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Abstract. We analyse dominance solvability (by iterated elimination of weakly dominated
strategies) of voting games with three candidates and provide sufficient and necessary condi-
tions for the Borda Count to yield a unique winner. We find that Borda is the unique scoring
rule that is dominance solvable both (i) under unanimous agreement on a best candidate and
(ii) under unanimous agreement on a worst candidate and in the absence of a tie. Turning to
generalized scoring rules, we find that Approval Voting violates a desirable monotonicity prop-
erty: a candidate that is the unique dominance solvable winner for some preference profile, may
lose the election once she gains further popularity. In contrast, a candidate that is the unique
dominance solvable winner under Borda, will always remain so as her popularity increases.
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1. Introduction

...

2. The Model

2.1. Candidates and voters. Throughout this paper, we consider a set of three candidates
(or alternatives) A = {a, b, c} and a finite set of voters I with generic element i. Each voter’s
preferences are assumed to be given by a strict linear order ≻i on A. In consequence, there are
six distinct sets of voters, characterized by their preferences, that we denote Ixyz = {i ∈ I ∣x, y, z ∈
A,x ≻i y ≻i z} and whose generic element we refer to as ixyz. A preference profile is denoted as
≻I= (≻i)i∈I .

2.2. Voting schemes. We consider voting schemes that allow each voter i to cast a ballot
vi = (vai , v

b
i , v

c
i ) from a set of available ballots Vi. For scoring rules, Vi is taken to be the set of

permutation of (1, s,0), where s ∈ [0,1] is a fixed parameter that characterizes the scoring rule.
The most notable scoring rules in our context are Plurality, corresponding to s = 0, An-

tiplurality (s = 1) and the Borda Count (s = 1
2). Under Approval Voting there is additional

flexibility, in that Vi consists of all permutations of (1,1,0) and (1,0,0).1

Using cartesian products, we define V = ∏i∈I Vi and V−i = ∏j≠i Vj and denote generic elements
as v and v−i. We refer to a v ∈ V as a ballot profile and denote the associated score of some
candidate x as ∣vx∣ = ∑ vxi . To deal with ties, we introduce an additional dummy player t, who is
indifferent between the three alternatives, yet has to chose a strict linear order ▷t on A, where

E-mail address: christian.basteck@tu-berlin.de.
1Some authors (e.g. Buenrostro et al. [2013]) refer to Approval Voting and similarly flexible voting schemes

as ‘scoring rules’. However, as this breaks the common terminology with social choice theory where for the
purpose of preference aggregation a one-to-one mapping between individual preferences and the score vector is
required, we follow another group of authors (Cox [1987],Baharad and Nitzan [2003]) and refer only to rules
with fixed s as scoring rules.
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2 THE BORDA COUNT AND DOMINANCE SOLVABLE VOTING GAMES

▷ denotes the set of such orders.2 Then, for given v and ▷t, candidate x wins the election
whenever she has a weakly higher score than all other candidates and, in case of a tie, is ranked
first according to ▷t. Formally, x wins if and only if

∀y ≠ x ∶ ∣vx∣ ≥ ∣vy ∣ and ∣vx∣ = ∣vy ∣ ⇒ x▷t y.

Note that for any given ballot profile v and tiebreaker ▷t, there exists a unique winner.
If we would refrain from breaking ties in a deterministic manner, the outcome of a voting
game would take the form of a lottery over alternatives and we would have to amend voters
preferences ≻I , for example by specifying von Neumann - Morgenstern utilities. Instead we
opt for deterministic tiebraking which allows us to base our analysis exclusively on ordinal
preferences over candidates.

2.3. Dominance Solvability. Together, the set of candidates, voters’ preferences and a voting
scheme give rise to a voting game Γ = Γ(≻I , V ) with a set of players I ∪ {t}. In each game Γ,
players’ strategies (v,▷t) ∈ V ×▷ determine a unique outcome g(v,▷t) ∈ A.

Where we want to highlight the choice of voting scheme, we write ΓAV for approval voting
games and Γs when a scoring rule with parameter s is used. Moreover, we want to consider
restricted games, that is games where each voter’s strategies are restricted to some set V ′

i ⊆ Vi,
which we denote as Γ(≻I , V ′). In particular, we will focus on restricted games where weakly
dominated strategies have been removed.

Definition 1. A strategy vi ∈ V ′
i is weakly dominated in Γ(≻I , V ′) iff there exists wi ∈ V ′

i such
that for all v−i ∈ V ′

−i, ▷t ∈ ▷

g(wi, v−i,▷t) ≻i g(vi, v−i,▷t) or g(wi, v−i,▷t) = g(vi, v−i,▷t)

with g(wi, v−i,▷t) ≻i g(vi, v−i,▷t) for at least one v−i ∈ V ′
−i and ▷t ∈ ▷.

Strategies ▷t ∈ ▷ are never dominated, as the dummy player t is assumed to be indifferent
between all outcomes g(v,▷t) ∈ A. Hence, in order to iteratively remove dominated strategies,
we can focus on voters i ∈ I. First, we define the set of undominated strategies as V 1

i = Vi/{vi ∈
Vi∣vi is weakly dominated in Γ(≻I , V )}. We will make use of the following useful

Fact 1. In approval voting games, the set of undominated strategies V 1
i for a voter of type

ixyz consists of all ballots vi ∈ Vi such that vxi = 1 and vzi = 0 [Brams and Fishburn, 1978]. For
scoring rule voting games, ixyz’s undominated strategies are all ballots vi ∈ Vi, such that vxi ≥ s
and vzi ≤ s (Proposition 1 in [Buenrostro et al., 2013]).

Next, we move to the iterative elimination of dominated strategies and define

V m+1
i = V m

i /{vi ∈ V
m∣vi is weakly dominated in Γ(≻I , V

m)}, for m ∈ N.
Clearly, V m+1

i ≠ ∅, as it is impossible for all strategies in V m
i to be dominated by one another.3

Also, as V is finite, there exists some m, such that no further restrictions are possible; V m = V m,
for all m ≥m.

Definition 2. A game Γ(≻I , V ) is dominance solvable iff there exists a sequence V ⊃ V 1... ⊃ V m,
s.t.

∀i ∈ I, vi, v
′
i ∈ V

m
i , v−i ∈ V m

−i ,▷t ∈ ▷ ∶ g(vi, v−i,▷t) = g(v′i, v−i,▷t).

In words, a game Γ(≻I , V ) is dominance solvable, iff in the restricted game Γ(≻I , V m), all players
I ∪{t} are indifferent between the outcomes associated with their individual strategies, holding
opponents strategies fix.

2If one objects to the introduction of an additional player, another option would be to break ties by a
multiplayer version of “matching pennies”: ask each voter to report a number ti ∈ {0,1, ..,5}, set t = ∑ ti mod 6
and let each of the 6 possible outcomes t = {0,1, ...,5} correspond to one of the 6 possible linear orders ▷t.
For our purposes, the two approaches are essentially equivalent, as neither the dummy player’s set of possible
reports, nor the voters’ set of possible reports ti can be reduced using elimination of weakly dominated strategies.

3Recall that ≻i is a strict linear order.
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Where Γ(≻I , V ) is dominance solvable, we refer to the set of possible outcomes of Γ(≻I , V m)

as d-solution, denoted as

ds(≻I , V ) = {x ∈ A∣∃v ∈ V m,▷t ∈ ▷ ∶ x = g(v,▷t)}.

Note that, ds(≻I , V ) is not necessarily a singleton:

Example 1. Consider a plurality voting game with two voters, I = {1,2} and preferences
a ≻1 b ≻1 c, b ≻2 a ≻2 c. By Fact 1, voting for c is dominated for both voters, so V 1

i =

{(1,0,0), (0,1,0)}. But then, the game is reduced to a vote over just two alternatives, so that
V 2
1 = {(1,0,0)}, V 2

2 = {(0,1,0)}. As all voters have just one remaining strategy, the game is
dominance solvable. However, depending on t’s choice of ▷t, the outcome of the game may be
either a or b.

While in the above example, each voter is eventually left with a unique strategy, a game may
also be deemed dominance solvable if a voter has multiple strategies remaining:

Example 2. Consider an approval voting game with two voters, and preferences a ≻1 b ≻1 c,
a ≻2 c ≻2 b. By Fact 1, after eliminating dominated strategies, each voter is sure to vote for
her first choice and sure not to vote for her least preferred candidate. But then, for all v ∈ V 1,
the score of candidate a is ∣va∣ = 2 while ∣vb∣, ∣vc∣ ≤ 1. Hence, candidate a is sure to win the
election, no matter whether individual voters vote for their second most preferred candidate or
not. Thus, the game is dominance solvable even though no further strategy can be eliminated
based on weak dominance; effectively, each voter is left with two duplicate strategies in the
game Γ(≻I , V 1).

2.4. Order Independence. In defining dominance solvability, we followed Moulin [1979] in
that we eliminated all weakly dominated strategies when moving from V m to V m+1.4 This raises
the question, whether a different order of elimination, where only some individuals’ dominated
strategies are eliminated at each step, might yield a different solution.

Fortunately, Marx and Swinkels [1997] assure us that this is not the case. More precisely,
their Theorem 1 ensures that once we reach a restricted game Γ(≻I , V ′) such that no further
strategy can be eliminated based on weak dominance, Γ(≻I , V ′) will be equivalent to Γ(≻I , V m)

up to the elimination of duplicate strategies and the renaming of strategies. In particular, the
set of possible outcomes of both games will be the same.

This is because, in our voting games, the elimination of dominated strategies satisfies what
Marx and Swinkels [1997] call ‘transference of decisionmaker indifference’: whenever a voter
i, for a given opposing strategy profile, is indifferent between outcomes g(vi, v−i,▷t) and
g(v′i, v−i,▷t), then so is every other player. This is of course satisfied, as i will only be in-
different if both outcomes coincide.5

3. Results

Our first result concerns a sufficient and necessary condition on ≻I for the Borda Count voting
game Γ1/2(≻I , V ) to be dominance solvable.

Proposition 1. A candidate, say a, is the unique dominance solvable winner of a Borda Count
voting game, if and only if there exists another candidate, say c, such that

(1) 1{∣Iacb∣>0} + ∣Iabc∣ > ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣.

4Other authors in the context of voting theory, most notably [Farquharson, 1969], have used the same solution
concept under the name of ‘sophisticated voting’.

5Indifference of the dummy player does not transfer to indifference of other voters. However, this is unprob-
lematic, as the principle of ‘transference of decisionmaker indifference’ is only required to hold for players whose
strategies are eliminated (see Definition 2 in [Marx and Swinkels, 1997]).
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Proof. We first prove sufficiency. For that, the selection of a as the unique winner is obtained
in two steps. First, given (1), c is shown to never win the election once weakly dominated
strategies have been eliminated. Second, in the restricted voting game with essentially two
remaining candidates, condition (1) ensures that a wins against b.

After removing all strategies that are weakly dominated in the game Γ1/2(≻I , V ), we are left
with strategies vi ∈ V 1

i where each voter awards at least 1
2 points to her most preferred candidate

and at most 1
2 to her least preferred candidate (see Fact 1). For these strategies we have

min
v∈V 1

∣va∣ − ∣vc∣ = 1/2∣Iabc∣ − 1/2∣Ibac∣ − 1/2∣Iacb∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣.

If minv∈V 1 ∣va∣ − ∣vc∣ > 0, then c is not among the possible outcomes of Γ1/2(≻I , V 1). Moreover, in
the absence of voters Iacb, minv∈V 1 ∣va∣ − ∣vc∣ > 0 is equivalent to condition (1).

Next, assume that condition (1) holds and that there is a voter iacb so that (1) is equivalent
to

1/2 + 1/2∣Iabc∣ − 1/2∣Ibac∣ − 1/2∣Iacb∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣ > 0

or simply minv∈V 1 ∣va∣ − ∣vc∣ ≥ 0. Note that for any v ∈ argminV 1 ∣va∣ − ∣vc∣, viacb = (1
2 ,0,1). But

this strategy is dominated in Γ1/2(≻I , V 1) by ṽi = (1,0, 12):
(i) for a ballot profile such that ∣va∣ ≥ ∣vc∣ and ∣va∣ ≥ ∣vb∣− 1

2 , a switch of an individual voter iabc
from vi to ṽi changes candidates’ scores such that ∣ṽa∣ > ∣ṽc∣, ∣ṽb∣ handing victory to a regardless
of the choice of ▷t;

(ii) for a ballot profile such that ∣va∣ ≥ ∣vc∣ and ∣va∣ < ∣vb∣ − 1
2 , candidate b is the winner under

the original ballot vi, so that a switch to ṽi cannot be detrimental to iacb.
Hence we can eliminate iacb’s strategy vi = (1

2 ,0,1) ∈ V 1
i and move to a restricted game

Γ 1
2
(≻I , V ′) where V ′

iacb
= V 1

iacb
/{(1

2 ,0,1)} = {(1,0, 12), (1,
1
2 ,0)} and V ′

i≠iacb = V 1
i≠iacb , so that in

Γ 1
2
(≻I , V ′) outcome c is ruled out.6

Once we have ruled out the election of candidate c (after one or two rounds of eliminating
some dominated strategies), the election comes down to a choice over candidates a and b.
Hence, in the game Γ 1

2
(≻I , V ′), for any voter who prefers a over b, vi = (1,0, 1/2) ∈ V ′

i is a best

reply for any opposing strategy profile (v−i,▷t) ∈ V ′
−i×▷ as it maximizes the impact that i has

on ∣va∣ − ∣vb∣. If another ballot ṽi ≠ vi is also a best reply against any (v−i,▷t), then ṽi and vi
are duplicate strategies. If on the other hand ṽi is a worse reply than vi against some (v−i,▷t),
it is dominated and will be eliminated when moving to V ′′, defined by

V ′′
i = V ′

i /{vi ∈ V
′∣vi is weakly dominated in Γ(≻I , V

′)}, for all i ∈ I.

To determine the possible outcomes in Γ 1
2
(≻I , V ′′), we can assume that all i ∈ Iabc ∪ Iacb ∪ Icab

cast ballot vi = (1,0, 1/2) - any other remaining strategy would be a duplicate strategy and
produce the same outcome. But then, a wins against b if

(2) ∣Iabc∣ + ∣Iacb∣ + ∣Icab∣ > ∣Ibac∣ + ∣Ibca∣ + ∣Icba∣.

Finally, (2) follows from condition (1) as

∣Iabc∣ + ∣Iacb∣ + ∣Icab∣ = ∣Iabc∣ + 1{∣Iacb∣>0} − 1{∣Iacb∣>0} + ∣Iacb∣ + ∣Icab∣

> ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣ − 1{∣Iacb∣>0} + ∣Iacb∣ + ∣Icab∣

= ∣Ibac∣ + 2∣Ibca∣ + 2∣Icba∣ −1{∣Iacb∣>0} + 2∣Iacb∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

+3∣Icab∣

≥ ∣Ibac∣ + ∣Ibca∣ + ∣Icba∣

where condition (1) is used in the first inequality.
Next, we show that the condition is also necessary...[left out for now, as it is not needed for

Proposition 2.] �

6Choosing to not eliminate all dominated strategies does not influence the set of outcomes in our final,
maximally reduced game, see subsection 2.4.
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In light of Proposition 1, it is natural to ask how the Borda Count compares to other scoring
rules; how often are the corresponding voting games dominance solvable and when does the
associated winner of the election conform with our intuition on what is the ‘best candidate’
given voters’ preferences? For that, we define two desirable properties a voting scheme might
satisfy.

Definition 3. A voting scheme is said to satisfy Unanimity (U), iff for any set of voters
I = Iabc ∪ Iacb, candidate a is the unique dominance solvable winner of the associated voting
game Γ(≻I , V ).

A voting scheme is said to satisfy Independence of Least preferred Alternatives (ILA), iff for
any set of voters such that I = Iabc ∪ Ibac and ∣Iabc∣ > ∣Ibac∣, candidate a is the unique dominance
solvable winner of the associated voting game Γ(≻I , V ).

Unanimity significantly weakens pareto-efficiency. Independence of least preferred alterna-
tives demands, that whenever an alternative is unanimously considered worst, the voting game
reduces to a pairwise choice between the remaining candidates that is decided by simple ma-
jority.

Corollary 1. The Borda Count satisfies both U and ILA.

Proof. Assume that I = Iabc ∪ Iacb. Without loss of generality, we can assume ∣Iabc∣ ≥ ∣Iacb∣.
By Proposition 1, a is the unique dominance solvable winner as 1{∣Iacb∣>0} + ∣Iabc∣ > ∣Iacb∣ =
∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣.

Assume on the other hand that I = Iabc ∪ Ibac and ∣Iabc∣ > ∣Ibac∣. Then by Proposition 1, a is
the unique dominance solvable winner, as 1{∣Iacb∣>0} + ∣Iabc∣ = ∣Iabc∣ > ∣Ibac∣ = ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ +
2∣Icab∣ + 2∣Icba∣. �

The above corollary also follows from results in Buenrostro et al. [2013]. The only extension
with respect to their Theorem 1 and Theorem 2, is the inclusion of the case I = Iabc ∪ Iacb,
∣Iabc∣ = ∣Iacb∣. What might be remarkable though, is the exceptional position among scoring
rules that Corollary 1 grants to the Borda Count:

Proposition 2. The Borda Count is the unique scoring rule that satisfies U and ILA. In
particular, scoring rules with s < 1

2 violate unanimity, while scoring rules with s > 1
2 violate

independence of least least preferred alternatives.

Proof. We first consider scoring rules with s < 1
2 and show that for any given such s, there

exist preference profiles with I = Iabc ∪ Iacb, where the induced voting game fails to elect a after
iterative elimination of dominated strategies.

Assume that ∣Iabc∣ = ∣Iacb∣ = n > 2−2s
1−2s ≥ 2. We will show that the ballot profile v, given by

viabc = (s,1,0) and viacb = (s,0,1) respectively, survives the iterative elimination of dominated
strategies.

Consider Γ(≻I , V 1) and assume that all voters chose viabc = (s,1,0) and viacb = (s,0,1) respec-
tively. Then ∣vb∣ = ∣vc∣ = n while ∣vb∣ − ∣va∣ = n − 2ns = n(1 − 2s) > 2 − 2s > 1. Thus, the winner is
either b or c, depending on ▷t. If iabc would switch to a different strategy, (1, s,0), (1,0, s) ∈ V 1

iabc
,

that awards fewer points to candidate b, c would win the election independent of ▷t. Hence,
neither (1, s,0) nor (1,0, s) dominate (s,1,0) for voter iabc, so that viabc = (s,1,0) ∈ V 2

iabc
.

A symmetric argument applies to iacb so that viacb = (s,0,1) ∈ V 2
iacb

. But then, we can
again consider the strategy profile v in Γ(≻I , V 2) and show that neither strategy is dominated
and eliminated as we move to V 3. By induction it follows that the two strategies are never
eliminated.

Moreover, we have already seen that for strategy profile v, candidate a does not win the
election which concludes the proof for the case s < 1

2 .

Next, we consider the case of Antiplurality, i.e. s = 1. Assume that all voters agree on
the ranking a ≻i b ≻i c, so that V 1

i = {(1,1,0), (1,0,1)}. If in Γ(≻I , V 1) all voters j ≠ i chose
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vj = (1,1,0), then i can ensure the election of a by casting the ballot vi = (1,0,1), whereas
v′i = (1,1,0) would lead to the election of b whenever b▷t a. Hence, (1,0,1) is not dominated.
Similarly, if all j ≠ i cast ballot vj = (1,0,1) and the dummy player choses b▷t a, i’s unique
best reply is vi = (1,1,0). But then, voters’ strategy sets cannot be narrowed down any further
than V 1

i = {(1,1,0), (1,0,1)}, so that a is not the unique dominance solvable winner.

Last, consider the case s ∈ (1
2 ,1). Assume that I = Iabc ∪ Ibac and ∣Iabc∣ = n + 1 > n = ∣Ibac∣

with n > max{ 1
2s−1 ,

1
1−s} ≥ 3. We will show that in process of iterative elimination, strategies

viabc = (1, s,0), (1,0, s) and vibac = (s,1,0), (0,1, s) are never weakly dominated and hence not
eliminated. But then, b remains a possible outcome throughout the sequence of restricted
games: if all iabc vote (1, s,0) while all ibac vote (0,1, s), candidates scores are

∣va∣ = n + 1, ∣vb∣ = n + s(n + 1), ∣vc∣ = sn.

As s > 1
2 and n > 3, candidate b then wins the election.

First, let us remind ourselves, that the sets of undominated strategies in Γs(≻I , V ) are

V 1
abc = {(1, s,0), (1,0, s), (s,1,0)} and V 1

bac = {(s,1,0), (0,1, s), (1, s,0)}.

To show that {(1, s,0), (1,0, s)} ⊆ V m+1
abc ⊆ V m

abc ⊆ V 1
abc and {(s,1,0), (0,1, s)} ⊆ V m+1 ⊆ V m

bac ⊆ V 1
bac

for all m > 1 we consider 6 cases.

(i) For iabc, (1, s,0) can be a better reply than (1,0, s) in Γs(≻I , V m): Consider the situation
of i = iabc who faces an opposing strategy profile where

● n − x voters j ∈ Iabc vote vj = (1, s,0),
● x voters j ∈ Iabc vote vj = (1,0, s),
● all n voters j ∈ Ibac vote vj = (0,1, s),

● x = ⌈ n
2s −

1
2
⌉,

● c▷t b.

This profile is well defined, as n > x: our restriction in n yields

(*) n >
1

2s − 1
⇒ 2sn − n > 1 ⇒ s >

n + 1

2n
so that

x = ⌈
n

2s
−

1

2
⌉ <

n

2s
+

1

2
<

n

2n+1
2n

+
1

2
=

n2

n + 1
+

1

2
=

2n2 + n + 1

2n + 2
<

2n2 + 2n

2n + 2
= n

If i chooses vi = (1, s,0), the associated candidates’ scores are ∣va∣ = n+1, ∣vb∣ = s(n−x+1)+n
and ∣vc∣ = s(n + x). Then, b wins, as its score is larger than a’s (as n > x) and larger than c’s:

∣vb∣ − ∣vc∣ = n + s − 2sx > n + s − 2s(
n

2s
+

1

2
) = 0.

If on the other hand i choses vi = (1,0, s), b’s score is at most as high as c’s, so that b never
wins (ties are broken in favour of c):

∣vb∣ − ∣vc∣ = n − s − 2sx ≤ n − s − 2s(
n

2s
−

1

2
) = 0.

Moreover, c would also beat i’s preferred candiate a, as

∣va∣ − ∣vc∣ = n + 1 − sn − sx ≤ n + 1 − sn − s(
n

2s
−

1

2
) =

n + 1

2
²
<sn, see (*)

− sn < 0.

(ii) For iabc, (1, s,0) can be a better reply than (s,1,0) in Γs(≻I , V m): (This case is only
relevant if (s,1,0) ∈ V m

i ) Consider the situation of i = iabc who faces an opposing strategy
profile where

● n voters j ∈ Iabc vote vj = (1, s,0),
● n voters j ∈ Ibac vote vj = (s,1,0).
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Ballot vi = (1, s,0) would then tip the balance in favour of a, whereas b would win, should i
choose (s,1,0).

Together, (i) and (ii) imply, that (1, s,0) ∈ V m+1
abc . Next, we show that (1,0, s) ∈ V m+1

abc .

(iii) For iabc, (1,0, s) can be the unique best reply in Γs(≻I , V m): Consider the situation of
i = iabc who faces an opposing strategy profile where

● n voters j ∈ Iabc vote vj = (1, s,0),
● 1 voter j ∈ Ibac vote vj = (0,1, s),
● n − 1 voters j ∈ Ibac vote vj = (s,1,0).

Ballot vi = (1,0, s) would then tip the balance in favour of a, as ∣va∣ − ∣vb∣ = 1 − s > 0. Should
i choose (1, s,0), b would win as we would have ∣va∣ − ∣vb∣ = 1− 2s < 0. Ballot vi = (s,1,0) would
only further increase b’s lead over a.

(iv) For ibac, (0,1, s) can be the unique best reply in Γs(≻I , V m): Consider the situation of
i = ibac who faces an opposing strategy profile where

● n + 1 voters j ∈ Iabc vote vj = (1, s,0),
● n − 1 voters j ∈ Ibac vote vj = (s,1,0).

Ballot vi = (0,1, s) would then tip the balance in favour of b, as ∣va∣ − ∣vb∣ = 1− 2s < 0. Should
i choose (s,1,0), a would win, as we would have ∣va∣ − ∣vb∣ = 1− s > 0. Ballot vi = (1, s,0) would
only further increase a’s lead over b.

From (iv) we learn that (0,1, s) ∈ V m+1
bac . The last two cases establish that that (s,1,0) ∈ V m+1

bac ,
which concludes the proof.

(v) For ibac, (s,1,0) can be a better reply than (1, s,0) in Γs(≻I , V m): (only relevant if
(1, s,0) ∈ V m

ibac
) Consider the situation of i = ibac who faces an opposing strategy profile where

● n + 1 voters j ∈ Iabc vote vj = (1, s,0),
● x voters j ∈ Ibac vote vj = (1, s,0),
● 1 voters j ∈ Ibac vote vj = (0,1, s),
● n − 2 − x voters j ∈ Ibac vote vj = (s,1,0),

● x = ⌈4s−3
2−2s⌉ ≥ 0,

● a▷t b.

This profile is well defined, as x < n − 2:

x = ⌈
4s − 3

2 − 2s
⌉ <

4s − 3

2 − 2s
+ 1 =

2s − 1

2 − 2s
<

2s − 1

1 − s
=

1

1 − s
− 2 < n − 2

If i choses vi = (s,1,0), her favourite candidate b wins the election as its score is larger than
∣vc∣ = s and larger than a’s score ∣va∣:

∣va∣ − ∣vb∣ = 1 − 2s + (2 − 2s)x < 1 − 2s + (2 − 2s) (
4s − 3

2 − 2s
+ 1) = 1 − 2s + 4s − 3 + 2 − 2s = 0.

If on the other hand, i chooses vi = (1, s,0), b’s score is weakly less than a’s:

∣va∣ − ∣vb∣ = 3 − 4s + (2 − 2s)x ≥ 3 − 4s + (2 − 2s) (
4s − 3

2 − 2s
) = 0.

As ties are broken in favour of a, b would lose the election.

(vi) For ibac, (s,1,0) can be a better reply than (0,1, s) in Γs(≻I , V m): Consider the situation
of i = ibac who faces an opposing strategy profile where

● n + 1 voters j ∈ Iabc vote vj = (1,0, s),
● n − x − 1 voters j ∈ Ibac vote vj = (s,1,0),
● x voters j ∈ Ibac vote vj = (0,1, s),

● x = ⌈n+1
2s − 3

2
⌉,

● c▷t a.
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This profile is well defined, since n > max{ 1
2s−1 ,

1
1−s} ≥ 3 (and hence s > n+1

2n , see (*)) yield

x = ⌈
n + 1

2s
−

3

2
⌉ <

n + 1

2s
−

1

2
<
n + 1

2n+1
2n

−
1

2
= n −

1

2

and

x ≥

>4
¬
n + 1

2s
®
<2

−
3

2
> 0.

If i choses vi = (s,1,0), the associated candidates’ scores are ∣va∣ = n + 1 + s(n − x), ∣vb∣ = n
and ∣vc∣ = s(n + 1 + x). Hence, a wins the election as it has a higher score than b and c:

∣va∣ − ∣vc∣ = n + 1 − s − 2sx > n + 1 − s − 2s(
n + 1

2s
−

1

2
) = 0.

If on the other hand, i chooses vi = (0,1, s), a’s score is weakly less than c’s:

∣va∣ − ∣vc∣ = n + 1 − 3s − 2sx ≤ n + 1 − 3s − 2s(
(n + 1)

2s
−

3

2
) = 0.

As a tie would be broken in favour of c, and ∣vc∣ ≥ ∣va∣ ≥ n+1 > n = ∣vb∣, c would win the election.
�

Looking beyond scoring rules, the situation is not as bleak. In particular, the additional
flexibility of generalized scoring rules, allows some of them to simultaneously satisfy unanimity
and independence of least preferred alternative. A case in point is Approval Voting, for which
Nunez and Courtin [2013] provide necessary and sufficient conditions for ΓAV (≻I , V ) to be
dominance solvable.

However, Approval Voting fails a desirable monotonicity property:

Example 3. Consider a prefernce profile ≻I where I = Iabc ∪ Ibac ∪ Icba and

∣Iabc∣ = 4, ∣Ibac∣ = 2, ∣Icba∣ = 3.

After eliminating dominated strategies, it is clear that a will have a score of at least 4, while the
score of c is at most 3. This reduces the game further, to an election between a and b, which b
wins with a score of 5 ∶ 4. Hence b is the unique dominance solvable winner of ΓAV (≻I , V ).

But, if b increases in popularity, so that we now have ≻′I with I = I ′abc ∪ I ′bac ∪ I ′cba and
∣I ′abc∣ = ∣I ′bac∣ = ∣I ′cba∣ = 3, candidate c is not sure to lose against a so that the game cannot be
reduced to an election between a and b. No other candidate is sure to lose either, so that by
results in Nunez and Courtin [2013], we know that ΓAV (≻′I , V ) is not dominance solvable.

In contrast to Approval Voting, the Borda Count satisfies monotonicity:

Proposition 3. If a candidate, say a, is the unique dominance solvable winner in a Borda
Count voting game Γ 1

2
(≻I , V ), then a is also the unique dominance solvable winner in any

other Borda Count voting game Γ 1
2
(≻′I , V ), where ≻I and ≻′I differ in that one i ∈ I ranks a

higher, while keeping the order of b and c fixed.

Proof. As a is the unique dominance solvable winner in Γ 1
2
(≻I , V ), we know from Proposition

1 that there is another candidate, say c, such that

1{∣Iacb∣>0} + ∣Iabc∣ > ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣.

As we move from ≻I to ≻′I , one i ∈ I ranks a higher. Denote by I ′xyz = {i ∈ I ∣x, y, z ∈ A,x ≻′i y ≻
′
i

z} the new subsets of voter, characterized by their preferences over candidates. We will show
that the above condition also holds for the new subsets of voters (or rather their cardinalities),
so that a remains the unique dominance solvable winner.
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(i) Assume that in the profile ≻I , i ∈ Ibac, while in the profile ≻′I she ranks a higher, i.e.
i ∈ I ′abc. Then ∣I ′bac∣ = ∣Ibac∣ − 1 and ∣I ′abc∣ = ∣Iabc∣ + 1; for all other subsets of voters, we have
∣Ixyz ∣ = ∣I ′xyz ∣. Hence,

1{∣I′
acb
∣>0} + ∣I ′abc∣ = 1{∣Iacb∣>0} + ∣Iabc∣ + 1 > ∣Ibac∣ + 1 + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣

> ∣I ′bac∣ + ∣I ′acb∣ + 2∣I ′bca∣ + 2∣I ′cab∣ + 2∣I ′cba∣.

(ii) Now, i ∈ Icab∩I ′acb. Then ∣I ′cab∣ = ∣Icab∣−1 and ∣I ′acb∣ = ∣Iacb∣+1; for all other subsets of voters,
we have ∣Ixyz ∣ = ∣I ′xyz ∣. Hence,

1{∣I′
acb
∣>0} + ∣I ′abc∣ ≥ 1{∣Iacb∣>0} + ∣Iabc∣ > ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣

> ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2(∣Icab∣ − 1) + 2∣Icba∣

= ∣I ′bac∣ + ∣I ′acb∣ + 2∣I ′bca∣ + 2∣I ′cab∣ + 2∣I ′cba∣.

(iii) i ∈ Ibca ∩ I ′bac. Then ∣I ′bca∣ = ∣Ibca∣ − 1 and ∣I ′bac∣ = ∣Ibac∣ + 1, so that

1{∣I′
acb
∣>0} + ∣I ′abc∣ = 1{∣Iacb∣>0} + ∣Iabc∣ > ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣

> ∣Ibac∣ + 1 + ∣Iacb∣ + 2(∣Ibca∣ − 1) + 2∣Icab∣ + 2∣Icba∣

= ∣I ′bac∣ + ∣I ′acb∣ + 2∣I ′bca∣ + 2∣I ′cab∣ + 2∣I ′cba∣.

(iv) i ∈ Ibca ∩ I ′abc. Then ∣I ′bca∣ = ∣Ibca∣ − 1 and ∣I ′abc∣ = ∣Iabc∣ + 1, so that

1{∣I′
acb
∣>0} + ∣I ′abc∣ = 1{∣Iacb∣>0} + ∣Iabc∣ + 1 > ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣

> 1 + ∣Ibac∣ + ∣Iacb∣ + 2(∣Ibca∣ − 1) + 2∣Icab∣ + 2∣Icba∣

= ∣I ′bac∣ + ∣I ′acb∣ + 2∣I ′bca∣ + 2∣I ′cab∣ + 2∣I ′cba∣.

(v) i ∈ Icba ∩ I ′cab. Then ∣I ′cba∣ = ∣Icba∣ − 1 and ∣I ′cab∣ = ∣Icab∣ + 1, so that

1{∣I′
acb
∣>0} + ∣I ′abc∣ = 1{∣Iacb∣>0} + ∣Iabc∣ > ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣

= ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2(∣Icab∣ + 1) + 2(∣Icba∣ − 1)

= ∣I ′bac∣ + ∣I ′acb∣ + 2∣I ′bca∣ + 2∣I ′cab∣ + 2∣I ′cba∣.

(vi) i ∈ Icba ∩ I ′acb. Then ∣I ′cba∣ = ∣Icba∣ − 1 and ∣I ′acb∣ = ∣Iacb∣ + 1, so that

1{∣I′
acb
∣>0} + ∣I ′abc∣ ≥ 1{∣Iacb∣>0} + ∣Iabc∣ > ∣Ibac∣ + ∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣

> ∣Ibac∣ + ∣Iacb∣ + 1 + 2∣Ibca∣ + 2∣Icab∣ + 2(∣Icba∣ − 1)

= ∣I ′bac∣ + ∣I ′acb∣ + 2∣I ′bca∣ + 2∣I ′cab∣ + 2∣I ′cba∣.

�
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