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Abstract

Myerson’s 1981 characterization of revenue-optimal auctions for single-dimensional agents
follows from an amortized analysis of the incentives: Virtual values that account for expected
revenue are derived using integration by parts and are optimized pointwise by an incentive
compatible mechanism. A challenge of generalizing the approach to multi-dimensional agents is
that a mechanism that pointwise optimizes “virtual values” resulting from a general application
of integration by parts is not incentive compatible.

We give a framework for reverse mechanism design. Instead of solving for the optimal
mechanism in general, we hypothesize a (natural) specific form of the optimal mechanism and
identify conditions for existence of virtual values that prove the mechanism is optimal. As
examples, we derive conditions for the optimality of mechanisms that sell each agent her favorite
item or nothing for unit demand agents, and for the optimality of posting a single price for the
grand bundle for additive agents.



1 Introduction

Optimal mechanisms for agents with multi-dimensional preferences are generally complex. This
complexity makes them challenging to solve for and impractical to run. In a typical mechanism
design approach, a model is posited and then the optimal mechanism is designed for the model.
Successful mechanism design gives mechanisms that one could at least imagine running. By this
measure, multi-dimensional mechanism design has had only limited success. In this paper we take
the opposite approach, which we term reverse mechanism design. We start by hypothesizing the
optimality of a particular form of mechanism that is simple and reasonable to run, then we solve
for sufficient conditions for the mechanism to be optimal (among all mechanisms). Our approach
is successful if the conditions under which the hypothesized mechanism is indeed optimal are broad
and representative of relevant settings.

This paper has two main contributions. The first is in codifying the method of virtual values from
single-dimensional auction theory and extending it to agents with multi-dimensional preferences.
The second is in applying this method to two paradigmatic classes of multi-dimensional preferences.
The first class is unit-demand preferences (e.g., a homebuyer who wishes to buy at most one
house); for this class we give sufficient conditions under which posting a uniform price for each
item is optimal. This result generalizes one of Alaei et al. (2013) for a consumer with values
uniform on interval [0, 1], and contrasts with an example of Thanassoulis (2004) for a consumer
with values uniform on interval [5, 6] where uniform pricing is not optimal. The second class is
additive preferences, for this class we give sufficient conditions under which posting a price for
the grand bundle is optimal. This result generalizes a recent result of Hart and Nisan (2012) and
relates to work of Armstrong (1999). Similarly to an approach of Alaei et al. (2013), these results
for single-agent pricing problems can be generalized naturally to multi-agent auction problems.

Myerson’s (1981) characterization of revenue optimal auctions for single-dimensional agents is
the cornerstone of modern auction theory and mechanism design. This characterization is successful
in describing simple and practical mechanisms in simple environments where the agents preferences
are independent and identically distributed according to a well-behaved distribution. In this case,
the optimal auction is reserve price based. Myerson’s characterization is also successful in describing
the complex optimal mechanism for agents with preferences that are non-identically distributed or
distributed according to an ill-behaved distribution. However, due to this complexity, the resulting
mechanisms have limited application. The consequence of our work is similar in that we characterize
simple optimal mechanisms for well-behaved preferences; but distinct in that it does not characterize
optimal mechanisms beyond the class of well-behaved preferences.

Myerson’s approach is based on mapping agent values to appropriately defined virtual values
and then optimizing the virtual surplus, i.e., the sum of the virtual values of agents served. Im-
portantly, this approach replaces the global objective of optimizing revenue in expectation over the
distribution of agent values with the pointwise objective of optimizing virtual surplus on each profile
of agent values. Furthermore, virtual surplus maximization leads to a simple and practical optimal
mechanism in many environments. The simplicity of analysis by virtual values and of mechanisms
resulting from optimizing virtual values has lead to a rich single-dimensional auction theory. Our
multi-dimensional virtual values similarly give a pointwise objective and their optimization results
in simple optimal mechanisms.

In the remainder of this section we review virtual values in mechanism design for single-
dimensional agents, describe the challenges in identifying virtual values for multi-dimensional pref-
erences, and describe how restricting the form of the hypothesized optimal mechanism makes it
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possible to solve for multi-dimensional virtual values. To keep the exposition simple, this introduc-
tion restricts its discussion to single-agent mechanisms.

Optimal Single-dimensional Mechanisms for Revenue. Revenue is a challenging objective
for mechanism design because, due to the agents’ incentives, it cannot be optimized pointwise. To
illustrate this fact, consider a single agent wishing to buy a single item and whose single-dimensional
value for the item is drawn uniformly from the [0, 1] interval. If we post a take-it-or-leave-it price of
0.3 then the agent will buy when his value is greater than 0.3 and pay 0.3; if we post a price of 0.5
the agent will buy when his value is greater than 0.5 and pay 0.5. If our agent has value 0.3 then the
first mechanism has the best possible revenue and the second mechanism has an inferior revenue
of zero. If our agent has value 0.5 then the second mechanism has the best possible revenue of 0.5
and the first mechanism has an inferior revenue of 0.3. While we cannot rank these mechanisms
by revenue pointwise, i.e., for all values the agent might possess, we can rank mechanisms and
optimize revenue tradeoffs across values in expectation over the distribution from which the agent’s
value is drawn. With a uniform value on [0, 1], the agent buys in the first mechanism at a price of
0.3 with probability 0.7 for an expected revenue of 0.21, and in the second mechanism at a price of
0.5 with probability 0.5 for an expected revenue of 0.25.

Myerson (1981) solved for revenue optimal auctions for agents with single-dimensional pref-
erences. He gives a definition of virtual values, claims that optimization of virtual surplus (the
expected virtual value of the allocation rule, where the allocation rule maps types to probability of
service) gives the optimal auction, and proves this claim by utilizing two properties of the virtual
surplus. The following two properties collectively imply that the mechanism that optimizes virtual
surplus is indeed the optimal mechanism.1 A virtual value function maps values pointwise to virtual
values satisfying two properties:

• The pointwise optimization of virtual surplus gives an allocation rule that is incentive compat-
ible. That is, there exist payments for this allocation rule that induce an agent to truthfully
report his value.

• The virtual values are an amortization of the revenue. That is, the expected the virtual surplus
of any incentive compatible mechanism is equal to the expected revenue of that mechanism.2

This definition of virtual value functions gives a roadmap for identifying the optimal mechanism:
find a virtual value function (that satisfies the two conditions) and run the mechanism that maxi-
mizes virtual surplus pointwise. The identification of a virtual value function reduces the problem
of optimization of the expected revenue (a global quantity) to the optimization of virtual surplus
(a pointwise quantity).

In our single-dimensional example of the uniform distribution above, the appropriate virtual
value function is 2v − 1. Optimizing virtual surplus pointwise (for a single agent) means serving

1Single-dimensional virtual values satisfy this conditions simultaneously only for regular distributions. Subse-
quently, in Section 3, we will define a more permissive version of the amortization property which corresponds to the
ironed virtual values of Myerson (1981). The simpler definition here will, nonetheless, be sufficient for our introductory
discussion.

2In the design and analysis of algorithms, an amortized analysis is one where the contributions of local decisions to
a global objective are indirectly accounted for (see Borodin and El-Yaniv, 1998). The correctness of such an indirect
accounting is often proven via a charging argument. For the analysis of the expected payment of a single-dimensional
agent, a low type is charged for the loss of revenue from all higher types and this accounting gives rise to the familiar
virtual value formuation.
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the agent if his virtual value is positive and not serving him if his value is negative. For this
virtual value function, the agent will be served if his value is least 0.5. This virtual value function
satisfies the incentive compatibility condition: serving the agent if her value is above 0.5 is incentive
compatible and the appropriate payment is 0.5 if the agent is served and zero otherwise. This virtual
value function satisfies the amortization condition: for posting any price p, the expected virtual
value of the agent served and the expected revenue are equal. The former can be calculated by∫ 1
p (2v − 1) dv = p (1− p) and the latter was calculated above as p (1− p).3

The Challenge of Multi-dimensional Preferences. As described above, if a virtual value
function that satisfies the incentive compatibility and amortization conditions can be identified
then the optimal mechanism design problem is solved. Integration by parts can be used on paths
connecting each type to the origin to obtain an amortization. For agents with single-dimensional
preferences, uniqueness of such paths results in a unique amortization. It then remains to check
the incentive compatibility property, i.e., that pointwise optimization of virtual surplus is incentive
compatible; by standard characterizations of incentive compatible mechanisms, this is a simple
task as well. Integration by parts can be used in higher dimensions as well to derive amortizations,
parameterized by a consistent choice of paths connecting each point in the type space to the origin.
However, not all choices of consistent paths give an amortization that also satisfy the incentive
compatibility requirements. The challenge is to find the right choice of paths, such that pointwise
optimization of resulting virtual welfare gives an incentive compatible mechanism. This difficulty
has prevented the design of mechanisms for multi-dimensional agents that follows the virtual-value-
based approach (for example see Hart and Reny (2014) for a discussion on single-dimensional vs.
multi-dimensional incentive constraints).

Multi-dimensional Virtual Values. To resolve the non-uniqueness of functions that satisfy the
amortization property we consider additional constraints that the optimality of the hypothesised
mechanism would place on virtual values. These additional constraints reduce a degree of freedom
in the integration by parts and give result in a unique amortization. From this amortization,
optimality of the hypothesized mechanism (and thus, incentive compatibility) can be checked.

We walk through this approach for the example of a unit-demand agent and the hypothesized
optimality of mechanisms that post a uniform price for each item. On one hand, under uniform
pricing, the agent will always choose to buy his favorite item, or no item if all values are below the
price. On the other hand, a mechanism that optimizes a multi-dimensional virtual surplus (for a
unit-demand agent) would serve the agent the item he has the highest positive virtual value for, or
no item if all virtual values are negative. Synthesizing these constraints, the following conditions
are sufficient for virtual surplus maximization to imply optimality of uniform pricing.

• The virtual value function is a single-dimensional projection if the virtual value for the favorite
item corresponds to the single-dimensional virtual value for the distribution of the value for
the favorite item (i.e., the distribution of the maximum value).4

• The virtual value function is consistent with uniform pricing if there is a price such that (a)
when the value for the favorite item exceeds the price then the virtual value for the favorite

3Further discussion omitted, this amortized equivalence continues to hold for randomized mechanisms.
4Rationale: The mechanism has effectively projected the agent’s multi-dimensional preference onto a single di-

mension. In this single dimension the unique function that satisfies the amortization property is the one given by the
single-dimensional virtual values of Myerson (1981).
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item is non-negative and at least the virtual value of any other items and (b) when the value
for the favorite item is below the price then both virtual values are non-positive.

Any virtual value function that satisfies the consistency-with-uniform-pricing conditions satisfies
the incentive compatibility requirement. Thus, the identification of a virtual value function becomes
one of simultaneously resolving the three conditions of amortization, single-dimensional projection,
and consistency with uniform pricing. Conditions on the distribution over values that guarantee
the existence of such a virtual value function are sufficient for the optimality of uniform pricing.

For two-dimensional preferences the amortization and single-dimensional-projection restrictions
pin down a two-dimensional virtual value function uniquely. Specifically, as the virtual value for
the favorite item is fixed by the restriction, only the virtual value for the other item must be
determined. Essentially, we are left with a single-dimensional problem and in a single dimension
the function that satisfies the amortization condition is unique. Our task is then to give sufficient
conditions under which this amortization is consistent with uniform pricing.

Proving optimality of selling a unit-demand agent his favorite item provides our main example
of the framework of reverse mechanism design. As a second example, we apply the framework to
agents with additive preferences and give sufficient conditions for pricing the grand bundle to be
optimal. The techniques we develop can be similarly applied to other environments and appropriate
restrictions, and these extensions are an important topic for future work.

The opening example of this introduction of selling one of many houses to a homebuyer with
values distributed independently, identically, and uniformly from [0, 1] satisfies the conditions for
optimality of selling him only his favorite item. More generally, our framework identifies a positive
correlation property as a sufficient condition for the distribution over agent values. Such correlation
is natural when values correlate, e.g., with initial wealth. We demonstrate an example use of our
main theorems for unit-demand agents below.

Example 1 (Pricing with Delay). Consider selling an item for immediate delivery, delayed delivery
(e.g., by express mail or standard mail), or lotteries thereof. The buyer’s has a private value v for
receiving the item immediately and, for δ ≤ 1, value v × δ for delayed receipt of the item. Since
the value for the item with delay is less than the value for the item immediately, a natural guess
for the optimal mechanism is that it only allocates the item immediately or not at all. When δ is
known to the seller, this intuition is proved correct in several related models such as Stokey (1979)
and Acquisti and Varian (2005). In our setting but with a public discount factor δ, the optimality
of selling immediately (or not at all) is a consequence of the “no haggling” result of Riley and
Zeckhauser (1983) (and also Myerson, 1981).

When δ is only privately known to the buyer, however, uniform pricing is no longer generally
optimal. (The example from Thanassoulis (2004) can be adapted to give a correlated distribution
on (v, δ) where the optimal mechanism randomizes delivery time.) A direct application of one of
our main theorems (Theorem 11), however, states that uniform pricing is optimal when δ and v
are positively correlated and the marginal distribution of v is regular. Our correlation condition
requires that the conditional distribution of δ for any v is first order stochastically dominated by
the conditional distribution of δ for v′ ≥ v. We remove the regularity requirement by demanding a
form of positive correlation that is slightly more restrictive than stochastic dominance, but includes
independence (Theorem 17). In the independent case, when v is a uniform draw on the interval
[0, 1], the two dimensional the virtual value function that satisfies the amortization and single-
dimensional-projection constraints is pinned down as 2v − 1 for the item today and δ(2v − 1) for
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the item tomorrow. For δ ∈ [0, 1] as defined, these virtual values are consistent with selling the
item immediately (or not at all). The existence of this virtual value function proves that uniform
pricing is revenue optimal among all mechanisms.

1.1 Related Work

The starting point of work in multi-dimensional optimal mechanism design is the observation that
an agent’s utility must be a convex function of his private type (e.g., Rochet, 1985, cf. the envelope
theorem). The second step is in writing revenue as the difference between the surplus of the
mechanism and the agent’s utility (e.g., McAfee and McMillan, 1988; Armstrong, 1996). The
surplus can be expressed in terms of the gradient of the utility. The third step is in rewriting the
objective in terms of either the utility (e.g., McAfee and McMillan, 1988; Manelli and Vincent,
2006; Hart and Nisan, 2012; Daskalakis et al., 2013; Wang and Tang, 2014; Giannakopoulos and
Koutsoupias, 2014) or in terms of the gradient of the utility (e.g., Armstrong, 1996; Alaei et al.,
2013; and this paper). This manipulation follows from an integration by parts. The first category of
papers (rewriting objective in terms of utility) performs the integration by parts independently in
each dimension, and the second category (rewriting objective in terms of gradient of utility, except
for ours) does the integration along rays from the origin (see below). In our approach, in contrast,
the integration by parts is performed in general and is dependent on the distribution and the form
of the mechanism we wish to show is optimal.

Closest to our work are Armstrong (1996) and Alaei et al. (2013) which use integration by
parts along paths that connect types with straight lines to the zero type (which has value zero
for any outcome) to define virtual values. For the first work, Armstrong (1996) finds properties
on valuation functions (beyond linear ones considered in our paper) and distributions, that when
jointly satisfied, imply that the pointwise optimization of virtual surplus results in an incentive
compatible mechanism. Armstrong gives some examples of mechanisms that result from this ap-
proach but does not generally interpret the form of the resulting mechanisms. Armstrong suggests
generalizing his approach from rays from the origin to other kinds of paths; our approach, in con-
trast, proves the existence of appropriate paths over which to integrate without requiring the form
of the path to be specified in advance. When Armstrong’s condition on the distribution is satisfied
(which we refer to as independence in max-ratio coordinates), our solution is also equivalent to
an integration along rays. For the second work, Alaei et al. (2013) show that optimal multi-agent
mechanism design can be reduced to optimal single-agent mechanism design by the construction of
a single-dimensional virtual value (that satisfies similar properties to ours) when the single-agent
mechanism design problems satisfy a revenue linearity property. They prove that a unit-demand
agent with values for items that are independently, identically, and uniformly distributed on the
[0, 1] interval is revenue linear; our results generalize this one. Moreover, our multi-dimensional
virtual value construction constitutes a proof of revenue linearity; therefore, all of our optimal
single-agent mechanisms automatically generalize to give optimal multi-agent mechanisms in the
service constrained environments of Alaei et al. (2013).

There has been work looking at properties of single-agent mechanism design problems that are
sufficient for optimal mechanisms to make only limited use of randomization. For context, the
optimal single-item mechanism is always deterministic (e.g., Myerson, 1981; Riley and Zeckhauser,
1983), while the optimal multi-item mechanism is sometimes randomized (e.g., Thanassoulis, 2004;
Pycia, 2006). For agents with additive preferences across multiple items, McAfee and McMillan
(1988), Manelli and Vincent (2006), and Giannakopoulos and Koutsoupias (2014) find sufficient
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conditions under which deterministic mechanisms, i.e., bundle pricings, are optimal. A recurring
condition in these results is a form of hazard condition, (m+ 1)f(t) + t ·∇f(t) ≥ 0 (where m is the
dimension of type space). This condition is orthogonal to our affiliation condition. Projected to a
single dimension, this condition becomes regularity of the distribution. Our affiliation condition is
automatically satisfied in a single dimension. Pavlov (2011) considers more general preferences and
a more general condition; for unit-demand preferences, this condition implies that in the optimal
mechanism an agent deterministically receives an item or not, though the item received may be
randomized. Our approach is different from the works on multi-dimensional preferences in that
it uses the properties of the given mechanism to pin down multi-dimensional virtual values using
integration by parts.

A number of papers consider the question of finding closed forms for the optimal mechanism for
an agent with additive preferences and independent values across the items. One such closed form
is grand-bundle pricing. Our work for additive preferences contrasts in that we prove optimality
of grand-bundle pricing and a particular family of correlated distributions. For the two item
case, Hart and Nisan (2012) give sufficient conditions for the optimality of grand-bundle pricing;
these conditions are further generalized by Wang and Tang (2014). Their results are not directly
comparable to ours as our results apply to correlated distributions. Daskalakis et al. (2014) and
Giannakopoulos and Koutsoupias (2014) give frameworks, similar to ours, for proving optimality of
multi-dimensional mechanisms. Daskalakis et al. (2014) establish a strong duality theorem between
the optimal mechanism design problem with additive preferences and an optimal transportation
problem between measures. Using this duality they show that every optimal mechanism has a
certificate of optimality in the form of transformation maps between measures. They use this
result to show that when values for items are independently and uniformly distributed on [c, c+ 1]
for sufficiently large c, the grand bundling mechanism is optimal, extending a result of Pavlov
(2011) for two items. Giannakopoulos and Koutsoupias (2014) give a closed form for the optimal
mechanism when values are i.i.d. from the uniform distribution (with up to six items).

2 Preliminaries

2.1 The Setting

An agent is specified by a bounded set of possible types T normalized to be T = [0, 1]m, where
each t = (t1, . . . , tm) ∈ T is an m-dimensional vector of values for m items.5 The type of the agent
is drawn from a known distribution with density f . For the special case that the type space is
single-dimensional (i.e., m = 1), the cumulative distribution function of the type is denoted by F .
We do not require that the values for items be drawn independently. The allocation x ∈ [0, 1]m

is a vector of probabilities in which xi is the probability of receiving i. We consider unit-demand
and additive agents. For unit-demand agents the allocation x ∈ [0, 1]m must satisfy

∑
i xi ≤ 1; for

additive agents x must satisfy xi ≤ 1 for all i. The utility of the agent with type t for allocation
x ∈ [0, 1]m and payment p ∈ R is t · x− p.

A single-agent mechanism is a pair of functions, the allocation function x : T → [0, 1]m and the
payment function p : T → R. A mechanism is individually rational if the utility of every type of
the agent is at least zero,

5Throughout the paper we maintain the convention of denoting a vector v by a bold symbol and each of its
components vi by a non-bold symbol.
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t · x(t)− p(t) ≥ 0, ∀t ∈ T.

A mechanism is incentive compatible if no type of the agent increases his utility by misreporting,

t · x(t)− p(t) ≥ t · x(t̂)− p(t̂), ∀t, t̂ ∈ T.

2.2 Multivariable Calculus Notation

For a function h : Rk → R, we use ∂jh : Rk → R to denote the partial derivative of function h
with respect to its j’th variable. The gradient of h is a vector field, denoted by ∇h : Rk → Rk,
defined to be ∇h = (∂1h, . . . , ∂kh). The divergence of a vector field α : Rk → Rk is denoted by
∇ ·α : Rk → R and is defined to be

∇ ·α = ∂1α1 + . . .+ ∂kαk.

We denote the integral of function h : Rk → R over a subset T of Rk as∫
t∈T

h(t) dt.

Let ∂T be the boundary of set T and η(t) be the outward-pointing unit normal vector of T at
point t on ∂T . The multi-variable integration by parts for functions h : Rk → R and α : Rk → Rk
is as follows ∫

t∈T
(∇h ·α)(t) dt =

∫
t∈∂T

h(t)(α · η)(t) dt−
∫
t∈T

h(t)(∇ ·α(t)) dt. (1)

Setting h to be the constant function equal to 1 everywhere gives us the divergence theorem∫
t∈T

(∇ ·α)(t) dt =

∫
t∈∂T

(α · η)(t) dt.

When the dimension k = 1, the integration by parts has the familiar form of∫ b

x=a
h′(x)g(x) dx = h(x)g(x)

∣∣∣b
x=a
−
∫ b

x=a
h(x)g′(x) dx,

and the divergence theorem is the fundamental theorem of calculus∫ b

x=a
h′(x) dx = h(b)− h(a).

2.3 Problem Formulation

A single agent mechanism (x, p) defines a utility function u(t) = t · x(t) − p(t). The following
lemma connects the utility function of an IC mechanism with its allocation function.
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Lemma 1 (Rochet, 1985). Function u is the utility function of an agent in an incentive compatible
mechanism if and only if u is convex, and in that case, the agent’s allocation is x(t) = ∇u(t).
Convexity of u with x(t) = ∇u(t) states that for all t, t′, (x(t)− x(t′)) · (t− t′) ≥ 0.

Notice that the payment function can be defined using the utility function and the allocation
function as p(t) = t ·x(t)−u(t). Applying the above lemma, we can write payment to be p(t) = t ·
∇u(t)−u(t). The revenue maximization problem can then be written as the following mathematical
program, which is the starting point for the analysis of this paper.

max
x,u

∫
t
[t · ∇u(t)− u(t)]f(t) dt (2)

u is convex,

∀t,∇u(t) is feasible allocation.

Notice that when the dimension of the type space is m = 1, the above program is equivalent
to the following familiar form from Myerson (1981) (we use v for the value, or type, of a single-
dimensional agent),

max
x

∫
v

[
vx(v)−

∫
z≤v

x(z) dz
]
f(v) dv

x is monotone non-decreasing,

∀v, x(v) ≤ 1.

In Section 5, we extend the above formulation and our results to multi-agent settings.

3 Amortization of Revenue

This section formalizes our codification of multi-dimensional virtual values for incentive compatible
mechanism design and describes the working pieces of our framework. The main construct is the
definition of multi-dimensional virtual value functions and the accompanying proposition, below.

Definition 1. A vector field φ̄ : [0, 1]m → Rm that maps an an m-dimensional type to an m-
dimensional vector is

• incentive compatible if the virtual surplus maximizer given by selecting the outcome x for
type t that optimizes virtual surplus x · φ̄(t) is incentive compatible;

• a weak amortization of revenue if, in expectation over types drawn from the distribution,
the virtual surplus of any incentive compatible mechanism upper bounds is revenue, i.e.,
E[φ̄(t) · x(t)] ≥ E[p(t)], and with equality for the virtual surplus maximizer;

• a strong amortization of revenue if the inequality (of weak amortization) holds with equality
for all incentive compatible mechanisms; and

• a virtual value function if it is incentive compatible and a weak or strong amortization.

Proposition 2. In any environment for which a virtual value function exists, the virtual surplus
maximizer is incentive compatible and revenue optimal.
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Proof. The expected revenue of the virtual surplus maximizer is equal to its expected virtual surplus
(by weak amortization). This expected virtual surplus is at least the virtual surplus of any alternate
mechanism (by definition of virtual surplus maximization). The expected virtual surplus is an upper
bound on the expected revenue of the alternative mechanism (by weak amortization). Thus, the
expected revenue of the virtual surplus maximizer is at least that of the alternative mechanism.
Incentive compatibility follows directly from the definition of a virtual value function.

For a single-dimensional agent (i.e., m = 1), Myerson (1981) showed that the function v− 1−F (v)
f(v)

is a strong amortization, when it is monotone it is incentive compatible, when it is non-monotone an
ironing procedure can be applied to obtain from it a weak amortization function that is monotone
and thus incentive compatible. Our approach will analogously enable the derivation of multi-
dimensional virtual value functions (i.e., satisfying incentive compatibility and weak amortization)
via the construction of a strong amortization function that is not necessarily incentive compatible.

We now give sufficient conditions for a vector field to be a strong amortization of revenue. At
a high level, we derive first a strong amortization of utility and then, using the fact that revenue
is value minus utility, derive a strong amortization of revenue. These strong amortizations will
be building blocks for the derivation of virtual values for unit-demand and additive agents in the
subsequent sections. The following lemma follows from integration by parts as per equation (1),
the definition of strong amortization of utility (Definition 1, generalized to utility), and the fact
that the gradient of utility is the allocation rule of the mechanism (Lemma 3).

Lemma 3. For type space T and distribution f , vector field α/f is a strong amortization of utility,
i.e., E[u(t)] = E[α(t)/f(t) · x(t)] for all incentive compatible allocation rules x, if it satisfies

• divergence density equality, i.e., that ∇ ·α(t) = −f(t) at any point t ∈ T , and

• boundary orthogonality, i.e., that α(t) · η(t) = 0 for all t 6= 0 on the boundary of type space
∂T with normal vector η(t).

Proof. Write the expectation of α(t)/f(t) ·x(t) as the integral
∫
t∈T α(t) ·x(t) dt. From Lemma 3,

substitute ∇u for allocation x and apply integration by parts.∫
t∈T

α(t) · ∇u(t) dt =

∫
t∈∂T

u(t)(α · η)(t) dt−
∫
t∈T

u(t) (∇ ·α(t)) dt (3)

= u(0) +

∫
t∈T

u(t) f(t) dt (4)

The second equality is derived from the first equality by employing the assumptions of the lemma
on vector field α as follows.

• By divergence density equality, the second term simplifies by substituting ∇ ·α(t) = −f(t).

• Recall that the divergence theorem is equivalent to setting u(t) = 1 in the formula (3), this
gives ∫

t∈∂T
(α · η)(t) dt =

∫
t∈T

f(t) dt = 1, (5)

the total probability of any type. Boundary orthogonality implies that the integrand in the
boundary integral of equation (5) is identically zero everywhere except t = 0. To integrate
to one on the boundary, the function must be the Dirac delta function at t = 0; thus, the
integral of the first term in equation (3) is u(0).
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Without loss of generality for revenue optimal mechanisms u(0) = 0. We can interpret the left-
and right-hand sides of equation (4) as expectations, which gives E[α(t)/f(t) ·x(t)] = E[u(t)], the
definition of strong amortization of utility for α/f .

For a single-dimensional agent with value v in type space T = [0, 1], the only function that

satisfies the conditions of Lemma 5 and gives a strong amortization of utility is α(v)
f(v) = 1−F (v)

f(v) .

For this formula, notice that the divergence of α(v) = 1 − F (v) is simply its derivative −f(v).
The boundary ∂T \ {0} is the point v = 1, the upper bound of the distribution, and thus trivially

satisfies orthogonality as α(1) = 0. In classical auction theory the amortization of utility 1−F (v)
f(v) is

often referred to as the agent’s information rent.
The following lemma is immediate from the fact that revenue is the agent’s surplus minus the

agent’s utility. For a single-dimensional agent it implies that φ(v) = v − 1−F (v)
f(v) is the strong

amortization of revenue.

Lemma 4. For type space T and distribution f , vector field φ is a strong amortization of revenue,
i.e., E[p(t)] = E[φ(t) · x(t)] for all incentive compatible allocation rules x, if and only if φ(t) =
t−α(t)/f(t) for all t but a measure zero subset of T and α/f is a strong amortization of utility.

Unlike the case of a single-dimensional agent, for multi-dimensional agents there are many
strong amortizations of utility and, consequently, many strong amortizations of revenue. As an
example, suppose we wish to show the optimality of a restricted form of mechanism via a strongly
amortized virtual value function for an m = 2 dimensional agent. This virtual value function has
two degrees of freedom. We can pin down one degree of freedom by equating virtual surplus to
expected revenue for mechanisms with this restricted form. The divergence density equality for
strong amortizations that Lemma 6 inherits from Lemma 5 gives a differential equation that then
pins down the other degree of freedom. It remains to find sufficient conditions on the distribution
under which virtual surplus maximization identically gives mechanisms of the restricted form.

The approach above can be generalized to show optimality of mechanisms via a weakly amortized
virtual value function. For example, such a generalization can be used to give proofs of optimality
under more permissive distributional assumptions. To substitute weak amortization for strong
amortization we need a way to relate the differential equations (from divergence density equality)
that govern strong amortizations to any given weak amortization. Such a relationship follows
directly from the definitions of both weak and strong amortization in terms of the expected revenue
of any incentive compatible mechanism (Definition 1) and is summarized below as Lemma 7.

Lemma 5. For type space T and distribution f , vector field φ̄ is a weak amortization of revenue if
and only if there exists a strong amortization of revenue φ such that E[φ̄(t)x(t)] ≥ E[φ(t)x(t)],
for all incentive compatible mechanisms x, with equality for x that pointwise maximizes φ̄.

For a single-dimensional agent when the strong amortization φ(v) = v− 1−F (v)
f(v) is not monotone,

it is not a virtual value function. In this case, virtual value function is a weak amortization which
is derived using ironing.

In the above framework for understanding optimal mechanisms as virtual value optimizations,
the class of mechanisms optimized over has not been constrained beyond incentive compatibility.
In particular the quantifications over all incentive compatible mechanisms, both in the definition
of weak and strong amortizations and in Lemma 7, can be restricted to all incentive compatible
mechanisms within a given subclass of mechanisms. Such a restriction can be useful even when
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looking for the optimal mechanism in the of the full class if it is known to always lie within
the subclass. As one example, for symmetric environments (symmetric feasibility and identically
distributed agents) there is always an optimal mechanism that is symmetric. Thus, to argue that
a vector field is a weak amortization by Lemma 7, it suffices to show the inequality for symmetric
incentive compatible mechanisms. The optimal symmetric mechanism is an optimal mechanism
among all, possibly asymmetric, mechanisms.

Proposition 6. If the optimal mechanism is in a certain class of mechanisms, then the weak
amortization inequality is required to hold only for all mechanisms in that class.

4 Optimality of Uniform Pricing for Unit Demand Preferences

In this section we study the existence of virtual values to prove optimality of uniform pricing for
a single unit-demand agent. To simplify the exposition we focus on the case of two items and on
the type space where item one is the favorite item, i.e., the lower right half of the unit square,
T = {t = (t1, t2) : 0 ≤ t2 ≤ t1 ≤ 1}. Our conclusions extend easily to the [0, 1]2 type space with
symmetric distributions; other extensions are given at the end of the section. The general case of
m ≥ 2 items is considered in Appendix A.

The single-dimensional projection for the favorite item is given by distribution and density
function for the agent’s favorite item, Fmax(v) and fmax(v). The distribution function Fmax(v) is the
integral of f over t with t1 ≥ v. The density function fmax(v) is the integral of f of t with t1 = v, i.e.,
fmax(v) =

∫ v
0 f(v, z) dz. As described in Section 3, the unique strong amortization of revenue for a

single-dimensional agent (and thus for the single-dimensional projection) is φmax(v) = v− 1−Fmax(v)
fmax(v)

.

The strong amortization of utility αmax/fmax requires αmax(v) = 1− Fmax(v).

Definition 2. The two-dimensional extension φ of the favorite-item projection φmax, satisfying
φmax(t) = t1 − 1−Fmax(t1)

fmax(t1)
, is constructed as follows:

(a) Set φ1(t) = φmax(t1) for all t ∈ T .

(b) Let α1(t) = (t1 − φ1(t)) f(t) = 1−Fmax(t1)
fmax(t1)

f(t).

(c) Let α2(t) = −
∫ t2
y=0

(
f(t1, y) + ∂1α1(t1, y)

)
dy.

(d) Set φ2(t) = t1 − α2(t)/f(t).

In the remainder of this section we will show that to optimize revenue minus a fixed non-
negative cost for selling either item, this two-item extension of the favorite-item projection is a
strong amortization of revenue that proves the optimality of uniform pricing.6

An informal justification of the steps of the construction is as follows:

(a) First, for fixed t1 and as a function of t2, φ1(t) must be constant (i.e., on a vertical line in T );
otherwise, there is a cost c for which virtual surplus maximization with respect to φ serves
a type t but not a type t′ with t′1 = t1, which is not a uniform pricing. Second, the revenue
of any mechanism that only ever sells the favorite item or nothing has revenue given by the
favorite-item projection and must satisfy φ1(t) = φmax(t1) (given the first point).

6The extra constraint imposed by a non-negative cost of service will enable this method to be extended to multi-
agent settings, see Section 5. This strong amortization is unique on the portion of type space for which φ1(t) > 0.
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(b) We obtain α1 from φ1 by Lemma 6. Orthogonality of the right boundary (t1 = 1) requires that
α·(1, 0) = 0, and therefore α1(1, t2) = 0. Boundary orthogonality of the favorite-item projection

at t1 = 1 implies αmax(1) = 0, and using the definition of α1, α1(1, t2) = αmax(1)
fmax(1)

f(1, t2) = 0.

(c) The derivatives of α1 (with respect to t1) and α2 (with respect to t2) are related by the
divergence density equality; integrating and employing boundary orthogonality on the bottom
boundary (t2 = 0) of the type space, which requires that α2(t2, 0) = 0, gives the formula; these
constraints are required by Lemma 5.

(d) We obtain φ2 from α2 by Lemma 6.

For φ to prove optimality of uniform pricing, we need virtual surplus optimization with respect
to φ to yield a uniform pricing. This requirement is simply φ1(t) ≥ φ2(t) for any type t ∈ T for
which either φ1(t) or φ2(t) is positive. A little algebra shows that this condition is implied by the
angle of α(t) being at most the angle of t (with respect to the horizontal t1 axis; see Lemma 10,
below). In relation to the prior work of Armstrong (1996), the direction of α corresponds to the
paths on which incentive compatibility constraints are considered. Importantly, the approach we
are taking does not fix the direction, it allows any direction that satisfies the above constraint
on angles. The condition on angles is equivalent to the dot product between α and the upward
orthogonal vector to the ray crossing the zero type and t at t being non-positive. The following
lemma is proved by the divergence theorem, and provides a closed form for the dot product between
α and the upward orthogonal vector to t. We will later identify conditions over the distribution of
types such that the angle of α satisfies the required condition by analyzing this closed form.

Lemma 7. Vector field α/f in the definition of the two-dimensional extension of the favorite-item
projection is a strong amortization of utility and satisfies

θ α1(t1, t1θ)− α2(t1, t1θ) = (1− Fmax(t1))
d

dt1

[∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

]
for all t1, θ ∈ [0, 1] (and thus (t1, t1θ) ∈ T ).

Proof. The informal justifications of Steps (b) and (c) show that α satisfies the divergence density
equality and bottom and right boundary orthogonality. This proof starts with these assumptions
and derives the identity of the lemma. Notice that in the identity, for θ = 1 the numerator and
the denominator in the derivative of the identity are equal for all t1, the right-hand side is zero,
and therefore α1(t1, t1) = α2(t1, t1), and boundary orthogonality holds for the diagonal boundary.
Thus, α/f is a strong amortization of utility.

The strategy for the proof of the identity is as follows. We fix t1 and θ and apply the divergence
theorem to α on the trapezoidal subspace of type space defined by types t′ with t′1 ≥ t1, t′2/t′1 ≤ θ,
t′2 ≥ 0, and t′1 ≤ 1 (Figure 2). The divergence theorem equates the integral of the orthogonal
magnitude of vector field α on the boundary of the subspace to the integral of its divergence within
the subspace. As the upper boundary of this trapezoidal subspace has slope t2/t1, one term in
this equality is the integral of α(t′) with the upward orthogonal vector to t′. Differentiating this
integral with respect to t1 and evaluating at t = (t1, t1θ) gives the desired quantity.

Applying the divergence theorem to α on the trapezoid and expressing the top boundary as the
interior divergence minus the other three boundaries gives:∫
t′∈TOP(t1,θ)

η(t′) ·α(t′) dt′ =

∫
t′∈INTERIOR(t1,θ)

∇ ·α(t′) dt′ −
∫
t′∈{RIGHT,BOTTOM,LEFT}(t1,θ)

η(t′) ·α(t′) dt′.

12



0 1t1

θ

1

0

(t1, t1θ)

INTERIOR(t1, θ)

Figure 1: The trapezoidal set parameterized by t1 and θ, and the four curves that define its
boundary, {TOP, RIGHT, BOTTOM, LEFT}(t1, θ)

Since α/f is a strong amortization of utility, the divergence density equality and boundary orthog-
onality of right and bottom boundaries imply that the integral over the interior simplifies and the
integrals over the right and bottom boundaries are zero, respectively. We have,∫
t′∈TOP(t1,θ)

η(t′) ·α(t′) dt′ = −
∫
t′∈INTERIOR(t1,θ)

f(t′) dt′ −
∫
t′∈LEFT(t1,θ)

η(t′) ·α(t′) dt′.

For the trapezoid at t these integrals are,∫ 1

t′1=t1

(
− θ α1(t

′
1, t
′
1θ) + α2(t

′
1, t
′
1θ)
)

dt′1

= −
∫ 1

t′1=t1

∫ t′1θ

t′2=0
f(t′) dt′2 dt′1 +

∫ t1θ

t′2=0
α1(t1, t

′
2) dt′2.

Differentiating with respect to t1 gives,

θ α1(t1, t1θ)− α2(t1, t1θ) =

∫ t1θ

t′2=0
f(t1, t

′
2) dt′2 +

d

dt1

∫ t1θ

t′2=0
α1(t1, t

′
2) dt′2.

On the right-hand side, multiply first term by fmax(t1)
fmax(t1)

= 1 and plug in the strong amortization

of utility for the two-dimensional extension as α1(t) = 1−Fmax(t1)
fmax(t1)

f(t) to the second term. Notice

that the integral of the second term is only on t′2 therefore we can bring the terms related to t1
outside the integral. These two terms then simplify by the product rule for differentiation to give
the identity of the lemma.

θ α1(t1, t1θ)− α2(t1, t1θ) = fmax(t1)

∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)
+

d

dt1

[
(1− Fmax(t1))

∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

]
.

= (1− Fmax(t1))
d

dt1

[∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

]
.
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The following lemma gives sufficient conditions for uniform pricing to be the maximizer of virtual
surplus given any cost c. These conditions imply that whenever φ1(t) ≥ c then φ1(t) ≥ φ2(t), and
that φ1(t) ≥ c if and only if t1 is greater than a certain threshold (implied by monotonicity of
φ1(t) ≥ c).

Lemma 8. For φ and α defined by the two-dimensional extension of the favorite-item projection,
if t2

t1
α1(t1, t2) − α2(t1, t2) is non-positive and φ1(t) is monotone non-decreasing in t, then virtual

surplus maximization with respect to φ and any non-negative service cost c gives a uniform pricing.

Proof. From the assumption t2
t1
α1(t1, t2)− α2(t1, t2) ≤ 0 and Definition 2 we have

t2
t1
φ1(t) =

t2
t1

(
t1 −

α1(t)

f(t)

)
=
t2
t1

(
t1 −

α1(t)

f(t)

)
≥ t2 −

α2(t)

f(t)
= φ2(t).

Thus, for t with φ1(t) ≥ c, φ1(t) ≥ φ2(t) and virtual surplus maximization serves the agent item
one. Since φ1(t) is a function only of t1 (Definition 2), its monotonicity implies that there is a
smallest t1 such that all greater types are served. Also, if φ1(t) ≤ c, again the above calculation
implies that φ2(t) ≤ c and therefore the type is not served. This outcome is a uniform pricing.

We are now ready to state the main theorem of this section. In Section 4.1 we will give
an interpretation of the main technical condition as a supermodularity condition on the density
function.

Theorem 9. For a unit demand agent with m = 2 items and any service cost c ≥ 0, uniform
pricing is revenue optimal for any distribution for which the favorite-item projection has monotone

non-decreasing strong amortization φmax(t1) = t1− 1−Fmax(t1)
fmax(t1)

and
∫ t1θ
0 f(t1,y) dy
fmax(t1)

is a monotone non-
increasing function of t1 for all θ.

We relax the monotonicity condition of the strong amortization of the favorite-item projection
φmax in Section 4.2 by constructing a weak amortization φ̄ from the strong amortization φ, above,
in a manner paralleling Myerson’s ironing.

In Appendix A we give a natural generalization of the condition and extend the above results
to m > 2 items.

4.1 Max-ratio Representation of Distributions

Theorem 11 in the preceding section require monotonicity of
∫ t1θ
0 f(t1,y) dy
fmax(t1)

. In this section we further
investigate this property and give simple sufficient conditions for it. Given t1 and θ, the probability
that a random draw t′ conditioned on t′1 = t1 satisfies θ(t′) = t′2/t

′
1 ≤ θ is

Prt′
[
θ(t′) ≤ θ|t′1 = t1

]
=

∫ t1θ
t′2=0 f(t1, t

′
2) dt′2∫ t1

t′2=0 f(t1, t′2) dt′2
.

The condition of Theorem 11 required that the distribution of θ conditioned on t1 is first order
stochastically dominated by the distribution of θ conditioned on t′1 ≥ t1, or equivalently,
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d

dt1
Prt′

[
θ(t′) ≤ θ|t′1 = t1

]
≤ 0.

We now define a simple sufficient condition implying the dominance requirement above. Define
the max-ratio representation fMR of a density function f is to be

fMR(t1, θ) = f(t1, θt1), ∀t1, θ ∈ [0, 1].

Equivalantly,

f(t1, t2) = fMR(t1, t2/t1) ∀t1, t2, 0 ≤ t2 ≤ t1 ≤ 1.

We call a distribution MR-log-supermodular, if its max-ratio representation is log-supermodular,

fMR(t1, θ)× fMR(t′1, θ
′) ≥ fMR(t1, θ

′)× fMR(t′1, θ), ∀t1 ≤ t′1, θ ≤ θ′.

Notice that, for example, MR-independent distributions are MR-log-supermodular. A MR-
independent distribution fMR is such that fMR(t1, θ1) = f1(t1) × fθ(θ) (for arbitrary f1 and fθ),
and is MR-log-supermodular because

fMR(t1, θ)× fMR(t′1, θ
′) = f1(t1) fθ(θ) f1(t

′
1) fθ(θ

′)

= f1(t1) fθ(θ
′) f1(t

′
1) fθ(θ)

= fMR(t1, θ
′)× fMR(t′1, θ).

We now prove that Prt′ [θ(t
′) ≤ θ|t′1 = t1] is monotone non-increasing in t1 for MR-log-

supermodular distributions. This result enables the interpretation of Theorem 11 in terms of
MR-log-supermodularity. Recall that the density function of the favorite-item projection is defined
from the two-item density function as fmax(t1) =

∫ t1
0 f(t1, y) dy.

Lemma 10. If f is a MR-log-supermodular function, then for any t1 and θ,

d

dt1
Prt′

[
θ(t′) ≤ θ|t′1 = t1

]
≤ 0,

with equality if distribution is MR-independent.

Proof. We prove that for any θ, t1, and t′1 such that t1 < t′1,∫ t1θ
t′2=0 f(t1, t

′
2) dt′2∫ t1

t′2=0 f(t1, t′2) dt′2
≥

∫ t′1θ
t′2=0

f(t′1, t
′
2) dt′2∫ t′1

t′2=0
f(t′1, t

′
2) dt′2

.

The proof first converts the above form into max-ratio coordinates, applies MR-log-supermodularity,
and then transforms back to the standard form. Before applying MR-log-supermodularity, we break
down the integral set into two sets, and apply MR-log-supermodularity to only one of the integrals.
In particular notice that
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∫ t1θ

t′2=0
f(t1, t

′
2) dt′2 ×

∫ t′1

t′2=0
f(t′1, t

′
2) dt′2

=

∫ θ

θ′=0
fMR(t1, θ

′) t1 dθ′ ×
∫ 1

θ′′=0
fMR(t′1, θ

′′) t′1 dθ′′ (change of variables)

=

∫ θ

θ′=0

∫ θ

θ′′=0
fMR(t1, θ

′) t1 f
MR(t′1, θ

′′) t′1 dθ′′ dθ′

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fMR(t1, θ

′) t1f
MR(t′1, θ

′′) t′1 dθ′′ dθ′ (separate double integral into two sets)

≥
∫ θ

θ′=0

∫ θ

θ′′=0
fMR(t1, θ

′′) t1 f
MR(t′1, θ

′) t′1 dθ′ dθ′′ (rename variables θ′ and θ′′)

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fMR(t1, θ

′′) t1 f
MR(t′1, θ

′) t′1 dθ′′ dθ′ (apply MR-log-supermodularity)

=

∫ 1

θ′′=0
fMR(t1, θ

′′) t1 dθ′′
∫ θ

θ′=0
fMR(t′1, θ

′) t′1 dθ′ (merge integrals)

=

∫ t1

t′2=0
f(t1, t

′
2) dt′2 ×

∫ t′1θ

t′2=0
f(t′1, t

′
2) dt′2.

By combining the above lemma and Theorem 11 we get the following corollary.

Corollary 11. Uniform pricing is revenue optimal for any service cost c and any max-ratio
log-supermodular distribution for which the favorite-item projection has monotone non-decreasing
strong amortization φmax(t1) = t1 − 1−Fmax(t1)

fmax(t1)
.

To understand MR-log-supermodular distributions better, we next show properties under which
product distributions are MR-log-supermodular. A function g is geometric-geometric (GG) convex
if

g(zλ1 z
1−λ
2 ) ≥ g(z1)

λg(z2)
1−λ, ∀λ ∈ [0, 1], z1, z2.

For example, the function g(x) = xk is GG-convex (it in fact satisfies the above condition with
equality). More generally, for any convex function h and constant c, the function g(x) = c ·eh(log(x))
is GG-convex. The proof of the following lemma can be found in Appendix B.

Lemma 12. The product distribution on t1, t2 from a distribution with geometric-geometric convex
density is max-ratio log-supermodular.

4.2 Quantile Space and Weak Amortization

As it happens in single-dimensional settings, the virtual value of the favorite item projection φmax

may not be monotone. However, we can remove the monotonicity requirement by designing a weak
amortization in a similar manner to ironing in a single dimension. In this section we will design
a weak amortization φ̄ from the strong amortization φ, which satisfies the monotonicity of φ̄1
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without requiring regularity of the distribution of the favorite item projection. We will start by
defining a mapping between the type space and a two-dimensional quantile space. We will then
use Myerson’s ironing to pin down the first coordinate φ̄1 of the weak amortization. The second
component φ̄2 is then defined such that the expected virtual surplus with respect φ̄ upper bounds
revenue for all incentive compatible mechanisms. To do this, we invoke integration by parts along
curves defined by the quantile mapping, and then use incentive compatibility to identify a direction
that the vector φ̄ − φ may have for φ̄ to be an upper bound on revenue. We use this identity to
solve for φ̄2, and finally identify conditions such that optimization of φ̄ gives uniform pricing.

We first transform the value space to quantile space using following mappings. Recall from
Section 4 that Fmax and fmax are the distribution and the density functions of the favorite item
projection. Define the first quantile mapping

q1(t1, t2) = 1− Fmax(t1)

to be the probability that a random draw t′1 from Fmax satisfies t′1 ≥ t1, and the second quantile
mapping

q2(t1, t2) = 1−

∫ t2
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

where fmax(t1) =
∫ t1
0 f(t1, t

′
2) dt′2 to the probability that a random draw t′ from a distribution with

density f , conditioned on t′1 = t1, satisfies t′2 ≥ t2. The determinant of the Jacobian matrix of the
transformation is ∣∣∣∣∣∣

∂q1
∂t1

∂q1
∂t2

∂q2
∂t1

∂q2
∂t1

∣∣∣∣∣∣ =

∣∣∣∣∣∣−fmax(t1) 0
∂q2
∂t1

− f(t1,t2)
fmax(t1)

∣∣∣∣∣∣ = f(t1, t2).

As a result, we can express revenue in quantile space as follows∫ ∫
x(t) · φ(t) f(t) dt =

∫ 1

q1=0

∫ 1

q2=0
xQ(q) · φQ(q) dq,

where xQ and φQ are representations of x and φ in quantile space. In particular, φQ1 (q) =

φmax(t1(q1)) might not be monotone in q1. In what follows we design a weak amortization φ̄
Q

using φQ.
Before we proceed, we note that quantile transformations are alternative representations of the

probability distribution. In this section it is more convenient to work with this representation.
Particularly useful are the equi-quantile curves, that is the set of types that mapped to the same
second quantile q2, {t|q2(t) = q2} (see Figure 3). We can express the technical conditions of
Theorem 11, that

∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)
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t2

t1

q̂2

q2
θ
θ̂

(a) θ(q) increasing in q1

q̂2
q2

t2

t1

(b) θ(q) decreasing in q1

Figure 2: The quantile mapping defines the equi-quantile curves, that is, the set of point mapped to
the same quantile q2. In each figure two curves are drawn mapping to q2 and q̂2 such that q2 ≥ q̂2
(recall that lower t2 are mapped to higher q2). The fact that q2(t1, t1θ) is monotone increasing
in θ implies that as one moves along a ray with parameter θ, equi-quantile curves with higher
q2 will be met, see part (a). Alternatively, this means that as one moves along an equi-quantile
curve parameterized by q2, rays with higher θ will be met. This is equivalent to saying that θ(q)
is monotone increasing in q1. The same argument, with different directions of monotonicity, holds
for part (b). As a result, the function q2(t1, t1θ) is monotone increasing in t1 if and only if θ(q) is
monotone increasing in q1.

is monotone non-increasing function of t1 for all θ, in terms of the quantile mappings. In particular
note that

q2(t1, t1θ) = 1−

∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)
.

As a result, monotonicity of

∫ t1θ
t′2=0

f(t1,t′2) dt
′
2

fmax(t1)
in t1 is equivalent to monotonicity of q2(t1, t1θ) in t1.

Define θ(q) = t1(q)
t2(q)

, where functions t1 and t2 are the inverses of the quantile transformation. The

fact that d
dt1
q2(t1, t1θ) ≥ 0 is equivalent to d

dq1
θ(q) ≥ 0 (see Figure 3).

We now derive φ̄
Q

from the properties it must satisfy. In particular, we require φ̄Q1 (q) = φ̄Q1 (q1)

to be a monotone non-decreasing function of q1, and that φ̄Q1 (q) ≥ φ̄Q2 (q) whenever either is

positive. These properties will imply that a point-wise optimization of φ̄
Q

will result in an incentive
compatible allocation of only the favorite item, such that xQ1 (q) = xQ1 (q1), and xQ2 (q) = 0 (which
is the case for the allocation of uniform pricing). Note that for any such allocation,∫ 1

q1=0

∫ 1

q2=0
xQ(q) · φQ(q) dq =

∫
q1

xQ1 (q1)φ
Q
1 (q1) dq1.

Similarly, for any such allocation,∫ 1

q1=0

∫ 1

q2=0
xQ(q) · φ̄Q(q) dq =

∫
q1

xQ1 (q1)φ̄
Q
1 (q1) dq1.
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t2

t1

q2

µν

Figure 3: Incentive compatibility implies that d
dq1
x(q) · µ is non-negative if µ is tangent to the

equi-quantile curve crossing q.

We can therefore use Myerson’s ironing and define φ̄Q1 to be the derivative of the convex hull of

the integral of φQ1 . This will imply that φ̄
Q

upper bounds revenue for any allocation that satisfies

xQ1 (q) = xQ1 (q1), and xQ2 (q) = 0, with equality for the allocation that optimizes φ̄
Q

pointwise.

We will next define φ̄Q2 such that φ̄
Q

upper bounds revenue for all incentive compatible alloca-
tions. That is, we require that for all incentive compatible x,

∫ ∫
xQ(q) · (φ̄Q − φQ)(q) dq ≥ 0.

Using integration by parts we can write∫ ∫
xQ(q) · (φ̄Q − φQ)(q) dq =

∫
q2

∫
q1

d

dq1
xQ(q) ·

∫
q′1≥q1

(φ̄
Q − φQ)(q′1, q2) dq′1 dq1 dq2.

Incentive compatibility implies that the dot product of any vector and the change in allocation
rule in the direction of that vector is non-negative (Lemma 3). In particular this must be true for
the tangent vector to equi-quantile curve parameterized by q2. Thus incentive compatibility of x
implies that the above expression is positive if the vector that is multiplied by d

dq1
xQ(q) is tangent

to the equi-quantile curve (t1(q
′
1, q2), t2(q

′
1, q2)), 0 ≤ q′1 ≤ q1 at q′1 = q1 (see Figure 4),∫

q′1≥q1
(φ̄Q2 − φ

Q
2 )(q′1, q2) dq′1∫

q′1≥q1
(φ̄Q1 − φ

Q
1 )(q′1, q2) dq′1

=

d
dq1
t2(q)

d
dq1
t1(q)

.

We will set φ̄Q2 to satisfy the above equality. In particular, define for simplicity µ(q) =
d

dq1
t2(q)

d
dq1

t1(q)
and

take derivative of the above equality with respect to q1

φ̄Q2 (q) = φQ2 (q) + (φ̄Q1 − φ
Q
1 )(q) · µ(q)−

∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ·

d

dq1
µ(q).

As a result, φ̄
Q

defined above is a weak amortization of revenue. The next lemma formally
states the above discussion.
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t2

t1

q2

θ(q1(t1), q2)

t1

(a) convex equi-quantile curve

t2

t1

(a) equi-quantile curve with monotone θ(q)

Figure 4: The connection between convexity of equi-quantile curves and monotonicity of θ(q) in
q1. (a) Convexity implies monotonicity of θ(q). Convexity states that the line connecting any two
points, namely (0, 0) and (t1, t2(q1(t1), q2)), lies above the curve for all t′1 ≤ t1, and below the curve
for all t′1 ≥ t1. As a result, all the points on the curve with t′1 ≤ t1 are mapped to a lower θ than
θ(q1(t1), q2), and all points with t′1 ≥ t1 are mapped to higher θ than θ(q1(t1), q2). (b) The function
θ(q) can be monotone for a non-convex curve.

Lemma 13. The virtual surplus, with respect to φ̄
Q

of any incentive compatible allocation x upper
bounds its revenue. If x1 is only a function of q1 (equivalently t1), x′1(q1) = 0 whenever

∫
q′1≥q1

(φ̄Q1 −

φQ1 )(q′1) dq′1 > 0, and x2(q) = 0 for all q, the expected virtual surplus with respect to φ̄
Q

equals
revenue.

We will finally need to verify that φ̄
Q

also satisfies the properties required for ex-post opti-
mization. The following lemma identifies convexity of equi-quantile curves as a sufficient condition
(proof in Appendix B). Convexity of equi-quantile curve is more restrictive than monotonicity of
θ(q) in q1 (see Figure 5).

Lemma 14. If the equi-quantile curves are convex for all q2, the weak amortization φ̄
Q

defined
above satisfies θ(q)φ̄Q1 (q) ≥ φ̄Q2 (q). As a result, φ̄Q1 ≥ φ̄

Q
2 whenever either is positive.

In particular for any MR-log-independent distribution the equi-quantile curves are straight rays,
satisfying the above condition. By combining Lemma 15 and Lemma 16 we conclude the following
theorem.

Theorem 15. For a unit demand agent with m = 2 items, uniform pricing is optimal for any
distribution for which the equi-quantile curves are convex for all q2.

4.3 Necessary Conditions for Optimality of Uniform Pricing

We now provide a partial converse to Theorem 11 by specifying conditions under which uniform
pricing is not revenue optimal. The proof follows the approach of Thanassoulis (2004) in showing
that uniform pricing is not optimal for the uniform independent distribution on [5, 6]. Under the
conditions of the theorem, the best uniform pricing mechanism can be improved by adding a lottery
with slightly lower price, that offers each item with probability a half. The proof is deferred to
Appendix B.

20



Theorem 16. Uniform pricing is not revenue optimal if for any price t1 that satisfies the first
order condition of optimizing revenue t1(1− Fmax(t1)),

t1 −
1− Fmax(t1)

fmax(t1)
= 0

the tradeoff between more sales and the loss of revenue from lowering the price as a result of adding
a lottery to the menu is positive

t1 − 2

∫ 1
t′1=t1

f(t′1, t
′
1) dt′1

f(t1, t1)
> 0.

4.4 Bundle Pricing for General Distributions

We can use the generality of unit-demand settings and the above result to identify conditions under
which bundle pricing is optimal for general distributions. More precisely, notice that any problem
with finite outcome space can be converted to a unit-demand problem with dot-product utility
function by letting t and x be vectors of dimension equal to the cardinality of the outcome space,
with ti being the value for outcome i. For multi-item settings with m items, the size of the outcome
space is equal to 2m. The input to the problem is a density function f(t1, . . . , tk) over vectors of
dimension k = 2m. We assume free disposal, meaning that the density of a type is non-zero only if
the valuation for each bundle is at least as much as the value for any other subset of that bundle.
The max-ratio representation of the density function is a fMR(t1, θ2, . . . , θk), where t1, normalized
to be at most 1, is the value for the grand bundle, and θi ≤ 1 is the ratio of the value for the
i-th subset, over the value of the grand bundle. Now a bundle pricing mechanism corresponds to
a mechanism in the unit demand setting which only sells the favorite outcome, which is the grand
bundle. The theorem below follows immediately from the extension of Theorem 11 to the case of
more than two items (see Appendix A).

Theorem 17. Bundle pricing is optimal if the max-ratio representation of the density function is
MR-log-supermodular for which the strong amortization of the favorite item projection is monotone.

A density function is MR-log-supermodular if its max-ratio representation fMR is log-supermodular,
that is, for any two vectors (t1, θ2, . . . , θk) and (t′1, θ

′
2, . . . , θ

′
k),

fMR(t1, . . . , θk) · fMR(t′1, . . . , θ
′
k) ≤ fMR(min(t1, t

′
1), . . . ,min(θk, θ

′
k)) · fMR(max(t1, t

′
1), . . . ,max(θk, θ

′
k)).

5 Multi-agent Extension

A multi-agent problem is defined by n agents, each agent κ associated with a distribution fκ, and
a feasibility setting. We focus on service-constrained feasibility settings. A service-constrained
setting is parameterized by a set system S ⊆ 2n, where an integral allocation x is feasible if
the set of served agents is an element of S, that is, {κ|

∑
j≤m xκj = 1} ∈ S (agents are unit

demand, which implies that
∑

j≤m xκj ≤ 1 for any agent κ). Type of agent κ is drawn indepen-
dently of other agents from fκ. A multi-agent mechanism is a profile of feasible allocation func-
tions (x̂1(t1, . . . , tn), . . . , x̂n(t1, . . . , tm)) in which x̂κ(t1, . . . , tn) ∈ Rm is the allocation of agent
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κ, together with a profile of payment function (p̂1(t1, . . . , tn), . . . , p̂n(t1, . . . , tn)) ∈ Rn in which
p̂κ(t1, . . . , tn) ∈ R is the payment of agent κ. We can use linearity of expectation and Definition 1
to conclude that for any strong amortization φ the revenue of a multi-agent mechanism can be
written as the expected virtual surplus

∫
t

[∑
κ

x̂κ(tκ, t−κ) · φκ(tκ)
]
f(t) dt.

We say that allocations x̂1, . . . , x̂n optimize an objective φ ex-post, if for any input t1, . . . , tm

they select an outcome that maximizes
∑

κ x̂
κ(t1, . . . , tm) · φκ(tκ).

Recall that under assumptions of Theorem 11 and Theorem 17, the strong and weak amortiza-
tions φ and φ̄ satisfy the following conditions: First, φ1 and φ̄1 are functions of t1 only, and are
monotone in t1. Second, φ2 ≤ φ1 whenever either is positive (and the same holds for φ̄). As a result,
an ex-post optimization of either amortization in multi-agent unit demand settings will result in
incentive compatible mechanisms. The allocation of each agent’s favorite alternative is only a func-
tion of the value for the favorite alternative, x̂κ1(tκ, t−κ) = x̂κ1(tκ1 , t

−κ), and also x̂κ2(tκ, t−κ) = 0.
Recall from Lemma 15 that for any such allocation, the expected virtual surplus with respect to
φ̄ is equal to revenue, implying that φ̄ is indeed a weak amortization of revenue in multi-agent
settings. We conclude with the following two theorems, generalizing Theorem 11 and Theorem 17
to multi-agent service-constrained settings.

Theorem 18. In service-constrained environments with unit demand agents with m = 2 alterna-
tives, allocating the favorite alternative to agents maximizing the sum of the virtual values for the
favorite alternatives φmax is optimal if φmax(t1) = t1 − 1−Fmax(t1)

fmax(t1)
is monotone non-decreasing and∫ t1θ

0 f(t1,y) dy
fmax(t1)

is a monotone non-increasing function of t1 for all θ.

Theorem 19. In service-constrained environments with unit demand agents with m = 2 alterna-
tives, allocating the favorite alternative to agents maximizing the sum of the ironed virtual values
for the favorite alternatives if each agent has a distribution for which the equi-quantile curves are
convex for all q2.

The above results extend to the case of m > 2 alternatives via the analysis of Appendix A.

6 Optimality of Bundle Pricing for Additive Preferences

In this section we provide sufficient conditions for optimality of grand bundle pricing for agents
with additive utilities. Similar to Section 4, we only focus on constructing a proof assuming that
item one is the favorite item, as the proof generalizes to symmetric distributions easily by mirroring
the construction for the other half of set of types. It is also easiest to express the results of this
section when the sum of the values for the items are normalized to be at most one. We thus define
the set of types to be T = {(t1, t2)|t1, t2 ≥ 0, t1 ≥ t2, t1 + t2 ≤ 1}.

The single-dimensional projection for the sum of values is given by distribution and density
function for the agent’s sum of values, Fsum(v) and fsum(v). The distribution function is the
integral of f over t with t1 + t2 ≤ v. The density function fsum(v) is the derivative of Fsum(v) with
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respect to v. As described in Section 3, the unique strong amortization of revenue for a single-
dimensional agent (and thus for the single-dimensional projection) is φsum(v) = v− 1−Fsum(v)

fsum(v) . The

strong amortization of utility αsum/fsum requires αsum(v) = 1− Fsum(v).
As in Section 4 the sum-of-values projection, via the divergence density equality, pins down a

strong amortization of revenue φ. Under the conditions we will identify, this strong amortization
may fail to be a virtual value function because pointwise optimization does not yield an incentive
compatible mechanism. For this reason, we will begin by directly defining a weak amortization
of revenue φ̄ and then prove that it is a virtual value function by showing that it satisfies the
conditions of Lemma 7 (for any incentive compatible mechanism, expected virtual surplus with
respect to φ̄ is at least the virtual surplus with respect to φ).

Definition 3. The two-dimensional extension of the sum-of-values projection φ̄ is:

φ̄1(t) =
t1

t1 + t2
φsum(t1 + t2) = t1 −

t1
t1 + t2

1− Fsum(t1 + t2)

fsum(t1 + t2)
,

φ̄2(t) =
t2

t1 + t2
φsum(t1 + t2) = t2 −

t2
t1 + t2

1− Fsum(t1 + t2)

fsum(t1 + t2)
.

The following lemma provides conditions on vector field φ̄ such that virtual surplus maximiza-
tion according to vector field φ̄ gives a bundle pricing.

Lemma 20. Virtual surplus maximization according to vector field φ̄ gives a bundle pricing p (and
is incentive compatible) if and only if: φ̄1(t), φ̄2(t) ≥ 0 when t1 + t2 ≥ p and φ̄1(t), φ̄2(t) ≤ 0
otherwise.

Recall that in order to prove that φ̄ is a weak amortization of revenue, we need to show that
the revenue of mechanism that optimizes φ̄ is equal to its expected virtual surplus with respect to
φ̄ (we will later also verify that φ̄ provides an upper bound on the revenue of any mechanism). The
above lemma implies that the that mechanism is bundle pricing. The following lemma proves that
the equivalence of virtual surplus and revenue equivalence is satisfied for φ̄ and bundle pricing.

Lemma 21. The expected revenue of a bundle pricing is equal to its expected virtual surplus with
respect to the two-dimensional extension of the sum-of-values projection φ̄ satisfying φ̄1(t)+φ̄2(t) =

φsum(t1 + t2), where φsum(v) = v − 1−Fsum(v)
fsum(v) is the strong amortization for agent’s sum-of-values

projection.

We will next argue that φ̄ provides an upper bound on revenue of any mechanism. To give
sufficient conditions for φ̄ to be a weak amortization of revenue, we study the existence of a strong
amortization φ that satisfies the following refinement of Lemma 7, for any incentive compatible
allocation x and sum s,

E
[
x(t) · (φ̄(t)− φ(t)) | t1 + t2 = s

]
≥ 0. (6)

Consider the strong amortization that, like the weak amortization, sets φ1(t)+φ2(t) = φsum(t1+t2)
but, unlike the weak amortization, splits this total amortized value across the two coordinates to
satisfy the divergence density equality. It is clear then that equation (6) can be expressed in terms
of this relative difference. We will first show that it is sufficient for φ, relative to φ̄, to place more
value on the second coordinate (corresponding to the less preferred item). Later in the section we
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will describe sufficient conditions on the distribution to guarantee this sufficient condition on the
strong amortization φ is satisfied.

To calculate the expectation in equation (6), it will be convenient to change to sum-ratio
coordinate space. For a function h on type space T , define hSR to be its transformation to sum-
ratio coordinates, that is

h(t1, t2) = hSR(t1 + t2,
t2
t1

).

Our derivation of sufficient conditions for the two-dimensional extension of the sum-of-values
projection to be a weak amortization exploits two properties. First, the change in allocation
probabilities of an incentive compatible mechanism, for a fixed sum s as the ratio θ increases, must
not shift allocation probability from coordinate one to coordinate two (recall that we are assuming
that t1 ≥ t2). Second, if a strong amortization shifts value from coordinate one to coordinate two
relative to the vector field φ̄, then, it also shifts expected value from coordinate one to coordinate
two, conditioned sum t1 + t2 = s and ratio t2/t1 ≤ θ. Thus, the shift in expected value only hurts
the virtual surplus of strong amortization φ relative to vector field φ̄ and equation (6) is satisfied.
Below, the first observation is summarized in Lemma 24, the second observation is employed in the
proof of Lemma 25 which formalizes the argument sketched above.

Lemma 22. The allocation of any incentive compatible mechanism satisfies

d

dθ
xSR(s, θ) · (−1, 1) ≥ 0

Proof. Incentive compatibility implies that the dot product of any vector and the change in allo-
cation rule in the direction of that vector is non-negative (Lemma 3). In particular this must be
true by fixing s and increasing θ. That is, for any s, θ, and ε,

(xSR(s, θ + ε)− xSR(s, θ)) · (−1, 1)
θε

s
≥ 0.

Letting ε approach zero implies the claim.

Lemma 23. The two-dimensional extension of the sum-of-values projection φ̄ is a weak amorti-
zation of revenue if there exists strong amortization φ with φ1(t) + φ2(t) = φsum(t1 + t2) satisfies
φ1(t)

t2
t1
≤ φ2(t).

Proof. By symmetry of the distribution, there exists an optimal mechanism that is also symmetric.
Therefore, using Proposition 8 we need to prove the lemma only for symmetric incentive compatible
allocations (in particular, we assume that x1(t1, t1) = x2(t1, t1) for all t1).

Fix the sum s = t1 + t1. Denote the expected difference between φ̄ and φ conditioned on
t2/t1 ≤ θ by:

Γ(s, θ) =

∫ θ

θ′=0
[φ̄− φ]SR(s, θ′)fSR(s, θ′)

s

1 + θ
dθ′.

We will only be interested in three properties of Γ:

(a) Γ2(s, θ) = −Γ1(s, θ), i.e., this is the expected amount of value shifted from coordinate one to
coordinate two of φ̄ relative to φ. This follows from the fact that φ1(t)+φ2(t) = φ̄1(t)+φ̄2(t) =
φsum(t1 + t2).
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(b) Γ2(s, θ) ≥ 0, i.e., this shift is non-negative according to the assumption of the lemma.

(c) Γ(s, 0) = 0, as the range of the integral is empty at θ = 0.

Write the left-hand side of equation (6) as:

E
[
x(t) · (φ̄(t)− φ(t)) | t1 + t2 = s

]
=

∫ 1

θ=0
xSR(s, θ) · [φ̄− φ]SR(s, θ)fSR(s, θ)

s

1 + θ
dθ

=

∫ 1

θ=0
xSR(s, θ) · d

dθ

∫ θ

θ′=0
[φ̄− φ]SR(s, θ′)fSR(s, θ′)

s

1 + θ′
dθ′ dθ.

Substituting Γ into the integral above, we have

=

∫ 1

θ=0
xSR(s, θ) · d

dθ
Γ(s, θ) dθ

= xSR(s, θ) · Γ(s, θ)
∣∣∣1
θ=0
−
∫ 1

θ=0

d

dθ
xSR(s, θ) · Γ(s, θ) dθ.

= −
∫ 1

θ=0

d

dθ
xSR(s, θ) · Γ(s, θ) dθ ds

≥ 0.

The second equality is integration by parts. The third equality follows because the first term on
the left-hand side is zero: For θ = 0, Γ(s, θ) = 0 by property (c); for θ = 1, xSR1 (s, θ) = xSR2 (s, θ) by
symmetry, and Γ1(s, θ) = −Γ2(s, θ) by property (a). The final inequality follows from Lemma 24
which shows that − d

dθx
SR(s, θ) · (1,−1) ≥ 0 and properties (a) and (b).

To identify sufficient conditions for φ̄ to be a week amortization it now suffices to derive condi-
tions under which there exists strong amortization φ satisfying φ1(t) + φ2(t) = φsum(t1 + t2) and
the condition of Lemma 25, i.e., φ1(t)

t2
t1
≤ φ2(t). Notice that α1

t2
t1
≥ α2 implies that φ1

t2
t1
≤ φ2

because

t2
t1
φ1(t) =

t2
t1

(
t1 −

α1(t)

f(t)

)
=
t2
t1

(
t1 −

α1(t)

f(t)

)
≤ t2 −

α2(t)

f(t)
= φ2(t).

Thus, it suffices to identify conditions under which the strong amortization of utility α/f satisfies
α1

t2
t1
≥ α2. Define distribution function Fsum(·, θ) and density function fsum(·, θ) for the distribution

conditioned on t2/t1 ≤ θ. In other words, Fsum(s, θ) is the probability of the set of types t such
that t1 + t2 ≥ s and t2/t1 ≤ θ, and fsum(s, θ) = d

dsFsum(s, θ). These definitions imply that
Fsum(s) = Fsum(s, 1) and fsum(s) = fsum(s, 1).

Lemma 24. The strong amortization φ = t−α/f satisfying φ1(t)+φ2(t) = φsum(t1+t2) is unique
and also satisfies

θ αSR1 (s, θ)− αSR2 (s, θ) = −(1 + θ)(1− Fsum(s))
d

ds

[
fsum(s, θ)

fsum(s)

]
.
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Figure 5: The trapezoidal set parameterized by s and θ, and the four curves that define its boundary,
{TOP, RIGHT, BOTTOM, LEFT}(s, θ)

Proof. We will here sketch the proof of the above lemma, and the complete proof appears in
Appendix B.

The proof is similar to the proof of Lemma 9, and takes the derivative of the divergence theorem.
We assume φ exists, use the divergence theorem and properties of φ to derive a closed form for it,
and then verify that φ indeed satisfies all the required properties. We apply the divergence theorem
to α on the trapezoidal subspace of type space defined by types t′ with t′1 + t′2 ≥ s, t′2/t

′
1 ≤ θ,

t′2 ≥ 0, and t′1+ t′2 ≤ 1 (Figure 6). The divergence theorem equates the integral of the vector field α
on the boundary of the subspace to the integral of its divergence within the subspace. The integral
of the vector field over right and bottom boundaries equates to zero by boundary orthogonality,
and its value over the left boundary will be specified given the equation φ1 + φ2 = φsum(t1 + t2)
(the outward pointing vector is (−1,−1)). As the upper boundary of this trapezoidal subspace has
slope t2/t1, one term in this equality is the integral of the dot product of α(t′) with the upward
orthogonal vector to t. Differentiating this integral and evaluating at t′ = ( s

1+θ ,
sθ
1+θ ) gives a closed

form expression for t2
t1
α1 − α2.

We will next identify a class of distributions for which fsum(s,θ)
fsum(s) is a monotone non-decreasing

function of s, which will together Lemma 26 imply the right direction on the angle of α. A
distribution f is SR-log-submodular if it is log-submodular in sum-ratio coordinates, that is,

fSR(s, θ)× fSR(s′, θ′) ≤ fSR(s′, θ)× fSR(s, θ′), ∀s ≤ s′, θ ≤ θ′,

and is SR-independent if the above holds with equality everywhere. Similar to Section 4 we prove
the following lemma. (Notice that the sign is the opposite of the sign in Section 4, which is the
reason that supermodularity is replaced by submodularity)

Lemma 25. If f is a SR-log-submodular function, then for any s and θ,

d

ds

[
fsum(s, θ)

fsum(s)

]
≥ 0,

with equality if distribution is SR-independent.

Theorem 26. For additive agents with m = 2, bundle pricing is revenue optimal for any SR-log-
submodular distribution for which the sum-of-values projection has monotone strong amortization
φsum.
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A Extension for m > 2 Items

In this section, we extend the definition of α given in Section 4 from two items to m > 2. The
approach to derive such general α is similar to that of Section 4, and therefore in this section we only
define α and verify its properties. Assume that we are in a partition of the space in which t1 ≥ ti
for all i. Define the distribution of agent’s favorite item Fmax to be Fmax(t1) =

∫
{t′|t′1≥t1}

f(t′)dt′,

and its density function fmax(t1) = d
dt1
Fmax(t1). Now define

α1(t) = t1 −
1− Fmax(t1)

fmax(t1)

Given α1 we will next define αi for i ≥ 2 to automatically satisfy the density divergence and
boundary orthogonality conditions. We define αi for i ≥ 2 as follows

αi(t)f(t) = tif(t) +
1

m− 1

∫ ti

y=0
f(y, t−i) +

d

dt1
[(t1 − α1(y, t−i))f(y, t−i)] dy

The above definition implies that

d

dti

(
tif(t)− αi(t)f(t)

)
= − 1

m− 1

(
f(t) +

d

dt1
[(t1 − α1(t))f(t)]

)
.

As a result,

∇ · φ =
∑
i

d

dti

(
tif(t)− αi(t)f(t)

)
=

d

dt1
[(t1 − α1(t))f(t)]− (m− 1)× 1

m− 1

(
f(t) +

d

dt1
[(t1 − α1(t))f(t)]

)
= −f

We now verify that φ satisfies the boundary conditions. This holds because when ti = 0,
αi(t) = 0, and also when t1 = 1, α1(t) = f(t).

Finally, we verify that αi(t) ≤ ti
t1
α1(t). This is again done in a manner similar to Section 4. Fix

values of θ3, . . . , θm, let Tθ3,...,θn(t1, θ2) be the projection of type space into set of types such that
each type t′ satisfies t′1 ≥ t1, t′1 ≤ t′2θ, and t′i = t1θi. Now we can invoke the divergence theorem to
conclude that αi(t) ≤ ti

t1
α1(t) if

d

dt1

(∫ t1θ2
y=0 f(t1, y, θ3, . . . , θn) dy∫ t1
y=0 f(t1, y, θ3, . . . , θn) dy

)
≤ 0.
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Notice that fixing θ3, . . . , θn, the above property is exactly what was required in two dimensions,
which we showed follows from MR-log-supermodularity. As a result, if the function is MR-log-
supermodular in every pair of variables t1, θi for i ≥ 2, then we αi(t) ≤ ti

t1
α1(t). Notice that this

property is implied by MR-log-supermodularity of the distribution in all its variables, and therefore
is a less demanding condition. We have therefore proved the following lemma.

Lemma 27. If the distribution is MR-log-supermodular in every pair of variables t1, θi for i ≥ 2,
then the revenue of an allocation can be upper bounded by∫

t
x · (1, t2

t1
, . . . ,

tn
t1

)α(t1)f(t) dt,

where

α1(t) = t1 −
1− Fmax(t1)

fmax(t1)
.

We conclude with the main theorem of this section.

Theorem 28. For a single unit-demand agent with m ≥ 2 items, uniform pricing is optimal for any
MR-log-supermodular distribution for which the strong amortization of the favorite item projection
is monotone.

B Missing Proofs

B.1 Proof from Section 4

Proof of Lemma 16. We will start with the following two technical lemmas.

Lemma 29. The first component of weak amortization φ̄1 satisfies φ̄1(t) ≤ t1.

Proof. In un-ironed regions, that is whenever φ̄1 = φ1, by definition we have φ̄1(t) = t1 −
1−Fmax(t1)
fmax(t1)

≤ t1. If the curve is ironed between q1 and q′1 ≥ q1, then φ̄Q1 is the derivative of

convex hull of φQ1 , which is
∫ q
0 t1(q

′)− q
fmax(t1(q))

dq′ = qt1(q). Thus, for all q′′1 with q1 ≤ q′′1 ≤ q′1 we
have

φ̄Q1 (q′′1) =
q′1t
′
1(q
′
1)− q1t1(q1)
q′1 − q1

≤ q′1t1(q
′
1)− q1t1(q′1)
q′1 − q1

= t1(q
′
1) ≤ t1(q′′1).

Lemma 30. The strong amortization φ and the tangent to the equi-quantile curve at q, µ(q) =

satisfy φQ1 (q)µ(q)− φQ2 (q) = t1(q)µ(q)− t2(q).
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0 1
1− Fmax(t1) = q1

1

0

INTERIOR(q)

Figure 6: Given q, T (q) is the set of points with first quantile at most q1 and second quantile at least
q2. The four curves that define the boundary of T (q) are {TOP, RIGHT, BOTTOM, LEFT}(q).

Proof. We will first show that

αQ1 (q)µ(q)− αQ2 (q) = 0.

We prove the above equation, similar to Lemma 9, by invoking the divergence theorem on the set
of types T (q) = {t|q1(t) ≤ q1; q2(t) ≥ q2} (see Figure 7),

∫
t′∈TOP(q)

η(t′) ·α(t′) dt′ =

∫
t′∈INTERIOR(q)

∇ ·α(t′) dt′ −
∫
t′∈{RIGHT,BOTTOM,LEFT}(q)

η(t′) ·α(t′) dt′.

Using divergence density equality and boundary orthogonality the right hand side becomes

= −
∫
t′∈INTERIOR(q)

f(t′) dt′ −
∫
t′∈{LEFT}(q)

η(t′) ·α(t′) dt′

= −q2(1− Fmax(t1(q))−
∫
t′∈{LEFT}(q)

η(t′) ·α(t′) dt′

= −q2(1− q1)−
∫
t′∈{LEFT}(q)

η(t′) ·α(t′) dt′,

where the last two equalities followed directly from definitions of the quantile transformation. By
definition of α,∫
t′∈{LEFT}(q)

η(t′) ·α(t′) dt′ = −1− Fmax(t1(q))

fmax(t1(q))

∫
t′2,q2(t1(q),t

′
2)≥q2

f(t1, t
′
2) dt′2

= −(1− q1)q2.

As a result, ∫
t′∈TOP(q)

η(t′) ·α(t′) dt′ = 0.
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Since the above equation must hold for all q, we conclude that α is tangent to the equi-quantile
curve at any q. We can therefore write

φQ1 (q)µ(q)− φQ2 (q) = t1(q)µ(q)− t2(q) +α(q) · (µ(q),−1) = t1(q)µ(q)− t2(q),

completing the proof.

We can now complete the proof of Lemma 16. By rearranging the definition of φ2 we get

φ̄Q1 (q)µ(q)− φ̄Q2 (q) = φQ1 (q)µ(q)− φ2(q) +

∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ·

d

dq1
µ(q)

= t1(q)µ(q)− t2(q) +

∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ·

d

dq1
µ(q)

≥ t1(q)µ(q)− t2(q),

where the inequality followed since by definition of φ̄Q1 , we have
∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ≥ 0,

and d
dq1
µ(q) ≥ 0 by the assumption of the lemma. We can now rearrange the above inequality and

write

t2(q)− φ̄Q2 (q) ≥ µ(q)(t1(q)− φ̄Q1 (q))

≥ θ(q)(t1(q)− φ̄Q1 (q)),

where the inequality followed since convexity of equi-quantile curves imply that µ(q) ≥ θ(q), and
by Lemma 31, t1(q)− φ̄Q1 (q) ≥ 0.

We can now use the above inequality to write

θ(q)φ̄Q1 (q) = θ(q)(t1(q) + (φ̄Q1 (q)− t1(q))

= t2(q) + θ(q)(φ̄Q1 (q)− t1(q))

≥ t2(q) + φ̄Q2 (q)− t2(q)

= φ̄Q2 (q).

Proof of Theorem 18. Assume for contradiction that a uniform price p is optimal. This price should
be the optimal price and therefore satisfies the first order condition d

dpp(1 − Fmax(p)) = 0 which
implies that pfmax(p) = 1−Fmax(p). Consider adding a lottery with price p− ε, with ε approaching
zero, that assigns each item with probability a half. We will study the change in revenue after this
change, arguing that it must be positive under the assumptions of the theorem, thus contradiction
optimality of uniform pricing p. The following set of types, T (+), will switch from selecting nothing
to selecting this new lottery (see Figure 8)

t1 − p ≤ 0, (t1, t2) · (0.5, 0.5)− (p− ε) ≥ 0.
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1

0
p

T (−)

T (+)

(p, p− 2ε)

Figure 7: The effect of adding a lottery (0.5, .0.5) with price p− ε to the menu consisting of lottery
(1, 0) with price p. Types in T (+) will contribute an additional p− ε to revenue, and types in T (−)
will contribute to a revenue loss of ε.

Each type in this set contributes p − ε to the difference in revenue. The following set of types,
T (−), will switch from purchasing the item deterministically with price p to the half-half lottery
with price p− ε.

t1 − p ≥ 0, (t1, t2) · (0.5, 0.5)− (p− ε) ≥ t1 − p.

Each type in this set will contribute −ε to the difference in revenue. For the price p to be the optimal
mechanism, the difference in revenue, weighted by the measure of the sets, must be negative. That
is,

(p− ε)f(T (+)) ≤ εf(T (−)).

Expanding the above inequality and ignoring the terms with high orders of ε,

pf(p, p)ε2/4 ≤ 2ε2
∫ 1

x=p
f(x, x),

which simplifies to

pf(p, p) ≤ 2

∫ 1

x=p
f(x, x).

This is in contradiction with the assumptions of the theorem.

Proof of Lemma 14. We need to prove

fMR(t1, θ)× fMR(t′1, θ
′) ≥ fMR(t1, θ

′)× fMR(t′1, θ), ∀t1 ≤ t′1, θ ≤ θ′.

Recall that fMR(t1, θ) = f(t1, t1θ). Since the distribution is a product one, this implies that
fMR(t1, θ) = f1(t1)f2(t1θ). Notice that pair of values tθ′ and t′θ have the same geometric mean as
the pair tθ, t′θ′. Also given the assumptions, tθ ≤ t′θ, tθ′ ≤ t′θ′. GG-convexity implies that

f2(t1θ)× f2(t′1θ′) ≥ f2(tθ′)× f2(t′θ).
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Multiplying both sides by f1(t1)× f1(t′1) we get

f1(t1)f2(t1θ)× f1(t′1)f2(t′1θ′) ≥ f1(t1)f2(t1θ′)× f1(t′1)f2(t′1θ),

which since the distribution is a product distribution implies that

fMR(t1, θ)× fMR(t′1, θ
′) ≥ fMR(t1, θ

′)× fMR(t′1, θ).

B.2 Proofs from Section 6

Proof of Lemma 23. Let xp be the allocation corresponding to posting price p for the bundle, that
is xp1(t) = xp2(t) = 1 if t1 + t2 ≥ p, and xp1(t) = xp2(t) = 0 otherwise. We will show that the virtual
surplus of xp is equal to the revenue of posting price p, R(p) = p(1−Fsum(p)). The virtual surplus
is

∫
t∈T

(xp · φf)(t) dt =

∫
t∈T

xp(t1, t2) · φ̄(t1, t2)f(t1, t2) dt

=

∫
t∈T,t1+t2≥p

φsum(t1 + t2)f(t1, t2) dt.

For a function h on T , define hSR to be its transformation to sum-ratio coordinates, that is

h(t1, t2) = hSR(t1 + t2,
t2
t1

)

By performing a change of variables s = t1 + t2, and θ = t2/t1, the virtual surplus of xp can be
written as (the Jacobian of the transformation is s

(1+θ)2
)

∫ 1

s=p

∫ 1

θ=0
φsum(s)fSR(s, θ)

s

(1 + θ)2
dθds =

∫ 1

s=p
φsum(s)

∫ 1

θ=0
fSR(s, θ)

s

(1 + θ)2
dθds

=

∫ 1

s=p
φsum(s)fsum(s)ds

Replacing φsum by its definition,

=

∫
s≥p

t1fsum(s)− (1− Fsum(s)) ds

= −
∫
s≥p

d

ds
(s(1− Fsum(s)) ds

= R(p)−R(1) = R(p).

Proof of Lemma 22. We need to show that for the uniform price p, the allocation function x of
posting a price p for the bundle optimizes φ pointwise. Pointwise optimization of x · φ̄ will result
in x = (1, 1) whenever φ̄1, φ̄2 ≥ 0, and will result in x = (0, 0) whenever φ1, φ2 ≤ 0.
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Proof of Lemma 26. We assume that φ satisfying the requirements of the lemma exists, derive the
closed form suggested in the lemma, and then verify that the derived φ indeed satisfies all the
required properties. We apply the divergence theorem to α on the trapezoidal subspace of type
space defined by types t′ with s ≤ t′1 + t′2 ≤ 1, t′2/t

′
1 ≤ θ, and 0 ≤ t′1, t

′
2 ≤ 1 (Figure 6). The

divergence theorem equates the the integral of the vector field α on the boundary of the subspace
to the integral of its divergence within the subspace. As the upper boundary of this trapezoidal
subspace has slope t2/t1, one term in this equality is the integral of α(t′) with the upward orthogonal
vector to t. Differentiating this integral gives the desired quantity.

Applying the divergence theorem to α on the trapezoid and expressing the top boundary as the
interior divergence minus the other three boundaries gives:∫

t′∈TOP(s,θ)
η(t′) ·α(t′) dt′ =

∫
t′∈INTERIOR(s,θ)

∇ ·α(t′) dt′ −
∫
t′∈{RIGHT,BOTTOM,LEFT}(s,θ)

η(t′) ·α(t′) dt′.

Since α/f is a strong amortization of utility, the divergence density equality and boundary or-
thogonality imply that the integral over the interior simplifies and the integrals over the right and
bottom boundary are zero, respectively. We have,∫

t′∈TOP(s,θ)
η(t′) ·α(t′) dt′ = −

∫
t′∈INTERIOR(s,θ)

f(t′) dt′ −
∫
t′∈LEFT(s,θ)

η(t′) ·α(t′) dt′.

For the trapezoid parameterized by (s, θ) these integrals are (recall that the Jacobian of the trans-
formation from t to (s, θ) is s

(1+θ)2
),∫ 1

s′=s

αSR(s′, θ) · (−θ, 1)

1 + θ
ds′ = −

∫ 1

s′=s

∫ θ

θ′=0

fSR(s′, θ′) · s
(1 + θ′)2

dθ′ ds′ +

∫ θ

θ′=0

αSR(s, θ′) · (−1,−1)s

(1 + θ′)2
dθ′.

Differentiating with respect to s gives,

αSR(s, θ) · (−θ, 1)

1 + θ
=

∫ θ

θ′=0

fSR(s, θ′) · s
(1 + θ′)2

dθ′ − d

ds

∫ θ

θ′=0

αSR(s, θ′) · (−1,−1)s

(1 + θ′)2
dθ′.

On the right-hand side, multiply first term by fsum(s)
fsum(s) = 1. The assumption that φ1 + φ2 =

φsum(t1 + t2) implies that αSR1 (s, θ) + αSR2 (s, θ) = 1−Fsum(s)
fsum(s) fSR(s, θ) for all s and θ. These two

terms then simplify by the product rule for differentiation to give the identity of the lemma.

αSR(s, θ) · (−θ, 1)

1 + θ
= fsum(s)

∫ θ
θ′=0

fSR(s,θ′)·s
(1+θ′)2 dθ′

fsum(s)
+

d

ds

[
(1− Fmax(s))

∫ θ
θ′=0

fSR(s,θ′)·s
(1+θ′)2 dθ′

fmax(t1)

]
.

By definition and change of variables, F (s, θ) =
∫
t:t1+t2≤s,t2/t1≤θ f(t) dt =

∫
s′≤s

∫
θ′≤θ f

SR(s′, θ′) s′

(1+θ′)2 dθ′ds′.

Therefore, f(s, θ) =
∫
θ′≤θ f

SR(s, θ′) s
(1+θ′)2 dθ′. Plugging this definition into the above equation, we

get

αSR(s, θ) · (−θ, 1)

1 + θ
= fsum(s)

fsum(s, θ)

fsum(s)
+

d

ds

[
(1− Fsum(s))

fsum(s, θ)

fsum(s)

]
.

= (1− Fsum(s))
d

ds

[
fsum(s, θ)

fsum(s)

]
.
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As a result,

αSR(s, θ) · (−θ, 1) = (1 + θ)(1− Fsum(s))
d

ds

[
fsum(s, θ)

fsum(s)

]
.

We can now use the above equation, together with αSR1 (s, θ) + αSR2 (s, θ) = 1−Fsum(s)
fsum(s) fSR(s, θ)

to solve for α1.

Proof of Lemma 27. We prove that for any θ, s, and s′ such that s < s′,

fsum(s, θ)

fsum(s, 1)
≤ fsum(s′, θ)

fsum(s′, 1)

The proof first converts the above form into max-ratio coordinates, applies SR-log-submodularity,
and then transforms back to the standard form. Before applying SR-log-submodularity, we break
down the integral set into two set, and apply SR-log-submodularity to only one of the integrals.
More particularly, notice that

fsum(s, θ)× fsum(s′, 1)

=

∫ θ

θ′=0
fSR(s, θ′)

s

(1 + θ′)2
dθ′ ×

∫ 1

θ′′=0
fSR(s′, θ′′)

s′

(1 + θ′′)2
dθ′′ (change of variables)

=

∫ θ

θ′=0

∫ θ

θ′′=0
fSR(s, θ′)

s

(1 + θ′)2
fSR(s′, θ′′)

s′

(1 + θ′′)2
dθ′′ dθ′

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fSR(s, θ′)

s

(1 + θ′)2
fSR(s′, θ′′)

s′

(1 + θ′′)2
dθ′′ dθ′ (separate double integral into two sets)

≤
∫ θ

θ′=0

∫ θ

θ′′=0
fSR(s, θ′′)

s

(1 + θ′′)2
fSR(s′, θ′)

s′

(1 + θ′)2
dθ′ dθ′′ (rename variables θ′ and θ′′)

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fSR(s, θ′′)

s

(1 + θ′′)2
fSR(s′, θ′)

s′

(1 + θ′)2
dθ′′ dθ′ (apply MR-log-supermodularity)

=

∫ 1

θ′′=0
fSR(s, θ′′)

s

(1 + θ′′)2
dθ′′

∫ θ

θ′=0
fSR(s′, θ′)

s′

(1 + θ′)2
dθ′ (merge integrals)

= fsum(s, 1)× fsum(s′, θ′).
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