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Abstract

In a multi-sender Bayesian persuasion game, Gentzkow and Kamenica (2012) show that increas-
ing the number of senders cannot decrease the amount of information revealed. They assume: (i)
senders reveal information simultaneously, (ii) senders’ information can be arbitrarily correlated, and
(iii) senders play pure strategies. This paper shows that these three conditions are also necessary to
the result. In sequential persuasion games, the order of moves matters, and we show that adding a
sender as a first mover and keeping the order of moves fixed for the other senders cannot result in a
loss of information.
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1 Introduction

This paper considers persuasion games with multiple experts. We ask whether consulting additional
experts is beneficial for a decision maker. Our results show that the answer is sensitive to the timing
of the game, the way the decision maker draws inferences from multiple signals, and the permissibility
of mixed strategies. Explicit examples are constructed where adding an expert leads to equilibria that
garble the information from the single-expert, implying that the decision maker can be strictly worse off
by relying on multiple experts. In two out of three examples there are also more informative equilibria
in the case with multiple experts, but if play is sequential it is possible that the unique equilibrium with
two experts is less informative than the unique equilibrium with a single expert. This result relies on the
second expert’s ability to react in response to the information structure chosen by the first expert. We
show that, in general, adding an expert who moves first cannot result in a garbling of the information
provided in any equilibrium of the game before the expert was added.

A persuasion game is one way to formalize the strategic interaction between decision makers and
experts. The key friction in such expert-decision maker relationship is that experts may care directly
about how the decision problem is resolved. As pointed out by Crawford and Sobel (1982), this can create
incentives for experts to influence decision makers by partially withholding or filtering information. As
decision makers are made worse off by such manipulation, a question obviously arises about what can
be done to mitigate this problem.

A natural idea is to counteract the incentives to withhold information by soliciting advice from more
than one expert.1 In the cheap talk literature, it has been shown that there are circumstances when
the true state is fully revealed and there are other circumstances when asking for a second opinion is
useless. Krishna and Morgan (2001) use a multi-sender extension of the model in Crawford and Sobel
(1982) to demonstrate that information is fully revealed when experts have opposing biases, whereas it
is useless to ask two experts with similar biases.2 Based on this and other results along the same lines,
the conventional wisdom is that competition among experts with opposing preferences is the best way to
induce information revelation.

More recently, Gentzkow and Kamenica (2012) have analyzed the effects of adding experts in the
context of a multi-sender version of a persuasion game.3 Remarkably, they find that adding more

1Some early contributions exploring this line of inquiry include Milgrom and Roberts (1986) and Austen-Smith (1993).
2Battaglini (2002) shows that if the state space is a multidimensional Euclidean space, then, generically, a fully-revealing

perfect Bayesian equilibrium can be constructed. Ambrus and Takahashi (2008) demonstrate that if the state space is a closed
subset of a Euclidean space, then, again, full revelation may not be an equilibrium.

3Persuasion games differ from cheap talk in that a sender constructs a signal structure that the decision maker uses to
update information as opposed to disclosing information after observing the state. See Milgrom and Roberts (1986), Glazer
and Rubinstein (2001), Glazer and Rubinstein (2004), Glazer and Rubinstein (2006), and Kamenica and Gentzkow (2011).
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senders can only increase the information available for the receiver. No conditions on the preferences of
the senders are needed for the result, and, while full revelation is always an equilibrium of their game
with two or more senders, the result does not rely on picking the fully revealing equilibrium.

An important part of the intuition is that senders in Gentzkow and Kamenica (2012) model can always
refine the information provided by the others into any “aggregate signal” that is more informative in the
sense of Blackwell (1953) than the information provided by the other senders. For this to work it is
important that senders use pure strategies and that senders move simultaneously. In addition, a more
subtle assumption about the signal structure plays a critical role: signals are coordinated as opposed to
independent. More precisely, it is assumed that each sender partitions the product space of a true state
space and a unit interval that may be interpreted as the support of a sunspot variable. In the single-
sender case any such partition generates information in exactly the same way as a standard noisy signal.
However, with two or more senders it is assumed that the decision maker updates beliefs on the basis of
the intersections of individual signals. All senders use the same sunspot variable, implying that individual
senders can only add to the information that already exists by further partitioning the state space and the
sunspot variable. Together, these three assumptions guarantee that every sender can unilaterally refine an
equilibrium information structure in any conceivable way. In equilibrium no sender can have an incentive
to provide any extra information, so if an equilibrium with an extra sender garbles an equilibrium without
the additional sender, the garbling must also have been an equilibrium before the addition of the new
sender.

This paper analyzes persuasion games with sequential moves, independent signals, and mixed strate-
gies. Hence, one may view our paper as asking whether the assumptions in Gentzkow and Kamenica
(2012) are also necessary for the result. The answer is mostly affirmative. We find in each case that we
can construct an example with an equilibrium in which the decision maker becomes less informed when
a second sender is added. We also believe that sequential moves and independent signals are interesting
in their own right. Sequentiality is ubiquitous in news reporting, jury trials, scientific research, political
campaigning, and many other strategic settings involving multiple experts. Additionally, the order of
moves may be part of a design problem and, in the explicit example we consider, the sequential move
equilibrium is strictly better than the simultaneous move equilibrium for the senders.4

Coordinated and independent signals are two extreme cases, so we also briefly consider an intermedi-
ate case. In a jury trial, it seems reasonable to assume that evidence from the prosecution and the defense
can sometimes be coordinated. Character evidence, however, seems more or less independent of physical
evidence collected at the crime scene. See Lester, Persico, and Visschers (2012) for a fuller discussion
of correlations across different pieces of evidence. We will not try to defend mixed strategies in terms of

4Glazer and Rubinstein (2001) compare simultaneous and sequential debates and show that sequential persuasion may be
better for the decision maker.
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real world examples, but, in our example, the mixed strategy equilibrium we construct is strictly better
than the unique pure strategy equilibrium for both senders.

Each modification of the benchmark persuasion game results in a setup where senders can no longer
refine information unrestrictedly. In the sequential case, only the last mover can have the final word.
When signals are independent it is no longer feasible to create arbitrary refinements of the existing
information. Randomizations make it impossible to refine the pure signals in the support of the mixed
strategy independently. In each case we show that it is possible that the decision maker is strictly less
informed in an equilibrium with two senders than in the single-sender equilibrium. We don’t explore it in
this paper, but we conjecture that incomplete information about preferences would have similar effects.

Our most straightforward example is with sequential moves. Sender 1 prefers the actions the deci-
sion maker takes when information is rather precise, but he does not like the actions taken under full
information. The example is constructed so that sender 1’s most preferred outcome is implemented by
the decision maker in an essentially unique equilibrium with a precise, but not fully informative, sig-
nal. We then add a sender who moves after sender 1 and strictly prefers the actions taken under full
revelation to the single-sender equilibrium, but who is even better off if both senders babble. Given that
sender 1 prefers babbling to full information, which we assume, sender 1 will babble (or provide an
outcome-equivalent signal structure) in order to avoid having sender 2 respond to signals of intermediate
informativeness by fully revealing the state.

Note that the example is driven by the fact that the new sender has the final word. Should the order of
moves be reversed, sender 1 could always refine babbling by the other sender. In general, we demonstrate
that if a new sender is added and this extra sender moves first, then there can be no equilibrium with the
additional sender that is less informative than some equilibrium in the model without the extra sender
unless the garbling is also an equilibrium without the new sender.5 The proof of this result uses the fact
that all “old senders” can refine information in the same way they did before the new sender was added.
This setup therefore retains some of the flavor of the simultaneous move model.

The sequential model differs from the simultaneous model also in that full revelation is not always
an equilibrium outcome. The intuition for this is much like the difference between simultaneous and se-
quential voting. Full revelation is an equilibrium outcome in the simultaneous model even if all senders
agree that this is the worst possible outcome. This follows as there is no way to scramble a fully infor-
mative signal, so while full revelation is a weakly dominated strategy it is nevertheless supportable as
a Nash equilibrium. In contrast, if every sender agrees that full information is the worst, providing full
information is not subgame perfect (or even Nash) in the sequential case as the first sender who reveals
the truth is pivotal given (sequentially) rational continuation strategies.

Providing too much information can also make a sender vulnerable if signals are independent, but

5It is also assumed that the order of the existing senders is kept the same when a new sender is added.
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for different reasons than in the sequential move model. Unlike the coordinated signal case, senders can
no longer refine the information provided by other senders on a realization-by-realization basis. That is,
with coordinated signals each sender can construct a best response by conditioning one by one on the sets
in the partitioning created by the other senders. This is not feasible when signals are independent. Best
responses, when signals are independent, must take into consideration the uncertainty over the sunspot
realization of the competitor’s signal, creating uncertainty that is not present in the case when signals are
coordinated. Senders therefore face uncertainty about the information provided by other senders, which
may create disincentives to provide information. This result is robust to introducing some coordination
of the signals.

The mixed strategy analysis is more complicated, but again the idea is that providing intermediate
levels of information may be dangerous. Our example exploits the fact that, when playing against a mixed
strategy, opponents are no longer certain about the consequences of playing any particular individual
signal. This allows us to construct an example where the addition of a new sender makes the original
sender play a babbling signal to protect himself against bad outcomes.

2 The Model

Consider an environment with n+1 agents, where n≥ 1 agents are called senders and one is referred
to as the decision maker. Each sender i ∈ {1, ..,n} has a payoff function ui : A×Ω→ R, where a ∈ A
is the action taken by the decision maker and ω ∈ Ω is the state of the world. Both A and Ω are finite
sets. We denote the decision maker’s payoff function by uD : A×Ω→ R and the common prior belief of
the state by µ0 ∈ ∆(Ω) . Payoff functions are common knowledge and all senders evaluate lotteries using
expected utilities.

Both the decision maker and the senders are uninformed about the state of the world, but the senders
may provide information to the decision maker by sending signals. A signal πi is a finite partition of
Ω× [0,1] with the property that each element si ∈ πi is a non-empty Lebesgue measurable subset of
Ω× [0,1]. We refer to an element si ∈ πi as a signal realization and let Π be the set of all permissible
signals. Exactly how the decision maker makes inferences from a signal in the case with multiple senders
depends on certain details that are explained below.

2.1 The Single-Sender Model

It is useful to first consider the single-sender model first analyzed in Kamenica and Gentzkow (2011).
Dropping the subscripts we write π for a generic signal and s ∈ π for a signal realization. Defining
p(s|ω) = λ ({z ∈ [0,1] |(ω,z) ∈ s}) as the conditional probability of realization s ∈ π given that the
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state is ω, where λ (Z) denotes the Lebesgue measure for each measurable Z ⊂ [0,1]. One may interpret
z∈ [0,1] as a sunspot variable that is independent of the true state and, without loss, uniformly distributed.
The unconditional probability of signal realization s∈ π is thus given by p(s) = ∑ω∈Ω µ0 (ω) p(s|ω) and

p(ω ′|s) = µ0 (ω
′) p(s|ω ′)

∑ω∈Ω µ0 (ω) p(s|ω)
, (1)

is the perceived probability of state ω ′ ∈Ω given signal realization s. For notational ease we suppress π

and let µ (s) = (p(ω ′|s))
ω∈W ∈ ∆(Ω) denote the posterior belief distribution generated by signal π and

realization s. The payoff function of the single sender (expert) is denoted by uE : A×Ω→ R.
The timing is as follows. First, the sender posts a signal π. Then, the decision maker observes π and

a signal realization s ∈ π before taking an action a ∈ A. Our concept of equilibrium may be interpreted
as either perfect Bayesian or subgame perfection depending on whether nature moves before or after the
decision maker observes the signal (which is irrelevant for incentives).

Definition 1. A (pure strategy) equilibrium is a signal π∗ ∈ Π and decision rule σ∗ : ∆(Ω)→ A such
that

∑
ω∈Ω

∑
s∈π∗

uE (σ
∗ (µ (s)) ,ω) p(s|ω)µ0 (ω)≥ ∑

ω∈Ω

∑
s′∈π ′

uE
(
σ
∗ (

µ
(
s′
))

,ω
)

p
(
s′|ω

)
µ0 (ω)

for each π ′ ∈Π, where
σ
∗ (

µ
(
s′
))
∈ argmax

a∈A
∑

ω∈Ω

uD (a,ω) p(ω ′|s′)

for every π ′ ∈Π and s′ ∈ π ′, where the posterior belief µ (s′) ∈ ∆(Ω) follows from (1) for every π ′ ∈Π.

In principle, a strategy for the decision maker could be an arbitrary mapping from signals and signal
realizations to action, but no sender has any direct preferences over the signals, which is why we have
opted for this reduced form where we express actions as a function of beliefs. Also note that the decision
maker, unlike decision makers in cheap talk games, does not need to make any inferences about the type
of the sender as the sender is uninformed about the state and the decision maker observes the partition of
Ω× [0,1] provided by the sender. One may interpret this as a sender who commits to perform a number
of costless experiments with no possibility to withhold experimental results.

Notice that Bayes rule provides a direct mapping from realized signals to beliefs on and off the
equilibrium path because every conceivable signal starts a subgame. Hence, we express a sequentially
rational response by the decision maker as a mapping from beliefs to actions rather than as a map from
signals to actions.

As the decision maker is non-strategic we take σ∗ as a primitive in most of the analysis.
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2.2 The Multiple-Sender Model

2.2.1 Coordinated Signals

Gentzkow and Kamenica (2012) propose a generalization of the single-sender model with an analyt-
ically convenient lattice structure. As in the single-sender case, each sender sends a signal πi which is
a finite partition of Ω× [0,1] consisting of measurable sets. Given that the senders post (π1, ...,πn) the
decision maker observes a realized “joint signal” ∩n

i=1si and forms beliefs in accordance. That is, the
decision maker understands that p

(
∩n

i=1si|ω
)
= λ ({z ∈ [0,1] |(ω,z) ∈ si for each i}) is the conditional

probability of the joint signal and can use Bayes’ rule on each ∩n
i=1si exactly as in the single sender case.

In what follows we refer to this signal structure interchangeably as arbitrarily correlated or coordinated.
The extensive form is as follows. In the first stage, senders simultaneously post signals. The decision

maker observes the signals (π1, ...,πn) and the joint realization ∩n
i=1si before taking an action a ∈ A.

Definition 2. A (pure strategy) equilibrium is a signal vector (π∗1 , ...,π
∗
N) ∈ ΠN and a decision rule

σ∗ : ∆(Ω)→ A such that

∑
ω∈Ω

∑
(s∗1,...,s

∗
n)∈×n

j=1π∗j

ui
(
σ
∗ (

µ
(
∩n

j=1s∗j
))

,ω
)

p
(
∩n

i=1s∗j |ω
)

µ0 (ω) (2)

≥ ∑
ω∈Ω

∑
(s∗−i,s

′
i)∈× j 6=iπ

∗′
j ×π ′i

ui
(
σ
∗ (

µ
(
∩ j 6=is∗j ∩ si

))
,ω
)

p
(
∩ j 6=is∗j ∩ si|ω

)
µ0 (ω)

for each i ∈ {1, ..N} and πi ∈Π and

σ
∗ (

µ
(
∩n

j=1s j
))
∈ argmax

a∈A
∑

ω∈Ω

uD (a,ω) p(ω ′|∩n
j=1 s j) (3)

for every every (π1, ...,πN) ∈ ΠN and s ∈ ×n
j=1s j where the posterior beliefs µ

(
∩n

j=1s j

)
∈ ∆(Ω) are

given by

p(ω ′|∩n
j=1 s j) =

µ0 (ω
′) p(∩n

j=1s j|ω ′)
∑ω∈Ω µ0 (ω) p(∩n

j=1s j|ω)
. (4)

for every (π1, ...,πN) ∈ΠN and s ∈ ×n
j=1s j

A signal is a babbling signal if µ(si) = µ0 for any si ∈ πi. A special case of a babbling signal is the
trivial signal πi = {Ω× [0,1]} . The reader should notice that a babbling signal is qualitatively different
from the trivial signal because a babbling signal may provide additional information when it is combined
with another signal.
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Figure 1: Coordinated versus Independent Signals

2.2.2 Independent Signals

An alternative multiple sender generalization is as follows. Again, let a signal πi be defined as a finite
partition of Ω× [0,1], but let {zi}N

i=1 be independent uniform random variables on [0,1]. Conditional on
state ω the probability of realization si is p(si|ω) = λ ({zi ∈ [0,1] |(ω,zi) ∈ si}), and by independence,
s = (s1, ....,sn) has probability ×n

i=1 p(si|ω) . The posterior belief that the state is ω ′ is denoted

p(ω ′|s) =
µ0 (ω

′)×n
i=1 p(si|ω ′)

∑ω∈Ω µ0 (ω)×n
i=1 p(si|ω)

. (5)

Everything else is as it is in the case with coordinated signals, so an equilibrium may be defined as
in Definition 2, with the only change being that beliefs are generated following (5) instead of (4).

Figure 1 provides a geometric interpretation of the difference between coordinated and independent
signals.6 It shows an example with two states, Ω = {ω0,ω1} and signal π1 = {L,R} for sender 1 and
π2 = {U,D} for sender 2. The areas in the graph indicate the probability of the signal conditional on
the state. In Gentzkow and Kamenica (2012) senders are forced to use the same sunspot variable, which
corresponds to signals that are restricted to the 45 degree line, whereas independence corresponds to
pairs of signals that are in the full unit square.

6We thank Santiago Oliveros for contributing the idea for this graph.
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2.2.3 Sequential Persuasion and Mixed Strategies

Besides the case with independent signals we analyze two additional variations that retain the coor-
dinated signal structure. First, we will consider the case where the senders move sequentially. Second,
we will introduce mixed strategies to the simultaneous move persuasion game. In each case it should be
obvious how to adjust the equilibrium concept in Definition 2 appropriately.

2.3 Informativeness

We order equilibria by the garbling criterion from Blackwell (1953). Let π = {πi}n
i=1 and π ′ =

{π ′i}n
i=1 denote two signal profiles. Signal π is said to be weakly more informative than signal π ′, which

we denote by π � π ′, if there exists a garbling g : S×S→ [0,1] such that ∑s′∈π ′ g(s′,s) = 1 for all s ∈ π

and p(s′|ω) = ∑s∈π g(s′,s)p(s|ω) for all ω and all s′ ∈ π ′. We write π � π ′ if signal π is strictly more
informative than π ′ (if π � π ′ and not π ′ � π), and π ∼ π ′ if the signals are equivalent (when π � π ′ and
π ′ � π).

In general, we need to compare sets of equilibria. Suppose Σ and Σ′ are two sets of signals. We say Σ

is weakly more informative than Σ′ if for any (π,π ′)∈Σ×Σ′, (i) ∃π̂ ∈Σ : π̂ � π ′, and (ii) ∃π̂ ′ ∈Σ′ : π � π̂ ′.
If (i) and (ii) are both strict, then Σ is strictly more informative than Σ′.7

3 Results

3.1 A Single-Sender Example

In most of the analysis that follows, we assume that there are two states: {ω0,ω1} with prior Pr(ω =

ω0) = µ0 =
1
2 , and A = {ai}3

i=0. We first consider a single-sender model, and assume that the decision
maker follows the rule,

σ
∗ (µ) =


a0 if µ ∈

[ 99
100 − k, 99

100

]
a1 if µ ∈

[ 1
100 ,

1
100 + k

]
a2 if µ ∈

[1
3 − k, 1

3 + k
]

or µ ∈
[1

2 − k, 1
2 + k

]
or µ ∈

[3
5 − k, 3

5 + k
]

a3 otherwise

, (6)

where k is a small enough number to make (6) well defined.
This decision rule should be interpreted as a reduced form of one where the decision maker takes

more than four actions. The reason is that it is inconsistent with expected utility theory for the optimal de-

7We work directly with the signal space. This is because the belief space characterization in Gentzkow and Kamenica
(2012) does not apply when signals are not perfectly coordinated.
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cision as a function of the beliefs to flip back and forth between a2 and a3 in a non-monotonic way. How-
ever, one can justify this as a reduced form of a decision rule with one action per interval and sender pref-
erences where the senders are indifferent between the (distinct) actions on

[1
3 − k, 1

3 + k
]
,
[1

2 − k, 1
2 + k

]
and

[3
5 − k, 3

5 + k
]

as well as over the (distinct) actions on
[
0, 1

100

)
, ( 1

100 + k, 1
3 − k),

(1
3 + k, 1

2 − k
)
,

(1
2 + k,3

5 − k),
(3

5 + k, 99
100 − k

)
and

( 99
100 ,1

]
. Any decision rule with all distinct actions is consistent

with some utility function for the decision maker. Lumping the first three of these actions together as
a2 and the final six together as a3 we have a model with equivalent sender incentives, but considerably
cleaner notation.

Sender 1’s payoff is

u1 (a,ω) =


1 if a = a0 and ω = ω0

1 if a = a1 and ω = ω1
99

100 − ε if a = a2

0 otherwise

, (7)

where ε is a small number (for now 0 < ε < 99
100 ). In other words, sender 1’s favorite action is to match

the state ai = ωi for i = 1,2, and his second best action is a2 regardless of the state. Denote by Σ1 the set
of equilibria in the single-sender persuasion game. We can then show that for any π ∈ Σ1, the posterior
takes on value 1

100 with probability 1
2 and 99

100 with probability 1
2 , implying that sender 1’s expected payoff

is 99
100 .
Consider signal π∗∗ = {s0,s1}, where

s0 =

(
ω0,

[
0,

99
100

])
∪
(

ω1,

(
99

100
,1
])

s1 =

(
ω1,

[
0,

99
100

])
∪
(

ω0,

(
99

100
,1
])

, (8)

and a routine calculation shows that the probability of state ω0 is µ (s0) =
99
100 and µ (s1) =

1
100 respec-

tively. While there are infinitely many alternative ways to partition the sunspot variable, all other equi-
libria give the same equilibrium outcome and are informationally equivalent in the sense of Blackwell
(1953).

Proposition 1. The signal π∗∗ is an equilibrium. All equilibria are outcome equivalent and if π ′ =

{sk}K
k=1 is an equilibrium, then there is a partitioning of {SL,SH} of {sk}K

k=1 such that µ (sk) =
1

100 for
every sk ∈ SL and µ (sk) =

99
100 for every sk ∈ SH . Moreover, the ex ante probability of ∪sk∈SLsk is 1

2 .

The proof can be found in Section A.1 of the Appendix.
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3.2 Multiple Senders in Gentzkow and Kamenica’s (2012) Model

Suppose that there is another sender whose (state-independent) payoff function is

u2 (a,ωi) =


−1 if a ∈ {a0,a1}
0 if a = a3

1 a = a2

(9)

Proposition 2. In the two-sender persuasion game with payoffs given by (7) and (9) and decision rule
given by (6), an equilibrium exists whenever both senders reveal the state. Moreover, information is fully
revealed in any pure strategy equilibrium.

The proof is in Section A.2 of the appendix.
Denote by Σ2 the set of equilibria in the two-sender persuasion game and let Σ1be the set of single-

sender equilibria from Section 3.1. It should be rather clear that Σ2 is strictly more informative than
Σ1. In each case, the equilibrium signals must be equivalent, so to compare Σ2 and Σ1 it is sufficient to
compare any pair (π∗,π∗∗) with π∗ ∈ Σ2 and π∗∗ ∈ Σ1.

One equilibrium is the signal profile π∗ = {π∗1 ,π∗2} with π∗1 = π∗2 = {s20,s21} and

s20 = (ω1, [0,1])∪ (ω0, /0)

s21 = (ω1, /0)∪ (ω0, [0,1]) ,

Clearly, p(s20|ω0) = p(s21|ω1) = 1, and µ(s20) = 1,µ(s21) = 0. Recall that π∗∗ is a garbling of π∗ if

p(s10|ω0) = g(s10,s20) p(s20|ω0)+g(s10,s21) p(s21|ω0)

p(s11|ω1) = (1−g(s10,s20)) p(s20|ω1)+(1−g(s10,s21)) p(s21|ω1)

for g(s10,s20) ,g(s10,s21) ∈ [0,1] with either 0 < g(s10,s20)< 1 or 0 < g(s10,s21)< 1, or both. Simple
algebra yields that g(s10,s20) = g(s10,s21) =

99
100 . Hence, π∗∗ is a garbling of π∗1 . Clearly, π∗1 is not a

garbling of π∗∗, so the two-sender equilibrium is strictly more informative in the sense of Blackwell. As
all equilibria are informationally equivalent in each case, Σ2 is strictly more informative than Σ1.

Gentzkow and Kamenica (2012) show that in general:

1. Full revelation is always an equilibrium outcome if there are two or more senders, and that;

2. Increasing the number of senders must weakly increase the amount of information that is revealed
in the least informative pure strategy equilibrium.

Full revelation is an equilibrium outcome, even when this leads to the lowest possible payoff for
all senders. The reason is that no sender is pivotal if at least two senders provide signals that are fully
revealing by themselves.
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More interesting is the finding that adding senders cannot result in a less informative equilibrium set.
It is important to note that the logic that drives this result is that every sender can always make information
more precise, but no sender can reduce the informativeness relative to what the decision maker can infer
from the signals posted by the other senders. Hence, if a sender is added and information is lost, one of
the original senders can deviate and replicate the more informative outcome before the new sender was
added. In addition, at least one sender must have an incentive to deviate to a more informative signal
as otherwise the signals with less information would also be an equilibrium before the new sender was
added.

3.3 Sequential Persuasion

This section considers a sequential persuasion model. The game is as follows. First, sender 1 plays
a signal π1. Then, sender 2 observes π1 and plays a signal π2. Finally, the decision maker observes π1

and π2 and a pair of signals s1 ∈ π1 and s2 ∈ π2 and infers that the posterior probability of state ω0 is
µ (s1∩ s2) before taking an action a in A. We find that, in the context of our example, the amount of
information that is revealed is unambiguously less than in the single sender case.

Proposition 3. There exists a subgame perfect equilibrium π∗ in which both senders play the trivial
signal and no information is revealed. Moreover, in any equilibrium, the decision maker takes action a2

for sure.

The proof is in Section A.3 in the appendix. The idea is that sender 2 can further partition any
possible realization of the signal played by sender 1. Hence, if some s1 ∈ π1 induces a posterior that
does not make the decision maker play a2, sender 2 can always partition this signal further in a way that
makes the decision maker plays a2 with positive probability and a ∈ {a0,a1} with probability zero. It
follows that there is no way that sender 1 can induce the decision maker to take action in {a0,a1}, so
sender 1 may as well babble. For an illustration, in the graph to the left in Figure 2 we consider the
case where the posterior beliefs given a signal realization s1 are in between the lowest and the highest
range that gives sender 2 his maximal payoff. The only constraint on the beliefs from a further partition
of s1 is that they must be consistent with Bayes’ rule, so a partition of s1 that decreases the posterior to
any value on [0,µ (s1)) with some probability and increases the posterior to any value on (µ (s1) ,1] is
feasible. Hence, sender 2 can partition any s1 with µ (s1) in the intermediate range in a way that ensures
the maximal payoff.

To the right in Figure 2 we illustrate the case when µ (s1) is below 1
3 (the case with µ (s1) above 3

5 is
symmetric). In this case sender 2 cannot get his maximal probability for sure, but it is always possible to
partition s1 so that the posterior is sent to 0 with some probability and to 1

3 with some probability. This
is the optimal response to any s1 in the range under consideration.
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Figure 2: Dynamic Best Responses

Notice that there exists no fully revealing equilibrium. To understand this it is useful to note that in
the simultaneous move persuasion game, each belief in support of the equilibrium posterior distribution
must be unimprovable for each sender in the sense that no sender can gain by adding information. This
rests on the fact that under simultaneous persuasion, all senders are pivotal in the determination of the
final distribution of the posterior. In contrast, only the last mover can add information in an unconstrained
fashion in a sequential persuasion game. senders moving earlier in the game are constrained to deviations
over possible continuation equilibria. This difference makes it possible to generate examples such as the
one analyzed above, in which babbling cannot be supported as an equilibrium in the single sender case,
but where it is an equilibrium in the sequential game with multiple senders.

3.3.1 Multiple Rounds of Persuasion

In the analysis above, senders are only allowed to move once. This is only for notational convenience
as one gets the same result even when allowing for multiple rounds of persuasion.

Assume that there are 2M stages with sender 1(2) moving at every odd (even) stage. Babbling
is still an equilibrium. This is because that, sender 1 anticipates that, as long as he induces a posterior
µ̂ 6∈ [1

3−k, 3
5 +k]∪{0}∪{1}, the continuation play by sender 2 will generate beliefs such that a3 is chosen

by the decision maker with positive probability and actions a ∈ {a0,a1} are never played. Consequently,
sender 1 has no incentive to deviate from babbling. In addition, babbling makes the decision maker take
the best action from the point of view of sender 2, so this is clearly a best response. Just like when each
sender moves once there are other equilibria, but they all induce the decision maker to take the same
action.8

8This is very different from sequential cheap talk where multiple rounds may support fully revealing equilibria in cases
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An alternative setup has no deadline and allows each sender to add information as long as he or
she wants, but we maintain the assumption that there are no simultaneous moves.9 Again the result is
unchanged as sender 1 understands that sender 2 will respond in a way that makes him worse off than if
he had babbled should he try to induce his favorite outcome.

This reasoning generalizes. Hence, there can be no equilibrium with sequential moves that is Pareto
dominated by babbling from the point of view of the senders. Moreover, if full revelation is Pareto
dominated by an equilibrium, then full revelation is not an equilibrium. The proofs are immediate and
are left to the reader.

3.3.2 Adding Senders as First Movers

Adding a sender who moves last resulted in a loss of information in the example above. Now, consider
a sequence of sequential persuasion games:

{Γn}n∈N = {Ω,(Π1, ...,Πn) ,A,uD,(u1, .....,un)}n∈N ,

where the state space Ω is kept fixed, where Πi = Π which we defined as the set of Lebesgue measurable
partitions of Ω× [0,1], and where A represents the set of actions available to the decision maker, which is
also the same for each game in the sequence. The utility function for the decision maker uD : Ω×A→ R
is also held fixed, as is ui : Ω×A→ R for every i ∈ N. Hence, the sequence is one in which a new sender
is added to an existing set of senders in each step. Finally, we assume that the sequence is such that the
new sender (sender n in game Γn) moves first and the remaining senders move in the same order as in
Γn−1. For our next result we use the following fact:

Lemma 1. For any π � π ′, there exists a π ′′ which is a finer partition of π ′ such that π ′′ and π are
outcome equivalent.

Lemma 1 restates Lemma 4 from Gentzkow and Kamenica (2012) directly in terms of signals and
outcomes (as opposed to decision maker’s belief).

Proposition 4. Suppose that {Γn}n∈N is a sequence of persuasion games where in each game n, sender n
moves first and the remaining agents move in the same order as in Γn−1. Let πn be an equilibrium in Γn,
πn+1 an equilibrium in Γn+1, and assume that πn+1 is less informative than πn in the sense of Blackwell
(1953). Then, there exists an equilibrium in game Γn+1 that is outcome equivalent with πn.

Proof. Let πn
i and π

n+1
i denote equilibrium path signals played by i in games Γn and Γn+1. Also, let Sn

i

be the implied partitioning of Ω× [0,1] after senders i, ...n have played (πn
n , ...,π

n
i ) but before i−1 plays.

where a single round does not. See Krishna and Morgan (2001).
9See Matthews and Postlewaite (1994) for a discussion about the end-round effect in a cheap talk model.
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Consider sender 1. If Sn+1
1 is a garbling of Sn

1 it is feasible for sender 1 to obtain the same payoff as in
equilibrium πn =

(
πn

n , ...,π
n
1
)

when it is sender 1’s turn to play. Hence, either it is a best response for
sender 1 to play a signal that is outcome equivalent with Sn

1 or sender 1 is strictly better off given the less
informative partition Sn+1

1 because Sn+1
1 is always feasible by Lemma 1. For πn+1 =

(
π

n+1
n+1 , ...,π

n+1
1
)

to
be an equilibrium it has to be that Sn+1

1 is weakly preferred to Sn
1 by sender 1 and for πn =

(
πn

n , ...,π
n
1
)

to
be an equilibrium Sn

1 must be weakly preferred to any S′ for any S′ that is more informative than Sn
1. For

induction, assume that:

1. Sn+1
1 is weakly preferred to Sn

1 by senders 1, ..., i

2. Each sender j ∈ {1, ..., i} weakly prefers Sn
1 to any S′ that is more informative than Sn

1 and a con-

tinuation equilibrium outcome after history
(

πn
n , ...,π

n
j+1

)
.

Then, we note that there exists a continuation equilibrium in which no sender j ∈ {1, ..., i} would
provide any additional information if sender i+1 plays a signal that is equivalent to Sn

1. Moreover, such
a signal is feasible as Sn+1

i+1 is a garbling of Sn+1
1 and Sn+1

1 is a garbling of Sn
1. Hence, it follows i+ 1

weakly prefers Sn+1
1 to Sn

1. By induction, it follows that:

1. Sn+1
1 is weakly preferred to Sn

1 by senders 1, ...,n

2. Each sender j ∈ {1, ...,n} weakly prefers Sn
1 to any S′ that is more informative than Sn

1 and a

continuation equilibrium outcome after history
(

πn
n , ...,π

n
j+1

)
.

It follows that there is an equilibrium in Γn that is outcome equivalent to πn+1 =
(
π

n+1
n+1 , ...,π

n+1
1
)
.

Repeated use of this fact establishes the result for any n and m with m < n.

Proposition 4 says that if we add a sender and if the new sender moves first and an equilibrium in
the model with the new sender is a garbling of an equilibrium that exists before the sender was added,
then the garbling must also have been an equilibrium before the new sender was added. Hence, adding a
sender as a first mover cannot reduce the informativeness of the least informative equilibrium. However,
even if the new sender moves first it is easy to construct examples where equilibria cannot be compared.

3.4 Independent Signals

We now consider the multi-sender generalization with independent signals introduced in Section
2.2.2. Again, a signal πi is defined as a finite partition of Ω× [0,1], but now we assume that sender 1 and
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sender 2 have two independent sunspot variables available. The posterior that the state is ω0 conditional
on s1 ∈ π1 and s2 ∈ π2 is

p(ω0|s1,s2) =
p(s1|ω0) p(s2|ω0)

p(s1|ω0) p(s2|ω0)+ p(s1|ω1) p(s2|ω1)
, (10)

where we have built in the assumption that µ0 = 1−µ0 =
1
2 in (10). Everything else is as in the bench-

mark model. Senders move simultaneously and we consider equilibria in pure strategies.
Again, the single sender outcome is not an equilibrium because sender 2 can always add information

to avoid posteriors in µ ∈ [ 1
100 ,

1
100 + k]∪ [ 99

100 − k, 99
100 ], thereby avoiding a negative payoff. One such

deviation is simply to reveal the state. Full revelation may also be supported as an equilibrium as any
signal, including full revelation, is a best response to full revelation regardless of whether signals are
independent or arbitrarily correlated.

Unlike the coordinated case, it is now possible to construct an equilibrium with two senders that is
less informative than the single-sender equilibrium.

Proposition 5. There exists a pair (k∗,ε∗) ∈ R2
++ such that for any k ∈ [0,k∗) and ε ∈ (0,ε∗), there

exists an equilibrium π∗ = (π∗1 ,π
∗
2 ) in which sender 1 sends the trivial signal π∗1 = {{ω0,ω1}× [0,1]}

and sender 2 sends any signal π∗2 = {s21,s22} such that

p(s21|ω0) =
1
4

and p(s21|ω1) =
1
2
.

The posterior beliefs for the decision maker are

p(ω0|s1,s2) =

{
1
3 if s2 = s21
3
5 if s2 = s22.

,

implying that the decision maker responds with σ∗
(1

3

)
= σ∗

(3
5

)
= a2. Any equilibrium signal in the

single-sender game is strictly more informative than π∗.

See the proof in Section A.4 of the appendix for details. The idea of the construction is simple.
sender 1 would ideally like the decision maker to have beliefs near 1

100 or 99
100 . However, if sender 2 plays

in accordance to the proposition and sender 1 deviates in such a way that the decision maker takes the
action that sender 1 seeks when s21 (s22) is realized, then the outcome must be bad for sender 1 when s22

(s21) is realized. sender 1 is therefore better off babbling.
The crucial difference between independent and arbitrarily correlated signals is that senders can no

longer add information on a set by set basis. That is, with arbitrarily correlated signals each sender can
construct a best response by conditioning one by one on the partitions created by the signals played by
the other senders. This falls apart when signals are independent. Then, best responses must take into
consideration the uncertainty over the sunspot realization of the competitor’s signal, creating risk that is
not present in the case when signals are coordinated.
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3.4.1 Partially Coordinated Signals

Arguably, independent and perfectly coordinated signals are two extreme cases, and a natural ques-
tion is whether Proposition 5 is robust to introducing some correlation. There are several ways on may
create such a hybrid model, but a simple version is as follows. Just like in the previous two cases a signal
πi is a finite partition of {ω0,ω1}× [0,1], but we assume that there are two independently drawn sunspot
variables z1 ∈ [0,1] and z2 ∈ [0,1] with probability α ∈ (0,1), whereas there is a common sunspot vari-
able z ∈ [0,1] with the complementary probability. As it is the perception of the decision maker that
matters we assume that the decision maker don’t know if signals are independent or coordinated.10 The
posterior belief given a realized pair (s1,s2) is then

p(ω0|s1,s2) = α
p(s1|ω0)p(s2|ω0)

p(s1|ω0)p(s2|ω0)+ p(s1|ω0)p(s2|ω1)
+(1−α)

p(s1∩ s2|ω0)

p(s1∩ s2s2|ω0)+ p(s1∩ s2|ω1)
. (11)

The only restriction on the second term in (11) is Bayesian plausibility, which, since the question is
whether sender 1 can break the equilibrium in Proposition 5, can be ignored. For simplicity, suppose
k = 0 (by continuity the logic extends to k > 0 provided that it is sufficiently small) and assume that the
posterior beliefs when s21 is realized is

α

1+2 p(s1|ω1)
p(s1|ω0)

+(1−α)
p(s1∩ s21|ω0)

p(s1∩ s21|ω0)+ p(s1∩ s21|ω1)
=

1
100

. (12)

When s2 = s22, the posterior belief

α

1+ 2
3

p(s1|ω1)
p(s1|ω0)

+(1−α)
p(s1∩ s22|ω0)

p(s1∩ s22|ω0)+ p(s1∩ s21|ω2)
→ 1

34

as α → 0. Hence, we are can extend Proposition 5 as long as signals are not too correlated.

3.5 Mixed Strategy Equilibria in the Simultaneous Model with Coordinated Sig-
nals

In our final example we consider the exact same model as in Section 3.2, but allow senders to play
mixed strategies. A mixed strategy equilibrium is constructed that sometimes results in babbling and
sometimes results in some information being revealed, but regardless of which pure signal in the support
of the randomized equilibrium is played, the resulting signal structure is always less informative than the
equilibria in the single-sender game.

10The decision maker must observe some reduced form signal realizations and not the actual partitions for this to work.
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The construction is more complicated, but the idea is similar to the independent case in section 3.4,
The key idea is that sender 2 plays a randomization, so that anything that sender 1 plays that makes
the beliefs of the decision maker close to 1

100 or 99
100 when played against some signal in the support of

sender 2’s mixed strategy, there is always another signal in the support that makes the decision maker
take the action that sender 1 likes the least with positive probability. The difficult part of the proof is the
construction of such a randomized strategy.

3.5.1 Some Heuristics

As the construction is notationally heavy and the formal proof involves a large number of different
cases, we here provide an informal explanation of the construction below. The idea is to create a random-
ization by sender 2 such that sender 1’s best reply is the trivial signal. In addition, we seek to construct
an example where information is lost when adding a sender, so the pure signals in the support of the
randomization are all less informative than the single-sender equilibrium. Finally, sender 2 achieves his
maximal payoff for sure (if sender 1 babbles), while sender 1 achieves the second best.

The complicated part of the proof is to make sure that sender 1 cannot profitable deviate from playing
the trivial signal. Our mixed strategy has support on 10 different pure signal structures. We tried simpler
examples before converging on this one, but in order to induce babbling by sender 1 we had to use a
somewhat complicated randomization.

To understand this and how our equilibrium works we note that any profitable deviation for sender
1 must have at least one signal realization s1 ∈ π1 such that the beliefs of the decision maker are in
[ 1

100 ,
1

100 + k] or [ 99
100 − k, 99

100 ] when combined with some realization of one of the pure signals in the
support of the mixed strategy played by sender 2. In addition, for small ε there can exist no realization of
any signal played with positive probability by sender 2 that induces the decision maker to play a3 when
combined with s1. The construction below provides a rich enough support for the mixed strategy to rule
out the existence of such a signal s1.

3.5.2 A Mixed Strategy Equilibrium

Let

IA =

[
0,

1
4

]
, IB =

[
1
4
,
1
2

]
, IC =

[
1
2
,
3
4

]
, and ID =

[
3
4
,1
]
.

For each J ∈ {A,B,C,D} let πJ
2 =

{
sJ

21,s
J
22
}

be the partition given by
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sJ
21 =

(
ω0× [0,1]\IJ)∪(ω1×

[
0,

1
2

])
(13)

sJ
22 =

(
ω0× IJ)∪(ω1×

(
1
2
,1
])

,

and for JK ∈ {AB,AC,AD,BC,BD,CD} let πJK
2 =

{
sJK

21 ,s
JK
22
}

be the partition given by

sJK
21 =

(
ω0× [0,1]\

(
IJ ∪ IK))∪(ω1×

[
0,

1
2

])
(14)

sJK
22 =

(
ω0×

(
IJ ∪ IK))∪(ω1×

(
1
2
,1
])

.

For ease of notation, let

Π2 =
{{

π
J
2
}

J∈{A,B,C,D} ,
{

π
JK
2
}

JK∈{AB,AC,AD,BC,BD,CD}

}
S2 =

{{
sJ

21,s
J
22
}

J∈{A,B,C,D} ,
{

sJK
21 ,s

JK
22
}

JK∈{AB,AC,AD,BC,BD,CD}

}
denote the set of partitions and the set of possible signal realizations, respectively. For a generic partition
or signal realization in one of these partitions we use notation π2 for elements in Π2 and s2 for elements
in S2 when this can be done without risk of confusion.

For any set Y ⊆ [0,1] let λ (Y ) denote the Lebesgue measure of Y. We note that when a partition πJ

with J ∈ {A,B,C,D} is selectd the posterior probabilities that the state is ω0 are

µ
(
sJ

21
)

=
λ
(
[0,1]\IJ)

λ ([0,1]\IJ)+λ
[[

0, 1
2

]] = 3
4

3
4 +

1
2

=
3
5

µ
(
sJ

22
)

=
λ
(
IJ)

λ (IJ)+λ
[(1

2 ,1
]] = 1

4
1
4 +

1
2

=
1
3
,

while for JK ∈ {AB,AC,AD,BC,BD,CD} the posteriors are

µ
(
sJK

21
)

=
λ
(
[0,1]\

(
IJ ∪ IK))

λ ([0,1]\(IJ ∪ IK))+λ
[[

0, 1
2

]] = 1
2

µ
(
sJK

22
)

=
λ
(
IJ ∪ IK)

λ (IJ ∪ IK)+λ
[(1

2 ,1
]] = 1

2
.

We will now show that it is an equilibrium for sender 1 to play the trivial partition and for sender 2 to
randomize over the 10 partitions defined above with equal probability. To prove this, we first establish
an intermediate result.
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Lemma 2. Suppose that s1 is a signal realization in π1 such that σ∗(µ (s1∩ s2))= a0 or σ∗ (µ (s1∩ s2))=

a1 for some s2 ∈ S2. Then, provided that k is sufficiently small, there exists s′2 ∈ S2 such that σ∗(µ (s1∩ s′2))=
a3.

A detailed proof is in Section A.5 of the Appendix. There is nothing difficult about the proof but
unfortunately, there are numerous cases to take care of. To illustrate why Lemma 2 is true, consider the
possibility that sender 1 can create a signal which generates beliefs on

[ 1
100 ,

2
100

]
against both sJ

22 and sK
22.

Rearranging the Bayes’ rule formula, it then follows that we can bound both λ
(
IJ ∩Z0

)
and λ

(
IK ∩Z0

)
in terms of λ

((1
2 ,1
]
∩Z1

)
. That is,

min
{

λ
(
IJ ∩Z0

)
,λ
(
IK ∩Z0

)}
≥ λ

((
1
2
,1
]
∩Z1

)
1

99

max
{

λ
(
IJ ∩Z0

)
,λ
(
IK ∩Z0

)}
≤ λ

((
1
2
,1
]
∩Z1

)
2

98
.

Now, recall that we constructed signal realization sJK
22 by adding partitions IJ and IK under state ω0 and

keeping the partition under state ω1 the same as in sJ
22 and sK

22. Hence, the posterior belief if s1 is played
against sJK

22 is

µ
(
s1∩ sJK

22
)

=
λ
(
IJ ∪ IK ∩Z0

)
λ (IJ ∪ IK ∩Z0)+λ

((1
2 ,1
]
∩Z1

) = λ
(
IJ ∩Z0

)
+λ

(
IK ∩Z0

)
λ (IJ ∩Z0)+λ (IK ∩Z0)+λ

((1
2 ,1
]
∩Z1

)
∈

[
2λ
((1

2 ,1
]
∩Z1

) 1
99

2λ
((1

2 ,1
]
∩Z1

) 1
99 +λ

((1
2 ,1
]
∩Z1

) , 2λ
((1

2 ,1
]
∩Z1

) 2
98

2λ
((1

2 ,1
]
∩Z1

) 2
98 +λ

((1
2 ,1
]
∩Z1

)] .
For sufficiently small k, the posterior is too large to make the decision maker play a1 and too small for
the decision maker to play a2. Hence, if sender 2 plays signal πJK

2 and sJK
22 is realized, then the decision

maker takes the least preferred action for sender. As this happens with probability 1
20 conditional on s1

being played it is not worth it for sender 1 if ε is small enough.
We also have to rule out cases where s1 and sJ

22 induce the decision maker to play the best outcome
for sender 1 and some other sK

22 leads to a second best outcome. There are a multitude of such cases
to consider, and we will also have to consider a number of cases involving all other potential signal
realizations in the support of the mixed strategy played by sender 2. All these arguments are along
similar lines and the conclusion is always that if the decision maker matches the state against some
sender 2 signal realization, we can always find some other realization that is bad for sender 1.

Using Lemma 2 we can prove this section’s main result.

Proposition 6. Suppose that ε ∈ (0,ε∗) , where ε∗ = 99
100 −

77
80 . Then, there exists k∗ > 0 such that when

k∈ [0,k∗), it is an equilibrium for sender 1 to submit the trivial partition π1 = {(ω0× [0,1])∪ (ω1× [0,1])}
and for sender 2 to randomize over the partitions in (13) and (14) with equal probabilities.
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Proof. Under the candidate equilibrium strategy, the decision maker takes action a2 with probability 1.
As this is the action that sender 2 prefers, sender 2 has no profitable deviation. Sender 1, on the other
hand, receives a payoff of 99

100 − ε in the candidate equilibrium, which is less than the highest possible
payoff of 99

100 . Hence, we must make sure that no profitable deviation exists. By Lemma 2, the probability
that sender 1 gets a payoff of zero is bounded away from zero. Each partition is played with probability
1
10 and each signal in every partition is realized with probability no smaller than

Pr(sJ
22) = λ

(
IJ)Pr(ω = ω0)+λ

((
1
2
,1
])

Pr(ω = ω1) =
3
8
,

which is the least likely signal realization for partitions A,B,C and D. The other partitions have ex ante
probabilities

(1
2 ,

1
2

)
. Hence, the probability that sender 1 earns payoff 0 is bounded below by 3

80 , so the
expected payoff conditional on the signal s1 in signal π1 being realized is no more than 77

80 . (it must be
strictly less, but we don’t need that for the argument) This is true for every signal that makes the decision
maker take action a0 or a1 with positive probability. We define

S∗1 =
{

s1 ∈ π1|there is s2 ∈ S2 such that µ (s1∩ s2) ∈
[

1
100

,
1

100
+ k
]
∪
[

99
100
− k,

99
100

]}
,

and, for each signal realization s1 = (ω0×Z0)∪ (ω1×Z1) where Z0,Z1 ⊆ [0,1] let

Pr [s1] = λ (ω0×Z0)
1
2
+λ (ω1×Z1)

1
2

be the ex ante probability for the state/sunspot draw to be in s1. Summing over all signals we thus have
an upper bound of the expected payoff for sender 1 given by

∑
s1∈S∗1

Pr(s1)
77
80

+

1− ∑
s1∈S∗1

Pr [s1]

[ 99
100
− ε

]
<

99
100
− ε

provided that ε < 99
100 −

77
80 . We conclude that no profitable deviation from the trivial partition exists for

sender 1.

4 Concluding Remarks

Whether considering a medical procedure or a potential auto repair, it is typically assumed that asking
for a second opinion will always improve the decision maker’s information. This paper demonstrates
that this is not always correct in a world where the experts have a stake in the decision. If the experts
move simultaneously, signals can be arbitrarily coordinated, and mixed strategies are ruled out, a second
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opinion cannot lead to a loss of information. If any of these assumptions is modified the decision maker
may be worse off by seeking out a second opinion.

We believe that the sequential persuasion model and the case with independent signals deserve further
study. This paper takes a small step towards a characterization of the sequential model by establishing
that a decision maker can avoid a loss of information from adding an expert by asking the new expert
first. However, a more serious study of the design aspects with multiple experts is beyond the scope
of this paper. In the case with independent signals it could be interesting to add more structure to the
payoffs and investigate whether insights diverge from the cheap talk literature.
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A Appendix: Proofs

A.1 Proof of Proposition 1

Proof. Suppose that the sender plays the signal π∗∗. The posterior probabilities relevant for the decision
makers actions are

µ(s0) =
p(s0|ω0)

1
2

p(s0|ω0)
1
2 + p(s0|ω1)

1
2

=
99

100

µ(s1) =
p(s1|ω1)

1
2

p(s1|ω0)
1
2 + p(s1|ω1)

1
2

=
1

100
.

It follows that the optimal response is a0 if s0 is realized and a1 if s1 is realized. Thus, the sender gets
expected utility 99

100 in each state. The only way the sender could be better off would be if the probability
that the decision maker would match the state would increase but this is impossible as it would require
µ(s) > 99

100 or µ(s) < 1
100 for some signal, which would induce the decision maker to pick a3, the least

preferred action. It follows that π∗∗ = {s0,s1} together with σ∗ is an equilibrium. As there are many
other signals generating the same posterior distribution, there are multiple equilibria. However, they are
outcome-equivalent because, to the sender, any signal generating a different distribution of posteriors is
inferior.

A.2 Proof of Proposition 2

Proof. First, full revelation is an equilibrium as no unilateral deviation affects the decision maker’s
belief when each sender posts a signal that is fully revealing by itself. In the rest of the proof we
will establish that if π∗ = (π∗1 ,π

∗
2 ) is an equilibrium, then there can be no pair of signal realizations

s1 ∈ π∗1 ,s2 ∈ π∗2 such that µ (s1∩ s2)∈ (0,1). There are three cases to consider: µ (s1∩ s2)∈
(
0, 1

100 + k
]
,

µ (s1∩ s2)∈
( 1

100 + k, 99
100 − k

)
and µ (s1∩ s2)∈

[ 99
100 − k,1

)
. We will begin with the middle range as this

is the most instructive case:
CASE 1: Suppose there is an equilibrium π∗ = (π∗1 ,π

∗
2 ) such that µ (s1∩ s2) ∈

( 1
100 + k, 99

100 − k
)

for
some s1 ∈ π∗1 ,s2 ∈ π∗2 . We will show that sender 1 has a profitable deviation π ′1 by demonstrating that
s1 can be partitioned into two sets such that the posterior beliefs for the two new signal realizations are
either 1

100 or 99
100 with probability t and 1− t respectively. Hence, these two new signals give sender 1 the

best possible outcome when they are played against sender 2 and nothing else changes. Hence, this is a
profitable deviation. For the details, let

Z0 = {x ∈ [0,1] |(ω0,x) ∈ s1∩ s2}
Z1 = {x ∈ [0,1] |(ω1,x) ∈ s1∩ s2}.
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For i = 0,1 we let
{

ZL
i ,Z

R
i
}

be any partition of Zi satisfying

λ (ZL
0 ) = y0

λ (Z0)

λ (ZR
0 ) = (1− y0)λ (Z0)

λ (ZL
1 ) = y1

λ (Z1)

λ (ZR
1 ) = (1− y1)λ (Z1),

where y0,y1 ∈ (0,1) solve11

µ
(
sL

1 ∩ s2
)

=
µ0y0λ (Z0)

µ0y0λ (Z0)+(1−µ0)y1λ (Z1)
=

y0λ (Z0)

y0λ (Z0)+ y1λ (Z1)
=

1
100

(A1)

µ
(
sR

1 ∩ s2
)

=
(1− y0)λ (Z0)

(1− y0)λ (Z0)+(1− y1)λ (Z1)
=

99
100

.

Consider a deviation for sender 1, π ′1, constructed by removing signal realization s1 and replacing it with
sL

1 ,s
R
1 and sN

1 given by

sL
1 = (ω0,ZL

0 )∪ (ω1,ZL
1 )

sR
1 = (ω0,ZR

0 )∪ (ω1,ZR
1 )

sN
1 = s1\(s1∩ s2) .

Hence, the posterior beliefs are unchanged relative (π∗1 ,π
∗
2 ) for all realizations except s1∩ s2. Instead of

s1∩ s2 the deviation contains two new realizations sL
1 ∩ s2 and sR

1 ∩ s2 and the expected payoff for sender
1 from playing π ′1 against π∗2 is

∑
ω∈{ω0,ω1}

 ∑
(s′1s′2)∈π ′1×π∗2

u1
(
σ
∗ (

µ
(
s′1∩ s′2

))
,ω
)

p
(
s′1∩ s′2|ω

)µ0 (ω) (A2)

= ∑
ω∈{ω0,ω1}

 ∑
(s′1s′2)∈π∗1×π∗2

u1
(
σ
∗ (

µ
(
s′1∩ s′2

))
,ω
)

p
(
s′1∩ s′2|ω

)µ0 (ω)

+ ∑
ω∈{ω0,ω1}

[
∑

K=L,R
u1
(
σ
∗ (

µ
(
sK

1 ∩ s2
))

,ω
)

p
(
sK

1 ∩ s2|ω
)]

µ0 (ω)

− ∑
ω∈{ω0,ω1}

u1 (σ
∗ (µ (s1∩ s2)) ,ω) p(s1∩ s2|ω)µ0 (ω) ,

11The solution is y0 = 99−100µ(s1∩s2)
9800µ(s1∩s2)

and y1 = 9801−9900µ(s1∩s2)
9800[1−µ(s1∩s2)]

. Both expressions equal 0 when evaluated at µ(s1∩ s2) =
99
100 , sender 1 when evaluated at µ(s1∩ s2) =

1
100 , and are strictly in between 0 and 1 for µ(s1∩ s2) ∈

( 1
100 ,

99
100

)
.
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where

∑
ω∈{ω0,ω1}

[
∑

K=L,R
u1
(
σ
∗ (

µ
(
sK

1 ∩ s2
))

,ω
)

p
(
sK

1 ∩ s2|ω
)]

µ0 (ω) (A3)

= (1− y0)λ (Z0)
1
2
+ y1

λ (Z1)
1
2

=
1
2

99
100

[λ (Z0)+λ (Z1)]

>

(
99

100
− ε

)[
1
2

λ (Z0)+
1
2

λ (Z1)

]
≥ ∑

ω∈{ω0,ω1}
u1 (σ

∗ (µ (s1∩ s2)) ,ω) p(s1∩ s2|ω)µ0 (ω) .

The first equality in (A3) uses the fact that the decision maker’s response to
(
sR

1 ,s2
)

is a0 which gives
payoff 1 when the state is ω0 which occurs with probability (1−y0)λ (Z0)

1
2 . Symmetrically, the decision

maker’s response to
(
sL

1 ,s2
)

is a1 which gives payoff 1 when the state is ω1 which occurs with probability
y1λ (Z1)

1
2 . The second equality comes from (A1) and the final inequality holds because µ (s1∩ s2) ∈( 1

100 + k, 99
100 − k

)
. Combining (A2) with (A3), we see that the expected payoff from playing π ′1 is strictly

greater than playing π∗1 .
CASE 2: If µ (s1∩ s2) ∈ (0, 1

100 + k], sender 2 has a profitable deviation π ′2 with s2 partitioned into(
sL

2 ,s
R
2 ,s

N
2
)

given by

sL
1 = (ω1,ZL

1 )

sR
1 = (ω0,Z0)∪ (ω1,ZR

1 )

and sN
1 = s1\(s1∩ s2) where

µ
(
sR

1 ∩ s2
)
=

λ (Z0)

λ (Z0)+λ
(
ZR

1
) = 1

3
− k,

and all other signals are unchanged. The calculations follow case 1 step by step and are left to readers.
CASE 3: Similarly, when µ (s1∩ s2) ∈ [ 99

100 − k,1), sender 2 has a profitable deviation π ′2 with s2

partitioned into
(
sL

2 ,s
R
2 ,s

N
2
)

given by

sL
1 = (ω0,ZL

0 )∪ (ω1,Z1)

sR
1 = (ω0,ZR

0 )

and sN
1 = s1\(s1∩ s2) where

µ
(
sL

1 ∩ s2
)
=

λ (ZL
0 )

λ (Z0L)+λ (Z1)
=

3
5
+ k,
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and all other signals are unchanged. The calculations follow case 1 step by step and are left to readers.
Combining the three cases we have that µ (s1∩ s2) ∈ {0,1} for any pair of potential signal realiza-

tions.

A.3 Proof of Proposition 3

Proof. For any π1 let r (π1) be an optimal response to π1. Partition the signal realizations in π1 into
SA

1 = {s1 ∈ π1|σ∗ (µ (s1)) = a2} and SB
1 = {s1 ∈ π1|σ∗ (µ (s1)) 6= a2}. Let

r (π1) =
(
{s2 (s1)}s1∈SA

1
,
{

sL
2 (s1)

}
s1∈SB

1
,
{

sR
2 (s1)

}
s1∈SB

1

)
,

where s2 (s1) = s1 for each s1 ∈ SA
1 . For s1 ∈ SB

1 there are three distinct cases. First, if s1 = ω0×Z0 ∪
w1×Z1 ∈ π1 is such that µ (s1) ∈ (0, 1

3 − k) let sL
2 (s1) = (ω1,ZL

1 ) and sR
2 (s1) = (ω0×Z0)∪ (ω1×ZR

1 ),

where
{

ZL
1 ,Z

R
1
}

is a partitioning of Z1 satisfying

µ
(
s1∩ sR

2 (s1)
)
=

λ (Z0)

λ (Z0)+λ (ZR
1 )

=
1
3
− k. (A4)

Second, for realizations such that µ (s1) ∈
(1

3 + k, 3
5 − k

)
\
[1

2 − k, 1
2 + k

]
let sL

2 (s1) = (ω0×ZR
0 )∪ (ω1×

ZL
1 ) and sR

2 (s1) = (ω0×ZR
0 )∪ (ω1×ZR

1 ), where
{

ZL
0 ,Z

R
0
}
,
{

ZL
1 ,Z

R
1
}

are partitionings of Z0 and Z1 satis-
fying.

µ
(
s1∩ sL

2 (s1)
)

=
λ (ZL

0 )

λ (ZL
0 )+λ (ZL

1 )
=

1
3

(A5)

µ
(
s1∩ sR

2 (s1)
)

=
λ (ZR

0 )

λ (ZR
0 )+λ (ZR

1 )
=

3
5
.

Third, for realizations µ (s1)∈
(3

5 + k,1
)

let sL
2 (s1) = (ω0×ZR

0 )∪(ω1×Z1) and sR
2 (s1) = (ω0,ZR

0 ) where

µ
(
s1∩ sL

2 (s1)
)
=

λ (ZL
0 )

λ (ZL
0 )+λ (Z1)

=
3
5
+ k. (A6)

We will now argue that r (π1) is an optimal response to π1. To this we will first argue that r (π1) is a
valid partition. Since r (π1) partitions signal realizations one by one, we do so by checking that each s1

is partitioned in a valid way:
CASE 0: For each s1 ∈ SA

1 we have s2 (s1) = s1, which is obviously fine.
CASE 1: For s1 such that µ (s1) ∈ (0, 1

3 − k) we need to check that there exists ZR
1 ⊆ Z1 such that

(A4) is satisfied. But this is obvious as

µ (s1) =
λ (Z0)

λ (Z0)+λ (Z1)
<

1
3
− k
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and the posterior on the left-hand side in (A4) is strictly decreasing in λ (ZL
1 ). Hence, any posterior on

[µ (s1) ,1] can be generated by subsets ZR
1 ⊆ Z1.

CASE 2:
{

ZL
0 ,Z

R
0
}
,
{

ZL
1 ,Z

R
1
}

are valid partitionings of Z0 and Z1. Solving the two equations in (A5)
with the additional equation

λ (Z0)

λ (Z0)+λ (Z1)
= µ (s1) ,

we get a unique solution

λ
(
ZL

0
)

=
3−5µ (s1)

4µ (s1)
λ (Z0)

λ
(
ZL

1
)

=
3−5µ (s1)

2(1−µ (s1))
λ (Z1)

λ
(
ZR

0
)

=

[
1− 3−5µ (s1)

4µ (s1)

]
λ (Z0)

λ
(
ZL

1
)

=

[
1− 3−5µ (s1)

2(1−µ (s1))

]
λ (Z1),

where 3−5µ(s1)
4µ(s1)

∈ [0,1] and 3−5µ(s1)
2(1−µ(s1))

∈ [0,1] for every µ (s1) ∈
[1

3 ,
3
5

]
. Hence, there are valid partitions

of s1 satisfying (A5) for every s1 with µ (s1) =
(1

3 + k, 3
5 − k

)
\
[1

2 − k, 1
2 + k

]
.

CASE 3: Finally, for the case with µ (s1)∈
(3

5 + k,1
)

it is obvious that we can find ZL
0 ⊆ Z0 satisfying

(A6) because the posterior is decreasing in λ
(
ZL

0
)
.

Next, we need to check optimality. In CASE 1 and CASE 3, this is obvious as sender 2 gets a2, the
most preferred action, for sure. For CASE 2, suppose that there is a better response against such a signal.
It is without loss to consider an alternative partitioning of the given signal s1 and leave everything else
the same. Clearly s2 (s1) = s1 is worse than the candidate equilibrium partition as this gives sender 2 the
most preferred outcome with probability 0. In addition, in order for sender 2 to improve on the candidate
equilibrium outcome, she must be able to guarantee the most preferred outcome with a strictly higher
probability. That is, there is a partition

{
sk

2
}K

k=1 of s1 such that

K

∑
k=1

I
(

sk
2

)
Pr
[
sk

2

]
> Pr

(
sR

2 (s1)
)
=

λ (Z0)+λ (ZR
1 )

2
=

λ (Z0)
2
3 −2k

(A7)

where I
(
sk

2
)
= 1 if σ∗

(
µ
(
s1∩ sk

2
))

= a2 and 0 otherwise. Write sk
2 = (ω0×Zk

0)∪ (ω1×Zk
1) and order

the signals in such a way that σ∗
(
µ
(
s1∩ sk

2
))

= a2 for k ∈ {1, ....K∗} It immediately follows that

µ

(
s1∩ sk

2

)
=

λ
(
Zk

0
)

λ
(
Zk

0
)
+λ

(
Zk

1
) ≥ 1

3
− k (A8)
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for each k ∈ {1, ....K∗} . Hence, the left inequality holds as
{

Zk
0
}K

k=1 is a partition of Z0 and the right
inequality comes from (A8). Hence

K

∑
k=1

I
(

sk
2

)
Pr
[
sk

2

]
=

K∗

∑
k=1

Pr
[
sk

2

]
=

K∗

∑
k=1

λ
(
Zk

0
)
+λ

(
Zk

1
)

2
≤

K∗

∑
k=1

λ
(
Zk

0
)

2
3 −2k

≤ λ (Z0)
2
3 −2k

,

where the first inequality comes from (A8) and the second inequality holds because
{

Zk
0
}K

k=1 is a partition
of Z0. Hence, we have a contradiction. The optimality of the response for CASE 4 is proved by a
symmetric argument. We conclude that we have shown that r (π1) is an optimal response given any finite
signal π1.

We note that r (π1) is such that a0 and a1 are never played. Hence, π∗1 is a best response to r (π1) if
and only if σ∗ (s1∩ s2 (s1)) for every signal s2 (s1) ∈ r (π∗1 ), which completes the proof of the first part
of the proposition.

A.4 Proof of Proposition 5

Proof. Sender 2 has no incentive to deviate as the equilibrium outcome is the most preferred action for
sender 2. We thus only need to show that sender 1 has no incentive to deviate. As a2 is the second best
to sender 1, we only need to rule out any profitable deviations that generate decision maker beliefs on
[ 1

100 ,
1

100 + k]∪ [ 99
100 − k, 99

100 ] with positive probability. Hence, if there is a profitable deviation π1, there
must be a signal s1 ∈ π1and s2 ∈ π∗2 = {s21,s22} such that

p(ω0|s1,s2) =
p(s1|ω0)p(s2|ω0)

p(s1|ω0)p(s2|ω0)+ p(s1|ω1)p(s2|ω1)

=
1

1+ p(s1|ω1)p(s2|ω1)
p(s1|ω0)p(s2|ω0)

∈ [
1

100
,

1
100

+ k], (A9)

for some s2 ∈ {s21,s22}. Notice that

p(s2|ω1)

p(s2|ω0)
=

{
2 if s2 = s21
2
3 if s2 = s22.

We need to consider two cases depending on whether s2 is s21 or s22:
CASE I. p(ω0|s1,s21) ∈ [ 1

100 ,
1

100 + k]. Then Equation (A9) implies that

p(s1|ω1)p(s21|ω1)

p(s1|ω0)p(s21|ω0)
= 2

p(s1|ω1)

p(s1|ω0)
∈ [

99−100k
1+100k

,99],
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implying that p(s1|ω1)
p(s1|ω0)

∈ [99−100k
2+200k ,

99
2 ]. Since p(ω0|s1,s21) ∈ [ 1

100 ,
1

100 + k] the decision maker responds

with σ∗ (p(ω0|s1,s21)) = a1 and sender 1’s payoff is 99
100 . However, the unconditional probability that

sender 2 plays s22 is 1
2 and

p(s1|ω1)p(s2|ω1)

p(s1|ω0)p(s2|ω0)
=

2
3

p(s1|ω1)

p(s1|ω0)
.

Simple algebra implies that the posterior

p(ω0|s1,s22) =
1

1+ 2p(s1|ω1)
3p(s1|ω0)

∈ [
1

1+ 99
3

,
1

1+ 99−100k
3+300k

].

Because limk→0 p(ω0|s1,s22) =
1
34 , when k > 0 is small enough, σ∗[p(ω0|s1,s22))] = a3, and sender 1’s

payoff is zero. Hence, sender 1’s expected payoff when s1 is realized is 99
200 , which is smaller than his

equilibrium payoff 99
100 − ε for small ε .

CASE II. s2 = s22. Similarly, Equation (A9) implies that 2
3

p(s1|ω1)
p(s1|ω0)

∈ [99−100k
1+100k ,99], and the decision

maker chooses a1 and sender 1’s payoff is 99
100 . However, with equal probability, s2 = s21, then the

likelihood ratio is 2 p(s1|ω1)
p(s1|ω0)

∈ [297−300k
1+100k ,297], and the posterior is

p(ω0|s1,s21) =
1

1+ 2p(s1|ω1)
p(s1|ω0)

∈ [
1

298
,

1
1+ 297−300k

100k+1

].

Because limk→0 p(ω0|s1,s21) =
1

298 < 1
100 , when k > 0 is small enough, σ∗[p(ω0|s1,s21)] = a3, and

sender 1’s payoff is zero. Hence, sender 1’s expected payoff when s1 is realized is 99
200 , which is smaller

than his equilibrium payoff 99
100 − ε for sufficiently small ε .

In sum, conditional on any s1 such that p(ω0|s1,s2) ∈ [ 1
100 ,

1
100 + k] for some s2 ∈ {s21,s21}, the

posterior must be such that a3 is chosen for the other signal played by sender 2. The expected payoff
to sender 1 conditional on s1 is thus at most 99

200 < 99
100 − ε for ε small enough. Similarly, one can show

that there is no profitable deviation for sender 1 such that p(ω0|s1,s2) ∈ [ 99
100 − k, 99

100 ] with positive
probability. Hence, the strategy profile specified in the Proposition is an equilibrium. Recall that π∗2 =

(s21,s22) is a garbling of the single-sender equilibrium signal π1 = (s10,s11) if

p(s21|ω0) = g(s21,s10) p(s10|ω0)+g(s21,s11) p(s11|ω0)

p(s22|ω0) = (1−g(s22,s10)) p(s10|ω0)+(1−g(s21,s11)) p(s11|ω0)

for g(s21,s10) ∈ [0,1] ,g(s21,s11) ∈ [0,1] with either 0 < g(s21,s10) < 1 or 0 < g(s21,s11) < 1. As
p(s21|ω0)=

1
4 , p(s21|ω1)=

1
2 , p(s10|ω0)=

99
100 , and p(s11|ω0)=

1
100 we have that (g(s21,s10) ,g(s21,s11))

must solve
1
4

= g(s21,s10)
99

100
+g(s21,s11)

1
100

1
2

= (1−g(s22,s10))
99
100

+(1−g(s21,s11))
1

100
,
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which has solution (g(s21,s10) ,g(s21,s11)) =
( 97

392 ,
197
392

)
. Hence, π∗2 = (s21,s22) is a garbling of π1 =

(s10,s11).

A.5 Proof of Lemma 2

The proof of Lemma 2 consists of many cases.

Lemma A1. Suppose that there exists J,K such that µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sK

22
)
∈
[ 1

100 ,
2

100

]
.

Then σ∗
(
µ
(
s1∩ sJK

22
))

= a3 provided that k < 2
101 −

1
100 .

Proof. If µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sK

22
)
∈
[ 1

100 ,
2

100

]
, then

λ

((
1
2
,1
]
∩Z1

)
1

99
≤ λ

(
IJ ∩Z0

)
≤ λ

((
1
2
,1
]
∩Z1

)
2

98
(A10)

λ

((
1
2
,1
]
∩Z1

)
1

99
≤ λ

(
IK ∩Z0

)
≥ λ

((
1
2
,1
]
∩Z1

)
2

98
.

Hence, since IJ and IK are disjoint and since f (x,y) = x
x+y is increasing in x provided that both x and y

are strictly positive

µ
(
s1∩ sJK

22
)

=
λ
(
IJ ∪ IK ∩Z0

)
λ (IJ ∪ IK ∩Z0)+λ

((1
2 ,1
]
∩Z1

) (A11)

=
λ
(
IJ ∩Z0

)
+λ

(
IK ∩Z0

)
λ (IJ ∩Z0)+λ (IK ∩Z0)+λ

((1
2 ,1
]
∩Z1

)
∈

[
2λ
((1

2 ,1
]
∩Z1

) 1
99

2λ
((1

2 ,1
]
∩Z1

) 1
99 +λ

((1
2 ,1
]
∩Z1

) , 2λ
((1

2 ,1
]
∩Z1

) 2
98

2λ
((1

2 ,1
]
∩Z1

) 2
98 +λ

((1
2 ,1
]
∩Z1

)]

=

[
2
99

2
99 +1

,
4

98
4
98 +1

]
=

[
2

101
,

2
51

]
,

which proves the claim.

Lemma A2. Suppose that there exists J,K such that µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sJ

22
)
∈
[ 49

149 ,
50

149

]
and that k <

1
99+

49
100

1
99+

49
100+1

− 1
3 . Then σ∗

(
µ
(
s1∩ sJK

22
))

= a3.

Proof. If µ
(
s1∩ sJ

22
)
≥ 1

100 and µ
(
s1∩ sK

22
)
≥ 49

149 then λ
(
IJ ∩Z0

)
≥ λ

((1
2 ,1
]
∩Z1

) 1
99 and λ

(
IK ∩Z0

)
≥

λ
((1

2 ,1
]
∩Z1

) 49
100 , and

µ
(
s1∩ sJK

22
)
≥

1
99 +

49
100

1
99 +

49
100 +1

>
1

100 +
49
100

1
100 +

49
100 +1

=
1
3
.
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If µ
(
s1∩ sJ

22
)
≤ 2

100 and µ
(
s1∩ sK

22
)
≤ 50

149 then λ
(
IJ ∩Z0

)
≤ λ

((1
2 ,1
]
∩Z1

) 2
98 and λ

(
IK ∩Z0

)
≤

λ
((1

2 ,1
]
∩Z1

) 50
99 , so that

µ
(
s1∩ sJK

22
)
≤

2
98 +

50
99

2
98 +

50
99 +1

<
52

150
=

26
75

,

so if k < 1
3 −

1
99+

49
100

1
99+

49
100+1

we have that 1
3 + k < µ

(
s1∩ sJK

22
)
< 1

2 − k, implying that σ∗
(
µ
(
s1∩ sJK

22
))

= a3.

Lemma A3. Suppose that there exists J,K such that µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sJ

22
)
∈
[199

399 ,
201
399

]
and that k <

1
99+

199
200

1
99+

199
200+1

− 1
2 . Then σ∗

(
µ
(
s1∩ sJK

22
))

= a3.

Proof. If µ
(
s1∩ sJ

22
)
≥ 1

100 and µ
(
s1∩ sK

22
)
≥ 199

399 then λ
(
IJ ∩Z0

)
≥ λ

((1
2 ,1
]
∩Z1

) 1
99 and λ

(
IK ∩Z0

)
≥

λ
((1

2 ,1
]
∩Z1

) 199
200 . Hence, we have that

µ
(
s1∩ sJK

22
)
=

1
99 +

199
200

1
99 +

199
200 +1

>
1

100 +
199
200

1
100 +

199
200 +1

=
201
401

.

Moreover, if
(
s1∩ sJ

22
)
≤ 2

100 and µ
(
s1∩ sK

22
)
≤ 201

399 then λ
(
IJ ∩Z0

)
≤ λ

((1
2 ,1
]
∩Z1

) 2
98 and λ

(
IK ∩Z0

)
≤

λ
((1

2 ,1
]
∩Z1

) 201
198 , so that

µ
(
s1∩ sJK

22
)
≤

2
98 +

201
198

2
98 +

201
198 +1

<
55

100
,

which implies that 1
2 +k < µ

(
s1∩ sJK

22
)
< 3

5−k under the condition that k <
1

99+
199
200

1
99+

199
200+1

− 1
2 , implying that

σ∗
(
µ
(
s1∩ sJK

22
))

= a3.

Lemma A4. Suppose that there exists J,K such that µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sJ

22
)
∈
[239

399 ,
240
399

]
.

Then σ∗
(
µ
(
s1∩ sJK

22
))

= a3

Proof. If µ
(
s1∩ sJ

22
)
≥ 1

100 and µ
(
s1∩ sK

22
)
≥ 239

399 then λ
(
IJ ∩Z0

)
≥ λ

((1
2 ,1
]
∩Z1

) 1
99 and λ

(
IK ∩Z0

)
≥

λ
((1

2 ,1
]
∩Z1

) 239
160 then

µ
(
s1∩ sJK

22
)
=

1
99 +

239
160

1
99 +

239
160 +1

>
1

160 +
239
160

1
160 +

239
160 +1

=
3
5
.

If µ
(
s1∩ sJ

22
)
≤ 2

100 and µ
(
s1∩ sK

22
)
≤ 240

399 then λ
(
IJ ∩Z0

)
≤ λ

((1
2 ,1
]
∩Z1

) 2
28 and λ

(
IK ∩Z0

)
≤

λ
((1

2 ,1
]
∩Z1

) 240
159 and

µ
(
s1∩ sJK

22
)
≤

2
98 +

239
159

2
98 +

239
159 +1

<
9

10
,

implying that 3
5 + k < µ

(
s1∩ sJK

22
)
< 99

100 − k under the condition that k <
1
99+

239
160

1
99+

239
160+1

− 3
5 , implying that

σ∗
(
µ
(
s1∩ sJK

22
))

= a3.
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Lemma A5. Suppose that there exists J,K such that µ
(
s1∩ sJ

22
)
≥ 50

51 and µ
(
s1∩ sK

22
)
≥ 50

51 . Then
σ∗
(
µ
(
s1∩ sJK

22
))

= a3

Proof. If µ
(
s1∩ sJ

22
)
≥ 50

51 and µ
(
s1∩ sK

22
)
≥ 50

51 then λ
(
IJ ∩Z0

)
≥ λ

((1
2 ,1
]
∩Z1

)
50 and λ

(
IK ∩Z0

)
≥

λ
((1

2 ,1
]
∩Z1

)
50, and

µ
(
s1∩ sJK

22
)
≥ 100

100+1
=

100
101

>
99
100

,

implying that σ∗
(
µ
(
s1∩ sJK

22
))

= a3.

Lemma A6. Suppose that there exists J,K such that µ
(
s1∩ sJ

22
)
≥ 395

400 and µ
(
s1∩ sK

22
)
≥ 1

4 . Then
σ∗
(
µ
(
s1∩ sJK

22
))

= a3

Proof. If µ
(
s1∩ sJ

22
)
≥ 197

200 and µ
(
s1∩ sK

22
)
≥ 1

4 then λ
(
IJ ∩Z0

)
≥ λ

((1
2 ,1
]
∩Z1

) 395
4 and λ

(
IK ∩Z0

)
≥

λ
((1

2 ,1
]
∩Z1

) 1
3 , so that

µ
(
s1∩ sJK

22
)
≥

395
4 + 1

3
395

4 + 1
3 +1

=
1189
1201

>
99

100
.

Lemma A7. Suppose that there exists J,K such that µ
(
s1∩ sJK

22
)
≤ 199

10099 and µ
(
s1∩ sJ

22
)
≥ 1

100 . Then
σ∗
(
µ
(
s1∩ sK

22
))

= a3

Proof. If µ
(
s1∩ sJK

22
)
≤ 199

10099 and µ
(
s1∩ sJ

22
)
≥ 1

100

λ
(
IJ ∪ IK ∩Z0

)
= λ

(
IJ ∩Z0

)
+λ

(
IK ∩Z0

)
≤ λ

((
1
2
,1
]
∩Z1

)
199
9900

(A12)

λ
(
IJ ∩Z0

)
≥ λ

((
1
2
,1
]
∩Z1

)
1
99

,

it follows that

λ
(
IK ∩Z0

)
≤ λ

((
1
2
,1
]
∩Z1

)
199

9900
−λ

(
IJ ∩Z0

)
≤ λ

((
1
2
,1
]
∩Z1

)[
199

9900
− 1

99

]
(A13)

= λ

((
1
2
,1
]
∩Z1

)
1

100

Hence,

µ
(
s1∩ sK

22
)
=

λ
(
IK ∩Z0

)
λ (IK ∩Z0)+λ

((1
2 ,1
]
∩Z1

) ≤ 1
100

1
100 +1

=
1

101
<

1
100

, (A14)

implying that σ∗
(
µ
(
s1∩ sK

22
))

= a3.
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Lemma A8. Suppose that there exists J,K such that µ
(
s1∩ sJK

22
)
≤ 99

100 and µ
(
s1∩ sJ

22
)
≥ 9899

9999 . Then
σ∗
(
µ
(
s1∩ sK

22
))

= a3

Proof. If µ
(
s1∩ sJK

22
)
≤ 99

100 and µ
(
s1∩ sJ

22
)
≥ 9899

9999 we have that λ
(
IJ ∩Z0

)
+λ

(
IK ∩Z0

)
≤ λ

((1
2 ,1
]
∩Z1

)
99

and µ
(
IJ ∩Z0

)
≥ λ

((1
2 ,1
]
∩Z1

) 9899
100 which implies that

λ
(
IK ∩Z0

)
≤ λ

((
1
2
,1
]
∩Z1

)
99−λ

(
IJ ∩Z0

)
≤ λ

((
1
2
,1
]
∩Z1

)[
99− 9899

100

]
= λ

((
1
2
,1
]
∩Z1

)
1

100

Hence,

µ
(
s1∩ sK

22
)
=

λ
(
IK ∩Z0

)
λ (IK ∩Z0)+λ

((1
2 ,1
]
∩Z1

) ≤ 1
100

1
100 +1

=
1

101
<

1
100

,

so that σ∗
(
µ
(
s1∩ sK

22
))

= a3.

Lemma A9. Suppose that there exists J,K such that µ
(
s1∩ sJK

22
)
≥ 98

99 and µ
(
s1∩ sJ

22
)
≤ 3

4 . Then
µ
(
s1∩ sK

22
)
≥ 95

96

Proof. If µ
(
s1∩ sJK

22
)
≥ 98

99 and µ
(
s1∩ sJ

22
)
≤ 3

4

λ
(
IJ ∪ IK ∩Z0

)
= λ

(
IJ ∩Z0

)
+λ

(
IK ∩Z0

)
≥ λ

((
1
2
,1
]
∩Z1

)
98 (A15)

λ
(
IJ ∩Z0

)
≤ λ

((
1
2
,1
]
∩Z1

)
3,

it follows that

λ
(
IK ∩Z0

)
≥ λ

((
1
2
,1
]
∩Z1

)
98−λ

(
IJ ∩Z0

)
≥ λ

((
1
2
,1
]
∩Z1

)
95

Hence,

µ
(
s1∩ sK

22
)
=

λ
(
IK ∩Z0

)
λ (IK ∩Z0)+λ

((1
2 ,1
]
∩Z1

) ≥ 95
96

. (A16)

Lemma A10. There exists k∗ > 0 such that if k ≤ k∗ and µ
(
s1∩ sJ

21
)
∈
[ 99

100 − k, 99
100

]
, then there is at

least one L such that σ∗
(
µ
(
s1∩ sJL

21
))

= a3.
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Proof. Without loss let λ
(
IK ∩Z0

)
≤ λ

(
IL∩Z0

)
≤ λ

(
IM ∩Z0

)
µ
(
s1∩ sJ

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IL∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≥ 98
99

⇒ λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+λ

(
IM ∩Z0

)
≥ 98λ

[
Z1∩

[
0,

1
2

]]
,

which implies that

µ
(
s1∩ sJK

21
)
≥ µ

(
s1∩ sJL

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]]
≥

λ
(
IM ∩Z0

)
λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]]
≥

1
3

[
λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+λ

(
IM ∩Z0

)]
1
3 [λ (IK ∩Z0)+λ (IL∩Z0)+λ (IM ∩Z0)]+λ

[
Z1∩

[
0, 1

2

]]
≥ 98

101

Hence, either σ∗
(
µ
(
s1∩ sJL

21
))

= a3 or

µ
(
s1∩ sJK

21
)

=
λ
(
IL∩Z0

)
+λ

(
IM ∩Z0

)
λ (IL∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ∈ [ 99
100
− k,

99
100

]
µ
(
s1∩ sJL

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ∈ [ 99
100
− k,

99
100

]
In addition a necessary condition for σ∗

(
µ
(
s1∩ sJM

21
))
6= a3 is that

µ
(
s1∩ sJM

21
)

=
λ
(
IL∩Z0

)
+λ

(
IK ∩Z0

)
λ (IL∩Z0)+λ (IK ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≥ 1
100

⇒
λ
(
IL∩Z0

)
+λ

(
IK ∩Z0

)
≥ 1

99
λ

[
Z1∩

[
0,

1
2

]]
,

which implies that

λ
(
IL∩Z0

)
≥ 1

198
λ

[
Z1∩

[
0,

1
2

]]
.
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Together

µ
(
s1∩ sJL

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≥ 99
100
− k

λ
(
IK ∩Z0

)
+ 1

198λ
[
Z1∩

[
0, 1

2

]]
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+

1
198λ

[
Z1∩

[
0, 1

2

]]
+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]]
≤

λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IL∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]]
= µ

(
s1∩ sJ

21
)
≤ 99

100
.

For k small enough the inequalities

λ
(
IK ∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≥ 99
100
− k

λ
(
IK ∩Z0

)
+ 1

198λ
[
Z1∩

[
0, 1

2

]]
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+

1
198λ

[
Z1∩

[
0, 1

2

]]
+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≤ 99
100

cannot hold at the same time, which completes the proof.

Lemma A11. Suppose that there exists J such that µ
(
s1∩ sJ

21
)
≤ 3

201 . Then there exists K 6= J such that
µ
(
s1∩ sJK

21
)
< 1

100 .

Proof. Without loss of generality relabel the intervals so that λ
(
IA∩Z0

)
≤ λ

(
IB∩Z0

)
≤ λ

(
IC∩Z0

)
≤

λ
(
ID∩Z0

)
and note that

µ
(
s1∩ sD

21
)
=

λ
(
Z0∩ IA)+λ

(
Z0∩ IB)+λ

(
Z0∩ IC)

λ (Z0∩ IA)+λ (Z0∩ IB)+λ (Z0∩ IC)+λ
[
Z1∩

[
0, 1

2

]] ≤ µ
(
s1∩ sD

21
)

for J ∈ {A,B,C} . Hence, µ
(
s1∩ sD

21
)
≤ 3

202 implying that

λ

(
Z0∩ IA

)
+λ

(
Z0∩ IB)+λ

(
Z0∩ IC

)
≤ 3

199
λ

[
Z1∩

[
0,

1
2

]]
We also have that

λ

(
Z0∩ IA

)
+λ

(
Z0∩ IB)≤ 2

3

[
λ

(
Z0∩ IA

)
+λ

(
Z0∩ IB)+λ

(
Z0∩ IC

)]
,

which implies that

µ

(
s1∩ sCD

21

)
=

λ
(
Z0∩ [0,1]\

(
IC∪ ID))

λ (Z0∩ [0,1]\(IC∪ ID))+λ
[
Z1∩

[
0, 1

2

]]
=

λ
(
Z0∩ IA)+λ

(
Z0∩ IB)

λ (Z0∩ IA)+λ (Z0∩ IB)+λ
[
Z1∩

[
0, 1

2

]] ≤ 2
3

3
199

2
3

3
199 +1

=
2

201
<

1
100

.
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Lemma A12. There exists k∗ > 0 such that:

1. if k≤ k∗ and there exists J,K such that µ
(
s1∩ sJK

21
)
∈
[ 1

100 ,
1

100 + k
]

and µ
(
s1∩ sJ

21
)
∈
[1

3 − k, 1
3 + k

]
,

then there exists some L such that σ∗
(
µ
(
s1∩ sJL

21
))

= a3;

2. if k≤ k∗ and there exists J,K such that µ
(
s1∩ sJK

21
)
∈
[ 1

100 ,
1

100 + k
]

and µ
(
s1∩ sJ

21
)
∈
[1

2 − k, 1
2 + k

]
,

then there exists some L such that σ∗
(
µ
(
s1∩ sJL

21
))

= a3;

3. if k≤ k∗ and there exists J,K such that µ
(
s1∩ sJK

21
)
∈
[ 1

100 ,
1

100 + k
]

and µ
(
s1∩ sJ

21
)
∈
[3

5 − k, 3
5 + k

]
,

then there exists some L such that σ∗
(
µ
(
s1∩ sJL

21
))

= a3

4. if k≤ k∗ and there exists J,K such that µ
(
s1∩ sJK

21
)
∈
[ 1

100 ,
1

100 + k
]

and µ
(
s1∩ sJ

21
)
∈
[ 99

100 − k, 99
100

]
,

then there exists some L such that σ∗
(
µ
(
s1∩ sJL

21
))

= a3

Proof. Assume that there exists J,K such that µ
(
s1∩ sJK

21
)
∈
[ 1

100 ,
1

100 + k
]

and µ
(
s1∩ sJ

21
)
∈
[1

3 − k, 1
3 +3

]
and that k ≤ 1

99 −
1

100 so that

µ
(
s1∩ sJK

21
)

=
λ
(
IL∩Z0

)
+λ

(
IM ∩Z0

)
λ (IL∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≤ 1
99

⇒ λ
(
IL∩Z0

)
+λ

(
IM ∩Z0

)
≤ 1

98
λ

[
Z1∩

[
0,

1
2

]]
and also let k ≤ 1

3 −
48

147 so that

µ
(
s1∩ sJ

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IL∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≥ 48
147

⇒ λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+λ

(
IM ∩Z0

)
≥ 48

99
λ

[
Z1∩

[
0,

1
2

]]
Combined, these inequalities imply that

λ
(
IK ∩Z0

)
≥ 48

99
λ

[
Z1∩

[
0,

1
2

]]
− 1

98
λ

[
Z1∩

[
0,

1
2

]]
>

47
99

λ

[
Z1∩

[
0,

1
2

]]
.

We conclude that

µ
(
s1∩ sJM

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
λ (IK ∩Z0)+λ (IL∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ∈ [ 47
147

,
49
99 +

1
98

49
99 +

1
98 +1

]

µ
(
s1∩ sJL

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ∈ [ 47
147

,
49
99 +

1
98

49
99 +

1
98 +1

]
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Hence, in order for σ∗
(
µ
(
s1∩ sJ

21
))
6= a3, σ∗(µ

(
s1∩ sJM

22
)
) 6= a3 and σ∗(µ

(
s1∩ sJL

22
)
) 6= a3 it must be

that

µ
(
s1∩ sJ

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IL∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ∈ [1
3
− k,

1
3
+ k
]

µ
(
s1∩ sJM

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
λ (IK ∩Z0)+λ (IL∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ∈ [1
3
− k,

1
3
+ k
]

µ
(
s1∩ sJL

21
)

=
λ
(
IK ∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ∈ [1
3
− k,

1
3
+ k
]

In addition

µ
(
s1∩ sJK

21
)

=
λ
(
IL∩Z0

)
+λ

(
IM ∩Z0

)
λ (IL∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≥ 1
100

⇒ λ
(
IL∩Z0

)
+λ

(
IM ∩Z0

)
≥ 1

99
λ

[
Z1∩

[
0,

1
2

]]
,

Hence, we may label the intervals so that λ
(
IL∩Z0

)
≥ 1

198λ
[
Z1∩

[
0, 1

2

]]
implying that

λ
(
IK ∩Z0

)
+λ

(
IL∩Z0

)
+ 1

198λ
[
Z1∩

[
0, 1

2

]]
λ (IK ∩Z0)+λ (IL∩Z0)+

1
198λ

[
Z1∩

[
0, 1

2

]]
+λ

[
Z1∩

[
0, 1

2

]] ≤ µ
(
s1∩ sJ

21
)
≤ 1

3
+ k

µ
(
s1∩ sJL

21
)
=

λ
(
IK ∩Z0

)
+λ

(
IM ∩Z0

)
λ (IK ∩Z0)+λ (IM ∩Z0)+λ

[
Z1∩

[
0, 1

2

]] ≥ 1
3
− k.

For k is small enough these two inequalities cannot be simultaneously satisfied, which proves that there
exists some k∗1 > 0 such that part 1 holds if k ≤ k∗1. Parts 2,3,and 4 are proved by arguments that follow
part 1 step by step and these argument generate bounds k∗2 > 0,k∗3 > 0 and k∗4 > 0. The proof is then
completed by picking k∗ = min

{
k∗1,k

∗
2,k
∗
3,k
∗
4
}

.

We can now prove Lemma 2:

Proof. For contradiction, suppose that there is some s1 such that σ∗(µ (s1∩ s2))= a0 or σ∗ (µ (s1∩ s2))=

a1 for some s2 ∈ S2 but no exists s′2 ∈ S2 such that σ∗(µ (s1∩ s′2)) = a3.

A.5.1 Signals
(
sA

22,s
B
22,s

C
22,s

D
22
)

:

Suppose that µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
1

100 + k
]

and that k is smaller than the bounds in each Lemma.
Lemma A1 establishes that if µ

(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sK

22
)
∈
[ 1

100 ,
2

100

]
, then σ∗

(
µ
(
s1∩ sJK

22
))

=

a3 Lemma A2 establishes that if µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sJ

22
)
∈
[ 49

149 ,
50

149

]
then σ∗

(
µ
(
s1∩ sJK

22
))

=

a3. Lemma A3 establishes that if µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sJ

22
)
∈
[199

399 ,
201
399

]
then σ∗

(
µ
(
s1∩ sJK

22
))

=

36



a3. Lemma A4 establishes that if µ
(
s1∩ sJ

22
)
∈
[ 1

100 ,
2

100

]
and µ

(
s1∩ sJ

22
)
∈
[239

399 ,
240
399

]
then σ∗

(
µ
(
s1∩ sJK

22
))

=

a3. For k small enough
[ 1

100 ,
1

100 + k
]
⊆
[ 1

100 ,
2

100

]
,
[1

3 − k, 1
3 + k

]
⊆
[ 49

149 ,
50
149

]
,
[1

2 − k, 1
2 + k

]
⊆
[199

399 ,
201
399

]
and ,

[3
5 − k, 3

5 + k
]
⊆
[239

399 ,
240
399

]
. We thus conclude:

Case 1. If σ∗
(
µ
(
s1∩ sJ

22
))

= a1 and σ∗
(
µ
(
s1∩ sK

22
))
∈ {a1,a2} then σ∗

(
µ
(
s1∩ sJK

22
))

= a3.

Next, Lemma A5 shows that if µ
(
s1∩ sJ

22
)
≥ 50

51 and µ
(
s1∩ sK

22
)
≥ 50

51 then σ∗
(
µ
(
s1∩ sJK

22
))

= a3

and Lemma A6 that µ
(
s1∩ sJ

22
)
≥ 395

400 and µ
(
s1∩ sK

22
)
≥ 1

4 then σ∗
(
µ
(
s1∩ sJK

22
))

= a3. For k < 99
100 −

395
400 this implies that:

Case 2. If σ∗
(
µ
(
s1∩ sJ

22
))

= a0 and σ∗
(
µ
(
s1∩ sK

22
))
∈ {a0,a2} then σ∗

(
µ
(
s1∩ sJK

22
))

= a3.

Now, suppose that σ∗
(
µ
(
s1∩ sJ

22
))

= a0 and that there exists no K 6= J such that µ
(
s1∩ sK

22
)
≥ 1

4 .

Then, either there is some K such that µ
(
s1∩ sK

22
)
∈
( 1

100 + k, 1
4

)
in which case σ∗(µ

(
s1∩ sK

22
)
) = a3

or µ
(
s1∩ sK

22
)
∈
[ 1

100 ,
1

100 + k
]

for each K 6= J. But then, Lemma A1 impliesσ∗(µ
(
s1∩ sKL

22
)
) = a3

for every K,L 6= J Combining these cases we have now proved that if there exists some J such that
σ∗(µ

(
s1∩ sJ

22
)
)∈{a0,a1}, then there exist some K such that σ∗(µ

(
s1∩ sJK

22
)
)= a3 or σ∗(µ

(
s1∩ sJK

22
)
)=

a3.

A.5.2 Signals
(
sAB

22 ,s
AC
22 ,s

AD
22 ,s

BC
22 ,s

BD
22 ,s

CD
22
)

Next, from Lemma A7 we have that if µ
(
s1∩ sJK

22
)
≤ 199

10099 and µ
(
s1∩ sJ

22
)
≥ 1

100 then σ∗(µ
(
s1∩ sJK

22
)
)=

a3.Hence (provided that k < 199
10099 −

1
100 ) it follows that if σ∗(µ

(
s1∩ sJK

22
)
) = a1 and σ∗(µ

(
s1∩ sJ

22
)
) 6=

a3, then σ∗(µ
(
s1∩ sK

22
)
) = a3. Similarly, from Lemma A8, if µ

(
s1∩ sJK

22
)
≤ 99

100 and µ
(
s1∩ sJ

22
)
≥

9899
9999 Then σ∗(µ

(
s1∩ sK

22
)
) = a3, implying that σ∗(µ

(
s1∩ sJK

22
)
) = a0 and σ∗(µ

(
s1∩ sJ

22
)
) = a0, then

σ∗(µ
(
s1∩ sK

22
)
)= a3 under the assumption that k< 99

100−
9899
9999 . Finally, Lemma A9 states that if µ

(
s1∩ sJK

22
)
≥

98
99 and µ

(
s1∩ sJ

22
)
≤ 3

4 then µ
(
s1∩ sK

22
)
≥ 95

96 which (together with Lemma A8) implies that if σ∗(µ
(
s1∩ sJK

22
)
)=

a0 and σ∗(µ
(
s1∩ sJ

22
)
) 6= a3, then σ∗(µ

(
s1∩ sK

22
)
) = a3 (again under the condition that k < 99

100−
9899
9999).

Combined we have that if σ∗(µ
(
s1∩ sJK

22
)
) ∈ {a0,a1} for some JK then σ∗(µ

(
s1∩ sK

22
)
= a3 for some

K ∈ {A,B,C,D} .

A.5.3 Signals
(
sA

21,s
B
21,s

C
21,s

D
21
)

Lemma A10 establishes that for k small enough, if µ
(
s1∩ sJ

21
)
∈
[ 99

100 − k, 99
100

]
, then there is at least

one L such that σ∗
(
µ
(
s1∩ sJL

21
))

= a3. Hence, if σ∗
(
µ
(
s1∩ sJ

21
))

= a0 it follows that σ∗
(
µ
(
s1∩ sJL

21
))

=

a3 for some L. Lemma A11 show that if µ
(
s1∩ sJ

21
)
≤ 3

201 then there exists K 6= J such that µ
(
s1∩ sJK

21
)
<

1
100 , which implies that if σ∗

(
µ
(
s1∩ sJ

21
))

= a0 then σ∗
(
µ
(
s1∩ sJK

21
))

= a3 for some K. Hence, if
σ∗
(
µ
(
s1∩ sJ

21
))
∈ {a0,a1} there is at least one JK such that σ∗

(
µ
(
s1∩ sJK

21
))

= a3.
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A.5.4 Signals
(
sAB

21 ,s
AC
21 ,s

AD
21 ,s

BC
21 ,s

BD
21 ,s

CD
21
)

Combining the cases in Lemma A12 we have that if µ
(
s1∩ sJK

21
)
∈
[ 1

100 ,
1

100 + k
]

and σ∗
(
µs1∩ sJ

21
)
6=

a3, then L 6= J,K such that σ∗
(
µ
(
s1∩ sJL

21
))

= a3. If µ
(
s1∩ sJK

21
)
∈
[ 99

100 − k, 99
100

]
then , since µ

(
s1∩ sJ

21
)
≥

µ
(
s1∩ sJK

21
)

either µ
(
s1∩ sJ

21
)
> 99

100 in which case σ∗
(
µ
(
s1∩ sJ

21
))

= a3.or µ
(
s1∩ sJ

21
)
∈
[ 99

100 − k, 99
100

]
in which case we know from above that there exists L such that σ∗

(
µ
(
s1∩ sJL

21
))

= a3.
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