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Abstract

The measurement of financial risk relies on two factors: determi-
nation of riskiness by use of an appropriate risk measure; and the dis-
tribution according to which returns are governed. Wrong estimates
of either, severely compromise the accuracy of computed risk. We
identify the too-big-to-fail banks with the set of “Global Systemically
Important Banks” (G-SIBs) and analyze the equity risk of its equally
weighted portfolio by means of the “Foster-Hart risk measure” — a
new, reserve based measure of risk, extremely sensitive to tail events.
We model banks’ stock returns as an ARMA-GARCH process with
multivariate “Normal Tempered Stable” (NTS) innovations, to cap-
ture the skewed and leptokurtotic nature of stock returns. Our union
of the Foster-Hart risk modeling with fat-tailed statistical modeling
bears fruit, as we are able to measure the equity risk posed by the G-
SIBs more accurately than is possible with current techniques. We also
study the corresponding mean risk analysis problem and are able to
show that an NTS distributed portfolio optimization strategy based on
the Foster-Hart risk minimization with a general quadratic transaction
cost function emphatically outperforms standard mean risk analysis
based techniques.
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1 Introduction

While accurate measurement of financial risk is an important theoretical
problem in its own right, the global financial meltdown in the late 2000s,
its attendant financial turmoil and the Eurozone crisis have catapulted the
subject into public limelight and highlighted its centrality in framing eco-
nomic policy. Following the Lehman Brothers’ bankruptcy in September
2008, the Basel Committee on Banking Supervision (BCBS) formulated a
successor to the then Basel II regulatory framework. The new framework,
Basel III, insisted on additional capital requirements for Global Systemically
Important Banks (G-SIBs) whose failure or distress, it claimed, could trigger
instability in the global financial markets.1 In turn, the Financial Stability
Board (FSB) was set up in April 2009 which drew up an initial list of 29
G-SIBs in November 2011.2

The Basel Committee on Banking Supervision is not alone in its calls for
additional capital requirements. Admati and Hellwig (2013) make equally
strident calls for increase in capital requirements for banks. Similar concerns
have been echoed by Lord Adair Turner, the Chairman of the Financial Sta-
bility Authority (FSA) of the UK in numerous speeches and press briefings.3

All of these commentators make the point that benefits accruing from the
long term financial stability of the systemically important institutions far
exceed the modest risk of slow GDP growth in the near future. Moreover,
the moral hazard generated by governments’ intervention by means of tax-
payer funded bailouts has detrimental consequences for corporate incentives
and public finances. The recent nationalization and subsequent breakup
and restructuring of Dexia, an erstwhile G-SIB, highlights the perils of in-
adequate capitalization, especially for those institutions that are exposed to
positions whose riskiness becomes more pronounced during systemic market
downturns.

The current determination of capital reserves relies on the Value at Risk
estimates. While conventionally, such estimates are obtained from the profit
and loss distribution (also known as the payoff distribution), it is often more
convenient to compute risk estimates based on the distribution of (log) re-
turns. The capital reserves are proportional to such normalized risk esti-
mates, the proportionality constant being the market value (price) of the
portfolio.

We carry out the exercise of normalized equity risk estimation by means
of three different measures of risk — the currently in use Value at Risk

1In Basel II, capital requirements for banks were uniform and not dependent on their
systemic importance.

2For the latest list of G-SIBs, please visit http://www.financialstabilityboard.org/
wp-content/uploads/r_141106b.pdf

3The FSA was dissolved from April 1st, 2013 and its duties were split between the Pru-
dential Regulation Authority, the Financial Conduct Authority and the Bank of England.
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(VaR) and Average Value at Risk (AVaR) (also referred to as ‘Expected
Shortfall’ (ES) or Conditional VaR (CVaR)) — and the recently discovered
Foster-Hart risk. Foster and Hart (2009) have proposed a new measure of
risk which computes the minimal wealth needed to avoid bankruptcy for an
agent who faces an unknown sequence of risky gambles in the future. In
addition, it enjoys many other highly desirable properties that experts in
the field deem “coherent” (Artzner et al., 1998).

We postulate an underlying standard Normal Tempered Stable distribu-
tion for the returns of banking stocks and model their temporal dependence
by means of an ARMA-GARCH stochastic process.4 In order to establish
our skewed and fat-tailed distributional hypothesis’s contribution to statis-
tical modeling, we compare it with the specification of stock returns being
distributed as standard T and standard Normal random variables respec-
tively.

More formally, we form an equally weighted portfolio of G-SIBs, assume
its constituents’ returns to be governed by an ARMA(1,1)-GARCH(1,1)
stochastic process with Normal Tempered Stable innovations; and track its
normalized equity risk by means of VaR, AVaR and Foster-Hart risk on
the basis of the constituent banks’ stock market returns from January 4th,
2000 to February 28th, 2014. We observe that the equity risks estimated
according to Foster-Hart (FH) are higher than those suggested by more con-
ventional VaR or AVaR. This difference is accentuated in times of crises as
the Foster-Hart risk is more sensitive to tail events than the aforementioned
conventional risk measures.

Such an exercise, we emphasize, does not measure the equity risk of G-
SIBs but in fact measures the equity risk posed by them on a hypothetical
investor who holds the equally weighted G-SIB portfolio. We interpret this
hypothetical investor to be in fact, the common public, whose financial
fortunes are closely tied to those of the systemically important banks. A rise
in the levels of portfolio risk comprising the too-big-to-fail banks implies a
rise in the financial risk faced by ordinary citizens.5 Although they hold the
portfolio only symbolically, they face the quite real consequences of savings
lost due to financial panic, which in turn is often fueled by risky G-SIB
behavior. In this sense, the analysis in our paper is helpful in measuring the
extent to which the common public is exposed to equity risks. We also note

4The ARCH stochastic process was introduced in the now classic Engle (1982), while
Bollerslev (1986) extended it to GARCH.

5Since the G-SIB portfolio is emblematic of the equity risk that the too-big-to-fail
banks pose on the representative investor, we choose to weigh all constituent banks equally.
While this is not the only set of weights consistent with such an objective, (other candidates
include weights being proportional to the market capitalizations of individual banks; or
to their assets under management, among others) it is the simplest one. Moreover for the
purposes of comparison between estimates of different risk measures, the results remain
qualitatively similar and do not depend too much on the details of the weight distribution
between constituent banks.
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that in order to measure the equity risk of banks, one must have access to
banks’ internal portfolios. However, our methodology is flexible enough for
banks’ in-house risk management teams to adapt and thus, our approach
can be used to compute equity risks of banks as well.

We demonstrate the superiority of the Foster-Hart risk as a tool in port-
folio optimization as well. Mean risk analysis using FH risk shows robust
outperformance of the classic mean variance analysis or those based on mean
VaR or mean AVaR. Hence from this point of view, FH is useful for portfolio
managers as well.

The rest of the paper is organized as follows. In section 2 we introduce
the theory behind risk measurement and statistical modeling. In section 3
we describe the data used while the 4th section outlines the methodology
employed to estimate the statistical model and the portfolio risks. Section 5
describes the results and interprets them. Section 6 introduces the portfolio
optimization program and the results of mean risk analysis under different
risk measures. We outline our conclusions in section 7 and end the paper
by including additional results and tables in the Appendices.

2 Preliminaries

Our research work is primarily based on two parallel strands of literature —
one from the theory of risk measurement and the other from the theory of
time series econometrics.

The following section presents a broad outline of the two branches of
literature we draw upon.

2.1 Risk Assessment

Two of the most popular notions of financial risk are the Value at Risk and
the Average Value at Risk.

The Value at Risk is defined as a specified quantile of the return distri-
bution. Its use was popularized by JP Morgan in the late 1980s and remains
the most widely used risk measure in the industry. In the mid 1990s, it was
endorsed by the Basel Committee of Banking Supervision (BCBS) to be
used to compute capital reserves of financial institutions.

Mathematically:

VaRα(G) := −inf{g : G(g) ≥ α} = −G−1(α)

where g is the return, G(·) is its distribution and 100 · (1 − α) is the user-
specified (percentage) confidence level.6

6The second right hand side follows if we assume that G is continuous.
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A more sophisticated measure of risk is the Average Value at Risk, which
as the name suggests, averages the different VaR values beyond the confi-
dence level. Mathematically, it is defined to be the following:

AVaRα(g) :=
1

α

∫ α

0
VaRp(g)dp

The Average Value at Risk is much more informative about the losses
beyond the stipulated confidence level and enjoys highly desirable properties
of “coherence” (Artzner et al., 1998) that VaR lacks.

Foster-Hart Risk Foster and Hart (2009) proposed a new measure that
was based on considerations of how much wealth an agent should possess,
irrespective of her utility function, to render a gamble “not risky”. They
describe “gamble” to be any bounded random variable with a positive ex-
pectation and a positive probability of losses:

E(g) > 0 and P(g < 0) > 0

The main result of Foster and Hart (2009) is that for each gamble g,
there is a function R(g) which is the unique positive solution to the following
equation:

E
(

log

[
1 +

g

R(g)

])
= 0

This function R(g) — the Foster-Hart risk measure — may be interpreted
as the minimal reserve needed to play the gamble g.

The Foster-Hart risk is more sophisticated than VaR and AVaR since
it is free from arbitrary confidence levels and time horizons; and because
it guarantees non-bankruptcy in the face of infinite, unknown sequences of
arbitrary gambles.

In addition, the Foster-Hart risk enjoys many other highly desirable
properties:

1. Homogeneity : ∀ λ > 0, R(λg) = λR(g) — doubling gambles doubles
wealth requirement.

2. Subadditivity : R(g + h) ≤ R(g) + R(h) — a diversified portfolio has
lesser risk than that of the sum of its components.

3. First Order Monotonicity : If gamble g first order stochastically dom-
inates gamble h, R(g) < R(h).

4. Second Order Monotonicity : If gamble g second order stochastically
dominates gamble h, R(g) < R(h).
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5. Fat-Tail Consistency7: For each gamble, Foster-Hart riskiness is at
least as high as the maximum loss L of that gamble.

6. Continuity : If a sequence of gambles converges and their maximum
losses converge, their Foster-Hart risks converge.

General Foster-Hart Risk: In the Foster-Hart setup, gambles faced by
the agent are assumed to have discrete probability mass functions. As shown
in Riedel and Hellmann (2014), the defining equation for the Foster-Hart
riskiness has no solution for many common continuous distributions. How-
ever, the Foster-Hart risk may be consistently extended to such continuous
random variables, in which case it coincides with maximum loss L, i.e.,

R(g) =

r
∗ such that E

(
log
[
1 +

g

r∗

])
= 0 if E

(
log
[
1 +

g

L

])
< 0

L if E
(

log
[
1 +

g

L

])
≥ 0

(1)

The Weak Foster-Hart Risk Heuristic: In order for the Foster-Hart
risk to be defined, the gamble under consideration must be a random variable
whose expectation is positive (X : E(X) > 0). However, during severe
economic downturns, portfolios may exhibit mean negative returns, thereby
making the Foster-Hart risk undefined.

Hence we define the notion of the weak Foster-Hart risk heuristic in
which, just as above, we identify the Foster-Hart risk with the maximum
loss L for scenarios in which the gamble’s mean is negative.

2.2 Statistical Modeling

The solution of (1) presupposes that one has the “correct” distribution ac-
cording to which gambles are governed. After many decades of investigation,
researchers now agree that return distributions of various financial instru-
ments are skewed and leptokurtotic — asymmetric, and more peaked around
the mean, with fat, Pareto-type tails.8

The use of the Stable distribution in fitting stock-index and exchange
rate data, as well as in option pricing is studied in detail in Rachev and
Mittnik (2000). More recently, Rachev et al. (2003) and Rachev et al. (2005)

7Consistent with asymptotic power law decay of stock returns, the Foster-Hart risk
incorporates rare events’ potential for causing extreme losses.

8There is a substantially large body of literature, starting from the ’60s (see in par-
ticular, Alexander (1961), Mandelbrot (1963a), Mandelbrot (1963b), Fama (1963), Fama
(1965), Mandelbrot (1967) etc.) that provides extensive evidence for this assertion. For a
comprehensive literature review, see Haas and Pigorsch (2009).
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argue in favor of the Stable distribution for fitting US treasury and corporate
bond return and US stock return data respectively.

However, the lack of existence of moments presents difficulties in dealing
with Stable distributions. Tempered Stable distributions present a possi-
ble solution.9 Indeed, Kim et al. (2008) and Kim et al. (2010) pursue the
Tempered Stable approach. In addition, even more recent findings from
Kim et al. (2012) propel us to choose a specific distribution — the “multi-
variate Normal Tempered Stable” distribution — to model asymmetric and
interdependent natures of stock returns.10

The Normal Tempered Stable distribution fits the stylized facts of skew-
ness and leptokurtosis much better than the standard Normal or standard
T distributions. The standard Normal suffers from symmetry and expo-
nentially decaying tails while the T distribution, although possessing fatter
than Normal tails, cannot accommodate skewness. We establish the supe-
riority of NTS over Normal and T distributions in statistical modeling of
asset returns by both in-sample and out-of-sample tests in later sections.

2.2.1 Normal Tempered Stable Distribution:

The Normal Tempered Stable (NTS) distribution is built upon the Tempered
Stable subordinator with parameters α ∈ (0, 2) and θ > 0 with characteristic
function:

φT (u) = exp

(
−2θ1−α

2

α
((θ − iu)

α
2 − θ

α
2 )

)
The n-dimensional NTS distributed random vector X = (X1, . . . , Xn)>

is defined to be:
X = µ+ β(T − 1) +

√
T (γ ◦ ξ)

where µ, β ∈ Rn, γ ∈ Rn+, ξ ∼ N (0,Σ), (γ ◦ ξ) = (γ1ξ1, . . . , γnξn)>; and
T is the Tempered Stable subordinator with parameters α and θ. The
subordinator is independent of ξ. The n-dimensional NTS random vector
so constructed, is denoted as X ∼ NTSn(α, θ, β, γ, µ,Σ).

Standardization of the NTS random vector involves setting µ = (0, · · · , 0)>,

γi =
√

1− β2
i

(
2−α
2θ

)
with |βi| <

√
2θ

2−α , where βi and γi are the i-th ele-

ments of β and γ, respectively, for i = 1, 2, · · · , n. This yields a stan-
dard NTS random vector with 0 mean and unit variance and is denoted as

9see Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen and Levendorskii
(2001).

10We note that while tempering the Stable distribution results in finite variance, thereby
implying convergence to the Normal distribution via the Central Limit Theorem, the speed
of convergence is slow; and the distribution of the summands remains close to that of the
corresponding Stable distribution. This is an instance of a pre-limit theorem more details
on which, and applications thereof, may be found in Rachev and Mittnik (2000).
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X ∼ std NTSn(α, θ, β,Σ).11

We use the standard (multivariate) NTS random vector to model G-SIB
returns.

2.2.2 Modeling Temporal Dependencies

Real life asset return data exhibit autocorrelation and volatility clustering.
Postulating an underlying return distribution, no matter how sophisticated,
cannot capture the dependence effect owing to the implicit assumption of
observed returns being iid.

Hence the common assumption in the literature is the use of ARMA(1,1)-
GARCH(1,1) stochastic process:

rt+1 = µt+1 + σt+1εt+1

where rt+1 denotes asset return at time t+ 1, µt+1 is the conditional mean,
while σt+1 is the conditional standard deviation. εt+1 is the “innovation”
and is a standard random variable with 0 mean and unit standard deviation.

The conditional mean and the conditional standard deviation themselves
are modeled as autoregressive processes, giving rise to the nomenclature of
ARMA (Autoregressive Moving Average) and GARCH (Generalized Au-
toregressive Conditional Heteroskedasticity).

The ARMA(1,1) process for the conditional mean is:

µt+1 = c+ art + bσtεt

The GARCH(1,1) process for the conditional standard deviation is:

σ2
t+1 = d+ f(σtεt)

2 + gσ2
t

We assume the innovations to be standard NTS, i.e., {εt}t∈{1,2,...} are iid
and

εt ∼ std NTS(α, θ, β, 1)

3 Data

We construct an equally weighted portfolio of the “Global Systemically Im-
portant Banks” (G-SIBs) — a list of 29 banks compiled by the Financial
Stability Board (FSB) in November 2013.12 Our data set comprises daily
log returns of 28 of these 29 banks from January 4th, 2000 to February 28th,

11We note that the sum of standard NTS random variables with common α and θ
parameters is again an NTS random variable (Kim et al., 2012) — a fact that we use in
portfolio analysis with NTS innovations in later sections.

12 The list of Global Systemically Important Banks as it stood in November 2013, is
presented in the Appendices.
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2014. The only bank among the G-SIBs that we exclude is Groupe BPCE
since it is unlisted.13 We use the S&P 1200 Global Financial Sector (SGFS)
index to represent the global banking stock market.

We exclude American non-business days from the data set, which gives
us 3694 observations for each bank’s stocks. The two Chinese banks: Bank
of China and Industrial and Commercial Bank of China, the three Japanese
banks: Mitsubishi UFJ FG, Mizuho FG and Sumitomo Mitsui FG; and the
French bank Group Crédit Agricole do not have sufficient historical data
to cover the entire sample period. For all of these G-SIBs, we perform im-
putation using the one-factor bootstrapped method with the SGFS index
(FinAnalytica Inc., 2014). We note that our approach in dealing with miss-
ing data via imputation and substitution is consistent with recent literature
(Kurosaki and Kim, 2013).

4 Parameter Estimation and Risk Computation

Our methodology may be considered to be built up of two steps — the first
one being the estimation of the ARMA-GARCH and innovation process’s
parameters — and the second one being the generation of scenarios from
the fitted model and subsequent computation of risk by the Monte Carlo
method.14

4.1 Estimation Technique

We model the log returns of banking stocks as an ARMA(1,1)-GARCH(1,1)
stochastic process:

rit+1 = µit+1 + σit+1ε
i
t+1

µit+1 = ci + air
i
t + biσ

i
tε
i
t

(σit+1)2 = di + fi(σ
i
t)

2 + gi(σ
i
tε
i
t)

2

The index i ∈ {1, 2, . . . , 28} runs through the list of banks in the G-SIB
list.

εt = [ε1t , ε
2
t , . . . , ε

28
t ]> is the multivariate innovation. We choose the 28-

dimensional NTS distribution to model the joint distribution of innovations
since it captures the skewed, interdependent and leptokurtotic nature of real
life stock returns.

13On November 6th 2014, the Financial Stability Board updated its list of G-SIBs.
Apart from all the previous 29 banks, there is an additional member: the Agricultural
Bank of China. Since it was listed on the Shanghai and Hong Kong Stock Exchange in
August 2010 and does not contain sufficient historical stock price data, we drop it from
the list of the G-SIBs and focus on the list as it stood last year.

14 We broadly follow the approach of Kim et al. (2011), which studied ARMA-GARCH
processes with Tempered Stable innovations.
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The NTS distribution has two tail parameters α and θ and one skew-
ness parameter β. We represent G-SIB stocks by the S&P 1200 financial
index (SGFS) and assume common tail parameters α and θ for G-SIBs’ NTS
marginals and estimate them from the SGFS index. This leaves the skewness
parameters {βi}28

i=1 to be calibrated for each bank in the portfolio. We follow
Kim et al. (2012) in joining NTS marginals by means of their covariance ma-
trix into multivariate NTS and note that such a method is computationally
feasible even in very high dimensional settings. For comparative purposes,
we also estimate an ARMA(1,1)-GARCH(1,1) model with standard (multi-
variate) T innovations. In order to compute the degrees of freedom of the
T distributed innovations, we first fit our representative SGFS index to an
ARMA(1,1)-GARCH(1,1)-T process (abbreviated as an AGT process from
hereon) and use the degrees of freedom that give the best fit to the SGFS
time series. For the sake of completion, we also compare these results with
that of the standard specification of stock returns following ARMA(1,1)-
GARCH(1,1)-(multivariate) Normal process.

Computation of the covariance matrix Σ for the NTS, T and Normal in-
novations is done on the basis of the most recent 250 days of daily returns.15

The reason for explicitly modeling the dependence between various banking
stocks’ innovations by means of their covariance matrix is because at each
time period it is unreasonable to assume that movements in the stock price
of one banking stock are unrelated to those of another G-SIB. Hence while
there is no temporal correlation between innovations (they remain an iid
process with 0 mean and unit variance), they do depend on each other by
means of a covariance matrix.

4.2 Scenario Generation and Computation of Risk

Using the above methodology, we can estimate the parameters of statis-
tical models — ARMA(1,1)-GARCH(1,1) with NTS (AGNTS), T (AGT)
and Normal (AGNormal) innovations respectively. We then employ the es-
timated models to compute the time series of risk.

We employ the rolling window estimation technique with a 1250 days’
forward moving time window to generate such a series.16 Our first time
window starts at January 4th, 2000 and ends at October 18th, 2004. For
this time window, we estimate all parameters of the AGNTS, AGNormal

15There are about 250 trading days in a typical year. Hence our choice of a 250-
day window corresponds to the most recent one year of return data for computing the
covariance matrix.

161250 daily returns correspond to about five years of financial data, since each year
has about 250 daily returns. The reason for choosing a five year time window is prompted
by pragmatics. Very long time windows (comprising say, around eleven years’ daily data)
cause stack overflow issues in MATLAB, while very short time windows are not able
to capture the stylized facts of skewness and fat-tailedness. We note that the choice of
optimal time window length is very much an open problem.
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and AGT model, thereby automatically estimating all parameters of the
G-SIB portfolio.17 Once all parameters are estimated, risk is computed cor-
responding to that particular time window and the time window is then
shifted one period ahead. Using such a moving time window entails estima-
tion of model parameters for 2445 different time windows — each window
shifted one trading day to the right of its preceding one.

We then generate a large number, N (= 106, in our paper) of scenarios for
the one dimensional portfolio log return one period ahead: {rport,1

t+1 , . . . , rport,N
t+1 }

These N simulations are the realizations of the one dimensional return dis-
tribution of the G-SIB portfolio.

On the basis of the above generated scenarios, we compute three different
measures of risk for each specification of a statistical model (AGNTS, AGT
and AGNormal): Value at Risk (VaR), Average Value at Risk (AVaR) and
Foster-Hart Risk (FH). The time horizon for both VaR and AVaR is taken
to be one day.

Finally, we update the conditional means and conditional standard de-
viations of the three statistical models for the next period and move the
time window one period forward after which we re-estimate all parameters
of AGNTS, AGT and AGNormal models, generate scenarios, compute risks
and again move the time window one period ahead.

5 Empirical Study

Our empirical study is divided in three broad categories:

1. Tests of the validity of the statistical model (AGNTS versus AGT and
AGNormal).

2. Backtesting of the computed VaR and AVaR estimates.

3. Analysis of the time series of portfolio risk (FH risk versus VaR and
AVaR).

5.1 Tests of Statistical Model Validity

In order to test which statistical model provides a better fit to the observed
data, we rely on the Kolmogorov-Smirnov (KS) test, which is a goodness
of fit based test that compares empirical distributions to a specific, hypoth-
esized distribution. We test the standardized innovations of each banking
stock against distributional hypotheses of standard Normal Tempered Stable
(NTS), standard T and standard Normal random variables respectively.

Based on 2445 daily estimations of the AGNTS, AGT and the AGNor-
mal models, we apply the Kolmogorov-Smirnov test 2445 times for each

17For the case with NTS distributed assets, Kim et al. (2012) show that the portfolio
remains NTS distributed.
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banking stock. Table 1 reports the number of days on which NTS, T and
Normal assumptions for each banking stock are rejected at 0.5, 1, 5 and 10%
significance levels respectively.

As can be seen from Table 1, the distributional hypothesis of portfo-
lio returns being NTS distributed comprehensively outperforms the T and
Normal hypotheses. This superior performance is observed not just for the
levels of 10% and 5% but also for the relatively conservative significance
levels of 1% and 0.5% for 25 of the 28 banks — strong evidence of fatter
tails than even that of the T distribution.

There are three exceptions to this observation — the Spanish bank San-
tander, the Dutch ING Group and the Swiss bank UBS. Among the three
of them, however, only for the case of Santander do we see T outperform-
ing NTS comprehensively — for the other two banks, the relative victory
margins of T are slender.

The Normal hypothesis provides terrible fits in general. In fact, the
Normal hypothesis is uniformly rejected much more numerously than the
T and the NTS hypotheses for all significance levels. Hence we conclude
that the Normal distribution is a poor contender for fitting standardized
innovations of G-SIB stocks.

For all the other 25 banks, the NTS substantially outperforms the T
hypothesis at all confidence levels. We believe that this constitutes compre-
hensive evidence of NTS’s superiority over the T.

To conclude, the NTS hypothesis is rejected far fewer times than the T
and Normal hypotheses at all significance levels. The overall result is that
the NTS distributional hypothesis provides much better fits than those of the
T and Normal distributions. Such overwhelming evidence, in our opinion,
provides strong support in favor of the AGNTS model over the AGT and
AGNormal for stock returns for G-SIBs.

5.2 Backtesting

In order to evaluate the accuracy of forecasted VaR according to the AGNTS,
AGT and AGNormal statistical models, we perform backtesting using the
Christofferson Likelihood Ratio (CLR) test (Christofferson, 1998) and the
Berkowitz Likelihood Ratio (BLR) test (Berkowitz, 2001). We check the
VaR of the equally weighted portfolio by both the CLR and the BLR tests;
and further analyze our backtests using a multi-period framework.

The CLR test has three parts: the CLR unconditional coverage test
(‘uc’),18 the CLR independence test (‘ind’); and the CLR joint test of cover-
age and independence (‘cc’). We report the p-values of the equally weighted
portfolio’s CLR and BLR tests later on in this section.

We conduct the CLR test on the equally weighted G-SIB portfolio to

18This test is also called the “proportion of failures” test in Kupiec (1995).
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Table 2: p-values of CLR test for portfolio VaR based on 2444 daily VaR estimations from
Oct 18th, 2004 to February 27th, 2014

99.5% VaR

uc ind cc

AGNormal AGT AGNTS AGNormal AGT AGNTS AGNormal AGT AGNTS

0.0000 0.4415 0.6179 0.4039 0.6668 0.6889 0.0002 0.6778 0.8146

99% VaR

uc ind cc

AGNormal AGT AGNTS AGNormal AGT AGNTS AGNormal AGT AGNTS

0.0004 0.3678 0.2751 0.8194 0.4039 0.3878 0.0016 0.4705 0.3796

95% VaR

uc ind cc

AGNormal AGT AGNTS AGNormal AGT AGNTS AGNormal AGT AGNTS

0.0126 0.0034 0.0729 0.3466 0.1788 0.3314 0.0285 0.0056 0.1249

Table 3: BLR tail test for the equally weighted G-SIB portfolio, based on 2444 daily VaR
estimations from Oct 18th, 2004 to February 27th, 2014

Tail probability 0.5% 1% 5%

Model AGNormal AGT AGNTS AGNormal AGT AGNTS AGNormal AGT AGNTS

p-value 0.1347 0.3754 0.6250 0.1139 0.4086 0.6292 0.0870 0.4864 0.6468

check if our estimations of portfolio VaR are reasonable. Since the portfolio
risk estimation is based on the 28 dimensional joint distribution model, this
test actually examines the reliability of risk estimates computed via the
AGNormal, AGT and AGNTS models.

Table 2 reports the p-values of CLR tests, based on 2444 daily VaR esti-
mations starting from Oct 18th, 2004 and ending on February 27th, 2014 (the
last daily VaR recorded on February 28th cannot be backtested). On the
basis of such tests, we conclude that both the AGT and the AGNTS models
comprehensively beat the AGNormal model’s risk backtests for all confi-
dence levels and all three test criteria. Among the AGT and the AGNTS
models, we observe the AGNTS to be superior, although the relationship is
reversed for the 99% VaR risk backtests.

In addition to the CLR tests, we also perform the BLR tail test to ex-
amine the reliability of the estimated AVaR. In Table 3, we backtest for
three levels of tail probability: {0.5%, 1%, 5%}. As expected, the AGNor-
mal model is beaten uniformly by both the AGT and the AGNTS models.
Between the AGT and AGNTS models, the latter uniformly outperforms
the former for all three chosen levels of tail probabilities. Hence we can
conclude that the AVaR risk backtests are better according to the AGNTS
model than the AGT or the AGNormal models.

As a final exercise in backtesting, we divide the entire time series into
five equally spaced periods as follows:

1. 2004–2006: from 11/02/2004 to 09/12/2006

2. 2006–2008: from 09/13/2006 to 07/23/2008
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Table 4: Multi-period p-values of CLR test for portfolio 99.5% VaR

uc ind cc
AGNormal AGT AGNTS AGNormal AGT AGNTS AGNormal AGT AGNTS

2004–2006 0.3596 0.7287 0.7706 0.7969 0.8471 0.8978 0.6358 0.9243 0.9505
2006–2008 0.0012 0.0543 0.1503 0.5604 0.6988 0.7471 0.0045 0.1457 0.3379
2008–2010 0.0172 0.3596 0.1504 0.6514 0.7969 0.7474 0.0528 0.6358 0.3376
2010–2012 0.1501 0.7707 0.7706 0.7479 0.8978 0.8989 0.3376 0.9505 0.9506
2012–2014 0.3670 0.0264 0.0274 0.7977 0.7965 0.9473 0.6442 0.7977 0.8913

3. 2008–2010: from 07/24/2008 to 06/03/2010

4. 2010–2012: from 06/04/2010 to 04/13/2012

5. 2012–2014: from 04/16/2012 to 02/24/2014

We then repeat the CLR test on the 99.5% VaR period by period; and
illustrate the results in Table 4. The AGNormal model reports uniformly
lower p-values than its competitors. Among the AGT and AGNTS models,
however, we see roughly the same level of robustness — while the AGT model
beats the AGNTS during 2008–2010, it is outperformed for 2004–2006, 2006–
2008 and 2012–2014. Both of them show equally good performances during
2010–2012. Hence we conclude that both AGT and AGNTS models report
robust VaR values but overall the level of robustness for AGNTS is even
more than that of AGT.

We backtest for AVaR values for the aforementioned periods by using
multi period BLR tail tests (see Table 5). With the exception of 2004–2006,
the AGNormal model loses again to the AGT and the AGNTS models. The
AGT model proves marginally superior to AGNTS during the more tranquil
2004–2006 and 2012–2014 while the AGNTS model yields uniformly better
p-values for the periods 2006–2008, 2008–2010 and 2010–2012.

To conclude, a battery of backtesting procedures are employed to check
if the VaR and AVaR estimates computed under the AGNormal, AGT and
AGNTS models are indeed reliable. The performance of the AGNTS model
is generally the best while the AGT model finishes a close second. This
prompts us to conclude that on the basis of both in-sample tests (KS) and
out-of-sample tests (CLR and BLR) AGNTS is a better statistical model
for the skewed, fat-tailed returns of G-SIBs than the conventional AGT
and AGNormal models. Hence, in the following subsection, we carry out
portfolio risk analysis assuming an underlying AGNTS statistical model with
three different measures of risk — VaR, AVaR and FH.

5.3 Portfolio Risk Analysis

Before analyzing the time series of the portfolio equity risk for the G-SIBs,
we briefly discuss the behavior of the (log) return time series of the SGFS
index.
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Table 5: Multi-period p-values of BLR tail test

Tail probability 0.5% 1% 5%

Model AGNormal AGT AGNTS AGNormal AGT AGNTS AGNormal AGT AGNTS

2004–2006 0.1741 0.2555 0.0217 0.1955 0.2706 0.0246 0.2550 0.3316 0.0284
2006–2008 0.0002 0.0019 0.0056 0.0002 0.0020 0.0057 0.0002 0.0017 0.0055
2008–2010 0.3489 0.5093 0.5316 0.4018 0.5046 0.5244 0.4627 0.5305 0.5536
2010–2012 0.3495 0.4547 0.5562 0.3416 0.4484 0.5515 0.3061 0.4016 0.5181
2012–2014 0.0002 0.0036 0.0020 0.0001 0.0039 0.0021 0.0000 0.0048 0.0024

We plot the (log) return time series of the index and superimpose on it,
a Hodrick-Prescott (abbreviated as ‘HP’ from hereon) filtered time series of
the index returns with λ = 20000 to obtain a smoothed representation of the
index by removing its cyclical component (Hodrick and Prescott, 1997). As
is clear from the SGFS time series graph presented in Figure 1, there are two
sharp downturns in the index returns — one during the first quarter of 2008
— corresponding to the collapse and eventual sale of Bear Stearns to JP
Morgan Chase; and a second, even more pronounced fall in the final quarter
of 2008 and the first quarter of 2009 — corresponding to the bankruptcy
of Lehman Brothers in September 2008 and the ensuing panic. A second,
though less severe phase of large negative returns occurred in the second
quarter of 2010, with the onset of the Greek crisis, Standard and Poor’s
downgrading of Greek debt ratings to junk bond status (April 27th) and the
subsequent nationwide protests against austerity policies in Greece. Finally
there is another heavy downslide in the third and fourth quarters of 2011,
coinciding with Standard and Poor’s downgrading of US federal government
debt in August 2011; the bankruptcy of Dexia, an ex-G-SIB, in October
2011; and the controversial Greek announcement of a referendum on the
Eurozone debt deal in November 2011.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
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SGFS Index log returns

 

 

Figure 1: Log-returns of the S&P Global 1200 Financial (SGFS) index. The white graph
corresponds to an HP filtered log returns of the SGFS index (λ = 20000 for the HP filter).
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Figure 2: Log-returns of some G-SIBs (λ = 20000 for the HP filter)

A qualitatively similar, though not identical behavior is exhibited by the
constituent banks of the index. For ease of comparison, we have included
the log-return time series of four of the 29 such banks. These are: Barclays
(UK) and Credit Suisse (Switzerland) from Europe; JP Morgan from the
US; and Mitsubishi UFG from Asia. While all of these banks show sharp
downturns in the last quarter of 2008 with the collapse of Lehman Brothers,
the two European banks show much heavier losses from the Eurozone crisis
than their American and Asian counterparts, as should be expected (see
Figure 2).

Clearly, such sharp downturns amplified the equity risk posed by banks
on their shareholders dramatically. Our portfolio of G-SIB stocks also ex-
hibits these observations. In light of this information, we discuss the time
series of our G-SIB portfolio equity risk below.

In order to track the risk profile of our equally weighted portfolio of
G-SIB stocks, we plot the time series of portfolio risk according to three
different risk measures — VaR, AVaR and FH — assuming an underlying
AGNTS model. For VaR and AVaR, we compute risk for 90%, 95% 99%
and 99.5% confidence levels.

Theory suggests that the Foster-Hart risk should be more than both VaR
and AVaR at any confidence level. This is so because the risk as measured
by Foster-Hart captures fat-tailed events — i.e., even if the maximum loss
possible were to occur (with howsoever small a probability) wealth levels
computed by means of the Foster-Hart riskiness will always prove adequate
since it is always at least as large as the maximum loss. Such a property is
not possessed by either VaR or AVaR. Indeed even for very high confidence
levels, the probability that a large loss outstrips wealth levels computed via
VaR or AVaR — an event that results in bankruptcy — is positive.
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Figure 3: AVaR versus VaR at 99.5% confidence level under the AGNTS model
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Figure 4: FH versus the 99.5% AVaR. All series have been smoothed by using the Hodrick-
Prescott filter with λ = 20, 000.
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This is exactly what we observe: a comparative study of risk profiles
as measured by VaR, AVaR and FH risk shows that not only is the FH
risk always more than that according to VaR and AVaR but in fact, the
degree of divergence between the two is much higher during times of crises
(see Figure 4). While it is true that during the worst of the financial crisis
(March 2008 – Bear Stearns’s sale to JP Morgan and September 2008 –
Lehman Brothers’ bankruptcy) VaR and AVaR are able to pinpoint the
equity risk posed by, and reflected in, abysmal stock market performance;
and exhibit local maxima at the aforementioned events, the corresponding
FH risk puts the equity risk value to be much higher.

Such a result goes on to show that even though computed by an ad-
vanced, fat-tailed statistical model, consistent with skewness and leptokur-
tosis (ARMA(1,1)-GARCH(1,1)-NTS process) and the most widely used risk
measures in the industry today (VaR and AVaR), the equity risk posed was
severely underestimated during the financial crisis. In fact, it also implies
that if the banks’ in-house risk management groups, based on the knowledge
of their own internal portfolios, were to use VaR and AVaR as risk measures
to compute critical reserves, their computations would have proved far from
adequate.

However, without much difficulty, the internal risk management teams of
banks can adopt our methodology and on the basis of their bank’s portfolio,
come up with capital reserve computations that are much more accurate,
robust, reliable and sensitive to information embedded in the stock market.

6 Mean Risk Analysis

The Foster-Hart risk is beneficial from the point of view of portfolio manage-
ment as well. In the following discussion, we set up the portfolio optimization
problem with different notions of portfolio risk: standard deviation, VaR,
AVaR and FH. We assume that the portfolio is distributed according to the
one dimensional NTS distribution, whose superiority has been demonstrated
above.

We also note that under elliptically distributed portfolios, mean risk
analysis with standard deviation, VaR and AVaR measures yields the same
optimal portfolio weights; but when the portfolio is distributed according to
a skewed, non Gaussian distribution like NTS, in general, we get different
optimal weights for different minimization programs.

6.1 The Classical Optimization Programs

The classic framework devised by Markowitz (1952) uses standard deviation
as a measure of portfolio risk. Hence the optimization program takes the
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form:

max

(
n∑
i=1

wiµi

)
subject to

w>Σw ≤ σ∗
n∑
i=1

wi = 1

0 ≤ wi ≤ 1

The last two constraints rule out short selling and in essence, state that the
feasible set of weights is the n dimensional simplex wi ∈ ∆[0, 1]n. Moreover,
we can rewrite the above program as:

max
wi∈∆[0,1]n

(
n∑
i=1

wiµi − Cw>Σw

)
or

min
wi∈∆[0,1]n

(
Cw>Σw −

n∑
i=1

wiµi

)
here C may be interpreted to be a risk aversion parameter.

However, more sophisticated notions of risk may be employed to make
the minimization program more useful. In general, if the measure of risk
employed is ρ(·), the minimization program becomes:

min
wi∈∆[0,1]n

(
Cρ(w)−

n∑
i=1

wiµi

)

Using VaR, AVaR and FH risk measures, we can analyse the optimal weights
according to three different programs.

6.2 Transaction Costs

Rebalancing the portfolio is not without its downsides. Frequent rebalancing
introduces transaction costs which reflect liquidity concerns in the markets,
details of market microstructure and so on. We do not wish to ignore this
very important issue since it eats up substantially into portfolio returns.

We propose a general quadratic transaction cost function and note that
they have been commonly considered in literature (Fabozzi et al., 2006):

TC(w) = λ

(
α+ β

n∑
i=1

|wi,t − wi,t−1|+ γ

n∑
i=1

(wi,t − wi,t−1)2

)
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6.3 Portfolio Optimization

Hence the minimization program now becomes:

min
wi∈∆[0,1]n

(
Cρ(w) + TC(w)−

n∑
i=1

wiµi

)
or, in expanded form:

min
wi∈∆[0,1]n

(
Cρ(w) + λ

(
α+ β

n∑
i=1

|wi,t − wi,t−1|+ γ
n∑
i=1

(wi,t − wi,t−1)2

)
−

n∑
i=1

wiµi

)
In our set of minimization problems, the risk function ρ(·) takes four

different forms — standard deviation, VaR, AVaR and FH. Except for stan-
dard deviation, there are no closed form solutions for any other risk function
under the NTS distributional hypothesis. Hence we rely on the Monte Carlo
technique to generate simulations for the four different programs and then
find weights corresponding to the minimum.

We assume that the risk aversion parameter C = λ = 1 and that α =
β = γ = 0.0050 (50 basis points).

6.4 Results

We compare the cumulative returns of the portfolio under the four different
strategies indicated above as shown in the figure below.
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Figure 5: Portfolio Performance under AGNTS and quadratic transaction costs

As may be seen, since the FH risk is much more sensitive to tail events,
it is able to perform the best — not only under market distress (as can be
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observed for the period under the Great Recession) but also during periods
of market tranquility. The only exceptions to this are the periods from 2005
to the first quarter of 2006. FH risk based portfolio performance strongly
dominates all others for all periods other than the one indicated above.

Among the other risk measures, AVaR posts the strongest performance,
followed by VaR; and then lastly by standard deviation. This is in keeping
with the order of sophistication of the risk measures and the order in which
each of them is able to respond to tail events.

In the appendices, we include portfolio performance results for portfolio
distributional hypotheses under Normal and T assumptions. As may be
observed, FH outperforms all rivals again although the margin of victory is
lesser than in NTS.

7 Conclusions

In this paper, by a variety of methods, we compute the equity risks posed
by the too-big-to-fail banks which constitute a very important part of the
global financial system and are its most critical component from the point
of view of maintenance of overall stability of the global financial markets.

In order to facilitate this exercise, we assume that stock returns of G-
SIBs are distributed according to the ARMA(1,1)-GARCH(1,1) stochastic
process whose innovations are distributed according to the NTS distribution
— from a family of tempered α-Stable distributions with finite moments.
Use of such a fat-tailed distribution for the innovations’ process leads to
much better statistical fits as compared to those that rely on standard T
or standard Normal based techniques. Specifically, the superiority of the
NTS to the T and Normal statistical model has been demonstrated for our
dataset by both in-sample (the KS test) and out-of-sample tests (the CLR
and BLR test).

In order to illustrate that current methods of risk assessment underesti-
mate the real equity risk posed by the G-SIBs, we employ the Foster-Hart
risk measure. The Foster-Hart risk measure is a recent breakthrough in the
field of risk measurement which is based on the observation that irrespective
of utility functions, the risk posed to each agent depends critically on the
amount of wealth she needs to possess in order to stave off bankruptcy.

We show that during the Great Recession, equity risks posed by the
G-SIBs were much higher than that suggested by conventional measures of
risk such as VaR and AVaR. The difference between the FH risk and that
computed by VaR and AVaR is not static — it evolves with time and is
the most pronounced during times of high volatility and during times of
crises. Indeed, even during periods of market tranquility, relying exclusively
on VaR or AVaR may lull one into believing that equity risks are minimal
when in fact they are high — an early indication of a potential crisis.
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Our findings have important policy implications. Regulators looking
to measure equity risk posed by banks on the financial system as a whole
might end up underestimating it if they rely exclusively on VaR and AVaR.
To accurately assess the risks posed, our approach, based on the Foster-Hart
measure, is an improvement over current methodologies. Another applica-
tion of our paper is in the area of critical reserve computations for banks.
Current methods endorsed by regulators for computation of reserve require-
ments are not necessarily adequate and may be improved upon by employing
the Foster-Hart measure of risk.

This paper should prove useful to the banking industry as well, since
the banks’ in-house risk management teams can adapt our methodology
relatively easily and based on the knowledge of their internal portfolio com-
position, may track their own equity risks much more accurately.

Lastly we show that under the assumption of portfolios being distributed
according to NTS, and under very general quadratic transaction costs, the
FH risk measure strongly outperforms mean risk analysis based portfolio
performance tests. In this regard, the Foster-Hart risk should prove very
useful to portfolio managers who can benefit from its acute sensitivity to
tail events, no matter how rare.
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Table 6: List of the 29 G-SIBs (as of November 2013)

United States Europe Asia

Bank of America (BAC) Groupe BPCE Bank of China (BOC)
Bank of New York Mellon (BK) Barclays (BARC) Mitsubishi UFJ FG (MUFG)

Citigroup (C) BNP Paribas (BNP) Mizuho FG (MHFG)
Goldman Sachs (GS) Standard Chartered (STAN) Sumitomo Mitsui FG (SMFG)

JP Morgan Chase (JPM) Credit Suisse (CSGN) Industrial and Commercial Bank of China (ICBC)
Morgan Stanley (MS) Deutsche Bank (DBK)

State Street (STT) Banco Bilbao Vizcaya Argentaria (BBVA)
Wells Fargo (WFC) Group Crédit Agricole (ACA)

HSBC (HSBA)
ING Bank (INGA)

Unicredit Group (UCG)
Nordea (NDA)

Royal Bank of Scotland (RBS)
Santander (SAN)

Société Générale (GLE)
UBS (UBSN)

Appendices

The appendices include tables indicating the membership of G-SIBs, as as-
sessed by the Financial Stability Board. Also contained are graphical results
that chart variation in computed risk with changes in the underlying statis-
tical model.

A The Global Systemically Important Banks

The list of Systemically Important Banks is included in table 6. This table
was prepared in November 2013 by the Financial Stability Board.19 It fea-
tures 8 banks from North America, 16 banks from Europe and 5 banks from
Asia.

B Variation of FH Risk with the Underlying Sta-
tistical Model

As should be expected, due to the fat-tailed distributional hypothesis of
the AGNTS model, the FH equity risk under AGNTS is higher than that
computed under the AGT and the AGNormal model. While there are qual-
itative similarities, for almost all time periods, the FH risk under AGNTS
dominates that under the others, as can be seen in Figure 6. (We note how-
ever, that this behavior is reversed for the third and fourth quarter of 2012
during which FH risk under AGNormal dominates the others.)

We use the unique, continuity property of the Foster-Hart risk to rule out
the existence of outliers. We note that this technique is justified since the

19See http://www.financialstabilityboard.org/publications/r_131111.pdf for
more details.
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time series of maximum losses of the portfolio is (approximately) continuous.
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Figure 6: Variation of FH Risk with AGNTS, AGT and AGNormal models. All series
have been smoothed by using the Hodrick-Prescott filter with λ = 20000.
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