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1 Introduction

Classically game theoretic solution concepts modeled players as subjective expected utility (SEU) players in
the sense of Savage (1954) or Anscombe and Aumann (1963) (AA). Take for example the well-known concepts
Nash equilibrium (Nash, 1951) and rationalizability (Bernheim, 1984; Pearce, 1984). The framework of SEU
assume that the agents’ preferences satisfy certain standard axioms, which makes it possible to represent them
by a utility function and a single subjective probability distribution over the states of the world. Ellsberg’s
(1961) famous paradox, however, suggests that especially the independence axiom used in AA might be too
strong since it rules out hedging, a quite important phenomenon in economics.

Hence, Schmeidler (1989) and Gilboa and Schmeidler (1989) suggested frameworks with weaker versions
of the independence axiom. These lead in the case of Schmeidler (1989) to Choquet expected utility and in
Gilboa and Schmeidler (1989) to maximin expected utility (MMEU). MMEU is a very interesting framework,
since it allows for multiple subjective beliefs instead of just a single one. To obtain MMEU, Gilboa and
Schmeidler (1989) add another axiom called uncertainty aversion. Together with their weakened independence
axiom and the classical axioms of AA, agents act as if they minimize their SEU over convex and compact
sets of beliefs. Thus, MMEU allows us to model agents that have multiple beliefs instead of only one.

There are several reasons besides hedging why multiple beliefs might be of interest. For example, where
should one single belief come from? Generally, people have great difficulties to give an exact percentage of
how likely a certain event is. Naming an interval on the other hand seems much more natural. Consider
forecasting for example. Since point estimates are neither very informative nor very likely to occur, forecasts
are usually stated in confidence intervals, i.e. there is a 95 percent chance that a certain outcome will be in
a given interval.

Given the fact that MMEU can account for the phenomenon of hedging and that considering multiple
beliefs of agents seems to be natural, we suggest a game theoretic solution concept that describes how MMEU
players would act in a strategic setting. Some works such as for example Eichberger and Kelsey (2000) have
already analyzed equilibrium based solution concepts with MMEU players. Here, however, we are modeling
games as Bayesian decision problems in the tradition of Tan and Werlang (1988) using an epistemic model.

We introduce an epistemic model that models hierarchies of ambiguous belief based on Ahn (2007). Using
the epistemic model, we define maximin-rationality and common belief in maximin-rationality (CBMMR) to
formulate a model that generalizes common belief in rationality (CBR) (Tan and Werlang, 1988). Players
who believe in CBR can simply be accommodated by only allowing them to have belief hierarchies with single
beliefs. In this case the requirements of CBMMR reduce exactly to those of CBR. It is also possible that
a CBMMR player believes that his opponent only has a belief hierarchy consisting of single beliefs. Hence
the player has a belief about his opponent that is as if he believes that his opponent only believes in CBR.
Furthermore, there are strong similarities between the to concept of CBR and CBMMR.

First of all, it is important to note that randomized choices play a special role in the maximin setting
because contrary to CBR, randomized choices can be strictly better than pure choices under CBMMR.3 Our
first main result shows that maximin-rational randomized choices are exactly those randomized choices that
are not strictly dominated by another randomized choice. Interestingly, this characterization is very close

1I am grateful to Andrés Perea and Elias Tsakas for their valuable feedback.
2Maastricht University, EpiCenter & Department of Quantitative Economics; P.O. Box 616, 6200 MD Maastricht, The

Netherlands ; c.nauerz@maastrichtuniversity.nl
3See the discussion Example 1 in the next section.
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to CBR, where rational choices are not strictly dominated by a randomized choice. But not only is their
characterization very similar, we also find that all choices in the support of a maximin-rational randomized
choice are not strictly dominated by a randomized choice. Therefore, they are optimal under CBR, which
implies that CBR and common belief in maximin-rationality are behaviorally equivalent. In any one-shot
setting one cannot tell an CBR and a CBMMR player apart due to their behavior. Note also that this is true
for any non-strategic decision problem. So whenever we only observe a single choice of a player, we cannot
tell if he is an CBR or an CBMMR type. This is not only of interest for theorists but also for behavioral
economists who aim at identifying the two types in the lab.

This also relates to the fact that for any choice that is maximin-rational for a set of beliefs we can find a
single belief in this set for which the choice is rational. The single belief for which a player’s maximin-rational
choice is optimal can be found by assuming that the player believes that his opponents jointly try to minimize
his maximum SEU.

Finally, we show that the algorithm of iterated elimination of strictly dominated randomized choices yields
exactly the choices that a player can make under CBMMR.4

In the following, we will first introduce the epistemic model and define common belief in maximin-
rationality. With these two ingredients we can characterize the randomized choices that players can make
under common belief in maximin-rationality, which then gives us the means to introduce an algorithm to find
these randomized choices. The proofs supporting these results can be found in the appendix of this paper.
Finally we discuss an example.

2 Epistemic Model

Before introducing the formal model we want to discuss some of the main differences between MMEU players
and SEU players. In Example 1 the two choices b and c are rational for a SEU maximizing Row Player.
Choice b yields the highest SEU for any belief p(d) ∈ [ 12 , 1], and c for any belief p(d) ∈ [0, 12 ] about the
Column Player ’s choice d, where by p(d) we mean the Row Player ’s belief about the Column Player ’s choice
d. Hence, there is no belief for which choice a yields the highest utility, and therefore choice a can never be
an optimal choice for a SEU player.

Column Player

d e

Row Player

a 1 1

b 3 0

c 0 3

(12 b + 1
2 c) 1.5 1.5

Example 1: Row Player’s utilities

On the other hand, if a MMEU player deems the whole set of beliefs ∆({d, e}) possible, then a is rational5

because the minimum utility from choosing a is 1 whereas the minimum from choosing either b or c is 0.
Hence, the uncertainty that a MMEU player faces gives rise to different rational choices than for a SEU
player.

Remember that for a SEU player, we do not need to talk about randomized choices explicitly because
each of the choices over which a player randomizes is optimal for some belief. Consider the randomized
choice (12b+

1
2c). This choice yields a higher utility than choice a for any belief but also for any belief either

choice b or choice c will yield a higher utility than choice a. However, this is not true for a MMEU player.
The randomized choice (12 b+

1
2c) yields a higher minimum utility than choices a, b and c if the Row Player

4We find the choices that players can rationally make under CBR by iterative elimination of strictly dominated choices.
5For the moment, we only consider pure choices.
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deems the whole set of belief ∆({d, e}) possible. Consequently, randomized choices need special attention
when modeling MMEU players.

To simplify notation throughout the paper, let Xi be any set for player i then X := ×i∈IXi and X−i :=
×j 6=iXi. Our example showed that randomized choices play a special role in MMEU. Since pure choices are
a special case of randomized choices, we will restrict our attention solely to randomized choice. Hence, we
define a normal form game where we specifically define the set of randomized choices that are allowed. Let
Γ = (I, (Ci)i∈I , (Ri)i∈I , (Ui)i∈I), where I is the finite set of players, Ci is the finite choice set of player i,
where Ri ⊆ ∆(Ci) is the set of randomized choices, and Ui : ×j∈ICj → R denotes player i’s payoff function.
If we do not mention any restriction on Ri, we take Ri = ∆(Ci). Moreover, we assume that players’ can use
randomization devices that choose for them according to the probability distribution assigned by ri ∈ Ri,
and receive the following utility

Ui(ri, r−i) :=
∑

ci∈Ci

ri(ci)
∑

c−i∈C−i

r−i(ci)Ui(ci, c−i),

where r−i(c−i) =
∏

j 6=i rj(cj).
On top of the normal form game we define a epistemic model that describes various epistemic mental

states of players. Ahn (2007) shows that hierarchies of sets of beliefs can be encoded by a type in such a
model.

Let K indicate families of sets, then by K (∆ (R−i × T−i)) we denote the family of compact and convex
sets of probability measures on R−i × T−i with finite support6, which are within the convex hull of finitely
many points.

Definition 1 (Epistemic Model). An epistemic model of a game Γ is a tuple MΓ = ((Ti)i∈I , (Bi)i∈I), where

• Ti is a set of types for player i ∈ I, and

• Bi : Ti → K (∆ (×j 6=iRj × Tj)) assigns to every type ti ∈ Ti a convex and compact set of probability
measures with finite support on the set of opponents’ randomized-choice-type combinations.

The set Bi(ti) represents ti’s set of beliefs about the opponents’ randomized-choice-type pairs. Type ti’s
maximin expected utility from a randomized choice ri ∈ Ri is given by

ui(ri, ti) := min
bi∈Bi(ti)





∑

(r−i,t−i)∈supp(bi)

bi(r−i, t−i)Ui(ri, r−i)



 .

At some points we will discuss convex and compact sets of beliefs Bi ∈ K(∆(R−i)) independently of an
epistemic model. In this case, the players’ utility will be given by

ui(ri, Bi) := min
bi∈Bi





∑

(r−i,t−i)∈supp(bi)

bi(r−i, t−i)Ui(ri, r−i)



 .

If |Bi| = 1 with Bi = {bi} we write ui(ri, bi) to simplify notation. At all points in the paper the domain of
the utility function will be clear from the context.

3 Common Belief in Maximin-Rationality

The epistemic model gives us the means to fully describe the players’ mental states. To make this model
meaningful, we need to define what it means for a player to be maximin-rational.

Definition 2 (Maximin-Rationality). A randomized choice ri ∈ Ri is optimal for player i’s type ti if we
have that

ui(ri, ti) ≥ ui(r
′

i, ti)

holds for all r
′

i ∈ Ri. Furthermore, we call a randomized choice ri maximin-optimal if there is some epistemic
model MΓ = ((Ti)i∈I , (bi)i∈I) and ti ∈ Ti such that ri is optimal for ti.

6We assume finite support to avoid additional topological assumptions. Our results hold also for probability measures with

infinite support.
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Every type ti ∈ Ti for player i represents an ambiguous7 belief hierarchy. For player i to be maximin-
rational then means that a rational randomized choice needs to maximize MMEU given his type ti, i.e. his
ambiguous belief hierarchy. Sometimes we want to express what it means for a randomized choice ri ∈ Ri to
be maximin-rational. In this case we require that there exists an epistemic model MΓ including a ti ∈ Ti for
which ri is optimal.

To allow the players in our model to make inferences about each other, we need to require mutual belief
in maximin-rationality. Hence, it is important to define what it means to believe in the opponents’ maximin-
rationality.

Definition 3 (Believe in the Opponents’ Maximin-Rationality). A type ti of player i believes in the oppo-
nents’ maximin-rationality if for all bi ∈ Bi(ti) and all j 6= i we have for every (rj , tj) ∈ supp(margRj×Tj

bi)
that the randomized choice rj is optimal for tj .

If player i’s type ti believes in the rationality of his opponent j, then type ti will only consider beliefs
where the opponent’s randomized choices are optimal for the opponent’s ambiguous belief hierarchy. Hence,
in his set of beliefs about opponent j, expressing his uncertainty, player i only considers beliefs about his
opponent where his opponent acts rationally. Thus, player i rules out that player j will act irrationally, i.e.
that j will make a randomized choice that is not optimal. This already gives player i some information about
how to respond to player j’s behavior.

Further inferences about an opponent require, however, slightly more information. Therefore, we will
require a player to not only believe in the opponents’ rationality but also believe that the opponents’ believe
that he will act rationally. By using this additional information, we not only can rule out that the opponent
will not make irrational choices but also that the opponent believes that his opponents’ will make irrational
choice. So we know that our opponent already restricts his attention to certain choices of his opponents
and again we can use this fact to make more concise inferences about his behavior. The following definition
formalizes this idea.

Definition 4 (K-Fold Belief in Maximin-Rationality). Consider a player i ∈ I and one of his types ti ∈ Ti,
then

• Type ti expresses 1-fold belief in maximin-rationality, if ti believes in the opponents’ maximin-rationality.

• Type ti expresses k-fold belief in maximin-rationality, if for all bi ∈ Bi(ti), and for all j 6= i every
tj ∈ supp(margTj

bi) expresses (k-1)-fold belief in maximin-rationality.

• Type ti expresses common belief in maximin-rationality if ti expresses k-fold belief in maximin-rationality
for all k ≥ 1.

The definition captures the idea that a type ti who expresses k-fold belief in maximin-rationality, only con-
siders beliefs about his opponents within which the opponents satisfy (k-1)-fold belief in maximin-rationality.
However, types that express common belief in maximin-rationality only consider beliefs in which their op-
ponents also express common belief in maximin-rationality. This will allow the players to make inferences
about their opponents’ behavior since they believe that they act rationally, that their opponents believe that
they act rationally, that their opponents believe that they believe that their opponents act rationally and so
on.

4 Characterization

We will characterize maximin-rational randomized choices in terms of strictly dominated randomized choices.
Thus, we will use strictly dominated randomized choices in the conventional way.

Definition 5 (Strictly Dominated by Randomized Choice). A randomized choice r∗i ∈ Ri is strictly domi-
nated by a randomized choice ri ∈ Ri \ {r∗i } if

Ui(r
∗
i , r−i) < Ui(ri, r−i) for all r−i ∈ R−i.

7Where by ambiguous we mean that a first-order belief is not a singleton but a set of beliefs.
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Interestingly, it turns out that we can characterize maximin-rational choices in a very similar way as
rational choices under CBR. The only difference is that in the maximin setting we need to pay special attention
to randomized choices because in the maximin setting it can be strictly better to make a randomized choice.

Theorem 6 (Characterization of Maximin-Rational Choices). Maximin-rational randomized choices are
exactly those randomized choices that are not strictly dominated by a randomized choice.

This means we can find all randomized choices that a maximin player can rationally make by deleting
all randomized choices from the game which are strictly dominated by another randomized choice. Again,
remember that under CBR it doesn’t matter whether or not we look at randomized choices as all choices in
the support of the randomized choice yield the same SEU. For MMEU players this is clearly not true but we
can make another interesting statement.

Corollary 7 (Behavioral Equivalence). All choices in the support of a maximin-rational randomized choice
are not strictly dominated by a randomized choice.

This means that all choices in the support of a maximin-rational randomized choice are also maximin-
rational. Moreover, these are exactly those choices which are not strictly dominated by a randomized choice.
Remember, this is the exactly the characterization of rational choices under CBR. Hence, by observing only
a single choice, the observer cannot tell a SEU player and a MMEU player apart. Note that this does not
only hold for a strategic decision problem but for any one-shot decision problem in general. This is rather
surprising since one’s intuition seems to suggest that looser requirements for rationality should allow for a
broader range of choices. In the MMEU case this is, however, not the case.

Moreover, we have that a single belief b∗i , for which a maximin-rational choice r∗i is optimal, is necessarily
in the convex and compact set of beliefs B∗

i that makes r∗i maximin-rational. To understand why this is the
case, suppose there would be no belief b∗i ∈ B∗

i for which r∗i is rational. Then by Pearce’s Lemma 3 (1984)
r∗i would be strictly dominated for this restricted set of beliefs B∗

i and thus by Theorem 6 the randomized
choice ri would be maximin-irrational for B∗

i . The question at hand is: How we can find this belief?

Theorem 8 (Single Optimal Belief). A choice r∗i ∈ Ri that is maximin-rational for a set of beliefs B∗
i ∈

K (∆(R−i)) is also optimal for a single belief

b∗i ∈ argmin
bi∈Bi

max
ri∈Ri

Ui(ri, bi).

By Theorem 8 we see that the single optimal belief b∗i for r∗i is as if player i’s opponents would jointly
minimize i ’s maximum SEU within the scenarios that player i considers possible, i.e. his set of beliefs B∗

i .

5 Algorithm

Now we turn to the question of finding all the randomized choices that players can make under common belief
in maximin-rationality. By Theorem 6 a maximin-rational choice is not strictly dominated by a randomized
choice. As already discussed, this is very similar to the characterization of rational choice under CBR. CBR
then uses iterative elimination of strictly dominated choices to identify the choices that players can make
under CBR. For CBMMR it turns out that also the algorithm is quite similar, only we need to account for
the special role of randomized choices. Therefore, we first define k-fold elimination of strictly dominated
randomized choices. To fully describe k-fold elimination we need to define the set of degenerate randomized
choices to be

Ck
i :=

{

ri ∈ Rk
i : ri(ci) = 1 for some ci

}

.

Definition 9 (k-fold Elimination of Strictly Dominated Randomized Choices). 1-fold elimination. Consider
the full game Γ0 = Γ with the set of randomized choices R0 := R. Now for every player i ∈ I, consider the
set of strictly dominated randomized choices

D1
i :=

{

ri ∈ R0
i : Ui(ri, r−i) < Ui(r

′

i, r−i) for some r
′

i ∈ R0
i and every r−i ∈ R0

−i

}

.

Then define the set of randomized choices that survive 1-fold elimination of strictly dominated randomized
choices by R1

i := R0
i \D

1
i . Let Γ1 be the reduced game with the pure choices C1 and the randomized choice

set R1.
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k-fold elimination. Consider the game Γk−1 that only includes randomized choices that survived (k-1)-fold
elimination of strictly dominated randomized choices, denoted by Rk−1. Then for every player i ∈ I, consider
the set of dominated randomized choices in Γk−1,

Dk
i :=

{

ri ∈ Rk−1
i : Ui(ri, r−i) < Ui(r

′

i, r−i) for some r
′

i ∈ Rk−1
i and every r−i ∈ Rk−1

−i

}

.

Then Γk is the reduced game with the pure choices Ck and the set of randomized choices equal to Rk, where
Rk

i := Rk−1
i \Dk

i .

As defined in k-fold elimination of strictly dominated randomized choices, the algorithm keeps on elimi-
nating randomized choices until there are no randomized choices left to delete.

Definition 10 (Algorithm Iterative Elimination of Strictly Dominated Randomized Choices). For each
k ∈ N+ perform k-fold elimination of strictly dominated randomized choices until Dk = ∅.

The algorithm will terminate after finitely many rounds because after eliminating all strictly dominated
choices,8 it only needs to perform one additional round of elimination of strictly dominated randomized
choices.

Finally, Theorem 11 shows that the algorithm does what we claim, i.e. it finds those randomized choices
that players can make under common belief in maximin-rationality.

Theorem 11 (The Algorithm Works). Consider a static game with finitely many choices for each player.
Then the randomized choices that can rationally be made under common belief in maximin-rationality are
exactly those randomized choices that survive iterated elimination of strictly dominated randomized choices.

6 Example

Column Player

e f g

Row Player

a 2 , 4 2 , 5 1 , 3

b 3 , 3 0 , 2 2 , 1

c 0 , 6 3 , 5 7 , 2

d 0 , 5 1 , 4 5 , 6

Example 2: Two-player 4×3 game

Column Player

e f

Row Player

a 2 , 4 2 , 5

b 3 , 3 0 , 2

c 0 , 6 3 , 5

Example 2: Reduced game Γ
′

To illustrate the features of CBMMR we will now discuss the two-player 4×3 game in Example 2. We
initially allow for all possible randomized choices for both players. Then we start off by applying the algorithm
of iterative elimination of strictly dominated choices. This is possible because by Corollary 7 there can be
no maximin-rational randomized choice that have strictly dominated choices in their support. First of all,
notice that the Row Player ’s choice d is strictly dominated by (14b +

3
4c). Then in the reduced game Γ1

with C1
R = {a, b, c}, the Column Player ’s choice g is strictly dominated by his choices e and f respectively.

Hence, the reduced game Γ2 after the second round contains the choices C2
R = {a, b, c} for the Row Player

and C2
C = {e, f} for the Column Player. Here the algorithm of iterative elimination of strictly dominated

choices stops.
Using Corollary 7 we can already conclude that all rR ∈ RR with rR(d) > 1 are not maximin-rational

under CBMMR. Also all rC ∈ RC with rC(g) > 1 are not maximin-rational under CBMMR. Hence, we
focus on the reduced game Γ

′

with C
′

R = {a, b, c}, C
′

C = {e, f}, R
′

R = ∆(C
′

R) and R
′

C = ∆(C
′

C). To fully

8Remember, the number of choices is assumed to be finite. Moreover, we assume that in every round we eliminate all strictly

dominated randomized choices.
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characterize all maximin-rational randomized choices, we need to find all randomized choice r
′

R ∈ R
′

R and

all randomized choices in r
′

C ∈ R
′

C that are not strictly dominated by another randomized choice. For the

Column Player no r
′

C ∈ R
′

C is strictly dominated by another randomized choice because there are only two
choices left and any mixture of two choices cannot dominate any other mixture or the pure choices.

For the Row Player, it is important to remember that not any mixture of non-dominated choices is non-
dominated9. In fact, any randomized choice rR ∈ ∆({b, c}) is strictly dominated. Take any β ∈ [0, 1] and a
randomized choice (βb+ (1 − β)c) then we can find some α ∈ (0, 1) such that

UR ((βb + (1− β)c), cC) = UR

(

(αa+ (1− α)

[

1

2
b+

1

2
c

]

), cC

)

for all cC ∈ C
′

C , but we have

UR

(

(αb + (1− α)

[

1

2
b+

1

2
c

]

), cC

)

< UR ((αb + (1− α)a), cC)

for any α ∈ (0, 1) and all cC ∈ C
′

C . Thus, any strictly randomized choice over b and c is strictly dominated
by some randomized choice over a and b or over a and c. By the same argument we can exclude any mixture
of a, b and c. Also no mixture of a and b can dominate a mixture of a and c and vice versa. Hence, we can
conclude that randomized choices rR ∈ ∆({a, b}) ∪ ∆({a, c}) cannot be strictly dominated. Hence, for the
Row Player all randomized choices rR ∈ ∆({a, b}) ∪∆({a, c}) are maximin-rational under CBMMR and for
the Column Player all randomized choices rC ∈ ∆({e, f}).

The following table illustrates how part of an epistemic model for the game could look like. All types
express CBMMR since they choose rationally given their type and only consider types that also choose
rationally given their type. Choice a is maximin-rational under CBMMR for taR, who considers a set of
beliefs. By Theorem 8 we know that choice a must also be optimal for the single belief (12e+

1
2f).

Types
TR = {taR, t

b
R}

Tc = {teC , t
f
C}

Row Player ’s sets of beliefs
BR(t

a
R) = ∆

({

(reC , t
e
C), (r

f
C , t

f
C)

})

BR(t
b
R) = {(reC , t

e
C)}

Column Player ’s sets of beliefs
BC(t

e
C) =

{

(rbR, t
b
R)

}

BC(t
f
C) = {(raR, t

a
R)}

Epistemic Model: Part of an epistemic model for Γ

Finally note, that a Row Player expressing CBMMR can never choose the van Neumann maximin strategy
(68a+

1
8b+

1
8c) since we showed that this mixture cannot be maximin-rational under CBMMR.

Appendix

Proof of Theorem 6. We have to show that (a) every strictly dominated randomized choice is maximin-
irrational and that (b) every maximin-irrational randomized choice is strictly dominated.

Let us start with (a). Assume that r∗i ∈ ∆(Ci) is strictly dominated by a randomized choice ri ∈ ∆(Ci).
Then for every epistemic model MΓ = ((Ti)i∈I , (Bi)i∈I) and every ti ∈ Ti there is a corresponding belief

brii ∈ Bi(ti) and a belief b
r∗i
i ∈ Bi(ti) such that ui(r

∗
i , ti) = Ui(r

∗
i , b

r∗i
i ) and ui(ri, ti) = Ui(ri, b

ri
i ). It follows

9See discussion of Example 1.
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that

ui(r
∗
i , ti) = ui(r

∗
i , b

r∗i
i )

≤ ui(r
∗
i , b

ri
i )

< ui(ri, b
ri
i )

= ui(ri, ti).

The first inequality holds because b
r∗i
i minimizes i’s utility from choosing r∗i and the second inequality holds

because r∗i is strictly dominated by ri. Consequently, r∗i cannot be maximin-rational, which concludes (a).
For (b) we have to show that every maximin-irrational randomized choice is strictly dominated. A

randomized choice r∗i is maximin-irrational if there is no epistemic model MΓ = ((Ti)i∈I , (Bi)i∈I) and
ti ∈ Ti such that r∗i is optimal for ti. Now consider only types t∗i ∈ T ∗

i with T ∗
i := {ti ∈ Ti : |bi(ti)| = 1}

that hold a single belief. From Pearce’s Lemma 3 (1984) we know that a randomized choice r∗i that is not
optimal for any type t∗i with a single belief is strictly dominated, which completes (b).

Proof of Corollary 7. Consider a maximin-rational randomized choice ri ∈ Ri. Then by Theorem 6 ri is not
strictly dominated. Hence, it follows from Pearce’s Lemma 3 (1984) that there exist a belief p∗ for which

Ui(ri, p
∗) ≥ Ui(r

′

i, p
∗)

for all r
′

i ∈ Ri. Therefore, we must also have for all ci ∈ supp(ri) that

Ui(ci, p
∗) = Ui(ri, p

∗).

Suppose this was not true, then we had at least one c∗i ∈ supp(ri) such that Ui(c
∗
i , p

∗) > Ui(ci, p
∗). But

then we could find a r
′

i with ci 6∈ supp(r
′

i) with Ui(r
′

i, p
∗) > Ui(ri, p

∗), which cannot be the case. Hence, for

all ci ∈ supp(ri) we have Ui(ci, p
∗) ≥ Ui(r

′

i, p
∗) for all r

′

i ∈ ∆(Ci). Therefore, by Pearce’s Lemma 3 (1984),
every ci ∈ supp(ri) is not strictly dominated.

Proof of Theorem 8. Take a choice r∗i ∈ Ri and a set of beliefs Bi ∈ K (∆(R−i)) for which it is maximin-
rational. Hence, we have that

min
bi∈Bi

Ui(r
∗
i , bi) ≥ min

bi∈Bi

Ui(ri, bi)

for all ri ∈ Ri. Remember that any set Bi is generated by N corner points, such that Bi = conv
({

b1i , . . . , b
N
i

})

.
Now we construct a two player zero-sum game Γz such that player 1 can choose from C1 := Ci and player
2 from C2 :=

{

b1i , . . . , b
N
i

}

. We define player 1’s utility by U1(c1, c2) := Ui(c1, b
c2
i ), where bc2i is the belief

that corresponds to c2 ∈ C2. Moreover, we define U2(c1, c2) := −U1(c1, c2). Finally, we allow all randomized
choices and therefore take R1 := ∆(C1) and R2 := ∆(C2). Note that R1 is exactly equivalent to Ri and that
for every r2 ∈ R2 we can find a br2i =

∑

c2∈C2
r2(c2)b

c2
i by convexity for Bi. Take r∗1 such that r∗1 = r∗i then

we must have that
min
r2∈R2

U1(r
∗
1 , r2) ≥ min

r2∈R2

U1(r1, r2)

for all r1 ∈ R1. Hence, r∗1 is a maximin strategy for player 1 in Γz. Choose r∗2 ∈ R2 such that

max
r1∈R1

U1(r1, r
∗
2) ≤ max

r1∈R1

U1(r1, r2)

for all r2 ∈ R2, then r∗2 is a maximin strategy for player 2. This follows from the fact that U2(c1, c2) =
−U1(c1, c2). By van Neumann’s Minimax Theorem (1928) we know that every finite two-player zero-sum
game has a value in mixed strategies. Moreover, Theorem 4.44 in Maschler et al. (2013) tells us that if
a two-player zero-sum game has a value, then an optimal randomized choice for player 1 and an optimal
randomized choice for player 2 constitute a Nash equilibrium. Thus, r∗1 is optimal for r∗2 but we know that r∗2
has a corresponding belief in b

r∗
2

i ∈ Bi and therefore we found a belief b
r∗
2

i ∈ Bi for which r∗i is optimal. Note
that by the same argument any r∗2 ∈ argminr2∈R2

maxr1∈R1
U1(r1, r2) is optimal for r∗1 and thus for r∗i . By

our construction and the fact that we can think of any bi ∈ Bi as a probability distribution over {b1i , . . . , b
N
i }

we then have that r∗i must be optimal for any b∗i ∈ argminbi∈Bi
maxri∈Ri

Ui(ri, bi).
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Lemma 12 (Optimality Principle). Let k ≥ 1. Consider a randomized choice ri ∈ Rk
i that survives k-fold

elimination of strictly dominated randomized choices. Then there is some compact and convex set of beliefs
Bri

i ∈ K(∆(R−i)) such that supp(bi) ⊆ Rk−1
i for all bi ∈ Bri

i and that ri is maximin-optimal for Bri
i among

all randomized choices in the original game.

Proof. Consider some randomized choice ri ∈ Rk
i . By construction Rk

i contains exactly those randomized
choices in Rk−1

i which are not strictly dominated in the reduced game Γk−1. By applying Theorem 6
to the reduced game Γk−1 we know that every ri ∈ Rk

i is optimal for some set of beliefs Bri
i such that

supp(bi) ⊆ Rk−1
−i for all bi ∈ Bri

i . Then we have

ui(ri, B
ri
i ) ≥ ui(ri

′

, Bri
i ) for all r

′

i ∈ Rk−1
i .

We want to show that
ui(ri, B

ri
i ) ≥ ui(ri

′

, Bri
i ) for all r

′

i ∈ R0
i .

Now suppose there is some r
′

i ∈ R0
i with ui(ri, B

ri
i ) < ui(ri

′

, Bri
i ). Let r∗i be an optimal choice for Bri

i from
the randomized choices in R0

i . Then,

ui(r
∗
i , B

ri
i ) ≥ ui(r

′

i, B
ri
i ) > ui(ri, B

ri
i ).

Since r∗i is optimal for Bri
i , we can apply Theorem 6 to the reduced game Γk−1 and conclude that r∗i is

not strictly dominated by a randomized choice in Γk−1, and hence r∗i ∈ Rk
i . In particular, r∗i ∈ Rk−1

i .
Therefore, r∗i is a randomized choice such that r∗i ∈ Rk−1

i and ui(r
∗
i , B

ri
i ) > ui(ri, B

ri
i ), which contradicts

our assumption.

Lemma 13 (Degenerate Beliefs). For any ri ∈ Rk
i we must have that supp(ri) ⊆ Ck

i .

Proof. Take any ri ∈ Rk
i and take any ci ∈ supp(ri). We need to show that we have ci ∈ Ck

i . By Corollary
7 we know that ci cannot be strictly dominated in the reduced game Γk. Hence, there is an rcii ∈ Rk

i such
that rcii (ci) = 1. By construction, rcii is not strictly dominated in Γk. Therefore, we need to have ci ∈ Ck

i

for all ci ∈ supp(ri).

Proof of Theorem 11. Let BRk
i denote the set of randomized choices that player i can rationally make under

expressing up to k-fold belief in maximin-rationality and Rk
i the set of choices, which survive k-fold elimination

of strictly dominated randomized choices. Hence, we have to show (1) that BR∞ ⊆ R∞ and (2) that
R∞ ⊆ BR∞. Let us consider (1) first. We will use induction to show that BRk ⊆ Rk+1.

Induction start. Set k = 1 and consider some player i and a randomized choice ri ∈ BR1
i . Then ri is

optimal for some type ti that expresses 1-fold belief in maximin-rationality. Then for ti and any opponent
j 6= i we have that for all bi ∈ Bi(ti) and every (rj , tj) ∈ supp(margRj×Tj

bi) that rj is optimal for tj . From

Theorem 6 we know that these choices rj cannot be strictly dominated in the original game Γ0 and hence
that rj ∈ R1

j . But then ri is optimal for ti precisely when ri is optimal for some set of beliefs bi ∈ Bi(ti)

that player i can hold about the opponents’ randomized choices in the reduced game Γ1. That is when ri is
rational within the reduced game Γ1 but by Theorem 6 these are exactly those randomized choices ri ∈ R2

i

that are not strictly dominated within the reduced game Γ1.
Induction step. Take some k ≥ 2, and assume that BRk−1 ⊆ Rk. We need to show that BRk ⊆ Rk+1.

Consider a player i and any randomized choice ri ∈ BRk
i . Then ri is optimal for some type ti that expresses

up to k-fold belief in maximin-rationality. Then for ti and any opponent j 6= i we have that for all bi ∈ Bi(ti)
and every tj ∈ supp(margTj

bi) that tj expresses up to (k-1)-fold belief in maximin-rationality. Hence, ti

only considers beliefs bi ∈ Bi(ti) such that for all rj ∈ supp(margRj
bi) we have that rj ∈ BRk−1

j . By the

induction assumption we have BRk−1
j ⊆ Rk

j for all j 6= i. It follows that ti only considers beliefs that assign

positive probability to the opponents’ randomized-choice-combinations in Rk
−i. Since ri is optimal for ti, it

follows that ri is optimal for some set of beliefs bi ∈ Bi(ti) such that for all rj ∈ supp(margRj
bi), we have

that rj ∈ Rk
j for all j 6= i. But by Theorem 6, ri cannot be strictly dominated in the reduced game Γk since
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it is maximin-rational. Hence, by construction ri must be in Rk+1
i . So we have that every ri ∈ BRk

i must be
in Rk+1

i for all i ∈ I. Since BRk ⊆ Rk+1 for all k, we also have BR∞ ⊆ R∞, which concludes (1).
Now consider (2). Suppose the procedure of iterated elimination of strictly dominated randomized choices

terminates after K rounds, hence RK+1 = RK . To show R∞ ⊆ BR∞ we first (a) construct for every
randomized choice ri ∈ R∞ some belief pri−i for which it is optimal. Then we (b) use this belief pri−i to

construct the epistemic model MΓ, where we define for every randomized choice ri ∈ R∞ some type trii for
which ri is optimal. Finally we (c) show that for every randomized choice ri ∈ R∞

i , the associated type trii
expresses common belief in maximin-rationality.

(a) Construction of beliefs. Consider some randomized choice ri ∈ RK
i that survives the full procedure.

Then ri ∈ RK+1
i and therefore by Lemma 12 we can find some convex and compact set of beliefs Bri

i ∈
K(∆(R−i)) for which ri is optimal among all choices in the original game and such that supp(bi) ⊆ RK

−i for
all bi ∈ Bri

i . Furthermore, by Theorem 8 there is a single belief pri−i ∈ argminbi∈B
ri
i
maxri∈Ri

Ui(ri, bi) for

which ri is optimal among all choices in the original game and such that supp(brii ) ⊆ RK
−i.

(b) Construction of types. We now use the belief from step (a) to construct for every randomized choice
ri ∈ RK

i , some type trii for which ri is optimal. For every player i, let the set of types be given by

T ∗
i =

{

trii : ri ∈ RK
i

}

.

We construct the set of beliefs Bi(t
ri
i ) for trii such that Bi(t

ri
i ) contains only one belief. To fulfill the finite

support condition of the epistemic model, we have to construct a belief that only assigns positive probability
to finitely many randomized-choice-type pairs. To construct this belief take pri−i from the previous step (a).

By Lemma 13 we know that there exists a set CK
−i that contains all degenerate beliefs needed to construct all

r−i ∈ Rk
−i. Then consider pj ∈ margRj

pri−i and let
(

p∗j (cj)
)

cj∈CK
j

such that p∗j (cj) :=
∑

rj∈RK
j
pj(rj)rj(cj) for

all cj ∈ CK
j . Hence, for each player j 6= i we can construct a belief of i about j’s choices with finite support p∗j

that mimics pj . Now let us denote degenerate randomized choices by r
cj
j , with r

cj
j (cj) = 1 and the set of all

non-degenerate choices by R̄j :=
{

rj ∈ RK
j : rj(cj) 6= 1 for any cj ∈ CK

j

}

. Then let bi ∈ ∆(×j 6=iRj × Tj) be

such that bi assigns probability p∗j to the degenerate-randomized-choice-type combinations ×cj∈Cj
(r

cj
j , t

cj
j )

and probability 0 to all other randomized-choice-type combinations ×rj∈R̄j
(rj , tj) for all j 6= i, and bi(t

ri
i ) =

{bi}. By construction ri is maximin-optimal for bi(t
ri
i ). Since by step (a) p−i ∈ ∆(RK

−i), and type trii only
considers one belief bi ∈ bi(t

ri
i ) that assigns positive probability to randomized-choice-type pairs with tj = t

cj
j ,

it follows that trii only assigns positive probability to the opponents’ types t
cj
j with cj ∈ CK

j . That is, trii only
assigns positive probability to the opponents’ types in T ∗

j .
(c) Common belief in maximin-rationality. Finally we have to show that every ti ∈ T ∗

i expresses common
belief in maximin-rationality. First of all, note that every ti ∈ T ∗

i expresses 1-fold belief in maximin-
rationality. By our construction in (b) we know that for all ti ∈ T ∗

i we have ti = trii for some ri ∈ RK
i .

Since the types for all players are construct in the same way, for every b ∈ bi(t
ri
i ) we must have for all

j 6= i that (rj , t
rj
j ) ∈ supp(marg∆(Cj)×Tj

b) that rj is maximin-optimal for t
rj
j . Hence, ti expresses 1-fold

belief in maximin-rationality. Thus all ti ∈ T ∗
i express 1-fold belief in maximin-rationality for all i ∈ I.

Moreover, every ti ∈ T ∗
i is constructed such that he assigns positive probability only to types in T ∗

−i, but
since these types all express 1-fold belief in maximin-rationality, all types in T ∗ express common believe in
maximin-rationality.
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