of an agent’s state will be explained shortly.
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5.1 Action updates

In this subsection, we first describe how the agents choose their actions according to the payoff feedback they receive

at the times of updates. Fix δ > 0. For each i ∈ P , let ∆δ(Ai) denote the subset of the probability simplex over Ai
such that, for all q = (q(ai), ai ∈ Ai) ∈ ∆δ(Ai), we have q(ai) ≥ δ for all ai ∈ Ai. Initially, at time T i1 = 1, the

agents choose their actions according to some (joint) distribution as stated before. For k ≥ 2, agent i ∈ P updates

its action at time T ik according to the rule provided below. We assume that agent i continues to play action ai(T ik)

between T ik and T ik+1 − 1, i.e., ai(t) = ai(T
i
k) for all t ∈ {T ik, . . . , T ik+1 − 1}.

Action Selection Rule: Fix δ ∈ (0, 1/(maxi∈P |Ai|)).

1. if si(T ik) = E

• pick q ∈ ∆δ(Ai);

• choose each action ai ∈ Ai with probability q(ai) and set ai(T ik) = ai;

2. else (i.e., si(T ik) = C)

• set ai(T ik) = ai(T
i
k − 1);

It is clear that, under RSEM, an agent may choose a new action only if it is at state E. Otherwise, it continues to play

the same action employed at the previous time.

5.2 State dynamics

As explained in the previous subsection, under the RSEM rule, the state of an agent plays a key role in its action

selection. Hence, the dynamics of s(t), t ∈ IN, play a major role in the algorithm. In this subsection, we explain how

the agents update their states based on the received payoff feedback.

At time t = 1, we assume that all agents are at state E, i.e., s(1) = (E,E, . . . , E). Because agent i receives

new payoff information only at T ik, k ∈ IN, we allow the agents to update their states only at T ik, k ∈ IN, just before

choosing the action. We assume that the payoff information available to agent i at time T ik, k ≥ 2, is of the form

Ii(T
i
k) = (Ui(ai,a

i(Rik−1)); ai ∈ Ai). In other words, agent i knows the payoff it would receive for each available

action given the action profile of the other agents in effect (at the agent i’s system) at the time the payoff feedback is

generated, i.e., Rik−1.

The state of agent i at time T ik depends on (i) the payoff information vector Ii(T ik) if si(T ik−1) = E and (ii) the

payoff information vectors available at time T ik−1 and T ik if si(T ik−1) = C. We assume Ii(T
i
1) = (0, . . . , 0) for all

i ∈ P . First, for each agent i ∈ P , define a mapping BRi : IR|Ai| ×Ai → 2Ai , where

BRi(I, ai) =
{
a∗i ∈ Ai

∣∣ I(a∗i ) > I(ai)
}
, I = (I(a′i), a

′
i ∈ Ai) ∈ IR|Ai| and ai ∈ Ai.
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It is clear from the definition that BRi(I, ai) is the set of indices of the values in I which are larger than the value

assigned to ai.

State Update Rule: Fix p ∈ (0, 1).

S1. if si(T ik−1) = E

• if BRi(Ii(T ik), ai(T
i
k − 1)) 6= ∅, then si(T ik) = E

• else
(
i.e., BRi(Ii(T ik), ai(T

i
k − 1)) = ∅

)
si(T

i
k) =

 E with probability p

C with probability 1− p

S2. else (i.e., si(T ik−1) = C)

• if BRi(Ii(T ik), ai(T
i
k − 1)) 6= ∅, then si(T ik) = E

• else
(

i.e., BRi(Ii(T ik), ai(T
i
k − 1)) = ∅

)
– if Ii(T ik) 6= Ii(T

i
k−1), then si(T ik) = E

– else
(

i.e., Ii(T ik) = Ii(T
i
k−1)

)
, then si(T ik) = C

In a nutshell, agent i transitions to or remains at state E if either BRi(Ii(T ik), ai(T
i
k − 1)) 6= ∅ or Ii(T

i
k) 6=

Ii(T
i
k−1). The second condition means that the payoffs that agent iwould receive using available actions have changed

from the last time of update. Hence, the agent prefers to remain in the Explore state.

6 Main results

Assumption 1 (Interdependence Assumption) For every a = (ai, i ∈ P) ∈ A and J ( P , there exist an agent i 6∈ J

and a∗J ∈
∏
j∈J Aj such that Ui(a) 6= Ui(a

∗
J ,a−J).

Assumption 1 simply states that, given any action profile and a strict subset J of the agents, we can find another

agent i 6∈ J whose payoff would change if the agents in J changed their actions to a∗J . Put differently, it implies that it

is not possible to partition the set of agents into two subsets that do not interact with each other. The interdependence

assumption has been used in the literature, for instance, to prove the convergence of action profile to efficient equilibria

or Pareto optimal point [15, 19, 25]. In addition, Pal and La [18] show under the interdependence assumption that long

run equilibria under their proposed Simple Experimentation with Monitoring (SEM) rule are PSNEs with a certain

level of resilience, which can be chosen using a tunable parameter of the SEM rule.

Under this interdependence assumption, we can show that, if all agents update their actions according to the RSEM

rule, the action profile converges almost surely to a PSNE.
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Theorem 6.1 Suppose that the game G satisfies the interdependence assumption and has a nonempty set of PSNE(s)

denoted by ANE and that Assumptions A1-A4 hold. Let a(t), t ∈ IN, be the sequence of action profiles generated by

the RSEM rule. Then, the action profile a(t) converges to a PSNE w.p.1. In other words, w.p.1, there exist T ∗ < ∞

and a? ∈ ANE such that a(t) = a? for all t ≥ T ∗.

Proof. A proof of the theorem is provided in Appendix A.

In addition to the almost sure convergence of the action profile, we can establish that the probability that the action

profile has not converged to a PSNE decays geometrically with time t.

Theorem 6.2 Under the same settings assumed in Theorem 6.1, there exist C <∞ and η ∈ (0, 1) such that

1−P [a(t) ∈ ANE for all t ≥ k] ≤ C · ηk. (2)

Theorem 6.2 follows directly from Corollary A.2 in the proof of Theorem 6.1 in Appendix A.

7 Conclusion

We studied the repeated interactions among agents in a wide range of engineering systems with delays in a game-

theoretic framework and proposed a new learning rule for allowing the agents or players to converge to a PSNE almost

surely. The interactions are modelled as a discrete-time system with a fixed time unit. We are currently working to

extend our framework to a continuous-time case where the system delays can be state-dependent as well.

A Proof of Theorem 6.1

The theorem will be proved with the help of several lemmata we introduce. Their proofs are provided in Appendices B

through D. Throughout the appendices, s? = (C,C, . . . , C) and, for any s ∈ S,

C(s) = {i ∈ P | si = C} and E(s) = {i ∈ P | si = E}.

The first lemma states that, if the action profile at time t is not a PSNE, then even if all agents are at state C at

time t, there is positive probability that at least one agent will transition to state E after 3∆η periods (where ∆η is the

constant introduced in Assumption A4 in Section 4).

Lemma A.1 For every a 6∈ ANE and t ∈ IN,

P [E(s(t+ 3∆η)) 6= ∅ | z(t) = (s?,a)] ≥ ζ0 > 0. (3)

The second lemma shows that, if there is at least one agent at state E at time t ∈ IN, there is positive probability

that the number of agents at state E will increase after a finite number of periods.
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Lemma A.2 For every r ∈ {1, 2, . . . , n−1}, there exists 0 < D1 ≤ 4∆η such that, for every t ∈ IN and z = (s,a) ∈

Z with |E(s)| = r, we have

P [|E(s(t+D1))| ≥ r + 1 | z(t) = z] ≥ ςr > 0. (4)

The following corollary now follows from Lemmas A.1 and A.2, by repeatedly applying Lemma A.2 until all

agents switch to state E.

Corollary A.1 There exists 0 < D ≤ 4n∆η such that, for all z ∈ Z \ ZNE and t ∈ IN,

P
[
|E(s(t+D)| = n

∣∣ z(t) = z
]
≥ µ > 0. (5)

The final lemma has two parts; first, it states that, if all agents are at stateE at some time t, then for any z? ∈ ZNE ,

there is positive probability that they will reach any z? after 3∆η periods. Second, if the agents are at some z? ∈ ZNE
at time t, with positive probability they will remain at z? for good.

Lemma A.3 (i) Suppose that z(t) = z = (s,a) where |E(s)| = n, i.e., all agents are at state E. Then, for all

z? = (s?,a?) ∈ ZNE , we have

P [z(t+ 4∆η) = z? | z(t) = z] ≥ ρ1 > 0.

(ii) For every z? ∈ ZNE ,

P [z(t′) = z? for all t′ ≥ t | z(t) = z?] ≥ ρ2 > 0.

The following corollary is a consequence of the above lemmas.

Corollary A.2 There exist 0 < D̃ ≤ 4(n+ 1)∆η such that, for all z ∈ Z \ ZNE , z? ∈ ZNE and t ∈ IN, we have

P
[
z(t′) = z? for all t′ ≥ t+ D̃

∣∣ z(t) = z
]
≥ µ̃ > 0. (6)

We now proceed with the proof of Theorem 6.1. Lemma A.1 shows that, if the action profile is not a PSNE at time

t, then after a finite number of periods, at least one agent will be at state E. Lemma A.2 then claims that, whenever

there is at least one agent at state E, after finitely many periods, all agents will be state E (Corollary A.1). Once all

agents are at state E, Lemma A.3 asserts that they can reach any z? ∈ ZNE with positive probability after a finite

number of periods and stay there forever. Since this argument can be made starting with any z 6∈ ZNE , it is clear that

the number of periods spent at z ∈ Z \ ZNE will be finite with probability 1, and the theorem follows.

B Proof of Lemma A.1

Because a 6∈ ANE , when the agents adopt a, there is at least one agent, say agent i∗, with an incentive to deviate from

ai∗ . We will prove that the state of agent i will transition to E with positive probability after 3∆η periods.
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Let T`(t) := {t+ ` ·∆η + 1, . . . , t+ (`+ 1)∆η}, ` ∈ Z+. For each i ∈ P , let k?i : IN→ Z+, where

k?i (t) = max{k ∈ IN | T ik ≤ t}.

We define the following four events:

E1 = {τ ii (t) + V i,jk?i (t) ≤ t+ ∆η for all i, j ∈ P, i 6= j}

E2 = {Ti∗ ∩ T`(t) 6= ∅, ` = 1, 2}

E3 = {ai(t′) = ai for all i ∈ E(s(t′)), t′ = t+ 1, . . . , t+ 3∆η}

E4 = {i∗ ∈ E(s(t′ + 1)) if i∗ ∈ E(s(t′)) for all t′ = t, . . . , t+ 3∆η − 1}.

The event E1 implies that the action profile at time t is seen by all systems by time t+∆η . The second event E2 simply

states that agent i∗ updates its action at least once in each of the intervals T1 and T2. Event E3 requires any agent at

state E between t+ 1 and t+ 3∆η to choose the same action it did at time t (which will happen with strictly positive

probability). Finally, the fourth event E4 demands that the agent i∗, once it switches to state E (which will happen by

time t+ 3∆η if the events E1 through E3 take place because a ∈ ANE), remain at state E till time t+ 3∆η .

We use the following lower bound to complete the proof.

P [E(a(t+ 3∆η)) 6= ∅ | z(t) = (s?,a)]

≥ P [E(a(t+ 3∆η)) 6= ∅, E1, E2, E3, E4 | z(t) = (s?,a)]

= P [E(a(t+ 3∆η)) 6= ∅ | E1, E2, E3, E4, z(t) = (s?,a)]P [E1, E2, E3, E4 | z(t) = (s?,a)] (7)

From the explanations of the events E1 through E4 above, if these four events take place, it is clear that at least one

agent, namely agent i∗, will be at state E at time t+ 3∆η . Hence, the first conditional probability in (7) is one. Hence,

if we can show that the second conditional probability is also positive, the theorem is proved.

First, we rewrite P [E1, E2, E3, E4 | z(t) = (s?,a)] as follows.

P [E1, E2, E3, E4 | z(t) = (s?,a)]

= P [E1, E2 | z(t) = (s?,a)] ·P [E3, E4 | z(t) = (s?,a), E1, E2] . (8)

The first term in (8) is lower bounded by ηn+2 from Assumption A4. In addition, from the description of the algorithm,

the second term is lower bounded by δ3n∆η · p3∆η . Putting together, we have the following lower bound.

P [E(a(t+ 3∆η)) 6= ∅ | z(t) = (s?,a)] ≥ (δn · p)3∆η · ηn+2 =: ζ0 > 0

C Proof of Lemma A.2

We consider two cases.

c1. There exists at least one agent i+ ∈ C(s(t)) such that Ii+(τ i
+

i+ (t)) 6= (Ui+(ai+ ,a−i+(t)); ai+ ∈ Ai+). In other

words, its payoff information vector received at the last time of update is different from what it would receive if

its system generated the payoff information vector in response to the current action profile at time t.
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c2. There is no such agent, i.e., for all i ∈ C(s(t)), we have Ii(τ
i
i (t)) = (Ui(ai,a−i(t)); ai ∈ Ai).

Case c1: First, we define the following events.

E ′1 = {τ ii (t) + V i,jk?i (t) ≤ t+ ∆η for all i, j ∈ P, i 6= j}

E ′2 = {Ti+ ∩ T`(t) 6= ∅, ` = 1, 2} (where T`, ` = 1, 2, are as defined in Appendix B)

E ′3 = {ai(t′) = ai for all i ∈ E(s(t′)), t′ = t+ 1, . . . , t+ 3∆η}

E ′4 = {E(s(t′)) ⊆ E(s(t′ + 1)) for all t′ = t, . . . , t+ 3∆η − 1}

Using a similar argument used in Appendix B, we obtain

P [|E(s(k + 3∆η))| ≥ r + 1 | z(k) = z]

≥ P [|E(s(k + 3∆η))| ≥ r + 1, E ′1, E ′2, E ′3, E ′4 | z(k) = z]

= P [|E(s(k + 3∆η))| ≥ r + 1 | E ′1, E ′2, E ′3, E ′4, z(k) = z] ·P [E ′1, E ′2, E ′3, E ′4 | z(k) = z] . (9)

From the assumption on agent i+, if events E ′1 through E ′4 take place, by time t + 3∆η , it will switch its state to E.

Thus, the first conditional probability in (9) is equal to one. Also, following an analogous argument in Appendix B,

the second conditional probability is lower bounded by (δ · p)3n∆η · ηn+2 > 0.

Case c2: Recall that, in this case, for every agent i ∈ C(s(t)), we have Ii(τ ii (t)) = (Ui(ai,a−i(t)); ai ∈ Ai).

Assumption 1 implies that there exists i′ 6∈ E(s(t)) =: J1 and a∗J1 such that if the agents in J1 adopt the actions in a∗J1

while the other agents choose the same action stipulated by a(t), then agent i′’s payoff information vector changes.

As we will prove, this implies that there is positive probability that agent i′ will switch its state to E after 4∆η periods.

To this end, we define the following events

E+
1 = {τ ii (t+ ∆η) + V i,jk∗i (t+∆η) ≤ t+ 2∆η for all i, j ∈ P, i 6= j}

E+
2 = {Ti′ ∩ T`(t) 6= ∅, ` = 2, 3}

E+
3 = {E(s(t′)) ⊆ E(s(t′ + 1)) for all t′ = t, . . . , t+ 4∆η − 1}

E+
4 = {Ti ∩ T0(t) 6= ∅ for all i ∈ J1}

E+
5 = {ai(t′) = ãi for all i ∈ P and t′ = T ik∗i (t)+1, . . . , t+ 4∆η}

where

ãi =

 ai(t) if i 6∈ J1,

a∗i if i ∈ J1.

The rest of the proof follows from a similar argument.

P [|E(s(k + 3∆η))| ≥ r + 1 | z(k) = z]

≥ P
[
|E(s(k + 3∆η))| ≥ r + 1, E+

1 , E
+
2 , E

+
3 , E

+
4 , E

+
5 | z(k) = z

]
= P

[
|E(s(k + 3∆η))| ≥ r + 1 | E+

1 , E
+
2 , E

+
3 , E

+
4 , E

+
5 , z(k) = z

]
·P
[
E+

1 , E
+
2 , E

+
3 , E

+
4 , E

+
5 | z(k) = z

]
.
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From the definitions of the above events, the first conditional probability is one because agent i′ will have switched

its state to E (from C) by time t + 4∆η if the events E+
1 through E+

5 take place. In addition, the second conditional

probability is lower bounded by ηn+2+r (δ · p)4n∆η = ςr(< ζ0).

D Proof of Lemma A.3

We first prove Lemma A.3(i). First, define the following events.

E#
1 = {Ti ∩ T0(t) 6= ∅ for all i ∈ P}

E#
2 = {τ ii (t+ ∆η) + V i,jk∗i (t+∆η) ≤ t+ 2∆η for all i, j ∈ P, i 6= j}

E#
3 = {ai(t′) = a?i for all i ∈ P and t′ = T ik∗i (t)+1, . . . , t+ 4∆η}

E#
4 = {Ti ∩ T`(t) 6= ∅ for all i ∈ P and ` = 2, 3}

E#
5 = {si(T ik∗i (t+3∆η)+1) = C for all i ∈ E(s(t+ 3∆η))}

Events E#
1 , E

#
2 , E

#
3 together imply that all agents update their actions to a?i during T0(t) and their actions go into

effect by t + 2∆η . Events E#
4 and E#

5 state that all agents update at least once during the intervals T2(t) and T3(t),

and switch their state to C. Hence, together these events mean that all agents are at state C and adopting the PSNE a?

at time t+ 4∆η . Therefore,

P [z(t+ 4∆η) = z? | z(t) = z]

≥ P
[
z(t+ 4∆η) = z? | E#

1 , E
#
2 , E

#
3 , E

#
4 , E

#
5 , z(t) = z

]
·P
[
E#

1 , E
#
2 , E

#
3 , E

#
4 , E

#
5 | z(t) = z

]
(10)

As argued above, the first conditional probability in (10) is one. The second conditional probability can be lower

bounded by η4n · δ4n∆η · (1− p)n. This completes the proof of Lemma A.3(i).

Before we prove Lemma A.3(ii), note that even though the agents are at z? ∈ ZNE at time t, it is still possible for

some agents to transition to state E due to the delays in the system. Hence, the conditional probability in the lemma is

strictly positive as we will show, but is in general less than one.

First, we define the following events.

E−1 = {Ti ∩ T`(t) 6= ∅ for all i ∈ P and ` = 0, 1, 2}

E−2 = {ai(t′) = a?i for all i ∈ P and t′ = T ik∗i (t)+1, . . . , t+ 3∆η}

E−3 = {τ ii (t) + V i,jk∗i (t) ≤ t+ ∆η for all i, j ∈ P, i 6= j}

E−4 = {si(T ik∗i (t+2∆η)+1) = C for all i ∈ E(s(t+ ∆η))}

Note that events E−1 through E−4 mean that all agents continue to play the action profile a? between time t and t+3∆η

(and afterwards); all systems see a? after time t+∆η (event E−3 ) and all agents update during the interval T1(t) (event

E−1 ). Thus, when the agents update during the interval T2(t), conditional on event E−2 , all agents will see the payoff

in response to a?. Finally, the agents’ states will have changed to C by time t+ 3∆η (event E−4 ) and, as a result, they

will keep playing a? after time t+ 3∆η .
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Following essentially the same argument, we have

P
[
z(t′) = z? for all t′ ≥ t

∣∣ z(t) = z
]

≥ P
[
z(t′) = z? for all t′ ≥ t

∣∣ z(t) = z, E−1 , E
−
2 , E

−
3 , E

−
4

]
·P
[
E−1 , E

−
2 , E

−
3 , E

−
4 , | z(t) = z

]
, (11)

where the first conditional probability in (11) is one. The second conditional probability can be lower bounded by

η3n · δ3n∆η (1− p)n.
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