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Abstract
A survey is a popular and common method for eliciting behav-

ioral data on a topic from a sample population. Such behavioral data
captures the actions of the sampled population under some possibly
unknown environment. Quite often, we do not have information about
the individual responses due to privacy concerns or bookkeeping over-
loads. Instead, what we typically observe is some form of aggregation
or summarization of the individual responses that represents the per-
centages of the individuals who reportedly took certain actions. Be-
cause, as we assume, each person is strategic and takes the best action
given the actions of other people, we view the given behavioral data
as a set of possible (approximate) mixed-strategy Nash equilibrium
(MSNE) of some game. Given this, our goal is to learn a game that
would best explain or rationalize the behavior of the population. In
this work, we introduce a machine learning (generative) framework to
learn the structure and parameters of games given a set of possible (ap-
proximate) MSNE for the purpose of predicting and analyzing behav-
ior, even under causal intervention or counterfactual queries. Under
our framework, we show that, under some mild assumptions, maximiz-
ing the log-likelihood of a game given behavioral data is equivalent to
finding a game that maximizes the number of (approximate) MSNE
in the data while maintaining the overall proportion of (approximate)
MSNE of the game as low as possible. Moreover, we illustrate the
effectiveness of our framework by learning the parameters of general-
ized interdependent security games from real-world vaccination data
publicly available from the Center for Disease Control and Prevention
(CDC) in the United States.
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1 Introduction

A survey is an important tool for eliciting information from agents in large
populations. Many government agencies such as the Centers for Disease
Control and Prevention (CDC) in the United States sample some subsets of
the population, and elicit information from them via a survey or a question-
naire. For example, the CDC can ask an agent, “Did you take the H1N1
vaccine this month?”

We are particularly interested in this type of question because it reveals
the action an agent took perviously. Indeed, if we believe that the agents are
rational, self-interested, and their decisions affect the decisions of others, then
we can attempt to learn and infer a game in which the actions the agents took
are the “best-responses” of all other agents, and no agent would benefit from
unilaterally deviating from their current action (i.e., from taking a vaccine to
not taking a vaccine, or vice versa). These actions (collectively) are known as
pure-strategy Nash Equilibrium (PSNE) and we will define it more formally
later. However, quite often, we do not get to see the completed survey of each
individual in the population. This is, perhaps, due to the large amount of
data and information: it is impossible to keep track of all the details. Instead,
what we typically can publicly obtain is some compact representation of the
data that summarizes or aggregates the information collected.

More concretely, using the CDC vaccination data as our running exam-
ple, we can observe the monthly state vaccination percentages (along with
standard deviations) for different age groups, race groups, and types of vac-
cinations. These vaccination percentages represent the average behavior of
the people in the USA. Indeed, if we view each state as an agent, we can in-
terpret each vaccination rate at each state in the USA as the probability, or,
using game-theory parlance, the “mixed strategy”, that the corresponding
“state agent” vaccinates against a particular disease. (Please keep in mind
that the state agent’s mixed strategy really corresponds to the percentage
of people in that state that would decide to vaccinate against that partic-
ular disease.) Moreover, if we further consider the fact that the behaviors
(vaccination rates) of the state agents affect the vaccination rates of oth-
ers, then we can model the vaccination scenario, at the level of states, as
a game. In particular, agents are the states in the USA, actions are either
to vaccinate or not vaccinate, and the payoff of each state is some function
that roughly capture the average preferences or utilities of all the individuals
in the population of that state. We assume that the payoff function is im-
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plicit in the behavioral data and that we can learn it or infer it by trying to
“rationalize” each state’s behavior in the given dataset of vaccination rates.
Said differently, here, we do not know the exact game the agents are playing
and hence we do not know their payoffs. However, we have data that poten-
tially specify the mixed strategies of the agents. Some may correspond to an
(equilibrium) outcome of the game. Therefore, using the vaccination rates as
mixed strategies, we can learn a game that could partially capture some of
these mixed strategies as outcomes, or, as we view it, mixed-strategies Nash
equilibria (MSNE) of the game. In addition, we do expect some of these
mixed strategies to be noisy. Therefore, we assume that some of these mixed
strategies may be approximate or ε-MSNE of the games and try to find ε as
small as possible to capture the variations.

In this work, not only we introduce a general machine learning (genera-
tive) framework to learn any arbitrary game given the data, we also provide
a way to learn a class of generalized interdependent security (α-IDS) games
[Chan and Ortiz, 2014]. We will define α-IDS games more formally in Section
3.1), which we use to model vaccination decisions.

We now describe the way we use the CDC data, and delay the details
about our learning framework and the mechanisms we derive to learn α-IDS
games. Using the 2009-2010 states H1N1 vaccination percentages and their
standard deviations, we generate 10,000 (mixed-strategy) examples according
to normal distributions with means and standard deviations of the states.
Each example represents a single mixed-strategy profile of the 48-states in the
continental USA (i.e., excluding Alaska and Hawaii). Given these examples,
we aim to learn a (α-IDS) game that would best explain the generated data.

Our main interest for learning games is the ability they provide to poten-
tially interpret what would happen at an MSNE, even when the given data
may not be an exact MSNE, or be noisy. The mixed strategies of the state
agents in our data may not correspond to the optimal equilibrium strategies.
Therefore, we want to infer the (real) behavior of the states at equilibrium
from noisy data, in which not all examples may belong to the set of approx-
imate MSNE of some game.

Thus, given the learned games, we can run a version of some learning-
heuristics/regret-minimization [Fudenberg and Levine, 1998], in which we use
the average vaccination rates as the initial mixed-strategy profiles to compute
ε-MSNE in these games. We expect that as ε goes to zero, we would be able
to capture the true equilibrium strategies of the state agents.

Contribution. We conclude the introduction with a summary of our
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contributions. Our interest in this work is learning games from observed
mixed-strategy data. In contrast to previous work, in which the data are the
actions or pure strategies of the players [Honorio and Ortiz, 2014], we are
dealing with data that summarize the actions of all the individuals within a
state’s population using rates. In our model, we view each rate as represent-
ing the mixed strategy of each state agent.

In game-theoretic terms, we view these probabilities collectively as (ap-
proximate) MSNE. In particular, we

• propose and introduce a machine learning (generative) framework to
learn a game given the data;

• show that, under some mild conditions, maximizing the log-likelihood
of the game is equivalent to maximizing the number of (approximate)
MSNE under our framework;

• use our framework to derive a heuristic to learn α-IDS games given the
CDC vaccination data; and

• experimentally show that our framework and learning heuristic are ef-
fective for inferring α-IDS games, and may be able to provide insight
into the behavior of state agents.

1.1 Related Work

The closest work to ours is Honorio and Ortiz [2014] where they provide a
general machine learning framework to learn the structure and parameters of
games from discrete (e.g., “Yes/No” responses) behavioral data. Moreover,
they demonstrate their framework on learning influence games [Irfan and
Ortiz, 2014] using congressional voting data. For the sake of completeness,
all other previous methods assume that the actions and payoffs are observable
in the data [Wright and Leyton-Brown, 2010, 2012, Gao and Pfeffer, 2010,
Vorobeychik et al., 2007, Ficici et al., 2008, Duong et al., 2009, 2012] while
others are interested in predicting future behavior from the past behavior
(system dynamics) [Kearns and Wortman, 2008, Ziebart et al., 2010]. We
refer the reader to the related work section of Honorio and Ortiz [2014] for a
more detailed discussion.
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2 A Framework to Learn Games from Data

Let V = {1, 2, ..., n} be a set of players. For each i ∈ V , let Ai be the
set of actions/pure-strategies available to i and ui : ×j∈VAj → R be the
payoff of i given the actions of i and other V − {i} agents. Let Xi be
the set of mixed strategies of i, which is a simplex over Ai, and denote by
ui(x) ≡ Ea∼x[ui(x)] the expectation over the probabilities xi of playing the
pure-actions. A joint-mixed strategy x∗ ∈ ×ni=1Xi is a mixed-strategy Nash
equilibrium (MSNE) of a non-cooperative game [Neumann and Morgenstern,
1944, Nash, 1950, 1951] if, for each player i, x∗i ∈ arg maxxi∈Xi

ui(xi, x
∗
−i),

where x∗−i ≡ (x∗1, x
∗
2, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
n). We denote the set of all MSNE

of a game G as

NE(G) ≡ {x∗ | ∀i, x∗i ∈ arg maxxi∈Xi
ui(xi, x

∗
−i)}

For the following definition, we assume that the utilities are normal-
ized between 0 and 1. Given ε > 0, a joint-mixed strategy x∗ ∈ X =
×ni=1Xi is an ε-MSNE of a non-cooperative game if, for each player i, x∗i ∈
arg maxxi∈Xi

ui(xi, x
∗
−i)− ε. We denote the set of all ε-MSNE of a game G as

NE ε(G) ≡ {x∗ | ∀i, x∗i ∈ arg maxxi∈Xi
ui(xi, x

∗
−i)− ε} .

For the rest of the paper, we assume that each agent has two actions and
the action set of each of the agents is either 0 or 1 (i.e., Ai = {0, 1} for all
i). As such, the mixed strategies of the agents are in [0, 1] (i.e., Xi = [0, 1]
and with probability xi ∈ Xi, player i plays action 1).

It is easy to see that NE(G) ⊆ NE ε(G) ⊆ NE ε′(G) for all 0 < ε < ε′.
Note that an ε-MSNE might not be close to any true MSNE.

2.1 A Generative Model for Behavioral Data on Joint-
mixed-strategies

We adopt a similar learning approach to that of Honorio and Ortiz [2014].
However, this time the generative model of behavioral data is over the set
of joint-mixed-strategies. Hence, a probability density function (PDF) over
the n-dimensional hypercube [0, 1]n now defines the generative model. We
point out that our results are nontrivial extensions analogous to those of
Honorio and Ortiz [2014] but in a continuous space, as oppose to the use of a
probability mass function (PMF) over the set of joint pure-strategies {0, 1}n,
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a discrete space. To keep things simple, we present our results without proofs;
the proofs are appropriately adapted versions of those of Honorio and Ortiz
[2014].

Let G be a game and the approximation parameter ε > 0. We assume
that the set NE ε(G) is (Borel) µ-measurable and denote its measure by
|NE ε(G)| ≡ µ(NE(G). (We leave the question of whether ε-MSNE is always
measurable open.) We assume the statistical process generating the data is
a simple mixture model: i.e., with probability q ∈ (0, 1), the process gener-
ates/outputs a joint-mixed-strategy x by drawing uniformly at random from
the set NE ε(G); with probability 1− q, the process generates a joint-mixed-
strategy x by drawing uniformly at random from NE ε(G) ≡ [0, 1]n−NE ε(G),
the complement of the NE ε(G). Said differently, our generative model of be-
havioral data based on joint-mixed-strategies is a mixture model with mixture
parameter q and mixture components defined in terms of the approximation
parameter ε > 0 and a game G, with the implicit assumption that NE ε(G)
is measurable, with Borel measure value |NE ε(G)|; otherwise the model is
undefined. Note that, in our context, because µ([0, 1]n) = 1, we can view
the Borel measure µ as a probability measure. From now on, all references
to measures are to the Borel (probability) measure, and µ denotes such mea-
sure. We also assume that when we refer to the set NE ε(G), it is measurable
with respect to the respective G and ε, unless stated otherwise. More for-
mally, the PDF f for the generative model with parameters (q,G, ε) over the
hypercube of joint-mixed-strategies [0, 1]n is

f(q,G,ε)(x) ≡q1[x ∈ NE ε(G)]

|NE ε(G)|
+ (1− q)1[x 6∈ NE ε(G)]

1− |NE(G)|
, (1)

for all x ∈ [0, 1]n, assuming NE ε(G)) is measurable; otherwise, f(q,G,ε)(x) is
undefined.

In order for eq. 1 to be valid, if ε = 1 or NE ε(G) = [0, 1]n, then we need
to require that q = 1. Note that NE ε(G) = ∅ is impossible since every game
has at least one MSNE, by Nash’s seminal result [Nash, 1950, 1951].

We assume that the behavioral data is are i.i.d. instances drawn according
to f(q,G,ε).

Definition 2.1. (Trivial and Non-trivial Games) We say that a game
G is trivial if and only if |NE ε(G)| ∈ {0, 1} and non-trivial if and only if
|NE ε(G)| ∈ (0, 1).
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Let πε(G) be the true proportion of ε-MSNE in the game G where

πε(G) ≡ µ(NE ε(G)) . (2)

The following set of propositions is analogous to those Honorio and Or-
tiz [2014] state and establishes the fact that there are different games with
the same set of ε-MSNE. Said differently, the game G is not identifiable
with respect to the generative model f(q,G,ε) defined in eq. 1. We side-step
the non-identifiability of G with respect to f(q,G,ε) using a common practice
in machine learning (ML): we invoke the Principle of Ockham’s Razor for
model (i.e., game) selection. In general, experts in the respective field (e.g.,
epidemiology) would provide the necessary bias for learning. Here, we impose
a particular bias that induces “sparse” or “compactly representable” games,
as we define formally in a later section. We note, however, that the games
are identifiable in terms of their ε-MSNE, with respect to f(q,G,ε), as we show
and discuss later.

Proposition 2.2. Given the approximation parameter ε > 0 and a non-
trivial game G, the mixture parameter q > πε(G) if and only if f(q,G,ε)(x1) >
f(q,G,ε)(x2) for any x1 ∈ NE ε(G) and x2 /∈ NE ε(G).

Definition 2.3. Given the approximation parameter ε > 0, we say the games
G1 and G2 are ε-approximation-equivalent, or ε-equivalent, if and only if
their approximate Nash equilibrium sets are identical, i.e.: G1 ≡ε−MSNE G2 ⇔
NE ε(G1) = NE ε(G2).

Lemma 2.4. Let G1 and G2 be two non-trivial games. Given the approxima-
tion parameter ε > 0, for some mixture parameter q > max(πε(G1), πε(G2)),
G1 and G2 are ε-equivalent if and only if they induce the same pdf over the
mixed strategies of space [0, 1]m of the agents. Moreover, G1 ≡ε−MSNE G2 ⇔
∀x f(q,G1,ε)(x) = f(q,G2,ε)(x).

2.2 Learning the Parameters of the Games via MLE

In this section, we present a mean to estimate the parameters of a graphical
game from data. The data, as we will assumption, will be a set of ε-MSNE.

For the following, we recall the Kullback-Leibler (KL) divergence between
two Bernoulli distributions with parameters p1, p2 ∈ (0, 1), which, using com-
mon practice to simplify the presentation, we denote by

KL(p1‖p2) ≡ p1 log
p1
p2

+ (1− p1) log
1− p1
1− p2

.
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Given a dataset D = {x(1), ..., x(m)} drawn i.i.d. according to fq,G,ε, let
π̂ε(G) be the empirical proportion of ε-MSNE, i.e.,

π̂ε(G) ≡ 1

m

m∑
l=1

1
[
x(l) ∈ NE ε(G)

]
Proposition 2.5. (Maximum-likelihood Estimation) The tuple (Ĝ, q̂, ε̂)
is a maximum likelihood estimator (MLE), with respect to dataset D, for the
parameters of the generative model f(q,G,ε), as defined in eq. 1 if and only if

q̂ = min
(
π̂ε̂(Ĝ), 1− 1

2m

)
, and (Ĝ, ε̂) ∈ arg max(G,ε) KL(π̂ε(G)‖πε(G)) .

Let us make a few observations that follow immediately from the MLE
expression given above. First, if ε ≥ 1, then πε(G) = 1 for all games G, which
implies then π̂ε(G) = 1 for all games G. Hence, if ε̂ ≥ 1 the resulting KL

value is zero, so that Ĝ could be any game. Similarly, if πε̂(Ĝ) = 0 then we

have π̂ε̂(Ĝ) = 0, so that once again the resulting KL value is zero. Hence,

Ĝ could be any game. Said differently, in summary, if any trivial game is
an MLE, then every game, trivial or non-trivial, is also an MLE. Therefore,
we can always find non-trivial games corresponding to some MLE: the set of
MLEs always contain a tuple corresponding to a non-trivial game.

An informal interpretation of the MLE problem is that, assuming we can
keep the true proportion of ε-MSNE low, the learning problems becomes
one of trying to infer a game that captures as much of the mixed-strategy
examples in the dataset as ε-MSNE, but without implicitly adding more
ε-MSNE than it needs to. Thus, formulating the learning problem using
MLE brings out the fundamental tradeoff in ML between model complexity
and generalization ability (or “goodness-of-fit”), despite the simplicity of our
generative model.

One problem with the exact KL-based formulation of the MLE presented
above is that dealing with πε(G), even if it is well-defined (i.e., the setNE ε(G)
is measurable). The following lemma provides bounds on the KL divergence
that will prove useful in our setting.

Lemma 2.6. Given a non-trivial game G with 0 < πε(G) < π̂ε(G), we can
upper and lower bound the KL divergence as

−π̂ε(G) log πε(G)− log 2 < KL(π̂ε(G)‖πε(G)) < −π̂ε(G) log πε(G) .
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From the last lemma, we argue (details omitted) that if πε(G) is “low
enough” then we can obtain an approximation to the MLE by simply max-
imizing π̂ε(G) only: i.e., arg maxG KL(π̂ε(G)‖πε(G)) ≈ arg maxG π̂

ε(G). We
implicitly enforce the constraint that πε(G) is “low enough” through regu-
larization or some other way that allows us to introduce bias into the model
selection, as it is standard in ML.

Therefore, we aim to develop techniques to maximize the number of ε-
MSNE in the data while keeping ε as small as possible. In what follows,
we will apply our learning framework to infer the parameters of generalized
Interdependent Security (α-IDS) games [Chan and Ortiz, 2014] using the
CDC vaccination data.

3 Application: Learning α-IDS Games

Given the CDC vaccination data, we want to learn a game that would explain
the behavior of the agents and how the behavior of the agents affect the
behavior of other agents (within the same population). In particular, we are
interested in understanding the behavior of an “average” individual in each
state when facing the question of “What is the probability that a member
of my population will transfer a virus/sickness to me if that member is ill?”
Therefore, we want to look at games that model such interaction.

Generalized Interdependent Security (α-IDS) games [Chan and Ortiz,
2014] are one of the most motivated [Chan and Ortiz, 2014, Heal and Kun-
reuther, 2004] and well-studied games to model the investment decisions of
agents when facing transfer risks from other agents. As Heal and Kunreuther
[2005a] discusses, α-IDS games have applicability in fire protection Kearns
and Ortiz [2004], and, more importantly in vaccination settings [Heal and
Kunreuther, 2005b]. We refer the reader to a recent survey by Laszka et al.
[2014] for a broader perspective on these type of models, including numerous
other applications.

In the vaccination setting, each agent decides whether or not to get vacci-
nated given (1) the agent’s implicit and explicit cost of vaccination and loss
of getting sick, (2) the vaccination decisions of other agents, and (3) the po-
tential transfer probabilities/risks from other agents. The CDC vaccination
data captures the “average” behavior of the people in each state through the
vaccination rates, but does not explicitly contain the costs or losses of any
individual, nor the transfer risk between individuals. Actually, it does not
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include the “average” costs, losses, or transfer risks even at the level of whole
states. In what follows, we put forward an approach to learn such quantities
at the state level from the CDC data on vaccination rates.

3.1 Generalized Interdependent Security Games

In the α-IDS games of n agents, each agent i determines whether or not
to invest in protection. Therefore, there are two actions i can play, and we
denote ai = 1 if i invests and ai = 0 if i does not invest. We let a = (a1, ..., an)
to be the joint-actions of all agents and a−S to be the joint-actions of all agents
that are not in S. There is a cost of investment Ci and loss Li associated
with the bad event occurring, either through a direct or indirect (transferred)
contamination. We denote by pi the probability that agent i will experience
the bad event from a direct contamination and by qji to be the probability
that agent i will experience the bad event due to transfer exposure from
agent j (i.e., the probability that agent j will transfer the contamination to
i). Moreover, the parameter αi ∈ [0, 1] specifies the probability that agent
i’s investment will not protect that agent against transfers of a bad event.
Given the parameters, the cost function of agent i is

Mi(ai, a−i) ≡ ai[Ci + αiri(a−i)Li]

+ (1− ai)[pi + (1− pi)ri(a−i)]Li

where ri(a−i) ≡ 1− si(a−i) and si(a−i) ≡
∏

j 6=i(aj − (1− aj)(1− qji)) are the
overall risk and safety functions of agent i.

As mentioned before, we aim to learn all of these parameters given that we
can observe the mixed strategies. Therefore, we need look at the cost function
of the agents in terms of mixed strategies. Roughly speaking, we can do this
by letting xi be the probability that ai = 1 and take the expectation of the
above cost function (i.e., replace all a terms by x). Comparing the cost when
ai = 1 and ai = 0, we can derive a best-response correspondence for i.

Therefore, the cost function of player i becomes (in mixed strategies)

Mi(xi, x−i) ≡ xi[Ci + αiri(x−i)Li]

+ (1− xi)[pi + (1− pi)ri(x−i)]Li.

By definition, a mixed strategy is an ε-MSNE in an α-IDS game if and only
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if

Mi(xi, x−i)− ε ≤Mi(0, x−i) (3)

Mi(xi, x−i)− ε ≤Mi(1, x−i) (4)

It follows that from Equation 3 and Equation 4 that

xi[Ci + αiri(xPa(i))Li − (pi + (1− pi)ri(xPa(i)))Li] ≤ ε

−(1− xi)[Ci + αiri(xPa(i))Li − (pi + (1− pi)ri(xPa(i)))Li] ≤ ε

For simplicity, we let ∆i ≡ Ci + αiri(xPa(i))Li − (pi + (1− pi)ri(xPa(i)))Li.

3.2 Learning the Structure and Parameters of α-IDS
Games

As we argue in a previous section, we can approximate our MLE objective by
maximizing the number of ε-MSNE in the data, or equivalently, maximizing
π̂ε(G) over ε and G. In our approach, we subdivide the optimization by
first optimizing over G, and then optimizing over ε. For any ε, we would
like to apply a simple gradient-ascent optimization technique to learn the
game G. Unfortunately, even the latter maximization is non-trivial due to
the discontinuities induced by the indicator functions defining the ε-MSNE
constraints. Our goal is then to further approximate π̂ε(G). First, we use a
simple upper bound that results from using eq. 3 and eq. 4, which correspond
to satisfying the ε-MSNE of the games:

π̂ε(G) = max
G

1

m

m∑
l=1

1[xl ∈ NEε(G)]

≤max
G

1

m

m∑
l=1

n∑
i=1

1[xli∆
l
i ≤ ε] + 1[−(1− xli)∆l

i ≤ ε]

Then, we approximate the indicator function in the last upper bound with
another differentiable function. In the following subsection, we discuss what
is perhaps the simplest approximation to the indicator function: using the
logistic/sigmoid function. This is the standard approach leading to the fa-
mous BackProp algorithm used to train neural networks from data [Haykin,
1999].
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3.2.1 Using the Logistic/Sigmoid Function

The first approximation to the upper bound above that we consider uses the
sigmoid function, s(x) ≡ 1

1+e−x , which yields the following approximation to
the last upper bound:

max
G

1

m

m∑
l=1

n∑
i=1

s(−xli∆l
i + ε) + s((1− xli)∆l

i + ε).

To avoid overfitting and introduce our bias for “sparse” (graphical) game
structures, we regularize the transfer parameters qji. In particular, the struc-
ture of the α-IDS games is implicitly defined by those transfer probabilities.
That is, viewing α-IDS games from the perspective of a (directed, paramet-
ric) graphical game, the directed graph capturing the direct transfer risks
between the players is such that each node in the graph represents a player
in the game, and there is a directed edge (i.e., an arc) from node j to node
i if and only if qji > 0. The typical regularizer used to induce sparsity in
the learned structure is the L1-regularizer, which we impose over the qji’s.
We denote by λ > 0 the regularization parameter quantifying the amount of
penalization for large values of the qji’s.

max
G

1

m

m∑
l=1

n∑
i=1

S(−xli∆l
i + ε) + S((1− xli)∆l

i + ε) + λ
n∑
j=1

qji.

We “learn” λ using cross-validation. (This is the typical approach to find an
“optimal” λ in ML.)

Before continuing, there is an important normalization contraints on the
utility/costs functions required for the ε parameter in approximation to be
meaningful. In particular, recall that in order to define ε-MSNE, we want to
ensure that the cost function of each player of α-IDS games is between zero
and one for each possible mixed strategy. The following expression leads to
a normalized cost function, denoted by M̃i, for player i:

M̃i(xi, x−i) ≡
Mi(xi, x−i)−mini

maxi−mini

where mini = {Ci, piLi}, maxi = {Ci + αiri(0−i)Li, [pi + (1− pi)ri(0−i)]Li},
and 0−i stands for the vector that sets all the elements of x−i to the value 0,
so that ri(0−i) = 1−

∏
j 6=i(1− qji).
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Notice that, if the minimum and the maximum, respectively, of the cost
function of each player of α-IDS is exactly 0 and 1, respectively, then we
do not have to perform any normalization when computing and evaluating
ε-MSNE.

Unfortunately, working with the normalized costs M̃i’s is cumbersome.
Instead, we keep the ε-MSNE constraints in terms of the original (unnor-
malized) cost functions Mi’s and introduce additional constraints based on
the expressions for mini and maxi given above directly into the optimiza-
tion problem. Using primal-dual optimization, in which we denote by the
corresponding dual-variables/Lagrange-multipliers βi and gammai for each
additional cost-function normalization for each player i, we obtain the fol-
lowing minimax program:

min
δ,β

max
G

1

m

m∑
l=1

n∑
i=1

S(−xli∆l
i + ε) + S((1− xli)∆l

i + ε) + λ
n∑
j=1

qji

− δi(Ci − 1)(piLi − 1)

− γi(2− (Ci + αiri(0−i)Li))(2− ([pi + (1− pi)ri(0−i)]Li)) ,

where β = (β1, ..., βn) and γ = (γ1, .., γn). 1 We want to solve the above pro-
gram subject to the respective constraints on each of the variables. As stated
previously, we follow the traditional approach of using gradient-ascent/descent
optimization as a heuristic to update, and eventually learn, the parameters.

Denote by (q′,G ′, ε′) the tuple we learn using the approach we propose
above. In this paper we assume that NE ε′(G ′) is measurable, so that the
learned generative model is well-defined.

4 Experiment

We are currently working on the experimental part of the paper. We expect
to have the results by the date of the conference.

1We intentionally enforce that mini = {Ci, piLi} = 1 and maxi = {Ci +
αiri(0−i)Li, [pi + (1 − pi)ri(0−i)]Li} = 2 to avoid computational issues. As long as the
difference of the mini and maxi is close to 1, then we can easily see that the ε-MSNE
definition will be well-defined.
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