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Abstract

We consider the problem of allocating multiple divisible and indivisible
resources according to conflicting claims on these resources. We prove that
choosing allocations maximizing a separable social welfare function is a conse-
quence of three basic principles: consistency, resource monotonicity, and the
independence of irrelevant alternatives.
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1 Introduction

How should an organization - a government, a university, a school, or a research de-
partment - distribute scarce resources among its members? The problem studied here
is that of distributing an endowment of divisible and indivisible resources among a
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group of agents holding claims or expressing needs for these resources. The potential
solutions or distribution methods are evaluated on the basis of properties reflecting
the rationality of an arbitrator weighing the claims on the available resources.

The first of these properties, resource monotonicity, specifies that an increase
in the availability of resources should make no individual worse off. This can be
interpreted as having the arbitrator view assigning each agent a further unit of one
of the resources a normal good: an increase in the availability of resources does not
decrease the amount awarded to any agent.

The second property, consistency, specifies that the amounts received by a group
of agents should depend solely on the claims of those agents and on the available
resources. This can be expressed in terms of sequential choice: suppose that the ar-
bitrator first chooses some distribution of resources among a group of agents. There-
after, a subgroup of agents pools their received shares and brings them back to the
arbitrator to reassess the disribution within the subgroup. The requirement on the
solution is that the arbitrator again chooses the same distribution for the agents in
the subgroup. If this did not hold, the initially chosen allocation would be dominated
by the revealed preferences of the arbitrator.

The third and final property, independence of irrelevant alternatives (IIA) was
first introduced by Nash (1950) in bargaining problems. It specifies that, if a solution
selects an alternative and this alternative is still feasible after a contraction in the
feasible set, then the alternative is still chosen after the contraction. In rational choice
terms, this property is equivalent to a basic axiom of individual choice (Chernoff,
1954) often referred to as Sen’s α (Sen, 1970).

Resource monotonicity, consistency, and IIA imply that the solution to our re-
source allocation problem obtains by maximizing a separable social welfare function
over the possible alternatives, i.e., the possible distributions of the resource. Thus,
the three properties characterize a class of solutions embodying a central and long-
standing idea in social choice, collective rationality. Its basic premise, starting with
Condorcet in the 18th century, is that social decisions ought to reflect the principles
of individual rational choice by maximizing an ordering over the set of alternatives.
This is a defining property of Bergson-Samuelson social welfare functions and the
subject of Arrow’s impossibility theorem.

The solutions introduced in this paper are thus called collectively rational. This
follows Lensberg (1987) where collectively rational solutions, defined by maximizing
a separable social welfare function over the set of feasible alternatives, were first
described in bargaining problems. Most prominently among these, the Nash and
non-symmetric Nash solutions (Kalai, 1977) can also be expressed in terms of the
maximization of a separable social welfare function.
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However, unlike in bargaining theory, the resource allocation problem studied
here is ordinal. Its data only includes physical feasibility constraints on the possible
allocations. Thus, the characterization of the collectively rational solutions for this
domain of problems is also a contribution to the extension of bagraining theory to
natural economic domains. (See de Clippel (2014) and the references therein.)

Related literature The resource allocation model introduced in this paper, fea-
turing divisible and indivisible resources, has so far not been studied. However, in the
special case of our analysis where a single divisible resource is to be distributed, our
model encompasses the classical claims problem introduced by O’Neill (1982). The
claims problem has been the subject of extensive axiomatic studies.1 Most of this
literature (see Young, 1987, 1988) is concerned with symmetric solutions, solutions
awarding claimants with equal claims equal shares of the resource. In our setting
with indivisibilities this is incompatible with feasibility. For this reason, and since
the appropriateness of any given equity notion depends on the application at hand,
we avoid imposing symmetry requirements.

More recently, a growing body of work on the claims problem has started to ax-
iomatically evaluate potentially asymmetric solutions. Most of this literature still
concerns the division of a single divisible resource (see Kıbrıs, 2012; Stovall, 2014a,b,
and the references therein). A notable exception is Moulin (2000),2 studying the
allocation of a single resource that may either be divisible or be available only in in-
divisible units. Moulin’s axioms however narrows the menu of allocation mechanisms
to those based on sequential priorities. Here, the agent with the highest priority is
assigned all available resources up to her claim; thereafter the second highest priority
agent receives all remaining resources up to her claim, and so forth.

Our class of rules is broader, even in the single resource context. It allows us to
implement a wide gamut of distributional objectives ranging from the highest degree
of egalitarianism possible subject to the indivisibility constraints while not excluding
the solutions based on sequential priorities.

Moreover, the presence of multiple resource may enable the arbitrator in charge
of the distribution to balance the treatment of agents across the multiple resources.
For instance, due to indivisibility an agent may receive non or relatively few units
of the first resource relative to another agent. The planner could thus favor this
disadvantaged agent by increasing his priority to receive another resource. Our

1See Thomson (2003) and Thomson (2014) for a survey.
2See Moulin and Stong (2002), Herrero and Mart́ınez (2008), and Chen (2011) for further ax-

iomatic studies of the claims problem featuring the assigniment of a single resource available in
indivisible units.
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proposed class of solutions can readily account for this objective.
Our collectively rational solutions are closest to those proposed in Stovall (2014b)

and Erlanson and Szwagrzak (2014b). Working within the standard claims problem,
Stovall (2014b) proves that the class of resource-monotonic and consistent solutions
satisfying IIA3 coincides with those obtained by maximizing a separable social welfare
function over the feasible divisions of the resource at which no agent receives more
than her claim.

Erlanson and Szwagrzak (2014b) introduce a resource allocation problem incor-
porating preference information and indivisibilities. The main requirement studied
there is strategy-proofness, giving agents dominant strategy incentives to report their
preferences truthfully. The class of strategy-proof, consistent, resource monotonic
solutions is described in terms of the maximization of a separable social welfare
function.

Outline Section 2 introduces the resource allocation problem studied here, the
multidimensional claims problem. It then formally introduces the main properties
of this study. Section 3 introduces the collectively rational solutions and establishes
that these solutions are characterized by resource monotonicity, consistency, and IIA.
Section Section 4 contains the proofs of the main results. An Appendix gathers the
proofs not included in the body of the paper.

2 Framework

2.1 Multidimensional claims problems

A number of divisible and indivisible resources are to be allocated among a group
of claimants drawn form the finite set A.4 Let N denote the subsets of A. The
resource kinds that are available in indivisible units are indexed by I while those
available in divisible units are indexed by D. Let K denote the union of I and D.
Let C ≡ RD

+ × ZI+ denote the space of possible resource profiles.
For every group of agents N ∈ N , a (multidimensional) claims problem is the

pair (C,E), where C ∈ CN and E ∈ C are such that
∑

N Ci ≥ E. For each N ∈ N ,
let PN denote the claims problems involving the agents in N . An allocation for

3IIA is introduced in the analysis of standard claims problems by Kıbrıs (2012).
4The basic mathematical notation is as follows: Let {Yi}i∈I be a family of sets Yi indexed by I.

Let Y I ≡ ×i∈IYi. For each y ∈ Y I and each J ⊆ I, we denote by yJ the projection of y onto Y J .
If x, y ∈ RI , then x ≥ y means that, for each i ∈ I, xi ≥ yi. For each i ∈ I, ei ∈ RI denotes the ith
standard basis vector, the vector with a one in the ith coordinate and zeros elsewhere.
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the claims problem (C,E) ∈ PN is a profile z ∈ CN such that
∑

N zi = E and, for
each i ∈ N , zi ≤ Ci. Let Z(C,E) denote the collection of all allocations for claims
problem (C,E). A solution is a function ϕ recommending allocations for all possible
claims problems: for each N ∈ N and each (C,E) ∈ PN , ϕ(C,E) ∈ Z(C,E).

Notation For each N ∈ N , each (C,E) ∈ PN and each k ∈ K, let Ck and Ek

denote the projections of C and E onto the kth coordinates of CN and C, respectively.
Thus, Ck is in RN

+ (in ZN+ if k ∈ I) and Ek is in R+ (in Z+ if k ∈ I). Similarly, for
each x ∈ Z(C,E), let xk denote the projection of x onto the kth coordinates of CN .

2.2 Properties of solutions

The objective of this paper is to investigate the consequences of the following prop-
erties.

Resource monotonicity For each pair (C,E), (C̄, Ē) ∈ PN such that C̄ = C and
Ē ≥ E, ϕ(C,E) ≥ ϕ(C̄, Ē).

Resource monotonicity is a sufficient condition for an increase in the availability
of resources to make each agent at least as well off as before. In a sense it is also a
necessary condition for this to be the case: multidimensional claims problems lack
information on how agents asses the tradeoffs between the different resources, i.e.
they lack agents’ preference information on the assignment space C. All we know
about this information is that more is better. Thus, if we were to specify that, under
any monotone preferences over C, an increase in the available resources makes all
agents at least as well off as before the increase, we would be left with the above
resource monotonicity requirement.

Consistency For each pair N,N ′ ∈ N such that N ′ ⊆ N , each (C,E) ∈ PN , and
each i ∈ N ′, ϕi(CN ′ ,

∑
i∈N ′ ϕi(C,E)) = ϕi(C,E).

Consistency has been one of the most thoroughly studied properties in the ax-
iomatic resource allocation literature since it was introduced in the analysis of bar-
gaining problems by Harsanyi (1959).5 Balinski (2005) argues that consistency is a

5Harsanyi refers to the property as “bilateral stability”. See Thomson (2011) for a survery on
the applications of consistency.
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fundamental component of equitable resource allocation.6 Thomson (2012) provides
further normative arguments for consistency.

Independence of irrelevant alternatives (IIA) For each pair (C,E), (C̄, Ē) ∈
PN such that Z(C,E) ⊇ Z(C̄, Ē) and ϕ(C,E) ∈ Z(C̄, Ē), ϕ(C,E) = ϕ(C̄, Ē).

IIA has been, since it was investigated by Nash and Arrow, one of the most
controversial and influential properties in social choice. Tough there is little to add to
the controversy, the class of problems studied here lends itself to a new interpretation
of IIA: if claims are viewed as demands for the various resources or as expressions
of agents’ needs, then IIA is equivalent to the condition that agents do not gain by
exaggerating their demands.

3 Collectively rational solutions

Let U consist of all profiles of functions U ≡ {Uk
i : i ∈ A, k ∈ K} such that each

Uk
i : R+ → R is strictly concave and continuous. A solution ϕ is collectively

rational if there is a U ∈ U such that, for each N ∈ N and each (C,E) ∈ PN ,

ϕ(C,E) = arg max{
∑

i∈N
∑

k∈K U
k
i (zki ) : z ∈ Z(C,E)}.

Let ϕU denote the collectively rational solution specified by U ∈ U .
The collectively rational solutions are well defined when all resources are divisible:

the maximization problem defining them has a strictly concave objective and a convex
and compact constraint set, thus a unique solution.

Theorem 1. If all resources are divisible, a solution is consistent, resource-monotonic,
and satisfies IIA if and only if it is collectively rational.

Theorem 1 is a corollary of Theorem 2 below, dealing with both indivisible and
divisible resources. In contrast to the case where all resources are divisible, it is not
immediately clear that any profile U ∈ U yields a well defined solution. Though
the optima of the maximization problem defining a collectively rational solution’s
recommendation are guaranteed to be feasible allocations, the optima may contain
more than one allocation. Thus, we refine the definition of the collectively rational
solutions to clarify exactly what profiles of concave functions specify collectively
rational solutions.

6Balinski refers to consistency as “coherence”.
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Let I denote the profiles of functions (Ui)i∈A such that each Ui : R+ → R is
strictly concave and continuous and for each (c, e) ∈ ZA+ × Z+ such that

∑
N ci ≥ e,

arg max {
∑

A Ui(zi) :
∑

A zi = e, 0 ≤ zi ≤ ci} is in ZA+. (1)

Let U∗ denote the profile of functions U ≡ {Uk
i : i ∈ A, k ∈ K} in U such that, for

each k ∈ I, (Uk
i )i∈A ∈ I. Note that, U∗ ⊆ U and that, if all resources are divisible,

U∗ and U coincide.
We can now refine our definition of collectively solutions to account for indivis-

ibilities: a solution ϕ is collectively rational if and only if there is U ∈ U∗ such
that ϕ = ϕU . The following lemma establishes that an allocation chosen by the
maximization problem defining a collectively rational solution is, in fact, the unique
solution to a maximization problem over the convex hull of the feasible set. Since
this convex hull contains the feasible set, there is in fact a single solution to the
optimization problem over the feasible set.

Lemma 1. For each U ∈ U∗, each N ∈ N , and each (C,E) ∈ PN ,

ϕU(C,E) = arg max{
∑

i∈N
∑

k∈K U
k
i (zki ) : z ∈ coZ(C,E)}

where coZ(C,E) is the convex hull of Z(C,E).

Lemma 1 tells us that, once we have a profile U ∈ U∗, we can treat the optimiza-
tion problem definining the collectively rational solution ϕU as if all resources were
divisible, yet we are guaranteed integral feasible assignments of resources available
in indivisible units.

Now we can state the result characterizing the class of collectively rational solu-
tions for situations involving indivisibilities as well as divisibilities.

Theorem 2. A solution is consistent, resource-monotonic, and satisfies IIA if and
only if it is collectively rational.

To deepen our understanding of the collectively rational solutions, we characterize
the structure of the profiles of concave functions in I. Lemma 2, below, shows that we
can restate the optimization problem in (1) as an integer linear program in a higher
dimensional space. Lemma 2 is also used to prove Lemma 1 (see the Appendix).
In effect, Lemma 2 shows that a profile in I can be approximated by a profile of
piece-wise linear functions with decreasing slopes.

Lemma 2. Let M denote the class of matrices

M ≡ {min ∈ R++ : i ∈ A, n ∈ N} such that
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(i) for each i ∈ A, mi1 > mi2 > · · · > min > · · · , and

(ii) all entries in M are distinct.

If (Ui)i∈A ∈ I (M ∈ M), then there is M ∈ M ((Ui)∈A ∈ I) such that, for each
n ∈ Z+, if

x = arg max
{∑

i∈A Ui(zi) :
∑

i∈A zi = n, 0 ≤ zi ≤ n
}

and

y = arg max
{∑

i∈A
∑n

h=1mihzih :
∑

i∈A
∑n

h=1 zih = n, 0 ≤ zih ≤ 1
}

then, for each i ∈ A, xi =
∑n

h=1 yih and y ∈ {0, 1}|A|×n.

See Theorem 1 in Erlanson and Szwagrzak (2014a) for a proof of Lemma 2.

4 Proof of Theorems

Lemma 3. A collectively rational solution is consistent, resource-monotonic, and
satisfies IIA.

Note that a collectively rational solution “separates” the allocation of each of the
resources. The next lemma, establishes that any consistent and resource-monotonic
solution has this property. Before proceeding with the lemma, we formalize precisely
how this separation takes place. For each N ∈ N , each claims problem (C,E) ∈ PN ,
and each k ∈ K, let ψk denote a function mapping (Ck, Ek) into Z(C,E)|k, i.e.,
the set of feasible allocations of the endowment Ek. Let Ψ denote the collection of
profiles {ψk : k ∈ K} of such functions.

Lemma 4. Let ϕ denote a consistent and resource monotonic solution. Then, there
is a profile {ψk : k ∈ K} ∈ Ψ such that, for each N ∈ N , and each (C,E) ∈ PN ,

ϕ(C,E) = {ψk(Ck, Ek) : k ∈ K}.

Proof. Let ϕ denote a consistent and resource monotonic solution. We will first
establish Lemma 4 when N = A, and then show that it holds for each N ∈ N . For
each k ∈ K and each (c, e) ∈ [CN ×C]k such that

∑
A ci ≥ e, let ψk(c, e) = ϕ(C,E)|k

where (C,E) ∈ PA is such that

i. Ck = c and Ek = e;

ii. for each l ∈ K \ {k} and each i ∈ A, El = 0 and C l
i = 0.
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By construction, {ψk : k ∈ K} is in Ψ . We now prove that {ψk : k ∈ K} is as
claimed in the statement of Lemma 4. Let k ∈ K, (C,E) ∈ PA, and x ≡ ϕ(C,E).
Let (C̄, Ē) ∈ PA be such that

[for each l ∈ K \ {k} and each i ∈ A, Ēl = 0 and C̄ l
i = 0].

Let y ≡ ϕ(C̄, Ē). By the definitions of ψk and (C̄, Ē), yk = ψk(Ck, Ek). By resource
monotonicity, for each i ∈ A, yki ≤ xki . Since

∑
i∈A x

k
i = Ek = Ēk =

∑
i∈A y

k
i , for

each i ∈ A, ϕi(C,E)|k = xki = yki = ψk(Ck, Ek). We can repeat this argument for
each k ∈ K to conclude that,

for each k ∈ K and each (C,E) ∈ PA, ϕ(C,E)|k = ψk(Ck, Ek).

To finish the proof we have to establish the analogous result for each N ∈ N . Let
N ∈ N and (C,E) ∈ PN . Let (C̄, Ē) ∈ PA be such that

[for each k ∈ K and each i ∈ A \N , Ēk = Ek, C̄k
i = 0, and for each i ∈ N , C̄i = Ci].

Let y ≡ ϕ(C̄, Ē) and x ≡ ϕ(C,E). By definition, for each k ∈ K and each i ∈ A\N ,
yki = 0. Thus,

∑
N yi =

∑
N xi and recall that, for each i ∈ N , C̄i = Ci. Thus,

by consistency, for each i ∈ N , xi = yi. Thus, for each k ∈ K, ϕ(C,E)|k =
ψk(Ck, Ek). v

For clarity, we first prove Theorem 1 in Section 4.1 dealing only with divisible
resources. Section 4.2 then extends the arguments to account for indivisibilities and
prove Theorem 2.

4.1 Divisible resources

Suppose, for the remainder of this section, that all resources are divisible, i.e. K = D.

Lemma 5. Let α denote a positive number. Let ϕ denote a consistent and resource
monotonic solution. Let {ψk : k ∈ K} ∈ Ψ denote the corresponding profile of
functions described in Lemma 4. Then, for each k ∈ K and each i ∈ A, there
is a strictly concave and continuous function Uk

i : [0, α] → R such that, for each
β ∈ [0, |A| · α], ψk(α1, β) = arg max{

∑
i∈A U

k
i (zi) :

∑
A zi = β, z ∈ [0, α]A}, where 1

is a vector of ones in RA.

Proof. Let all of the notation be as in the statement of the Lemma. Let γ ≡ |A| · α
and k ∈ K.

Step 1. Constructing a continuous monotone path g in RA
+.
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For each β ∈ [0, γ], let g : [0, γ] → RA
+ be defined by g(β) ≡ ψk(α1, β). By the

resource monotonicity of ϕ, for each pair β, β′ ∈ [0, γ], β′ ≥ β implies,

g(β′) = ψk(α1, β′) ≥ ψk(α1, β) = g(β).

Thus, for each i ∈ A, each gi is increasing in β, g(0) = (0)i∈A and g(γ) = (α)i∈A. It
is straightforward to show that g is continuous as well.

Step 2. Constructing (Uk
i )i∈A from g.

For each β ∈ [0, γ] and each i ∈ A, let hi : [0, α]→ R denote a strictly increasing
function such that hi(0) = 0, hi(α) = γ, and

for each xi ∈ (0, α), xi = gi(β) if and only if lim
z↑xi

hi(z) ≤ β ≤ lim
z↓xi

hi(z),

0 = gi(β) if and only if 0 ≤ β ≤ lim
z↓0

hi(z), and

α = gi(β) if and only if lim
z↑α

hi(z) ≤ β ≤ γ.

(2)

For each xi ∈ [0, α], let fi(xi) ≡
∫ xi
0
hi(t)dt. Then, fi : [0, α] → R is a well-defined,

closed, and proper convex function.7 Additionally, because hi is strictly increasing,
fi is strictly convex. For each i ∈ A, let Uk

i ≡ −fi. Hence, each Uk
i : [0, α] → R is

strictly concave.

Step 3. Verifying that (Uk
i )i∈A is as claimed in the Lemma.

For each i ∈ A, let fi ≡ −Uk
i . It suffices to establish that, for each β ∈ [0, γ],

g(β) = arg min
{∑

A fk(zk) :
∑

A zk = β, z ∈ [0, α]A
}
. (3)

Case 1: β = 0 or β = γ. If β = 0, {z ∈ [0, α]A :
∑

A zi = β} = (0)i∈A. Thus,
arg min{

∑
A fk(zk) :

∑
A zk = β, z ∈ [0, α]A} = (0)i∈A = g(0), as desired. A symmet-

ric argument establishes (3) when β = γ.

Case 2: 0 < β < γ. Let a ≡ arg min
{∑

A fi(zi) :
∑

A zi = β, z ∈ [0, α]A
}

. For each
i ∈ A, let Fi : R→ R be the function such that, for each xi ∈ [0, α], Fi(xi) = fi(xi)
and, for each xi /∈ [0, α], Fi(xi) =∞. Note that, under the standard convention that
the convex combination of a finite number and ∞ is itself ∞, Fi : R→ R is convex,
closed, and proper. Moreover,

7See Theorem 24.2 in (Rockafellar, 1970, page 230). In this context, the closedness of fi is
equivalent to its lower semi-continuity.
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a = arg min {
∑

A Fi(zi) :
∑

A zi = β}.

Clearly, there is z in the relative interior of [0, α]A such that
∑

A zi = β and∑
A Fi(zi) =

∑
A fi(zi) 6= −∞. Thus, by Corollary 28.2.2 in Rockafellar (1970),

there is a Kuhn-Tucker coefficient λ∗ ∈ R for problem min {
∑

A Fi(zi) :
∑

A zi = β}.
For each (z, λ) ∈ RA ×R, let L(z, λ) ≡

∑
A Fi(zi) + λ[β −

∑
A zi]. By Theorem 28.3

in Rockafellar (1970),

min
x∈RA

L(x, λ∗) = λ∗β +
∑
i∈A

min {Fi(xi)− λ∗xi : xi ∈ R}

= λ∗β +
∑
i∈A

{Fi(ai)− λ∗ai}.
(4)

Thus, for each i ∈ A and each xi ∈ R,

Fi(xi) ≥ Fi(ai) + λ∗(xi − ai).

Thus, λ∗ is in the sub-differential of Fi at ai. That is, for each i ∈ A, λ∗ ∈ ∂Fi(ai).
By the definitions of fi and Fi in Step 2 and Theorem 24.2 in Rockafellar (1970),
(i) if ai is in (0, α), ∂Fk(ai) = [limz↑ai hi(z), limz↓ai hi(z)] , (ii) if ai = 0, ∂Fk(ai) =
(−∞, limz↓ai hi(z)] , and (iii) if ai = α, ∂Fk(ai) = [limz↑ai hi(z),∞) . Moreover, since
γ > β > 0, there are i, j ∈ A such that ai < α and 0 < aj. Thus, since hi and hj are
strictly increasing,

hi(ai) ≤ limz↓ai hi(z) < hi(α) = γ and 0 = hj(0) < limz↑aj hj(z) ≤ hj(aj).

Thus, 0 < λ∗ < γ. Thus, by (2), for each h ∈ A, gh(λ
∗) = ah. Thus, β =

∑
A ah =∑

A gh(λ
∗) = λ∗. Thus, β = λ∗ and g(β) = a, confirming (3). v

For each α ∈ R+, let Uα consist of all profiles {Uk
i : i ∈ A, k ∈ K} such that

Uk
i : [0, α]→ R is strictly concave and continuous. Let Cα ≡ C ∩ [0, α] and, for each

N ∈ N , let PNα denote the class of claims problems (C,E) such that (C,E) ∈ CNα ×Cα.

Lemma 6. Let ϕ denote a consistent and resource monotonic satisfying IIA and let
α ∈ R+. Then, for each N ∈ N with |N | = 2 and each (C,E) ∈ PNα there is a profile
U ∈ Uα such that ϕ(C,E) = arg max{

∑
i∈N
∑

k∈K U
k
i (zki ) : z ∈ Z(C,E)}.

Proof. Let all of the notation be as in the statement of the Lemma and denote by 1
a vector of ones in RA. By Lemma 4, ϕ can be decomposed by each resource type
k ∈ K, ϕ(C,E) = {ψk(Ck, Ek) : k ∈ K}. Thus, ϕ(C,E)|k = ψk(Ck, Ek). Note
that the feasible set has a product structure Z(C,E) = ×k∈KZk(Ck, Ek), where
Zk(Ck, Ek) = {zi ∈ R+ : for each i ∈ N, 0 ≤ zi ≤ Ck

i ,
∑

N zi = Ek}. By Lemma 4
and the fact that the feasible set has the above described product structure it is
enough to show that, for each k ∈ K,
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ϕ(C,E)|k = arg max{
∑

i∈N U
k
i (zi) : z ∈ Zk(Ck, Ek)}.

Let k ∈ K, and β ≤ α|A|, and define C̄ ∈ CA such that, for each j ∈ K and each
i ∈ A, C̄j

i = α. By Lemma 5, there is a U ∈ Uα such that,

ϕ(C̄, β1K)|k = ψ(α1, β) = arg max{
∑

i∈A U
k
i (zi) : z ∈ Zk(α1, β)}.

By Lemma 4 and the construction of (Uk
i )i∈A in the proof of Lemma 5, there is a β′

such that
∑

i∈N ϕi(α1, β
′1K)|k = Ek. By consistency, for each i ∈ N ,

ϕi(α1N , E)|k = ϕi(α1, β
′1K)|k.

Thus, by Lemma 4,

x ≡ ϕ(α1N , E)|k = arg max{
∑

i∈N U
k
i (zi) : z ∈ Zk(α1N , E

k)}.

Let y ≡ ϕ(C,E)|k. We will now show that x = y.
First, consider the case where x ∈ Zk(Ck, Ek). Since (C,E) ∈ PNα , Z(C,E) ⊆

Z(C̄, E). By Lemma 4 and IIA, x = ϕ(C,E)|k = yk.
Second, consider the case where x /∈ Zk(Ck, Ek). Then, there is i ∈ N such that

yi ≤ Ck
i < xi, and since yi+yj = Ek = xi+xj, there is j ∈ N \{i} such that yj > xj.

Let a = arg max{
∑

i∈N U
k
i (zi) : z ∈ Z(Ck

N , E
k)}. We need to prove that y = a.

Because (C,E) ∈ PNα , for each i ∈ N , Ck
i ≤ α. Thus, Zk(Ck

N , E
k) ⊆ Zk(α1N , E

k).
Thus, since

∑
i∈N U

k
i is strictly concave, ai = Ck

i and
∑

i∈N U
k
i (xi) >

∑
i∈N U

k
i (ai) ≥∑

i∈N U
k
i (yi) where the last inequality holds with equality if and only if a = y. Thus,

it suffices to prove that yi = Ck
i . Suppose not, i.e. yi < Ck

i . By optimality of y and
since yi < Ck

i ,8

∂+U
k
i (yi) ≤ ∂−U

k
j (yj) < ∂+U

k
j (xj), (5)

where the second equality follows from strict concavity of Uk
j . Similarly by optimality

of x and since xj < yj ≤ Ck
i ≤ α,

∂+U
k
j (xj) ≤ ∂−U

k
i (xi) < ∂+U

k
i (yi), (6)

where the second equality follows from strict concavity of Uk
i . But (6) contradicts (5),

and we conclude that yi = Ck
i . Thus, y = a and we have thereby proven Lemma 6. v

The last step in the proof of Theorem 2 consists of the following “Elevator
Lemma”. We require the following definition to proceed:

8Given a function f : R→ R, for each x ∈ R, let ∂+f(x) and ∂−f(x) denote the right hand and
left hand derivatives of f at x, respectively.
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Converse consistency For each N ∈ N and each (C,E) ∈ PN ,

[x ∈ Z(C,E) and, for each {i, j} ⊆ N , x{i,j} = ϕ(C{i,j}, xi + xj)] ⇒ x = ϕ(C,E).

Such elevator type arguments prove that, if a consistent solution coincides with a
conversely consistent solution for two agent problems then, in fact, the two solutions
coincide in general. In Lemma 6, we proved that a solution satisfying the properties
in Theorem 2 coincides, on an α-parameterized subdomain of claims problems, with
an also α-parameterized solution which is a collectively rational solution for that
subdomain of claims problems. The following results “elevates” this coincidence
from two agent problems to those with any finite number of agents.

Lemma 7. The collectively rational solutions are conversely consistent.

Proof. Let U ≡ {Uk
i : k ∈ K, i ∈ A} ∈ U and denote by ϕU the associated collectively

rational solution. Since the collectively rational solutions are consistent and resource
monotonic, by Lemma 4, there is {ψk : k ∈ K} ∈ Ψ such that for each N ∈ N , and
each (C,E) ∈ PN ,

ϕU(C,E) = {ψk(Ck, Ek) : k ∈ K}.
Now, using that ϕU is resource monotonic and Lemma 4, implies that, for each
N ∈ N , each C ∈ CN , and for each pair Êk, Ẽk ∈ C,

Êk > Ẽk ⇒ ψk(Ck, Êk) ≥ ψk(Ck, Ẽk). (7)

Let N ∈ N , and (C,E) ∈ PN . Let x ∈ Z(C,E) be such that, for each {i, j} ⊆ N ,
x{i,j} = ϕU(Ci, Cj, xi + xj). Let y ≡ ϕU(C,E). Since ϕU is consistent, y{i,j} =
ϕU(Ci, Cj, yi+yj). Thus, by consistency, if there is {i, j} ⊆ N such that y{i,j} 6= x{i,j},
yi + yj 6= xi + xj. If so, without loss of generality, there is k ∈ K such that
yki + ykj > xki + xkj . Thus, by (7),

yk{i,j} = ψk((Ck
i , C

k
j ), yki + ykj ) ≥ ψk((Ck

i , C
k
j ), xki + xkj ) = xk{i,j}

and, without loss of generality, i is such that yki > xki . Thus, since
∑

h∈N x
k
h =

Ek =
∑

h∈N y
k
h, there is l ∈ N \ {i, j} such that ykl < xkl . By consistency, y{i,l} =

ϕU(Ci, Cl, yi + yl) and, by assumption, x{i,l} = ϕU(Ci, Ck, xi +xl). Thus, if yki + ykl ≥
xki + xkl , by (7), ykl ≥ xkl , which is not the case. Thus, yki + ykl < xki + xkl . Thus, by
(7), yk{i,l} ≤ xk{i,l}, contradicting yki > xki . Thus, ϕU is conversely consistent. v

Lemma 8. Let α denote a postive number. Let U ∈ Uα and let ϕ be a solution
defined on the subdomain of claims problems indexed by α and such that, for each
N ∈ N and each (C,E) ∈ PNα ,

13



ϕ(C,E) = arg max{
∑

i∈N
∑

k∈K U
k
i (zki ) : z ∈ Z(C,E)}.

Then, ϕ is conversely consistent on the subdomain of claims problems indexed by α.

Proof. The proof is identical to that for Lemma 7. v

Lemma 9. Let α denote a positive number. Let ϕ denote a solution satisfying the
properties in Theorem 2. Then, there is U ≡ {Uk

i : k ∈ K, i ∈ A} ∈ Uα such that,
for each (C,E) ∈ PNα , ϕ(C,E) ≡ arg max{

∑
k∈K

∑
i∈N U

k
i (zki ) : z ∈ Z(C,E)}.

Proof. Let N ∈ N , (C,E) ∈ PNα , and x ≡ ϕ(C,E). Clearly, for each {i, j} ⊆ N ,
(Ci, Cj, xi+xj) ∈ PNα . By consistency, for each {i, j} ⊆ N , ϕ(Ci, Cj, xi+xj) = x{i,j}.
By Lemma 6, there is U ≡ {Uk

i : k ∈ K, i ∈ A} ∈ Uα such that for each {i, j} ⊆ N ,
ϕ(Ci, Cj, xi + xj) = arg max{

∑
k∈K U

k
i (zki ) + Uk

j (zkj ) : z ∈ Z(Ci, Cj, xi + xj)}. This
is the solution defined in Lemma 8, and we know that it is conversely consistent.
Thus, x = ϕ(C,E) = arg max{

∑
k∈K

∑
i∈N U

k
i (zki ) : z ∈ Z(C,E)} = x = ϕ(C,E)

for U ∈ Uα, as desired. v

Proof of Theorem 1. Let ϕ denote a resource monotonic and consistent solution sat-
isfying IIA. Then, by Lemma 9, letting α→∞, there is U ∈ U such that ϕ = ϕU . v

4.2 Extending the argument to indivisible resources

Suppose, for the remainder of this section, that there are resources only available in
indivisible units, i.e. I 6= ∅.

Lemma 10. Let ϕ denote a consistent and resource monotonic solution. Let α
denote a positive integer. Let {ψk : k ∈ K} ∈ Ψ denote the corresponding profile
of functions described in Lemma 4. Then, for each k ∈ K and each i ∈ A, there
is a strictly concave and continuous function Uk

i : [0, α] → R such that, for each
β ∈ [0, |A| · α],

ψk(α1, β) = arg max{
∑

i∈A U
k
i (zi) :

∑
A zi = β, z ∈ [0, α]A},

where 1 is a vector of ones in RA. Moreover, if k ∈ I and β ∈ {0, 1, . . . , |A| · α},

arg max
{∑

i∈A U
k
i (zi) :

∑
A zi = β, z ∈ [0, α]A

}
is in ZA+. (8)

Proof. Let all the notation be as in the statement of the Lemma. If k ∈ D, Lemma
5 immediately establishes the desired conclusions. Suppose instead that k ∈ I and
let γ = |A| · α.
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Figure 1: An illustration of the construction of a monotone path in the the integral case: Suppose
that A = {i, j}. (a) As the amount of the resource k ∈ K increases from 0 to 1 (1 to 2, 2 to 3, . . . ),
by resource-monotonicity, the allocation recommended by the mechanism is above or to the right of
(0,0) ((1,0), (2,0), . . . ). (b) We obtain a continuous monotone path by connecting the allocations
of resource k obtained in part (a). The arguments in Lemma 5, for the divisible resource case, can
then be applied to construct a profile of concave functions.

Step 1. Constructing a continuous monotone path in RA
+.

For each β ∈ {0, 1, . . . , γ}, let G(β) ≡ ψk(α1, β). By the resource monotonicity
of ϕ,

(α)i∈A = G(γ) ≥ G(γ − 1) ≥ · · · ≥ G(1) ≥ G(0) = (0)i∈A.

where the first and last inequality follow from the fact that ψk selects a feasible
distribution of each β ∈ {0, 1, . . . , γ}. For the same reason, for each β ∈ {0, 1, . . . , γ},
G(β) ∈ ZA+.

Let g : [0, γ]→ RA
+ be such that

{g(β) : β ∈ [0, γ]} =
⋃

β∈{0,1,...,γ−1}

co{G(β), G(β + 1)}.

where co{G(β), G(β + 1)} denote the convex hull of {G(β), G(β + 1)}.
Figures 1a and 1b illustrate the construction of g from G when A = {i, j}. Note

that g is a continuous and monotone path in RA
+. Thus, we can replicate Steps 2 and

3 in the proof of Lemma 5 to construct a profile (Uk
i )i∈A of concave functions such

that, for each β ∈ [0, γ],

g(β) = arg max{
∑

A U
k
i (zk) :

∑
A zk = β, z ∈ [0, α]A}
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and, since, for each β ∈ {0, 1, . . . , γ}, g(β) = G(β) ∈ ZA+,

g(β) = arg max
{∑

i∈A U
k
i (zi) :

∑
A zi = β, z ∈ [0, α]A

}
is in ZA+

as claimed in the Lemma. v

Letting α→∞ in (8) we obtain condition (1). Lemma 1 tells us that once we have
a profile U ∈ U∗ we can treat the optimization problem definining the collectively
rational solution ϕU as if all resources were divisible, yet we are guaranteed integral
feasible assignments of resources available in indivisible units. We can thus, use the
same arguments in Lemmas 6 and 9 to conclude the the proof of Theorem 2 just as
was done for that of Theorem 1.

A Appendix

We will use the following notation. For each N ∈ N , define,

for each (c, e) ∈ RN
+ × R+, S(c, e) ≡ {z ∈ RN

+ :
∑

N zi = e, 0 ≤ zi ≤ ci}, and
for each (c, e) ∈ ZN+ × Z+, S̄(c, e) ≡ {z ∈ ZN+ :

∑
N zi = e, 0 ≤ zi ≤ ci}.

Given a set B, let coB denote its convex hull. We need to define two functions
before proving Lemma 1. For each U ≡ (Ui)i∈A ∈ I, each M ∈ M, and each
(a, ν) ∈ ZA+ × Z+ such that

∑
A ai ≥ ν, let

x(a, ν, U) = arg max
{∑

i∈A Ui(zi) :
∑

i∈A zi = ν, 0 ≤ zi ≤ ai
}

and (9)

y(ν,M) = arg max
{∑

i∈A
∑ν

h=1mihzih :
∑

i∈A
∑ν

h=1 zih = ν, 0 ≤ zih ≤ 1
}
. (10)

A.1 Proof of Lemma 1

Before proving Lemma 1 we need to establish the following result.

Lemma 11. If (Ui)i∈A ∈ I, then for each N ∈ N , and each n ∈ Z+,

arg max {
∑

N Ui(zi) :
∑

N zi = n, 0 ≤ zi} ∈ ZN+ .

Proof. Let U ≡ (Ui)i∈A ∈ I, N ∈ N , n ∈ Z+, a ∈ ZA+ be such that
∑

N ai ≥ n, and
b ≡

∑
A ai. Let x(a, n, U) and y(n,M) be defined as in equation (9) and (10). By

Lemma 2 there is M ∈ M such that, for each λ ∈ {0, 1, . . . , b} and for each i ∈ A,
xi(a, λ, U) =

∑λ
h=1 yih(λ,M)

First we prove that there is an ν ∈ Z+ such that
∑

N xi(a, ν, U) = n. Suppose
there is i ∈ A such that xi(a, ν, U) > xi(a, ν + 1, U). Then there is j ∈ A \ {i}
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such that xj(a, ν + 1, U) ≥ xj(a, ν, U) + 1. By optimality at x(a, ν, U), mi(xi(a,ν,U)) >
mj(xj(a,ν,U)+1)). By optimality at x(a, ν + 1, U), mi(xi(a,ν,U)) < mj(xj(a,ν,U)+1). But
this is a contradiction. Thus, for each i ∈ A, xi(a, ν, U) ≤ xi(a, ν + 1, U). By
feasibility

∑
A xj(a, ν + 1, U) =

∑
A xj(a, ν, U) + 1. Hence there is i ∈ A such that

xi(a, ν+1, U) = xi(a, ν, U)+1 and, for each j ∈ A\{i}, xj(a, ν+1, U) = xj(a, ν, U).
Restricting attention to N we have that

∑
N xi(a, ν + 1, U) =

∑
N xi(a, ν, U) + 1, if

there is j ∈ N such that xj(a, ν + 1, U) = xj(a, ν, U) + 1, otherwise
∑

N xi(a, ν +
1, U) =

∑
N xi(a, ν, U). Consider the sequence (

∑
N xi(a, h, U))bh=0. It is a weakly

increasing sequence bounded by
∑

N ai and, for each h ∈ {0, 1, . . . , b},
∑

N xi(a, h+
1, U)−

∑
N xi(a, h, U) ≤ 1. Thus, there is 0 ≤ ν ≤ b such that

∑
N xi(a, ν, U) = n.

Let x̃ ≡ arg max {
∑

N Ui(zi) :
∑

N zi = n, 0 ≤ zi ≤ ai}, and suppose, by way of
contradiction, that x̃ /∈ ZN+ . From the previous paragraph, there is ν such that∑

N xi(a, ν, U) =
∑

N x̃i = n. Let x̂ ≡ x(a, ν, U). By Lemma 2, x̂N ∈ ZN+ . Thus,
x̃ 6= x̂N . By the optimality of x̃,

∑
N Ui(x̃) >

∑
N Ui(x̂i). Thus,

∑
N Ui(x̃i) +∑

A\N Ui(x̂i) >
∑

N Ui(x̂i)+
∑

A\N Ui(x̂i). Now, since
∑

N x̃i =
∑

N x̂i = n, (x̂A\N , x̃N)
is a feasible solution to the optimization problem defining x̂. But this is a contradic-
tion to optimality of x̂. Thus, x̃ ∈ ZN+ . v

With Lemma 11 established we have everything needed to prove Lemma 1. In the
first part of the proof of Lemma 1 we show that the solutions of the maximization
problems in Lemma 1 are feasible, in particular, that when resources are indivisible
the corresponding coordinates of the solutions are integral. The final part of the
proof shows that these solutions, in fact, coincide with the recommendations made
by the collectively rational solutions.

Proof of Lemma 1. Let U ≡ {Uk
i : i ∈ A, k ∈ K} ∈ U∗, N ∈ N , (C,E) ∈ PN ,

k ∈ K, e ≡ Ek, c ≡ Ck, and α ∈ R+ be such that α > ci for each i ∈ A, and α ∈ RN
+

such that αi = α for each i ∈ N . Let Ui ≡ Uk
i for each i ∈ A and,

x ≡ arg max{
∑

i∈N Ui(zi) : coZ(C,E)|k}

and note that S(c, e) is equal to constraint set defining x.

Part 1. Since Z(C,E) has a product structure, it suffices to show that x ∈
Z(C,E)|k. If k indexes a divisible resource (k ∈ D), then, Z(C,E)|k is itself con-
vex, implying coZ(C,E)|k = Z(C,E)|k. Thus, if all resources are divisible, there is
nothing to prove.

It remains to prove that, if k ∈ I, x ∈ Z(C,E)|k. Let

y ≡ arg max{
∑

i∈N Ui(zi) : z ∈ S(α, e)}.
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By Lemma 11, (Ui)i∈A ∈ I implies y ∈ ZN+ . Since y ∈ S(α, e), y ∈ S̄(α, e).
Since S(c, e) ⊆ S(α, e),

∑
i∈N Ui(yi) ≥

∑
i∈N Ui(xi). Thus, if y ∈ S(c, e), since the

optimum is unique, x = y ∈ Z(C,E)|k, as desired. It remains to consider the case
where y /∈ S(c, e). Then, there is h ∈ N such that yh > ch.

Step 1. For each i ∈ N , yi ≥ ci implies xi = ci ∈ Z+.

Otherwise, because x ∈ S(c, e), xi < ci and, since
∑

i∈N yi = e =
∑

i∈N xi there
is j ∈ N such that yj < xj ≤ cj. This would lead to a contradiction: it implies there
is a real number ε > 0 such that

x+ ε(ei − ej) ∈ S(c, e) and y + ε(ej − ei) ∈ S(α, e).

Assume that the above is indeed true. Then, a necessary condition for x and y to
maximize

∑
i∈N Ui over S(c, e) and S(α, e), respectively, is that, ∂+Ui(xi) ≤ ∂−Uj(xj)

and ∂+Uj(yj) ≤ ∂−Ui(yi). On the other hand, since Ui and Uj are strictly concave,
we obtain the first and last inequalities in

∂+Uj(yj) > ∂−Uj(xj) ≥ ∂+Ui(xi) > ∂−Ui(yi),

which contradicts ∂+Uj(yj) ≤ ∂−Ui(yi). This establishes that, in fact, xi = ci. This
completes Step 1.

Let N ′ ≡ {i ∈ N : yi < ci} and e′ ≡
∑

i∈N ′ yi +
∑

i∈N\N ′(yi − ci), and

y′ ≡ arg max{
∑

i∈N ′ Ui(zi) : z ∈ S(α, e′)}.

Note that
∑

N ′ ci ≥ e′ and xN ′ = arg max{
∑

i∈N ′ Ui(zi) : z ∈ S(cN ′ , e
′)}. By

Lemma 11, (Ui)i∈A ∈ I implies y′ ∈ ZN ′+ . Clearly, since S(cN ′ , e
′) ⊆ S(αN ′ , e

′),
if y′ ∈ S(cN ′ , e

′), then, for each i ∈ N ′, xi = y′i ∈ Z+. Combining this with
Step 1, would yield x ∈ Z(C,E)|k as desired. It remains to consider the case where
y′ /∈ S(cN ′ , e

′). Then, there is h ∈ N ′ such that y′h > ch.

Step 2. For each i ∈ N ′, y′i ≥ ci implies xi ∈ Z+.

Step 2 is symmetric to Step 1 and is proven symmetrically. We can then move on
to Step 3 and so on. At each step, either we establish that x ∈ Z(C,E)|k or decrease
the number of coordinates of x that are possibly non-integer. Since N is finite, the
desired conclusion is eventually reached.
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Part 2. Let A ≡ {z : z ∈ coZ(C,E)|k}, B ≡ {z : z ∈ Z(C,E)|k}, and w ≡
ϕU(C,E)|k. By Part 1, x ∈ B. Thus, by the definition of ϕU ,

∑
i∈N Ui(wi) ≥∑

i∈N Ui(xi). By the definition of x, since w ∈ A,
∑

i∈N Ui(wi) ≤
∑

i∈N Ui(xi).
Thus, w maximizes

∑
i∈N Ui over A. Since the maximizer of

∑
i∈N Ui over A is

unique, in fact, w = x. v

A.2 Proof of Lemma 3

Proof. Let U ≡ {Uk
i : i ∈ A, k ∈ K} ∈ U∗ and N ∈ N .

Resource monotonicity: We begin by proving that ϕU is resource-monotonic. Let
(C,E), (C, Ê) ∈ PN and be such that Ê ≥ E. Let x ≡ ϕU(C,E) and x̂ ≡ ϕU(C, Ê).
We need to show that x̂ ≥ x. Suppose, instead, that there are i ∈ N and k ∈ K
such that xki > x̂ki . By the definition of ϕU , if Ek = Êk, xk = x̂k. Thus,

∑
j∈N x̂

k
j =

Êk > Ek =
∑

j∈N x
k
j . Thus, there is j ∈ N such that x̂kj > xkj . By the definition

of ϕU , for each h ∈ N , xkh ≤ Ck
h and x̂kh ≤ Ck

h . Further, by the definition of ϕU ,
xk and x̂k maximize

∑
h∈N U

k
h over S(Ck, Ek) and S(Ck, Êk) respectively. Since

x̂kj > xkj ≥ 0 and x̂ki < xki < Ck
i , there is ε > 0 such that x̂k + ε(ei− ej) ∈ S(Ck, Êk).

Thus, a necessary condition for x̂k to maximize
∑

h∈N U
k
h over S(Ck, Êk) is that

∂+U
k
i (x̂ki ) ≤ ∂−U

k
j (x̂kj ). Moreover, since Uk

i and Uk
j are strictly concave, we obtain

the first and last inequalities in

∂+U
k
j (xkj ) > ∂−U

k
j (x̂kj ) ≥ ∂+U

k
i (x̂ki ) > ∂−U

k
i (xki ).

Thus, ∂+U
k
j (xkj ) > ∂−U

k
i (xki ). Since xki > x̂ki ≥ 0 and xkj < x̂kj ≤ Ck

j , there is ε > 0
such that xk + ε(ej −ei) ∈ S(Ck, Ek). This, in addition to x̂kj > xkj ≥ 0, implies that
xk does not maximize

∑
h∈N U

k
h over S(Ck, Ek). This contradiction establishes that,

in fact, x̂ ≥ x, and we conclude that ϕU is resource-monotonic.

Consistency: Now we will show that ϕU is consistent. Let {N,N ′} ⊆ N be such
that N ′ ⊆ N . Let (C,E) ∈ PN and x ≡ ϕU(C,E). By way of contradiction,
suppose that y ≡ ϕU(CN ′ ,

∑
N ′ xk) 6= xN ′ . Thus, there is k ∈ K such that xkN ′ 6= yk.

By the definition of ϕU , for each i ∈ N , xki ≤ Ck
i ) and, for each i ∈ N ′, yki ≤

Ck
i . Then, xkN ′ 6= yk, because the maximization problem defining yk has a unique

solution,
∑

i∈N ′ U
k
i (xki ) <

∑
i∈N ′ U

k
i (yki ). Recall that

∑
i∈N ′ x

k
i =

∑
i∈N ′ y

k
i . Thus,

zk ≡ (yk, xkN\N ′) ≤ Ck and
∑

i∈N z
`
i = Ek. Thus,

∑
i∈N U

k
i (xki ) <

∑
i∈N U

k
i (zki ).

Thus, xk 6= ϕU(C,E)|k, contradicting the definition of ϕU , and we conclude that ϕU

is consistent.

IIA: It only remains to show that ϕU satisfies IIA. Let N ∈ N , and (C,E), (C̄, E) ∈
PN be such that Z(C,E) ⊇ Z(C̄, Ē) and ϕU(C,E) ∈ Z(C̄, Ē). By way of con-
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tradiction suppose that ϕU(C,E) 6= ϕU(C̄, Ē). Then, there is k ∈ K such that
ϕU(C,E)|k 6= ϕU(C̄, Ē)|k. Let x ≡ ϕU(C,E)|k and x̄ ≡ ϕU(C̄, Ē)|k. By definition
of ϕU x is the maximizer of

∑
i∈N U

k
i (zi) over Z(C,E)|k. Thus,

∑
i∈N U

k
i (xi) >∑

i∈N U
k
i (x̄i), since x̄ ∈ Z(C,E)|k. Similarly by definition of ϕU x̄ is the maxi-

mizer of
∑

i∈N U
k
i (zi) over Z(C̄, Ē)|k. Thus,

∑
i∈N U

k
i (xi) <

∑
i∈N U

k
i (x̄i), since

by assumption x ∈ Z(C̄, Ē)|k. But this is a contradiction, and we conclude that
ϕU(C,E) = ϕU(C̄, Ē). Thus, ϕU satisfies IIA. v
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