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Abstract

Agents frequently have different opinions on the decision of where to locate a public facility:

while some agents may prefer to have it closer to them, others may prefer to have it far away.

To aggregate agents’ preferences in these cases, we propose a new domain of preferences

in which agents may have single-peaked or single-dipped preferences on the location of the

facility, but such that the peak or dip is situated in the location of the agent. We characterize

all strategy-proof rules in this domain and we show that all these rules are also group strategy-

proof. We show that this family allows us to escape from the classical impossibility result

of Gibbard and Satterthwaite with meaningful rules in almost all cases. Additionally, we

characterize the subfamilies of rules that are also Pareto efficient in some focal cases.
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1 Introduction

Governments have to decide where to locate public facilities like schools, hospitals, prisons, nuclear

plants, or industrial parks. To select a location for a particular facility, the public decision makers

have to take into account not only technical constraints but also the preferences of the different

agents in the society.

Since preferences are private information and agents have incentives to reveal them truthfully

or not depending on how this information is incorporated in the selection of the final location,

the objective is to construct social choice rules that, apart from having other good properties,

induce agents to reveal their true preferences. This property is known as strategy-proofness.

Unfortunately, Gibbard [8] and Satterthwaite [11] have shown in their famous impossibility result

that no relevant strategy-proof rules can be constructed when preferences are unrestricted:

Result 1 If all ordinal preferences over the feasible locations are admissible, all strategy-proof

social choice rules with range greater than 2 are dictatorial.1

Result 1 highlights the impossibility of combining strategy-proofness and a range greater than 3

without arriving at a dictatorship. The technical condition of having a range greater than 3 can

be substituted by the more intuitive notion of Pareto efficiency without altering the impossibility

result.

Result 2 If all ordinal preferences over the feasible locations are admissible, all Pareto efficient

and strategy-proof social choice rules are dictorial.2

Given these negative results, the literature has concentrated on constructing meaningful strategy-

proof social choice rules when some preferences over the set of alternatives are not admissible. In

1A dictatorial social choice rule is one that always selects a maximal alternative of a particular agent (the

dictator), independently of the preferences of the other agents.
2There are two implicit assumptions in this result. On the one hand, there should be at least three feasible

alternatives because if there are only two, there exist rules that satisfy both criteria. On the other hand, it is

needed that the set of maximal alternatives for each admissible preference is well–defined because in other case,

Pareto efficiency can not be attained even without requiring strategy-proofness.
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fact, if the preference domain is restricted in a natural way, then we can find strategy-proof social

choice rules that escape from the impossibilities of Results 1 and 2. See Barberà [1] for a survey.

The most well–known preference restriction for the location of public facilities is the one of single-

peaked preferences (see Moulin [10]) that appears naturally when the facility to be located is a

public good. Formally, an agent has single-peaked preferences on the real line if she has an optimal

point and the further one moves away from this optimal point (maintaining the direction), the

worse the locations get for this agent. For the domain of all single-peaked preferences, Moulin [10]

and Barberà and Jackson [5] show that all strategy-proof rules are generalized median voter rules.

So, in this case one can escape from Results 1 and 2.

The dual of single-peaked preferences are the single-dipped preferences. Formally, an agent has

single-dipped preferences on the real line if she has a worst possible location and the further one

moves away from this worst location (maintaining the direction) the better the locations get for

this agent. These preferences appear naturally when the facility to be located is a public bad.

For the domain of single-dipped preferences, Manjunath [9] has shown that all strategy-proof and

unanimous rules necessarily have to select an extreme element of the set of alternatives (see also

Barberà et al. [3]). Given that all these rules are also Pareto efficient, it is possible to escape from

Result 2 in this domain, but the range of these rules is still equal to 2.

Although the before mentioned frameworks are interesting ones, many public facilities cannot be

accommodated by either of them because agents differ in their evaluation: some may consider that

a particular facility is a good and want to have it built as close as possible to their own locations,

but others prefer to have it as far away as possible (they consider it a bad). Some examples are:

(i) dog parks that people could prefer to have closer to their homes or further away depending

on whether or not they own a dog; (ii) cell towers that people could prefer to have closer or

further away depending on whether they believe, contrary to the scientific evidence, that these

facilities can produce cancer or not; (iii) industrial parks that municipalities could prefer to have

closer to the city/town/village or not depending on whether they consider that this facility has

positive/negative externalities to its model of economic development; (iv) soccer stadiums that
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people could prefer to have closer to them or further away depending on whether they are season

ticket holders of the team that plays there or they do not like soccer.

Given that some agents may like the facility but others not, the set of admissible preferences

to treat these cases has to include both single-peaked and single-dipped preferences. However,

unfortunately, it is easy to show that the impossibilities of Results 1 and 2 are maintained if

we allow agents to express any single-peaked or any single-dipped preference; i.e. if the domain

considered is the union of the domains of single-peaked and single-dipped preferences.3 However,

the examples above are situations in which agents typically have single-peaked or single-dipped

preferences with the peak or dip situated in their locations (their homes, their municipalities, . . . ),

and this fact can then be used to construct a domain in which we can escape from the impossibilities

with interesting strategy-proof social choice rules. If the location of the agents is known by the

social planner, something that frequently occurs (for example, the regional government knows

where each municipality is located or local governments know the residence of each person), we

propose to consider a domain in which the set of admissible preferences of each agent corresponds

to all single-peaked preferences with the peak in her location and all single-dipped preferences

with the dip in her location. We will characterize all strategy proof rules and show that this new

domain allows us to escape from the impossibilities of both Results 1 and 2.

In particular, we will show that all strategy-proof rules share a common structure whose main

aspects are: (i) in a first step, all agents are asked only about their type of preferences (single-

peaked or single-dipped) and, depending on the set of agents that have single-peaked preferences,

at most two locations are preselected; (ii) if only one alternative has been preselected, then this

alternative is finally chosen; (iii) finally, if two alternatives has been preselected, then all agents

that are situated strictly between the two preselected alternatives have to indicate their ordinal

preference over them (and, in case of indifference, their entire preferences) and, depending on the

3To see why, observe that an agent with single-dipped preferences will manipulate any generalized median voter

rule in some instances. See Berga and Serizawa [7] for additional results showing the difficulty of expanding the

domain of single-peaked preferences without arriving at the impossibilities.
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answers, it is decided which of the two preselected alternatives is finally chosen.

The particular ways to pick the preselected locations that pass to the second phase and the form

in which the final location is chosen between them have to satisfy some monotonicity conditions.

These conditions are generally not too restrictive and allows to many possibilities, which con-

stitutes the differences in the characterized rules. This allows the social planner to incorporate

other aspects of the problem (technical, economic, ecological, . . . ) to the social choice rule. We

will also show that all rules that cannot be manipulated by isolated agents cannot be manipu-

lated by groups of coordinated agents either; i.e., we will show that all these rules are also group

strategy-proof.

The remainder of the paper is organized as follows. Section 2 introduces the necessary notation and

definitions. Section 3 shows some conditions that defines the main structure of the strategy-proof

social choice rules. Section 4 provides a complete characterization of all strategy-proof rules in this

new domain and shows that group strategy-proofness is implied in this case by strategy-proofness.

Section 5 explains when this characterized family allows us to escape from the impossibilities

of Results 1 and 2. Section 6 characterizes the rules that satisfy strategy-proofness and Pareto

efficiency for some focal cases. Section 7 concludes. All proofs are relegated to the Appendix.

2 Notation and definitions

Consider a social planner who wants to locate a public facility in a point on a set T ⊆ R of feasible

locations. There is a finite group of agents N (with size at least 2), and each agent belonging

to N is located at a point on the real line. We indicate the agent located at i ∈ R by i ∈ N .4

For the moment, we do not impose any restriction on N , on T or on the relation between them.

For example, T can be finite or infinite, and we could have that all agents are located at feasible

locations (N ⊆ T ) or at unfeasible ones (N ∩ T = ∅).
4This notation assumes implicitly that there is at most one agent at any point of the real line. As it can be seen

from the proofs, the results of the paper still hold when allowing for multiple agents at a single point. We opted

for the simple notation, because it is intuitive to follow.
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Let Ri be the weak preference relation of agent i ∈ N on T . Formally, Ri is a complete and

transitive binary relation. Pi and Ii are the strict and the indifference preference relation induced

by Ri. We then say that Ri is a single-peaked preference with peak i if for all x, y ∈ T such that

i ≥ x > y or i ≤ x < y, we have that xPi y. Similarly, Ri is a single-dipped preference with

dip i if for all x, y ∈ T such that i ≥ x > y or i ≤ x < y, we have that y Pi x.5 The preference

domain of agent i is Ri = R+
i ∪R

−
i , where R+

i (R−i ) is the set of all single-peaked (single-dipped)

preferences with peak (dip) in i. Observe that the intersection between the preference domains of

two agents is empty.

A preference profile is a set of preferences R = (Ri)i∈N . The domain of all admissible preference

profiles is denoted by R = ×i∈NRi. Let RA be the set of preference profiles such that only

the agents in A ⊆ N have single-peaked preferences. Sometimes we will write RA
i to indicate the

domain of single-peaked preferences for agent i if i ∈ A, or the domain of single-dipped preferences

for agent i if i 6∈ A. Similarly, RS and R−S are the restrictions of R to the agents in S ⊂ N and

(N \ S), respectively. We will write R−i instead of R−{i}.

The following concepts will be useful in the course of our analysis. A non-ordered pair of alterna-

tives {x, y} is a fixed pair for agent i if for all a, b ∈ {x, y} such that a < b, we cannot have that

a < i < b. Observe that given any type of preferences of agent i (single-peaked or single-dipped),

if {x, y} is a fixed pair for i, then this agent has always the same ordinal preferences over {x, y}.

Similarly, the ordered pair of alternatives (x, y) is said to be a fixed pair for agent i at RA
i if for all

Ri ∈ RA
i , xPi y. Or, to say it differently, (x, y) is a fixed pair for i at RA

i if i ∈ A and [y < x ≤ i

or y > x ≥ i], or if i 6∈ A and [i ≤ y < x or i ≥ y > x]. Finally, we can see that if {x, y} is a fixed

pair for agent i, then (x, y) is a fixed pair for one type of preferences of i and (y, x) is a fixed pair

for the other type.

The solution concept is a social choice rule, a function f : R → T that selects for each preference

5Technically speaking, these preferences only have a maximal/minimal alternative at i if i ∈ T . Otherwise, its

most/less preferred feasible alternative would be the closest one situated at its left or the closest one situated at its

right. This difference will play an important role in Sections 5 and 6.
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profile R ∈ R a point f(R) ∈ T . We denote the range of f in the domain RA by Rf (A). We now

introduce some properties on social choice rules. We say that f is manipulable by agent i ∈ N if

she can benefit from misrepresenting her preferences; that is, if there is a preference profile R ∈ R

and some alternative preference R′i ∈ Ri such that f(R′i, R−i)Pi f(R). Then, f is strategy-proof

if it is not manipulable by any agent. Similarly, f is group strategy-proof if for all R ∈ R, there is

no S ⊆ N and R′S ∈ RS such that f(R′S , R−S)Pi f(R) for all i ∈ S. The social choice rule f is

Pareto efficient if for all R ∈ R, there is no x ∈ T such that xRi f(R) for all i ∈ N and xPj f(R)

for some j ∈ N . Finally, f is dictatorial if there exists an agent i ∈ N (called the dictator) such

that for all R ∈ R, f(R)Ri x for all x ∈
⋃

A⊆N Rf (A).

3 The main structure of the strategy-proof rules

In this section, we analyze some conditions that a strategy-proof social choice rule has to satisfy.

The union of these conditions will give us the general structure of the strategy-proof rules. In

Section 4, we will explore this structue further to obtain additional conditions that then lead to a

complete characterization.

A necessary condition on the range of f

Our first result is a necessary condition on the range of f that facilitates the further analysis. The

condition states that if a social choice rule is strategy-proof, its range can include at most two

different alternatives for a given set of agents A with single-peaked preferences.

Proposition 1 If f is strategy-proof, |Rf (A)| ≤ 2 for all A ⊆ N .

Proposition 1 shows that any strategy-proof rule can be divided into two steps. In the first step,

agents have to declare their types of preferences and depending on the set of agents with single-

peaked preferences A, one or two locations are preselected. If only one alternative is preselected,

this alternative is finally implemented. If two alternatives are preselected, the alternative that

is finally implemented has to be determined in the second step of the procedure. The follow-
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ing example illustrates that there are strategy-proof social choice rules that select two different

alternatives for a given set of agents with single-peaked preferences.

Example 1 Suppose that T = {0, 1, 3} and N = {2, 3}. Let the social choice rule f be such that

for all preference profiles R ∈ RA, f(R) = 0 whenever 3 6∈ A, f(R) = 1 whenever 3 ∈ A and

1P2 3, and f(R) = 3 whenever 3 ∈ A and 3R2 1. It is easy to see that f is strategy-proof and that

|Rf (A)| = 2 whenever 3 ∈ A.

Since Rf (A) contains at most two preselected locations, we indicate by lf (A) and rf (A) the

elements of Rf (A) such that lf (A) ≤ rf (A). Then, Sf (A) = N ∩ (lf (A), rf (A)) corresponds to

the set of agents that are located strictly between the preselected alternatives.

Decisive sets

Obviously, if lf (A) = rf (A), this alternative will be finally selected. Thus, we focus throughout

this subsection on the cases when lf (A) < rf (A) in order to derive several conditions the second

step of a strategy-proof rule has to satisfy.6 To do so, let fA : RA → Rf (A) be the binary decision

function that chooses between lf (A) and rf (A) if the set of agents that declared to have single-

peaked preferences is equal to A. The next proposition establishes that only the preferences of the

agents belonging to Sf (A) can affect the outcome of fA. The intuition of this result is as follows:

since the two preselected locations form an ordered pair for all agents located to the left or to

the right of both lf (A) and rf (A), the binary decision function fA must be independent of these

preferences in order to guarantee the strategy-proofness of f .

Proposition 2 If f is strategy-proof, then for all preference profiles R,R′ ∈ RA such that RSf (A) =

R′Sf (A), fA(R) = fA(R′).

As a corollary of Proposition 2, we can reduce the domain of fA from RA to RSf (A). Also, if

lf (A) 6= rf (A), then at least one agent has to be situated between the two preselected alternatives.

Then, we can partition Sf (A) for a given profile R ∈ RA into the following sets: Sl
f (R) = {i ∈

6Note that these conditions apply also straightforwardly to lf (A) = rf (A).
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Sf (A) : lf (A)Pi rf (A)}, Sr
f (R) = {i ∈ Sf (A) : rf (A)Pi lf (A)}, and Si

f (R) = {i ∈ Sf (A) :

rf (A) Ii lf (A)}. This partition separates the agents that can affect the outcome of fA into three

groups depending on their ordinal preferences over the two locations preselected in the first step.

Now, we are going to describe some particular binary decision functions that are defined by the

sets of agents that are able to impose one of the preselected alternatives over the other. These

decisive sets depend on RSi
f (R), the preferences of the agents belonging to Sf (A) that are indifferent

between lf (A) and rf (A) at R, and take the following structure.

Definition 1 Given the subprofile RSi
f (R) of a preference profile R ∈ RA, a family G(RSi

f (R)) of

lf (A)–decisive sets over Rf (A) is a family of subsets of (Sf (A) \ Si
f (R)) such that:

• If B ∈ G(RSi
f (R)) and C ⊃ B, then C ∈ G(RSi

f (R)).

• If j 6∈ B and (B ∪ {j}) 6∈ G(RSi
f (R)), then B 6∈ G(R′

Si
f (R′)

), where R′ ∈ RA is such that

R′
Si
f (R)

= RSi
f (R) and Si

f (R′) = Si
f (R) ∪ {j}.

• If B ∈ G(RSi
f (R)) and j 6∈ B ∪ Si

f (R), then B ∈ G(R′
Si
f (R′)

), where R′ ∈ RA is such that

R′
Si
f (R)

= RSi
f (R) and Si

f (R′) = Si
f (R) ∪ {j}.

• If Si
f (R) = ∅, then ∅ 6∈ G(RSi

f (R)) 6= {Sf (A)}.

We already indicated that the decisive sets that are able to impose lf (A) do not only depend

on Si
f (R), the agents that are indifferent between lf (A) and rf (A), but also on their particular

preferences RSi
f (R). We can also see from the definition that the decisive sets have to satisfy three

intuitive monotonicity properties and a non-emptiness condition. First, all supersets of a decisive

set are also decisive. Second, if a set of agents B ∪ {j} cannot impose lf (A) when all agents

of B ∪ {j} prefer lf (A) to rf (A), then the set B is also not able to impose lf (A) when agent j

switches her preferences and becomes indifferent between the two preselected alternatives. Third,

if a set of agents B can impose lf (A) when all agents of B prefer lf (A) to rf (A) and agent j prefers

rf (A) to lf (A), then B is also able to impose lf (A) when agent j becomes indifferent between

the two preselected alternatives. Finally, the non-emptiness condition guarantees that each of
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the preselected alternatives is implemented at least once if all agents have strict preferences over

Rf (A).

However, a description of a family of lf (A)–decisive sets is not sufficient to define a binary decision

function fA, because it does not provide a solution when all agents of Sf (A) are indifferent between

lf (A) and rf (A). In this case, we have to apply a tie-breaking rule tA : RSf (A) → Rf (A).

Definition 2 A binary decision function fA : RSf (A) → Rf (A) is called a voting by collections of

lf (A)–decisive sets with tie-breakers tA if for each subprofile RSi
f (R) of a preference profile R ∈ RA,

there exists a family of lf (A)–decisive sets over Rf (A), G(RSi
f (R)), together with a tie-breaking rule

tA such that:

fA(RSf (A)) =



tA(RSf (A)) if Si
f (R) = Sf (A)

lf (A) if Sl
f (R) ∈ G(RSi

f (R))

rf (A) otherwise.

A voting by collection of lf (A)–decisive sets with tie-breakers tA is, although formally complicated

to define, a relatively simple binary decision function. First, a collection of lf (A)–decisive sets

over Rf (A) is defined for each subprofile RSi
f (R) of agents belonging to Sf (A) that are indifferent

between the preselected alternatives. The outcome of fA for a subprofile RSf (A) is then lf (A) if

the set of agents of (Sf (A) \Si
f (R)) that prefer lf (A) is a lf (A)-decisive set for RSi

f (R), and rf (A)

otherwise. If Sf (A) = Si
f (R), the tie-breaking rule tA is used to determine the alternative that is

ultimately chosen.

We note that our family of binary decision functions is almost identical to the family introduced

under the same name in Manjunath [9], where it is shown that these are the unique type of rules

that are strategy-proof and unanimous in the domain of single-dipped preferences when the two

alternatives to choose from are minT and maxT . The only difference is that the non-emptiness

requirement of the family of decisive coalitions G(RSi
f (R)) is always needed in Manjunath [9] and

not only when Si
f (R) = ∅.

10



Our next result shows that the binary decision function fA associated to a strategy-proof social

choice rule f has to be a voting by collections of lf (A)–decisive sets with tie-breakers tA.

Proposition 3 If f is strategy-proof, the family of binary decision functions {fA : RSf (A) →

Rf (A)}A⊆N is a family of voting by collections of lf (A)–decisive sets with tie-breakers tA for all

A ⊆ N .

A summary of the main structure

Propositions 1 and 3 describe the basic structure any strategy-proof social choice rule has to satisfy.

First, agents have to indicate their type of preferences (single-peaked or single-dipped). Depending

on the set of agents who declare to have single-peaked preferences, one or two alternatives are

preselected. If only one alternative is preselected, this alternative is chosen. If two alternatives are

preselected, the agents who are located strictly between these two alternatives have to indicate

their ordinal preferences over the preselected alternatives. Still, we have to ask the agents that

are indifferent between the two preselected alternatives for their entire preferences. This general

structure can be summarized in the following corollary.

Corollary 1 A strategy-proof social choice rule f can be decomposed into a function Rf : 2N → T 2

and a family {fA : RSf (A) → Rf (A)}A⊆N of voting by collections of lf (A)–decisive sets with tie-

breakers tA such that for all preference profiles R ∈ RA, f(R) = fA(RSf (A)).

4 A complete characterization of the strategy-proof rules

So far, we have derived the main structure of all strategy-proof rules. Next, we derive additional

necessary conditions that allow us to obtain a complete characterization.

The structure of Rf

We start by analyzing the function Rf used in the first step of the strategy-proof rules and,

in particular, we are going to explain how the preselected alternatives could change as more
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agents declare to have single-peaked preferences. To do that, we introduce the following notation:

Rf (A) 6= Rf (A ∪ {i}) when lf (A) 6= lf (A ∪ {i}) and rf (A) 6= rf (A ∪ {i}). Observe that this

condition is different from Rf (A)∩Rf (A∪{i}) = ∅, as it could be the case that lf (A∪{i}) = rf (A)

or rf (A ∪ {i}) = lf (A).

Proposition 4 If f is strategy-proof, for all A ⊂ N and all i ∈ N :

• If rf (A) ≤ i, then lf (A∪{i}) ∈ [lf (A), i] and rf (A∪{i}) ∈ [rf (A), i]. Moreover, if Rf (A) 6=

Rf (A ∪ {i}), then lf (A ∪ {i}) ≥ rf (A).

• If lf (A) ≥ i, then lf (A∪ {i}) ∈ [i, lf (A)] and rf (A∪ {i}) ∈ [i, rf (A)]. Moreover, if Rf (A) 6=

Rf (A ∪ {i}), then rf (A ∪ {i}) ≤ lf (A).

• If i ∈ (lf (A), rf (A)), i ∈ [lf (A ∪ {i}), rf (A ∪ {i})] ⊆ [lf (A), rf (A)]. Additionally, if i ∈

Rf (A ∪ {i}), then Rf (A ∪ {i}) = {i} or Rf (A ∪ {i}) ∩Rf (A) 6= ∅.

Proposition 4 establishes that if agent i passes from having single-dipped to single-peaked pref-

erences, the preselected alternatives in Rf (A ∪ {i}) have to be closer to i than those in Rf (A).

In fact, if agent i is located strictly in between the two preselected alternatives of Rf (A), then

lf (A) ≤ lf (A ∪ {i}) ≤ i and rf (A) ≥ rf (A ∪ {i}) ≥ i, that is, agent i is also located weakly

between the preselected alternatives of Rf (A∪{i}), and the preselected alternatives weakly move

into the direction of the location of agent i. Additionally, if this location i belongs to Rf (A∪{i}),

then either i is the unique preselected location or the second preselected alternative also belongs

to Rf (A). If, on the other hand, agent i is located to the left or to the right of the preselected

alternatives of Rf (A), then each of the preselected alternatives of Rf (A ∪ {i}) has to be between

the location of agent i and the corresponding preselected location of Rf (A). Finally, if it turns

out that both preselected alternatives change, then lf (A ∪ {i}) ≥ rf (A) whenever rf (A) ≤ i and

rf (A ∪ {i}) ≤ lf (A) whenever i ≤ lf (A).
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The relation between decisive sets

Next, we study additional necessary conditions that arise in the second step of the rules. In

particular, we analyze how the decisive sets change as an agent passes from having single-dipped

to single-peaked preferences. Our first result refers to the cases in which i is located strictly

between the two preselected alternatives when she declares to have single-dipped preferences and

the preselected alternatives change when i announces to have single-peaked preferences in such a

way that agent i is also located strictly between lf (A∪ {i}) and rf (A∪ {i}). Then, i is a dictator

in the second step of the social choice rule; that is, i belongs to all decisive coalitions that can

impose lf (A) or lf (A ∪ {i}) in any profile of RA or RA∪{i} in which she is not indifferent.

Proposition 5 Suppose that f is strategy-proof. Then, for all A ⊂ N and all agents i 6∈ A such

that i ∈ Sf (A) ∩ Sf (A ∪ {i}), |Rf (A) ∩ Rf (A ∪ {i})| < 2, and all preference profiles R ∈ RA∪{i}

and R′ ∈ RA such that i 6∈ Si
f (R) ∪ Si

f (R′),

B ∈ G(RSi
f (R)) if and only if i ∈ B

B ∈ G(R′Si
f (R′)) if and only if i ∈ B.

The next proposition considers the case when Rf (A ∪ {i}) = Rf (A). It turns then out that if

agent i is situated to the left (right) of both preselected locations of Rf (A), it has to be easier

(more difficult) to select the left point of Rf (A) when agent i changes her type of preferences from

single-dipped to single-peaked. Here, easier (more difficult) means that the set of coalitions that

can impose the left point of Rf (A) when agent i declares to have single-peaked preferences has to

be a superset (subset) of the set when she declares to have single-dipped preferences. Finally, if

agent i is located between the two preselected alternatives, the set of coalitions that can impose

the left point of the range has to be invariant to the type of preferences of agent i.

Proposition 6 Suppose that f is strategy-proof. Then, for all A ⊂ N and all agents i 6∈ A such

that Rf (A) = Rf (A ∪ {i}) and all preference profiles R ∈ RA and R′ = (R′i, R−i) ∈ RA∪{i} such

that i 6∈ Si
f (R)∪Si

f (R′), G(RSi
f (R)) ⊆ G(R′

Si
f (R′)

) whenever i ≤ rf (A), and G(R′
Si
f (R′)

) ⊆ G(RSi
f (R))

whenever i ≥ lf (A).

13



The next proposition refers to the cases when i is located to the left or to the right of the

alternatives in Rf (A) and only one of these locations changes when agent i changes her type of

preferences from single-dipped to single-peaked. To be exact, the result states that if agent i is

located to the right (left) of Rf (A) and a coalition B is minimally decisive when agent i declares

to have single-peaked (single-dipped) preferences, then the intersection between B and all agents

with single-dipped preferences that are located between the two alternatives is a decisive set when

agent i changes her type of preferences. To describe the result, we need to define G∗(RSi
f (R))

for R ∈ RA as the set of all minimal lf (A)–decisive coalitions. Formally, B ∈ G∗(RSi
f (R)) if

B ∈ G(RSi
f (R)) and there is no C ⊂ B such that C ∈ G(RSi

f (R)).

Proposition 7 Suppose that f is strategy-proof. Then, for all A ⊆ N , all agents i 6∈ A, and

all preference profiles R ∈ RA∪{i} and R′ = (R′i, R−i) ∈ RA such that lf (A ∪ {i}) = lf (A) or

rf (A ∪ {i}) = rf (A) but not both:

• If i ≥ rf (A), then for all B ∈ G∗(RSi
f (R)), (B ∩ (Sf (A) \A)) ∈ G(R′

Si
f (R′)

).

• If i ≤ lf (A), then for all B ∈ G∗(R′
Si
f (R′)

), (B ∩ (Sf (A ∪ {i}) \A)) ∈ G(RSi
f (R)).

The last proposition studies what happens if i is situated strictly between the two preselected

alternatives of Rf (A) and i belongs to Rf (A∪{i}). Then, by Proposition 4, the location of agent

i is the unique preselected location or it is accompanied by lf (A) or rf (A). In the first case, there

is no room for additional conditions in the second step of the rule. In the latter case, it turns

out that if a coalition is able to impose the point different from i when she has single-peaked

preferences, the same coalition also has to be a winning coalition to impose the very same point

if agent i has single-dipped preferences.

Proposition 8 Suppose that f is strategy-proof. Then, for all A ⊆ N , all agents i 6∈ A such that

i ∈ (Sf (A) \ Sf (A ∪ {i})), and all preference profiles R ∈ RA∪{i} and R′ = (R′i, R−i) ∈ RA such

that i 6∈ Si
f (R′):

• If lf (A) = lf (A ∪ {i}), then for all B ∈ G∗(RSi
f (R)), (B ∩A) ∈ G(R′

Si
f (R′)

).
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• If rf (A) = rf (A ∪ {i}), then for all B ∈ G∗(R′
Si
f (R′)

), (B ∩ Sf (A ∪ {i}) ∩A) ∈ G(RSi
f (R)).

The characterization result

So far, we have established a set of necessary conditions for a social choice rule f to be strategy-

proof in addition to the main structure summarized in Corollary 1. The following theorem shows

that the union of all these necessary conditions constitutes a sufficient condition and, therefore,

we have characterized all strategy-proof social choice rules. This theorem also shows that the

characterized rules are group strategy-proof. So, this stronger property is obtained for free on the

domain R when strategy-proofness is imposed.7

Theorem 1 The following statements are equivalent:

1. The social choice rule f : R → T is strategy-proof.

2. The social choice rule f : R → T is group strategy-proof.

3. There is a function Rf : 2N → T 2 satisfying Proposition 4 and a family {fA : RSf (A) →

Rf (A)}A⊆N of voting by collections of lf (A)–decisive sets with tie-breakers tA satisfying

Propositions 5, 6, 7 and 8 such that for all preference profiles R ∈ RA, f(R) = fA(RSf (A)).

5 Possibility results

Theorem 1 characterizes the family of all strategy-proof rules on R. The structure of this family

depends on the relation between N and T . In particular, it can happen that this family reduces

to the dictatorial rules when the range of the rules is at least 3, thereby arriving again at the

impossibility of Result 1. Fortunately, this is generally not the case. To characterize all situations

7Barberà et al. [2] show in their Theorem 1 that if a domain D satisfies a condition that they call sequential

inclusion, then any strategy-proof social choice rule is also group strategy-proof on D. It is also shown in their

Theorem 4 that if a domain D allows for opposite preferences and a strategy-proof social choice rule on any

subdomain of D is also group strategy-proof, then D satisfies sequential inclusion. Since our domain R allows for

opposite preferences but does not satisfy sequential inclusion, their result implies that there exists a subdomain of

R where strategy-proofness does not imply group strategy-proofness.
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in which we can escape from Result 1, we need to define a new concept: a triple {x, y, z} ⊆ T is

full at N if N ∩ {x, y, z} = ∅ and N ⊂ (min{x, y, z},max{x, y, z}).

Theorem 2 There are strategy proof social choice rules on R with range greater than or equal to

3 different from the dictatorial ones if and only if there is a triple of T that is not full at N .

The condition included in Theorem 2 can be explained more intuitively depending on the size of

T .

Corollary 2 The following statements hold:

• We can escape from Result 1 if |T | ≥ 5.

• If |T | = 4, we can escape from Result 1 if and only if T cannot be partitioned into T1 and

T2 such that |T1| = |T2| = 2, maxT1 < minN , and maxN < minT2.

• If |T | = 3, we can escape from Result 1 if and only if N ∩ T = ∅ or N 6⊂ (minT,maxT ).

Theorem 2 and Corollary 2 provide an almost unanimous positive answer to the possibility of

escaping at R from the impossibility result of Gibbard [8] and Satterthwaite [11]. If there are

more than 4 alternatives, it is always possible to obtain rules that satisfy strategy-proofness (and

group strategy-proofness) with range greater than or equal to 3. Otherwise, it is sufficient to have

an agent that is located at a feasible location or at the left (or right) of at least three alternatives.8

However, the fulfillment of the condition in Theorem 2 does not necessarily imply that it is possible

to construct meaningful rules, because a priori it is possible that the addition of Pareto efficiency

leads again to dictatorial rules arriving at the impossibility of Result 2. Yet, Example 1 provides

an example of a strategy-proof and Pareto efficient social choice rule that is different from the

dictatorial rule in a particular case, showing that we can escape from this impossibility at least

in some cases. The following proposition shows a first condition that T has to satisfy to make it

possible to obtain a Pareto efficient rule.

8Observe that if |T | = 3 and none of these conditions are satisfied, R coincides with the universal domain.
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Proposition 9 Let T be a set of alternatives so that it is possible to find Pareto efficient rules

on R. Then, minT and maxT exist.

Proposition 9 concludes that, independently of the locations of the agents, a first necessary con-

dition on the set of feasible locations T is that it must have a minimum and a maximum. So, we

assume from now on that T has a minimum and a maximum. The following result characterizes

the additional conditions the relation between N and T have to satisfy to escape from Result 2.

To introduce it, we need to define lj = max{x ∈ T : x ≤ j} and rj = min{x ∈ T : x ≥ j}.

Theorem 3 There are Pareto efficient and strategy proof social choice rules on R different from

the dictatorial ones if and only if there are two agents i, j ∈ N such that each k ∈ {i, j} satisfies

one of the following conditions: (a) k ∈ T , (b) k 6∈ (minT,maxT ) or (c) lk and rk exist; with at

least one of them satisfying (a) or (b).

According to Theorem 3 the condition to obtain Pareto efficiency additionally to strategy-proofness

without arriving at the dictatorial rules is that there is one agent located at a feasible point or to

the left (or right) of all feasible points; and another agent that satisfies any of these characteristics

or is located at a point that has a defined nearest point to both its left and right.

6 Characterizations in some particular domains

Since a general characterization of all Pareto efficient and strategy-proof rules for all sets N and T

that satisfy the conditions of Theorem 3 is quite difficult to define in an intuitive way, we consider

now two extreme cases that reflect the two conditions that are sufficient to guarantee possibility

results. First, we assume that all agents are located at the left or right of all feasible locations (that

is, the cases in which all agents satisfy condition (b) of Theorem 3). Afterwards, we consider that

all agents are located at feasible locations (that is, the cases in which all agents satisfy condition

(a) of Theorem 3).
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Agents outside the interval of feasible locations

The first condition that guarantees on its own the possibility of combining Pareto efficiency and

strategy-proofness without arriving at dictatorial rules is the presence of at least two agents at

the left or at the right of all feasible locations for the facility. We are going to provide the

characterization for the extreme case when N ∩ (minT,maxT ) = ∅. Then, we define Nl = {i ∈

N : i < minT} and Nr = {i ∈ N : i > maxT} as the set of agents that are located to the left

(right) of T . Obviously, Nl ∪Nr = N .

Since no agent is located in the interior of T , only one alternative gets preselected in the first step

of the rule. Thus, the second step of the two-step functions characterized in Theorem 1 does not

apply and the range of Rf is T instead of T 2. This implies that the characterized rules are types-

only; i.e., they only depend on the type of preferences (single-peaked or single-dipped) of each

agent, but not on its particular structure. Formally, a social choice rule is types-only if for all sets

of agents A ⊆ N and all preference profiles R,R′ ∈ RA, we have that f(R) = f(R′). It follows then

directly from Proposition 4 (first and second cases) that Rf is monotone: Rf (A ∪ {i}) ≤ Rf (A)

whenever i ∈ Nl and Rf (A ∪ {i}) ≥ Rf (A) whenever i ∈ Nr.

Theorem 4 Let N ∩ (minT,maxT ) = ∅. Then, a social choice rule f : R → T is strategy-proof

and Pareto efficient if and only if there is a monotone function Rf : 2N → T satisfying that

Rf (Nl) = minT and Rf (Nr) = maxT such that for all R ∈ RA for some A ⊆ N , f(R) = Rf (A).

Theorem 4 provides a characterization of all the rules that satisfy these two natural conditions in

these situations in which all agents are at the left or at the right of all feasible locations. These

rules only ask agents about their type of preferences and the result is monotone with respect to

these preferences: if an agent at the left (respectively, at the right) of all feasible alternatives passes

from having single-dipped to single-peaked preferences, the chosen location does not move to the

right (respectively, to the left). Additionally, if all agents prefer the alternative situated most to

the left (respectively, most to the right) to the remaining ones, this location must be chosen.
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All agents located at feasible locations

The second condition that guarantees on its own the possibility of combining Pareto efficiency and

strategy-proofness without arriving at dictatorial rules is the presence of at least two agents at fea-

sible locations. We are thus interested in the extreme case when N ⊂ T and N ⊂ (minT,maxT ).

The reason to impose additionally that N ∩ {minT,maxT} = ∅ is that agents located at the

extremes have exactly the same set of admissible preferences over T as the agents outside of T and

the effect of these agents is the same as in the previous subsection. Since the description of the

Pareto efficient and strategy-proof rules is quite complex, we impose tops-onliness as an additional

condition. Formally, a social choice rule f is tops-only if for all i ∈ N and all preference profiles

R,R′ ∈ RA such that {x ∈ T : xRi y for all y ∈ T} = {x ∈ T : xR′i y for all y ∈ T}, then f(R) =

f(R′).9 It is easy to see that the possible tops of any agent i ∈ N are t(Ri) ∈ {i,minT,maxT}.

For the sake of simplicity, we assume that the top of each agent is unique.

Before providing a formal definition of the rules, we are going to describe some of the implications

tops-onliness has in this setting. First, and foremost, the second step of the characterized rules in

Theorem 1 only applies if the two preselected alternatives in the first step are the two extremes:

minT and maxT . Otherwise, only one alternative will be preselected and, therefore, chosen.

Moreover, the absence of indifferent agents implies that the set of decisive coalitions when the

two extreme points are preselected is independent of other aspects of the problem. Thus, we can

denote the decisive sets that can implement minT by Gf .

Let us now consider the situation when all agents have single-dipped preferences. Since both ex-

treme locations can Pareto dominate interior points, we must have that Rf (∅) = {minT,maxT}.

This allows us then to ask how the set of preselected alternatives changes when a single agent

i declares to have single-peaked instead of single-dipped preferences. One possibility is that

Rf ({i}) = Rf (∅). But another possibility is that an interior point is selected. And strategy-

proofness requires then that this interior point is i. This insight allows us to classify agents into

9Tops-onliness is a weaker property than types-onliness. Moreover, types-onliness is incompatible with Pareto

efficiency in this case.
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two groups: decisive agents, the ones that can force the outcome to be exactly her location when

the rest of agents have single-dipped preferences and they have single-peaked ones; and indecisive

agents. Let Df ⊆ N be the set of decisive agents. We are now ready to introduce the family of

conditional two-step rules.

Definition 3 The social choice rule f is said to be a conditional two-step rule if there is a non-

empty Df ⊆ N , a function f1 : 2N → (minT,maxT ), and a set of decisive sets Gf such that for

all A ⊆ N and all preference profiles R ∈ RA,

f(R) =


f1(A) ∈ [min(A ∩Df ),max(A ∩Df )] if A ∩Df 6= ∅

minT if A ∩Df = ∅ and {i ∈ N : t(Ri) = minT} ∈ Gf

maxT otherwise.

The conditional two-step rules work as follows: first, it establishes a partition of the set of agents

into the decisive ones Df and the rest. Then, if all decisive agents have single-dipped preferences,

the result is one of the extreme points, otherwise an interior point situated between the location

of the decisive agents with single-peaked preferences is chosen. If the decision is between the two

extremes, the exact result is determined depending on whether the set of single-dipped agents

with top minT belongs to Gf or not. On the other hand, if an interior point has to be chosen, an

aggregator f1 of the peaks of the single-peaked agents is used to choose the exact point.

Not all conditional two-step rules are strategy-proof and Pareto efficient. In particular, it follows

from Proposition 4 (first and second case) that if an interior point is chosen for some particular

set of agents A with single-peaked preferences and agent i 6∈ A changes her preferences to single-

peaked, then the selected location moves weakly into direction of agent i. Formally, we say that

the conditional two-step rule f is monotone if for all A ⊆ N and i ∈ N , f1(A) ≥ f1(A ∪ {i}) ≥ i

(respectively, f1(A) ≤ f1(A ∪ {i}) ≤ i) whenever f1(A) ≥ i (respectively, f1(A) ≤ i). Finally,

there is also a restriction on the set of decisive agents. We say that the conditional two-step rule

f satisfies conditional decisiveness if for all i ∈ C for some C ∈ Gf , then i ∈ Df . The following

result introduces the characterization for these cases.
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Theorem 5 Let N ⊂ T and N ⊂ (minT,maxT ). A social choice rule f is strategy-proof,

Pareto efficient, and tops-only if and only if it is a monotone conditional two-step rule satisfying

conditional decisiveness.

7 Conclusions

In this paper, we considered the situation when a social planner has to locate a public facility on

a subset of the real line. Agents are assumed to have single-dipped (the facility is a bad for them)

or single-peaked (the facility is a good for them) preferences on the set of alternatives. The type

and the structure of the preferences is only known to the agents, yet the public decision maker

knows the agents’ location on the real line and that the dip or peak of the preferences of an agent

corresponds to her location.

In this setting, we show that the set of all strategy-proof social choice rules on this domain follow

a two-step procedure. In the first step, all agents have to indicate their type of preferences (single-

peaked or single-dipped) and depending on the set of agents that declare to have single-peaked

preferences, at most two alternatives are preselected. If the rule preselects only one alternative,

then this alternative is finally chosen. If two alternatives are preselected, then all agents that

are situated strictly between the two preselected alternatives have to indicate which of them they

prefer. Then, depending on the preference structure of the agents that are indifferent between the

two preselected alternatives, winning coalitions determine which of the two preselected alternatives

is selected. Additionally, we show that all strategy-proof social choice rules are also group strategy-

proof. Finally, we have shown the conditions that the sets of agents and alternatives have to satisfy

to escape from the classical Gibbard-Satterthwaite impossibility result and we have characterized

the rules that satisfy additionally Pareto efficiency in some of these domains.

These results can improve the way in which the decisions of where to locate some facilities are

taken. It complements the classical domains of single-peaked and single-dipped preferences in

such a way that the decision of which is the best domain restriction and, as a consequence, which
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are the most appropriate rules to implement in each particular problem depends on the structure

of the particular facility. To see this, consider the following two alternative assumptions: (i) the

social planner assumes that the facility is unanimously considered a good or a bad; or (ii) the social

planner allows that the facility can be considered a good or a bad by each agent, but the peak or

dip is assumed to be situated in the point in which this agent is located. If, for a particular facility,

the first assumption seems stronger (weaker), then this new framework is more (less) appropriate

than the uniform single-peaked or single-dipped one.
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Appendix

Proof of Proposition 1

Let Oi(A,R−i) be the option set of agent i given the preferences R−i of the other agents and given

that the set of agents with single-peaked preferences is equal to A ⊆ N . So, alternative x ∈ T

belongs to Oi(A,R−i) if there is a preference profile R = (Ri, R−i) ∈ RA such that f(R) = x. Our

first lemma shows that if x and y belong to the option set of agent i, then i is located between x

and y.

Lemma 1 Suppose that f is strategy-proof. Then, for all A ⊆ N , all agents i ∈ N , all profiles

R ∈ R, and all alternatives x, y ∈ T such that x < y, if x, y ∈ Oi(A,R−i), then x < i < y.

Proof: Since x, y ∈ Oi(A,R−i), there are two preferences Ri, R
′
i ∈ RA

i for agent i such that

f(R) = x and f(R′i, R−i) = y. If i ≤ x, then agent i can manipulate f at (R′i, R−i) via Ri

whenever i ∈ A and at R via R′i whenever i 6∈ A. Similarly, if y ≤ i, then agent i can manipulate

f at R via R′i whenever i ∈ A and at (R′i, R−i) via Ri whenever i 6∈ A. Hence, x < i < y. �

Lemma 1 directly implies that the option set of any agent contains at most two alternatives.
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Corollary 3 Suppose that f is strategy-proof. Then, for all A ⊆ N , all agents i ∈ N , and all

profiles R ∈ R, |Oi(A,R−i)| ≤ 2.

The next lemma shows that f always selects a maximal alternative of an agent’s option set.

Lemma 2 Suppose that f is strategy-proof. Then, for all A ⊆ N , all agents i ∈ N , and all profiles

R ∈ RA, if Oi(A,R−i) = {x, y} and f(R) = x, then xRi y.

Proof: Suppose otherwise; that is, there is a preference profile R such that f(R) = x and y Pi x.

Since y ∈ Oi(A,R−i) by assumption, there is a preference R′i ∈ RA
i such that f(R′i, R−i) = y.

Then, agent i manipulates f at R via R′i. Hence, xRiy. �

The next lemma is crucial to prove Proposition 1 by contradiction. It shows that if the proposition

would not be correct (i.e. f is strategy-proof and |Rf (A)| > 2 for some A ⊆ N), there would be

a profile R and two preferences R′i ∈ RA
i and R′j ∈ RA

j so that the outcomes at R, (R′i, R−i), and

(R′j , R−j) differ.

Lemma 3 Suppose that f is strategy-proof. Then, for all A ⊆ N such that |Rf (A)| > 2, there are

two agents i, j ∈ N and three profiles R, (R′i, R−i), (R
′
j , R−j) ∈ RA such that f(R) 6= f(R′i, R−i) 6=

f(R′j , R−j) 6= f(R).

Proof: Consider any A ⊆ N and suppose that |Rf (A)| > 2. Then, there are three preference

profiles D,D′, D′′ ∈ RA such that f(D) 6= f(D′) 6= f(D′′) 6= f(D). Suppose without loss of

generality that f(D) = x. Starting at D, change the preferences of all agents one-by-one so that

we end up in profile D′. Since f(D) 6= f(D′), the function must have changed during this process.

Let B be the profile where the outcome is still x and let (B′i, B−i) be the profile when the outcome

switches the first time to another alternative, say y.

Next, construct the preference D̂i ∈ RA
i in the following way: if f(D′′) 6= y, D̂i is set equal to D′′i ,

otherwise D̂i is set equal to D′i. We can see that if f(D̂i, B−i) 6∈ {x, y}, then |Oi(A,B−i)| > 2

contradicting Corollary 1. So, f(D̂i, B−i) ∈ {x, y}. Next, consider the profile (D̂i, B−i) together

with the profile from B and (B′i, B−i) that has not the same outcome as (D̂i, B−i). Suppose
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without loss of generality that the alternative selected at B is not equal to the one selected at

(D̂i, B−i). Then, starting at B and (D̂i, B−i), change the preferences of all agents except i one-

by-one so that we end up in profile D′′ if f(D′′) 6= y and in profile D′ if f(D′′) = y. The

outcome at either of the two profiles has to change at some point of the process. Let C and

(C ′i, C−i) be the profiles where the outcomes are still x and y, respectively, and let (C ′S , C−S) and

(C ′S∪{i}, C−(S∪{i})) be the first time in which one (or both) profiles have an outcome z 6∈ {x, y}.

Assume without loss of generality that f(C ′S , C−S) = z. Let S = {j1, . . . , js} and observe that

s+1 agents have changed their preferences in the sequence to produce the three different outcomes:

first, agent i changes preferences from C ′i to Ci; then, s agents change preferences (from the ones

in CS to the ones in C ′S) to arrive at z. We complete the proof by induction on s.

• If s = 1, denote profile C by R, preference C ′i by R′i, agent j1 by j, and preference C ′j1 by

R′j . Then, we have established the result.

• Suppose that the statement of the proposition is correct for all s < k.

• We now prove the statement of the proposition for s = k. Consider any V ⊂ S ∪ {i} with

V 6∈ {S, {i}}. If f(C ′V , C−V ) 6∈ {x, y}, consider the sequence that starts with (C ′i, C−i),

passes through C, and ends at (C ′V , C−V ) whenever i 6∈ V , and the sequence that starts

with C, passes through (C ′i, C−i), and ends at (C ′V , C−V ) whenever i ∈ V . We can see that

the number of agents that have changed their preferences to produce three different results

in these sequences is smaller than k+1. So, the result follows from the induction hypothesis.

If, on the other hand, f(C ′V , C−V ) = y, then consider the sequence that starts at C, passes

through (C ′V , C−V ), and ends at (C ′S , C−S). In this sequence, the number of agents that

have changed their preferences to produce the three different outcomes is k < k + 1. The

result follows then again from the induction argument. Consequently, we assume from now

on that f(C ′V , C−V ) = x for all V ⊂ S ∪ {i} with V 6∈ {S, {i}}.

Next, we concentrate on f(C ′S∪{i}, C−(S∪{i})). If f(C ′S∪{i}, C−(S∪{i})) 6∈ {x, z}, consider the

sequence that starts at (C ′S∪{i}\{j}, C−(S∪{i}\{j})) for any j ∈ S, passes through (C ′S∪{i}, C−(S∪{i})),
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and ends at (C ′S , C−S). In this sequence, only two individuals have changed their pref-

erences to produce the three different outcomes and, then, the induction argument ap-

plies. If, however, f(C ′S∪{i}, C−(S∪{i})) = z, consider the sequence that starts at (C ′i, C−i)

and then changes the preferences of all agents j ∈ S one-by-one in order to end up at

(C ′S∪{i}, C−(S∪{i})). In this sequence, the number of agents that have changed their pref-

erences to produce the three different outcomes is k < k + 1. So, the induction argument

applies again. Thus, we conclude that f(C ′S∪{i}, C−(S∪{i})) = x.

Since f(C ′i, C−i) = y and f(C ′S , C−S) = z, we have that Oj(A, (C ′i, C−{i,j})) = {x, y} and

Oj(A, (C ′S\{j}, C−S)) = {x, z} for all j ∈ S. Similarly, we obtain that Oi(A,C−i) = {x, y}

and Oi(A, (C ′S , C−S)) = {x, z}. So, it follows from Lemma 1 that {y, z} is a fixed pair of

alternatives for all l ∈ S∪{i}. Consider now any agent m ∈ S and any preference R′′m ∈ RA
m

such that y P ′′m x and z P ′′m x, which exists given the previous findings. It follows then from

Lemma 2 together with Om(A, (C ′i, C−{i,m})) = {x, y} and Om(A, (C ′S\{m}, C−S)) = {x, z}

that f(R′′m, C ′i, C−{i,m}) = y and f(R′′m, C ′S\{m}, C−S) = z, respectively.

Finally, take the sequence of profiles that starts with (R′′m, C ′i, C−{i,m}) and change the

preferences of all agents l ∈ S ∪ {i} \ {m} so that the sequence ends at (R′′m, C ′S\{m}, C−S).

If only y and z are chosen along this sequence, then the agent at whom the outcome changes

can manipulate f given that {y, z} is a fixed pair for all agents belonging to S ∪ {i}. So,

there have to be at least three different outcomes along this sequence. However, observe

that the number of agents that have changed their preferences to produce the three different

outcomes is k < k + 1. So, the result follows from the induction hypothesis.

This concludes the proof. �

Now, we are ready to prove Proposition 1.

Proof of Proposition 1: Suppose that |Rf (A)| > 2. Then, by Lemma 3, there are three profiles

R, (R′i, R−i), (R′j , R−j) ∈ RA such that f(R) = x, f(R′i, R−i) = y, and f(R′j , R−j) = z. Let

f(R′i, R
′
j , R−{i,j}) = w and observe that although x, y and z are different, it could be that
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w ∈ {x, y, z}. Also, assume without loss of generality that x < y. Next, we study the implications

of the different option sets.

(1) Since Oi(A,R−i) = {x, y} and x < y by assumption, Lemma 1 implies that x < i < y.

(2) Observe that {z, w} ⊆ Oi(A, (R′j , R−{i,j})). So, if w 6= z, then w < i < z or z < i < w by

Lemma 1.

(3) Since Oj(A,R−j) = {x, z}, Lemma 1 implies that x < j < z or z < j < x.

(4) Observe that {w, y} ⊆ Oj(A, (R′i, R−{i,j})). So, if w 6= y, then w < j < y or y < j < w by

Lemma 1.

We show that f is not strategy-proof by constructing manipulations depending on how w relates

to the other alternatives.

Case 1: Suppose that w = y. Then, y < i < z or z < i < y by (2) and x < j < z or z < j < x by

(3). Observe that if y < i < z by (2), the fact that x < i < y by (1) implies that i < y < i, which is

impossible. So, we must have that z < i < y by (2). This, together with x < i < y by (1), implies

that {x, z} is a fixed pair for agent i. Since x < i, z < i, and j is between x and z by (3), we also

have that either {x, y} or {y, z} is a fixed pair for agent j. Suppose that {x, y} is a fixed pair for

j (the other case is similar and thus omitted). We can then conclude that z < j < x < i < y. The

remainder of this case is divided into two parts.

• If i ∈ A, consider any preference R′′i ∈ R
+
i such that xP ′′i y P ′′i z. Since Oi(A,R−i) =

{x, y} and Oi(A, (R′j , R−{i,j})) = {y, z}, it follows from Lemma 2 that f(R′′i , R−i) = x and

f(R′′i , R
′
j , R−{i,j}) = y. Thus, Oj(A, (R′′i , R−{i,j})) = {x, y} and, by Lemma 1, j lies between

x and y. This is a contradiction because we have already seen before that j < x < y.

• If i 6∈ A, consider any preference R′′i ∈ R
−
i such that z P ′′i y P ′′i x. Since Oi(A,R−i) =

{x, y} and Oi(A, (R′j , R−{i,j})) = {y, z}, it follows from Lemma 2 that f(R′′i , R−i) = y and

f(R′′i , R
′
j , R−{i,j}) = z. Thus, Oj(A, (R′′i , R−{i,j})) = {y, z}. Now, we separate the proof

depending whether j belongs or not to A.
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If j 6∈ A, consider any preference R′′j ∈ R
−
j such that y P ′′j z P ′′j x. Since Oj(A,R−j) = {x, z},

Lemma 2 implies that f(R′′j , R−j) = z. We know that Oj(A, (R′′i , R{i,j})) = {y, z}, so

Lemma 2 also implies that f(R′′i , R
′′
j , R−{i,j}) = y. Individual i will then manipulate f

at this profile via Ri to obtain z. If j ∈ A, consider any preference R′′j ∈ R
+
j such that

xP ′′j z P ′′j y. Since Oj(A,R−j) = {x, z}, Lemma 2 implies that f(R′′j , R−j) = x. Given that

Oj(A, (R′′i , R{i,j})) = {y, z}, Lemma 2 also implies that f(R′′i , R
′′
j , R−{i,j}) = z. Agent i will

then manipulate f at (R′′j , R−j) via R′′i (observe that (x, z) is a fixed pair for i at RA
i ).

Case 2: Suppose that w = z. The proof is similar to the one above and is thus omitted.

Case 3: Suppose that w 6∈ {y, z}. By (2), we have that z < i < w or w < i < z. Let z < i < w.

Then, since j lies between x and z by (3) and both x and z are smaller than i by (1), we conclude

that j < i. Also observe that j lies between y and w by (4) and that both y and w are greater

than i by (1). Consequently, j > i, which cannot be. Hence, we must have w < i < z. Next,

by (4), we have that y < j < w or w < j < y. Let y < j < w. Then, (1) and (4) imply that

x < i < y < j < w. So, i < w, which contradicts that w < i. Hence, we must have that w < j < y.

Similarly we have by (3) that z < j < x or x < j < z. Let z < j < x. Then, w < i < z < j < x

by (2) and (3), which contradicts that x < i by (1). So, we must have that x < j < z.

At this point, we can see that that the four conditions x < i < y, w < i < z, w < j < y, and

x < j < z are indeed compatible for the moment. In fact, it turns out that x and w are both

smaller than each i and j, which are in turn both smaller than each y and z. This also implies that

both {w, x} and {y, z} are fixed pairs for both agents i and j. Finally, consider any preference

R̂j ∈ RA
j such that z P̂j x and y P̂j w. Since Oj(A,R−j) = {x, z} and Oj(A, (R′i, R−{i,j})) =

{w, y}, f(R̂j , R−j) = z and f(R′i, R̂j , R−{i,j}) = y. Then, agent i will manipulate f at (R̂j , R−j)

via R′i when her fixed pair at RA
i is (y, z) and at (R′i, R̂j , R−{i,j}) via Ri when her fixed pair at

RA
i is (z, y). �
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Proof of Proposition 2

We first establish the following lemma.

Lemma 4 Suppose that f is strategy-proof. Then, for any two profiles R, (R′S , R−S) ∈ RA for

some A,S ⊆ N such that f(R) 6= f(R′S , R−S) there exists a set B ⊂ S and an agent i ∈ (S \ B)

such that f(R) = f(R′B , R−B) 6= f(R′B∪{i}, R−(B∪{i})) = f(R′S , R−S).

Proof: Starting at R, construct the sequence of profiles in which we change the preferences of all

agents j ∈ S one-by-one from Rj to R′j . Since f(R) 6= f(R′S , R−S) by assumption, there is subset

B of S and an agent i ∈ (S \B) such that f(R′B , R−B) 6= f(R′B∪{i}, R−(B∪{i})). Since |Rf (A)| ≤ 2

by Proposition 1, it follows that f(R) = f(R′B , R−B) and f(R′B∪{i}, R−(B∪{i})) = f(R′S , R−S). �

Now, we are ready to prove the proposition.

Proof of Proposition 2: Suppose there are two profiles R,R′ ∈ RA such that RSf (A) = R′Sf (A) but

f(R) 6= f(R′). By Lemma 4, there is a set of agents B ⊂ N\Sf (A) and an agent i ∈ N\(Sf (A)∪B)

such that f(R) = f(R′B , R−B) 6= f(R′B∪{i}, R−(B∪{i})) = f(R′). Thus, Oi(A, (R′B , R−(B∪{i}))) =

Rf (A) by Corollary 3. Since i 6∈ Sf (A) by construction, this contradicts Lemma 1. �

Proof of Proposition 3

Consider any A ⊆ N and define for each subprofile RSi
f (R) of a profile R ∈ RA a set G(RSi

f (R)) ⊆

2N of lf (A)–decisive coalitions in the following way: the set B belongs to G(RSi
f (R)) if there is a

profile R′ ∈ RA such that RSi
f (R) = R′

Si
f (R′)

, Sl
f (R′) = B and f(R′) = lf (A).

We show first that a voting by these collections of lf (A)-decisive sets is a well–defined binary

decision function. That is, if B ∈ G(RSi
f (R)), then for all profiles R̄ ∈ RA such that B = Sl

f (R̄)

and R̄Si
f (R̄) = RSi

f (R), f(R̄) = lf (A). Suppose to the contrary that f(R̄) = rf (A). By definition,

there is a profile R′ ∈ RA such that RSi
f (R) = R′

Si
f (R′)

, Sl
f (R′) = B, and f(R′) = lf (A). Then, by

Lemma 4, there is a set B ⊂ Sf (A) and an agent j ∈ (Sf (A)\B) such that f(R′) = f(R̄B , R
′
−B) =

lf (A) 6= rf (A) = f(R̄B∪{j}, R
′
−(B∪{j})) = f(R̄). If j ∈ Sl

f (R̄) (respectively, j ∈ Sr
f (R̄)), we
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have that j ∈ Sl
f (R′) (respectively, j ∈ Sr

f (R′)) by assumption and agent j manipulates f at

(R̄B∪{j}, R
′
−(B∪{j})) (respectively, at (R̄B , R

′
−B)) via R′j (respectively, via R̄j).

Now we show that if B ∈ G(RSi
f (R)), B ∪ {j} ∈ G(RSi

f (R)) for all j ∈ (Sf (A) \ Si
f (R)). Suppose

otherwise. Consider a profile R̄ ∈ RA such that RSi
f (R) = R̄Si

f (R̄), S
l
f (R̄) = B ∪ {j} and f(R̄) =

rf (A). Then, agent j manipulates f at this profile via any R′j ∈ RA
j such that rf (A)P ′j lf (A) to

obtain lf (A).

Next, we show that if Si
f (R) = ∅, then G(RSi

f (R)) 6= {Sf (A)} or, what is the same, that if

Sl
f (R) = Sf (A), then f(R) = lf (A). Suppose to the contrary that f(R) = rf (A). Since lf (A) ∈

Rf (A), there is a profile R′ ∈ RA such that f(R′) = lf (A). It follows from Proposition 2 that

f(R) = f(RSf (A), R
′
−Sf (A)) = rf (A). Then, considering the profiles R′ and (RSf (A), R

′
−Sf (A))

and applying Lemma 4, there is a set B ⊂ Sf (A) and an agent i ∈ (Sf (A) \ B) such that

f(R′B , R−B) = rf (A) 6= lf (A) = f(R′B∪{i}, R−(B∪{i})). Since lf (A)Pi rf (A) by assumption, agent

i manipulates f at (R′B , R−B) via R′i. It is possible to show in a similar way that if Si
f (R) = ∅,

then ∅ 6∈ G(RSi
f (R)) or, what is the same, that if Sr

f (R) = Sf (A), then f(R) = rf (A).

Now, we establish that if B ∈ G(RSi
f (R)) and j 6∈ B∪Si

f (R), then B ∈ G(R′
Si
f (R′)

), where R′ ∈ RA

is such that RSi
f (R) = R′

Si
f (R)

and Si
f (R′) = Si

f (R) ∪ {j}. Suppose to the contrary that this is

not the case and that for some R,R′ ∈ RA with RSi
f (R) = R′

Si
f (R)

and Si
f (R′) = Si

f (R) ∪ {j}

such that Sl
f (R) = Sl

f (R′) = B, although f(R) = lf (A), we have that f(R′) = rf (A). Then, by

Lemma 4, there is a set B ⊂ Sf (A) and an agent k ∈ (Sf (A)\B) such that f(R) = f(R′B , R−B) =

lf (A) 6= rf (A) = f(R′B∪{k}, R−(B∪{k})) = f(R′). If k ∈ Si
f (R), Rk = R′k by construction and,

then, f(R′B , R−B) = f(R′B∪{k}, R−(B∪{k})), which contradicts the fact that they are different. If

k ∈ Sr
f (R), agent k manipulates f at (R′B , R−B) via R′k. If, however, k ∈ Sl

f (R), then k ∈ Sl
f (R′)

by construction. So, agent k manipulates f at (R′B∪{k}, R−(B∪{k})) via Rk. Finally, the proof

that if (B ∪{j}) 6∈ G(RSi
f (R)), then B 6∈ G(R′

Si
f (R′)

), where R′ ∈ RA is such that RSi
f (R) = R′

Si
f (R)

and Si
f (R′) = Si

f (R) ∪ {j} follows a similar argument and is thus omitted.
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Proof of Proposition 4

Since the first two statements are dual, we only consider the case rf (A) ≤ i. First, to see

that rf (A ∪ {i}) ≤ i suppose otherwise. If rf (A) < i, consider a profile R ∈ RA such that

rf (A∪{i})Pj lf (A∪{i}) for all j ∈ Sf (A∪{i}) and rf (A∪{i})Pi lf (A). Agent i then manipulates

f at R via any R′i ∈ R
+
i such that rf (A ∪ {i})P ′i lf (A ∪ {i}) in order to obtain rf (A ∪ {i})

by Proposition 3. If, on the other hand, rf (A) = i, consider a profile R ∈ RA∪{i} such that

rf (A)Pj lf (A) for all j ∈ Sf (A) and rf (A ∪ {i})Pk lf (A ∪ {i}) for all k ∈ Sf (A ∪ {i}). Then,

f(R) = rf (A ∪ {i}) by Proposition 3, and agent i manipulates f at this profile via any R′i ∈ R
−
i .

Next, we show that rf (A ∪ {i}) ≥ rf (A). Suppose that rf (A ∪ {i}) < rf (A) and consider the

profile R ∈ RA∪{i} such that rf (A)Pj lf (A) for all j ∈ Sf (A) and rf (A∪{i})Pk lf (A∪{i}) for all

k ∈ Sf (A ∪ {i}). It follows from Proposition 3 that f(R) = rf (A ∪ {i}) and f(R′i, R−i) = rf (A)

for all R′i ∈ R
−
i . Then, agent i can manipulate f at R via any R′i ∈ R

−
i . Observe that a similar

argument can be used to show that lf (A ∪ {i}) ≥ lf (A).

To complete this part of the proposition, we only need to show that lf (A∪{i}) ≥ rf (A) whenever

Rf (A) 6= Rf (A ∪ {i}). Suppose otherwise; that is, lf (A ∪ {i}) < rf (A) and consider the profile

R ∈ RA such that rf (A)Pj lf (A) for all j ∈ Sf (A) and lf (A ∪ {i})Pk rf (A ∪ {i}) for all k ∈

Sf (A∪ {i}). It is possible to construct such a profile because by assumption and the reasoning of

the previous paragraphs, lf (A ∪ {i}) > lf (A), and rf (A ∪ {i}) > rf (A). Then, by Proposition 3,

f(R) = rf (A) and f(R′i, R−i) = lf (A ∪ {i}) for any R′i ∈ R
+
i . Thus, agent i manipulates f at R

via R′i.

Finally, we consider the cases when i ∈ (lf (A), rf (A)). In order to see that i ≤ rf (A∪{i}), assume

by contradiction that i > rf (A ∪ {i}) and take a profile R ∈ RA∪{i} such that rf (A)Pj lf (A) for

all j ∈ Sf (A) and rf (A)Pi rf (A ∪ {i}). Then, agent i manipulates f at R via any R′i ∈ R
−
i such

that rf (A)P ′i lf (A) in order to obtain rf (A) instead of any element of Rf (A∪{i}). One can show

in a similar way that i ≥ lf (A ∪ {i}). Therefore, i ∈ [lf (A ∪ {i}), rf (A ∪ {i})]. We establish next

that lf (A ∪ {i}) ≥ lf (A) (the proof that rf (A ∪ {i}) ≤ rf (A) is dual). Suppose otherwise; that

is, lf (A ∪ {i}) < lf (A). Consider a profile R ∈ RA∪{i} such that lf (A ∪ {i})Pj rf (A ∪ {i}) for all
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j ∈ Sf (A∪{i}) and lf (A)Pk rf (A) for all k ∈ Sf (A). Then, by Proposition 3, f(R) = lf (A∪{i}).

Thus, agent i manipulates it via any R′i ∈ R
−
i such that lf (A)P ′i rf (A) in order to obtain lf (A)

instead of lf (A ∪ {i}). We show next that if lf (A ∪ {i}) = i, then rf (A ∪ {i}) ∈ {i, rf (A)}.

Suppose otherwise; that is, lf (A ∪ {i}) = i, but rf (A ∪ {i}) ∈ (i, rf (A)). Then, consider a profile

R̄ ∈ RA∪{i} such that rf (A∪{i}) P̄j i for all j ∈ Sf (A∪{i}), lf (A) P̄k rf (A) for all k ∈ Sf (A) and

lf (A)P̄irf (A ∪ {i}). Then, by Proposition 3, we have that f(R) = rf (A ∪ {i}). However, agent i

manipulates it via any R̂i ∈ R−i such that lf (A)P̂irf (A) to obtain lf (A) by Proposition 3. It is

similar to show that if rf (A ∪ {i}) = i, then lf (A ∪ {i}) ∈ {lf (A), i} and thus we omit it.

Proof of Proposition 5

Consider first the case when Rf (A) ∩Rf (A ∪ {i}) = ∅. We will only show that B ∈ G(R′
Si
f (R′)

) if

and only if i ∈ B for all R′ ∈ RA such that i 6∈ Si
f (R′). The proof that B ∈ G(RSi

f (R)) iff i ∈ B

for all R ∈ RA∪{i} such that i 6∈ Si
f (R) is similar. Suppose otherwise; that is, there is some profile

R̄ ∈ RA such that f(R̄) = x and y P̄i x, where x, y ∈ Rf (A). Assume without loss of generality

that x = rf (A). Then, consider a profile R̂ ∈ RA with rf (A) P̂j lf (A) for all j ∈ (Sf (A) \ {i}),

lf (A∪{i}) P̂k rf (A∪{i}) for all k ∈ Sf (A∪{i}), and lf (A∪{i}) P̂i rf (A). Since f(R̄) = rf (A), it

follows from Proposition 3 that f(R̂) = rf (A). However, agent i then manipulates f at R̂ via any

R′′i ∈ R
+
i such that lf (A ∪ {i})P ′′i rf (A ∪ {i}) in order to obtain lf (A ∪ {i}) by Proposition 3.

Suppose now that |Rf (A) ∩ Rf (A ∪ {i})| = 1. It is assumed without loss of generality that

Rf (A) ∩ Rf (A ∪ {i}) = rf (A) = rf (A ∪ {i}). We first show that [B ∈ G(RSi
f (R)) iff i ∈ B for

all R ∈ RA∪{i} with i 6∈ Si
f (R)] if and only if [B ∈ G(R′

Si
f (R′)

) iff i ∈ B for all R′ ∈ RA with

i 6∈ Si
f (R′)]. So, suppose first that B ∈ G(RSi

f (R)) iff i ∈ B for all R ∈ RA∪{i} with i 6∈ Si
f (R), but,

by contradiction, that there is some R′ ∈ RA such that f(R′) = x and y P ′i x, where x, y ∈ Rf (A).

Let x = rf (A) –the case when x = lf (A) is similar and thus omitted– and consider a preference

R′′i ∈ R
−
i such that lf (A ∪ {i})P ′′i rf (A). If it was the case that f(R′′i , R

′
−i) = lf (A), then

individual i could manipulate f at R′ via R′′i . Hence, f(R′′i , R
′
−i) = rf (A). Since B ∈ G(RSi

f (R))

iff i ∈ B for all R ∈ RA∪{i} with i 6∈ Si
f (R) by assumption, we also have that for all R̄i ∈ R+

i with
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lf (A ∪ {i}) P̄i rf (A), f(R̄i, R
′
−i) = lf (A ∪ {i}). But agent i can then manipulate f at (R′′i , R

′
−i)

via any R̄i ∈ R+
i with lf (A∪{i}) P̄i rf (A). Observe finally that the proof of the other implication

is similar and thus omitted. Consequently, the two implications are equivalent.

Consider now any profile R ∈ RA with i 6∈ Si
f (R) such that f(R) = lf (A). If there is a preference

R′i ∈ R
+
i such that f(R′i, R−i) = rf (A ∪ {i}) = rf (A), then strategy-proofness implies that

Oi(A,R−i) = Rf (A); in fact, if it was the case that f(R′′i , R−i) = lf (A) for all R′′i ∈ R
−
i , then

agent i would be able to manipulate f at any profile (R̄i, R−i) ∈ RA such that rf (A) R̄i lf (A) via

R′i. Similarly, if there is a preference R̄i ∈ R−i such that f(R̄i, R−i) = rf (A), we can also conclude

that Oi(A,R−i) = Rf (A). In any of these cases, given that Oi(A,R−i) = Rf (A), Lemma 2 implies

that B ∈ G(RSi
f (R)) iff i ∈ B. If this occurs with all profiles of RA, we would obtain that i is

a dictator in all profiles of RA and, by the equivalence obtained in the previous paragraph, i is

also a dictator in all profiles of RA∪{i} and the proof is complete. So, suppose from now on that

there is a profile R ∈ RA with i 6∈ Si
f (R) such that f(R) = lf (A), f(R′i, R−i) = lf (A∪ {i}) for all

R′i ∈ R
+
i and f(R̄i, R−i) = lf (A) for all R̄i ∈ R−i . Then, G(RSi

f (R)) = G((R′i, R−i)Si
f (R′i,R−i)).

We now use the definition of minimal coalitions introduced in the main text. We establish in the

next step that all minimal coalitions D ∈ G∗(RSi
f (R)) have to be subsets of Sf (A)∩A, except agent

i. Suppose otherwise; that is, there is some D ∈ G∗(RSi
f (R)) such that D \ (A∩Sf (A)) 6∈ {∅, {i}}.

Consider the profile R̄ ∈ RA such that R̄Si
f (R̄) = RSi

f (R), lf (A) P̄j rf (A) for all j ∈ D ∩ A ∩

Sf (A), lf (A) P̄k rf (A) P̄k lf (A ∪ {i}) for all k ∈ D \ (A ∩ Sf (A)), and both rf (A) P̄l lf (A) and

rf (A) P̄l lf (A∪{i}) for all l ∈ (Sf (A∪{i}) \D). Since D ∈ G∗(RSi
f (R)) = G∗((R′i, R−i)Si

f (R′i,R−i))

by assumption, f(R̄) = lf (A) and f(R′i, R̄−i) = rf (A ∪ {i}) = rf (A) for any R′i ∈ R
+
i . However,

agent i will then manipulate f at R̄ via R′i. Consequently, all minimal coalitions D must be

subsets of (A ∪ {i}) ∩ Sf (A).

It can be shown in a very similar way that all minimal coalitions D ∈ G∗((R′j , R−j)Si
f (R′j ,Rj)) have

to be subsets of (Sf (A ∪ {i}) \ A) ∪ {i}. Thus, G∗(RSi
f (R)) = G∗((R′i, R−i)Si

f (R′i,R−i)) ∈ {∅, {i}}.

This implies that the range of f is 1, which contradicts the assumptions of the proposition, or

that B ∈ G(RSi
f (R)) = G((R′i, R−i)Si

f (R′i,R−i)) iff i ∈ B.
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Proof of Proposition 6

We will only show that for all preference profiles R ∈ RA and all R′ = (R′i, R−i) ∈ RA∪{i},

G(RSi
f (R)) ⊆ G(R′

Si
f (R′)

) whenever i ≤ rf (A). Suppose there is a set C of agents that is a winning

coalition when i has single-dipped preferences but not when i has single-peaked preferences; that is,

C ∈ (G(RSi
f (R)) \ G(R′

Si
f (R′)

)). If i 6∈ C, consider a profile R′′ ∈ RA such that R′′
Si
f (R′′)

= RSi
f (R),

rf (A)P ′′i lf (A), and for all agents k ∈ (Sf (A) \ Si
f (R′′)), lf (A)P ′′k rf (A) if and only if k ∈ C.

Then, f(R′′) = lf (A) and f(R′i, R
′′
−i) = rf (A). Thus, agent i manipulates f at R′′ via R′i. If,

on the other hand, i ∈ C, consider a profile R̄ ∈ RA∪{i} such that R̄Si
f (R̄) = R′

Si
f (R′)

and for all

k ∈ (Sf (A) \ Si
f (R̄)), lf (A) P̄k rf (A) if and only if k ∈ C. Then, f(R̄) = rf (A), but agent i can

manipulate f at this profile via any R̂i ∈ R−i such that lf (A) P̂i rf (A) to obtain lf (A).

Proof of Proposition 7

We will only consider the case when i ≥ rf (A) and lf (A∪ {i}) = lf (A), the other three situations

are similar. So suppose that B ∈ G∗(RSi
f (R)) for some R ∈ RA∪{i} and assume by contradiction

that there is a preference R′i ∈ R
−
i such that (B∩ (Sf (A)\A)) 6∈ G((R′i, R−i)Si

f (R′i,R−i)). Consider

a profile R′′ ∈ RA∪{i} such that R′′
Si
f (R′′)

= RSi
f (R), lf (A)P ′′k rf (A ∪ {i}) for k ∈ Sf (A ∪ {i}) if

and only if k ∈ B, and rf (A)P ′′l lf (A) for all l ∈ (B ∩ Sf (A) ∩ A) ∪ (Sf (A) \ (B ∪ A)). Then,

f(R′′) = lf (A) and f(R′i, R
′′
−i) = rf (A). Thus, agent i can manipulate f at R′′ via R′i.

Proof of Proposition 8

We will only consider the case when lf (A) = lf (A∪{i}) because the other is similar. By contradi-

tion, suppose that there is some B ∈ G∗(RSi
f (R)) for some R ∈ RA∪{i}, but (B ∩A) 6∈ G(R′

Si
f (R′)

)

for some R′ = (R′i, R−i) ∈ RA. Then, consider a profile R̄ ∈ RA∪{i} such that R̄Si
f (R̄) = RSi

f (R),

lf (A∪{i})P̄ji for j ∈ Sf (A∪{i}) if and only if j ∈ B and rf (A)P̄klf (A) for all k ∈ (Sf (A)\(B∩A)).

Then, f(R̄) = lf (A), but agent i can manipulate it via any R̂i ∈ R−i to obtain rf (A).
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Proof of Theorem 1

[1]⇒ [3]: It has been shown in the corresponding propositions.

[3] ⇒ [1]: We are going to show that no agent i has incentives to manipulate any of these social

choice rules. We concentrate on the case when agent i has single-peaked preferences; that is, we

consider a profile R ∈ RA∪{i} for some A ⊆ N and i 6∈ A (the analysis of the situation when

agent i has single-dipped preferences is similar and thus omitted). If f(R) = i, agent i cannot

manipulate f at R. If f(R) < i (we omit the situation when f(R) > i), consider the following

cases:

• If Rf (A ∪ {i}) = {f(R)}, agent i can only change the outcome of f at R by declaring a

single-dipped preference. However, we know from Proposition 4(first case) that rf (A∪{i}) ∈

[rf (A), i] whenever rf (A ∪ {i}) ≤ i. So, for all x ∈ Rf (A), x ≤ f(R). This implies that i

cannot manipulate f at R.

• If Rf (A∪{i}) = {f(R), x} and x ≤ i, then i 6∈ Sf (A∪{i}). So, by Proposition 2, f(R̄i, R−i) =

f(R) for all R̄i ∈ R+
i . This implies that agent i can only change the outcome of f at R

by declaring a single-dipped preference. If x < f(R), then lf (A ∪ {i}) = x and rf (A ∪

{i}) = f(R). Hence, it follows from Proposition 4(first case) that f(R) ∈ [rf (A), i] and

x ∈ [lf (A), i]. So, for all y ∈ Rf (A), y ≤ f(R) and i cannot manipulate. If, on the other

hand, x > f(R), then lf (A ∪ {i}) = f(R) and rf (A ∪ {i}) = x. It follows from Proposition

4(first and third cases) that lf (A) ≤ lf (A ∪ {i}) = f(R). Now, we have two possibilities. If

Rf (A) 6= Rf (A∪{i}), we have by Proposition 4 (first case) that for all y ∈ Rf (A), y ≤ f(R)

and i cannot manipulate. If, however, lf (A) = lf (A∪ {i}) or rf (A) = rf (A∪ {i}), it follows

from Propositions 7 and 8 that f(R′i, R−i) = lf (A) for all R′i ∈ R
−
i . This guarantees that

agent i cannot manipulate f at R.

• If Rf (A) = {f(R), x} and x > i, then i ∈ Sf (A ∪ {i}). By Proposition 3, we have that

f(R)Ri f(R̄i, R−i) for all R̄i ∈ R+
i . Then, suppose now that i try to improve its welfare

at R by declaring a single-dipped preference R′i ∈ R
−
i . We know from Proposition 4 (third
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case) that [lf (A ∪ {i}, rf (A ∪ {i})] ⊆ [lf (A), rf (A)]. There are two possibilities. If Rf (A) =

Rf (A ∪ {i}), Proposition 6 implies that G(RSi
f (R)) = G((R′i, R−i)Si

f (R′i,R−i)). Hence, agent

i cannot manipulate in this situation. If, however, |Rf (A) ∩ Rf (A ∪ {i})| < 2, we know by

Proposition 5 that i is a dictator in both Rf (A) and in Rf (A ∪ {i}). Hence, agent i cannot

manipulate f at R in this situation either.

Then, this statement is proved.

[3] ⇒ [2]: Take any of these social choice rules f . Assume, by contradiction, that there is a

profile R ∈ RA, a group of agents S ⊆ N with |S| > 1 and a subprofile R′S ∈ RS such that

f(R′S , R−S)Pi f(R) for all i ∈ S. We can assume without loss of generality that f(R′S , R−S) >

f(R). We can then see that all agents i ≤ f(R) of S must have single-dipped preferences at R and

all agents i ≥ f(R′S , R−S) of S must have single-peaked preferences at R for the manipulation to

be effective.

Let A ⊆ N be the set of agents with single-peaked preferences at profile R and let C ⊆ N be the

set of agents with single-peaked preferences at profile (R′S , R−S). Change the preferences of all

agents i ∈ S one-by-one from Ri to R′i in the following order: (i) start with the agents belonging

to Sf (A) in any arbitrary order; at the end of these changes, we will have a set of agents with

single-peaked preferences denoted by B; (ii) continue in any arbitrary order with all agents of

(Sf (B) \ Sf (A)); (iii) continue with the agents located to the left of lf (B) taking in each step the

agent located most to the right; (iv) continue with the single-peaked agents located to the right of

rf (B) taking in each step the agent located most to the right; and (v) complete the process with

the single-dipped agents located to the right of rf (B) taking in each step the agent located most

to the left. It is easy to see that [lf (A), rf (A)] ∩ [lf (B) ∩ rf (B)] 6= ∅.

If lf (B) < lf (C) or rf (B) < rf (C), then there is at least one agent i ∈ (S \Sf (A)) that moves one

of the preselected locations to the right when changing her preferences from Ri to R′i. We divide

the analysis depending on the location of i:

• Consider first the case in which i ≤ lf (B). Given that i 6∈ Sf (A) and [lf (A), rf (A)]∩ [lf (B)∩
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rf (B)] 6= ∅, we can also deduce that i ≤ lf (A) and, therefore, i ≤ f(R). Then, Ri ∈ R+
i

and R′i ∈ R
−
i by Proposition 4 (second case). This is a contradiction with the fact that all

agents of S at the left of f(R) have single-dipped preferences at R.

• Consider the case in which i ≥ rf (B). Then, Ri ∈ R−i and R′i ∈ R
+
i by Proposition 4

(first case). Let Sd
r = {i ∈ S | i ≥ rf (B) and Ri ∈ R−i }. Given the order of changes that

we have established, it follows from the iterated application of Proposition 4 (all cases)

that maxSd
r ≥ rf (C) and, therefore, f(R)PmaxSd

r
f(R′S , R−S). This contradicts that S can

manipulate f at R via R′S .

• Consider finally the case in which i ∈ (Sf (B) \ Sf (A)). The fact that (Sf (B) \ Sf (A)) 6= ∅

implies that there is at least one agent j ∈ Sf (A) ∩ S ∩ A such that [lf (A), rf (A)] ⊂

[lf (A \ {j}), rf (A \ {j})] and R′j ∈ R
−
j . Then, by Proposition 5 we have that j is a dictator

in Rf (A) and in Rf (A \ {j}). When the rest of the single-peaked agents (that is, the agents

of Sf (A)∩S ∩A) change their preferences, Proposition 5 implies that Rf (A\{j}) = Rf (E),

where E is the set of agents with single-peaked preferences in that moment. Then, by

Proposition 6, we have that j is a dictator in Rf (E). Now, consider any agent k ∈ (Sf (A)∩

(S \ A)) such that R′k ∈ R
+
k . Then, we would like to show that Rf (E ∪ {k}) = Rf (E).

Suppose by contradiction that this is not the case. Then, Proposition 4 (third case) gives

two possibilities: Rf (E ∪{k}) = {k} or Rf (E ∪{k}) ∈ {{k, lf (E)}, {k, rf (E)}}. The former

is not possible because if we continue changing the preferences of the rest of agents of

(Sf (A) ∩ (S \ A)), Proposition 4 (first and second cases) would imply that Sf (B) ⊆ Sf (A)

contradicting that i ∈ (Sf (B)\Sf (A)). The later case is also impossible because Proposition

8 would imply that the minimal coalitions in any profile of RE have to be formed by single-

peaked agents and j has single-dipped preferences in these profiles in which she is a dictator.

Therefore, Rf (E ∪ {k}) = Rf (E) and, by Proposition 6 we also have that j is a dictator in

Rf (E ∪{k}). Repeating the same arguments we arrive at Rf (A \ {j}) = Rf (B) and j being

a dictator in Rf (B). Then, lf (B) ≤ lf (A) and rf (A) ≤ rf (B).
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Given that j ∈ A and that she was a dictator in Rf (A), we necessarily need that f(R′S , R−S) ∈

(lf (A), rf (A)) for the manipulation to be effective. Given that f(R) < f(R′S , R−S), we have

that f(R) = lf (A).

Let rf (C) > rf (B). Then, agent i ∈ (Sf (B)\Sf (A)) moves the right preselected alternative

to the right in some moment. By Proposition 4 (third case), Ri ∈ R+
i and R′i ∈ R

−
i . Then,

given that all agents of S at the left of f(R) have single-dipped preferences at R, we must

have that i ∈ (rf (A), rf (B)). Then, by Proposition 5, i is a dictator for Rf (B). This

contradicts that j is a dictator for the same set.

Let lf (C) > lf (B). Then, agent i ∈ (Sf (B) \ Sf (A)) moves the left preselected alternative

to the right in some moment. By Proposition 4 (third case), Ri ∈ R−i and R′i ∈ R
+
i . Then,

given that all agents of S at the right of rf (A) have single-peaked preferences at R, we must

have that i ∈ (lf (B), lf (A)). By Proposition 4 (third case), no agent k ∈ (lf (B), lf (A))

can move the left preselected alternative to the right of lf (A) and, therefore, f(R′S , R−S) =

rf (C) < rf (A) ≤ rf (B). Then, by Proposition 5, i is a dictator for Rf (B), contradicting

that j is a dictator for the same set.

Consequently, we assume from now on that lf (B) ≥ lf (C) and rf (B) ≥ rf (C). Then, there are

no agents of S at the right of rf (B) with single-dipped preferences and step (v) of the chain of

changes is empty. The remainder of the proof is divided into two cases.

1. Let f(R′S , R−S) = lf (C). Since lf (B) ≥ lf (C) = f(R′S , R−S) and f(R′S , R−S) > f(R), we

must have that lf (B) > lf (A). By Proposition 4, there exists an agent i ∈ Sf (A) ∩ S such

that i ≥ lf (B) that changes her preferences from Ri ∈ R−i to R′i ∈ R
+
i . It follows then that

i ≥ f(R′S , R−S). Given that i has single-dipped preferences at R, we have a contradiction.

2. Let f(R′S , R−S) = rf (C). Assume first that f(R) = rf (A). Since rf (B) ≥ rf (C) =

f(R′S , R−S) and f(R′S , R−S) > f(R), we have that rf (B) > rf (A). By Proposition 4, there

exists an agent i ∈ Sf (A)∩S that changes her preferences from Ri ∈ R+
i to R′i ∈ R

−
i . Given

that i ≤ f(R) and she has single-peaked preferences at R, we have a contradiction. So, we
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assume from now on that f(R) = lf (A). We divide the analysis into three cases:

• Suppose that rf (B) < rf (A); the case when lf (B) > lf (A) is similar and thus omit-

ted. Since rf (C) ≤ rf (B), we have that f(R′S , R−S) = rf (C) ∈ (lf (A), rf (B)]. By

Proposition 4, there exists an agent i ∈ Sf (A)∩S such that i ≤ rf (B) that changes her

preferences from Ri ∈ R−i to R′i ∈ R
+
i . Suppose first that i < rf (B). Then, Proposition

5 implies that i is a dictator at Rf (A) or, what is the same, that lf (A)Rirf (A). Then,

given that Ri ∈ R−i , we have that lf (A)Pix for all x ∈ (lf (A), rf (A)) and, in particular,

f(R)Pif(R′S , R−S), contradicting the fact that S can manipulate f . Suppose finally

that i = rf (B). Then, i ≥ f(R′S , R−S) and has single-dipped preferences at R, which

is not possible.

• Suppose that rf (B) > rf (A); the case when lf (A) > lf (B) is similar and thus omitted.

By Proposition 4 (third case), the right preselected alternative changes from rf (A) to

its left when some agent j ∈ Sf (A) ∩ S changes her preferences from Rj ∈ R+
j to

Rj ∈ R−j . By similar arguments to ones used previously in the proof, we have that

Rf (A \ {j}) = Rf (B), lf (B) ≤ lf (A) and that j is a dictator for both Rf (A) and

Rf (B). Thus, f(R) = lf (A)Rj rf (A). If rf (C) ≥ rf (A), then f(R)Rj f(R′S , R−S).

So, this cannot be.

If rf (C) < rf (A), we have that rf (C) < rf (A) < rf (B) and lf (B) ≤ lf (A). This is

only possible if some agent i ≤ lf (B) with Ri ∈ R−i and/or some agent i ≥ rf (B)

with Ri ∈ R+
i change their type of preferences. Consider the case of an agent i ≤

lf (B) (the analysis of agents i ≥ rf (B) is dual and thus omitted). If both preselected

alternatives changes when agent i changes from Ri ∈ R−i to R′i ∈ R
+
i , then it follows

from Proposition 4 (second case) that rf (B ∪ {i}) ≤ lf (B) and, then, rf (B ∪ {i}) ≤

lf (A). By the iterated application of this reasoning, we obtain that rf (C) ≤ lf (A),

which contradicts that f(R′S , R−S) > f(R). If only one preselected alternative changes

when agent i changes from Ri ∈ R−i to R′i ∈ R
+
i , then it follows from Proposition 4

(second case) that lf (B ∪ {i}) = lf (B). By the iterated application of this reasoning,
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we deduce that lf (C) = lf (B). Then, by Proposition 7, j is also a dictator for Rf (C).

Thus, j ≤ rf (C).

Consider now the profile (R′S\{j}, R−(S\{j})) ∈ RC∪{j}; that is, all agents i ∈ S apart

from j have changed their preferences from Ri to R′i. By Proposition 4 (second case),

rf (C ∪ {j}) ∈ [j, rf (C)]. Thus, there is an agent i ≤ lf (A) = f(R) of S with Ri ∈ R−i

and R′i ∈ R
+
i and/or an agent i ≥ rf (A) > f(R′S , R−S) of S with Ri ∈ R+

i and

R′i ∈ R
−
i . However, this is not possible.

• Suppose that rf (B) = rf (A) and lf (B) = lf (A). Then, step (ii) of the chain of changes

is empty and all agents of S \Sf (A) (steps (iii) and (iv)) move these preselected alter-

natives to the right. Additionally, we have that rf (C) = f(R′S , R−S) ∈ (lf (A), rf (A)].

Then, by Proposition 4 (second case), we have three possibilities: Rf (C) = Rf (A),

Rf (C) = {lf (C), rf (A)} or Rf (C) = {lf (A), rf (C)}. If Rf (C) = Rf (A), by the iterated

application of Proposition 6, we have that the set of decisive sets of agents for Rf (C) is

equal to the set of decisive sets of agents for Rf (A). It follows then from f(R) = lf (A)

and f(R′S , R−S) = rf (C) that there is some agent i ∈ S ∩ Sf (A) that weakly prefers

lf (A) to rf (A) at R but the other way around at (R′S , R−S). Then, f(R)Ri f(R′S , R−S).

If either Rf (C) = {lf (C), rf (A)} or Rf (C) = {lf (A), rf (C)}, then there is an agent

i ∈ S \ Sf (A) that changes her type of preferences. Suppose without loss of generality

that Rf (C) = {lf (A), rf (C)}. Then, it follows then from the iterated application

of Proposition 7 that for all D ∈ G((R′Sf (A)∩S , R−(Sf (A)∩S))Si
f (R′

Sf (A)∩S ,R−(Sf (A)∩S))
),

D ∩ (Sf (A) \ A) ∈ G((R′S , R−S)Si
f (R′S ,R−S)). Since f(R) = lf (A), there is some group

D ∈ G(RSi
f (R)) that strictly prefers lf (A) to rf (A) at R. So, lf (A)Pi rf (A)Ri rf (C) for

all i ∈ (D ∩ (Sf (C) \ C)). Therefore, f(R′S , R−S) = lf (A), leading to a contradiction.

Proof of Theorem 2

⇐]: Suppose that there is a triple {x, y, z} ⊆ T that is not full at N . Consider first the case in

which N ∩{x, y, z} 6= ∅. Suppose w.l.o.g. that x ∈ N and y < z. If (N \ {x}) 6⊂ (y, z), consider an
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agent j 6∈ (y, z). Then, a rule f such that Rf (A) = x if x ∈ A, Rf (A) = y if [A∩ {x, j} = {j} and

j < y] or [A∩ {x, j} = ∅ and j > z] and Rf (A) = z otherwise is an strategy-proof rule with range

3, but is not dictatorial. If, however, (N \ {x}) ⊂ (y, z), a rule f such that Rf (A) = x if x ∈ A,

Rf (A) = {y, z} otherwise and G(RSi
f (R)) containing all non-empty coalitions for all R ∈ RA with

x 6∈ A is strategy-proof and has range 3, but is not dictatorial.

Consider now the cases in which, although N ∩ {x, y, z} = ∅, N 6⊂ (min{x, y, z},max{x, y, z}).

Assume w.l.o.g. that x < y < z and there is one agent i ∈ N with i < x. If (N \ {i}) 6⊂ (y, z),

consider an agent j 6∈ (y, z). Then, a rule f such that Rf (A) = x if i ∈ A, Rf (A) = y if

[A∩ {i, j} = {j} and j < y] or [A∩ {i, j} = ∅ and j > z] and Rf (A) = z otherwise is an strategy-

proof rule with range 3, but is not dictatorial. If, however, (N \ {i}) ⊂ (y, z), a rule f such that

Rf (A) = x if i ∈ A, Rf (A) = {y, z} otherwise and G(RSi
f (R)) containing all non-empty coalitions

for all R ∈ RA with i 6∈ A is strategy-proof and has range 3, but is not dictatorial.

⇒]: Suppose that all triples are full at N and that, by contradiction, there is a strategy-proof rule

f with range greater than or equal to 3 that is not dictatorial. Consider a triple {x, y, z} with

x < y < z contained in the range of f . Then, N ⊂ ((x, z) \ {y}). We distinguish two cases:

Suppose first that |Rf (∅)| = 1. If Rf (∅) < z, we have by iterated application of Proposition 4

that z 6∈ Rf (A) for any A ⊆ N , contradicting the fact that z belongs to the range of f . Similarly,

if Rf (∅) > x, we have by iterated application of Proposition 4 that x 6∈ Rf (A) for any A ⊆ N ,

contradicting the fact that x belongs to the range of f .

Suppose now that |Rf (∅)| = 2. If rf (∅) < z (respectively, lf (∅) > x), we have by iterated applica-

tion of Proposition 4 that z 6∈ Rf (A) (respectively, x 6∈ Rf (A)) for any A ⊆ N , contradicting the

fact that z (respectively, x) belongs to the range of f . Then, lf (∅) ≤ x and rf (∅) ≥ z. Given that

no agent is located in a feasible point, we have by Proposition 4 (third case) that Rf ({i}) = Rf (∅)

(in this case, we will say that i is not decisive) or i ∈ (lf ({i}), rf ({i})) ⊂ [lf (∅), rf (∅)] (in this

case, we will say that i is decisive). By Proposition 5, we have that if an agent i is decisive,

she is a dictator in Rf ({i}) and in Rf (∅). Given that it is not possible to have more than one
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dictator at Rf (∅), we obtain that there is at most one decisive agent that we will denote, when

exists, by î. Consider now any set A with |A| > 1. Suppose first that î 6∈ A and we are going

to show that Rf (A) = Rf (∅). Suppose that this occurs for all subsets D ⊂ A. Take now any

profile R ∈ RA and suppose that f(R) 6∈ {lf (∅), rf (∅)}, contrary to what we intend to show. By

construction, f(R) ∈ (lf (∅), rf (∅)). By assumption, f(R) 6= j for all j ∈ A. Then, f(R) ∈ Rf (A)

and |Rf (A)| = 2. Given that Rf (D) = {lf (∅), rf (∅)} for all D ⊂ A, we have by Proposition 5 that

all agents of A are dictators in Rf (A), which obviously is not possible. Suppose now that î ∈ A

and we are going to show that Rf (A) = Rf ({̂i}). Suppose that this occurs for all subsets D ⊂ A

with î ∈ D, but Rf (A) 6= Rf ({̂i}). Then, by Proposition 6, we have that î is a dictator at all

Rf (D). Suppose first that Sf (A) 6= ∅. Then, we have by Proposition 5 that any agent j ∈ Sf (A)

is a dictator at Rf (A \ {j}), which is a contradiction with the fact that î is also a dictator there.

Suppose now that Sf (A) = ∅. We have that î ∈ Sf (A \ {̂i}), but î 6∈ Sf (A). Given that î 6∈ Rf (A)

by construction, we have a contradiction with Proposition 4 (third case).

Then, Rf (A) = Rf ({̂i}) if î ∈ A and Rf (A) = Rf (∅) otherwise. If î does not exist, we have that

the range of f only contains minT and maxT . Suppose then that î exists. Then, by Proposition

6, we have that î is a dictator at all Rf (A). Given that lf ({̂i}) ≥ lf (∅) and rf ({̂i}) ≤ rf (∅), this

rule is dictatorial, being î the dictator.

Proof of Proposition 9

We will prove that if minT or maxT does not exist, then there are no Pareto efficient rules. To

do that we need the following notation: Nl = {i ∈ N | i ≤ inf T}, Nr = {i ∈ N | i ≥ supT}, and

Nc = N \ (Nl ∪Nr).10

Suppose that minT does not exist (the proof when maxT does not exist is similar). Consider a

profile R ∈ RNl such that for all i ∈ Nc and all y > i, there exists x ≤ i with xPiy. Then, there is

no Pareto efficient alternative in this profile and, therefore, it is not possible to construct a Pareto

efficient social choice rule.

10If inf T or supT does not exist, the corresponding sets are empty.
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Proof of Theorem 3

⇐]: Consider first the case in which i ∈ N ∩ T and lj and rj exist (this allows j to satisfy (a)

or (c)). Consider the social choice rule f given by Rf (A) = {i} if i ∈ A, Rf (A) = {lj , rj} if

A ∩ {i, j} = {j} and Rf (A) = {minT,maxT}, otherwise, with j being a dictator in all Rf (A) in

which i 6∈ A and lj 6= rj . This rule is strategy-proof and Pareto efficient.

Consider now the case in which i 6∈ (minT,maxT ) and lj and rj exist (this allows j to satisfy

(a) or (c)). Assume w.l.o.g. that i < minT and consider the social choice rule f given by

Rf (A) = {minT} if i ∈ A, Rf (A) = {lj , rj} if A ∩ {i, j} = {j} and Rf (A) = {minT,maxT},

otherwise, with j being a dictator in all Rf (A) in which i 6∈ A and lj 6= rj . This rule is strategy-

proof and Pareto efficient.

Consider finally the case in which i, j 6∈ (minT,maxT ). Then, consider any social choice rule f

such that Rf (A) = {minT} if for all k ∈ (A∩{i, j}), k < minT and Rf (A) = {maxT} otherwise.

Again, any of these social choice rules are strategy-proof and Pareto-efficient.

⇒]: Suppose that N ∩ T = ∅ and N ⊆ (minT,maxT ). Then, using similar arguments as in the

proof of Proposition 9 we have that Rf (∅) = {minT,maxT}. By similar arguments as in the

proof of Theorem 2, we have that Rf ({i}) 6= Rf (∅) for at most one agent i ∈ N .

If Rf ({i}) = Rf (∅) for all i ∈ N , we can deduce applying the same arguments as in the proof of

Theorem 2 that Rf (A) = Rf (∅) for all A ⊆ N . Then, consider a profile R ∈ RN such that there

is some x ∈ (T \ {minT,maxT}) with xPi minTPi maxT for all i ∈ N , which exists given the

assumptions. Then, f(R) = minT , but this location is Pareto dominated by x.

If Rf ({j}) 6= Rf (∅) for only one agent j ∈ N , applying the same arguments as in the proof of

Theorem 2 we obtain that Rf (A) = Rf ({j}) if j ∈ A and Rf (A) = {minT,maxT} otherwise. By

Propositions 5 and 6, we have that j is a dictator at all Rf (A). Given that lf ({j}) ≥ minT and

rf ({j}) ≤ maxT , this rule is dictatorial, being j the dictator.
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Proof of Theorem 4

It is straightforward to see that N ∩(minT,maxT ) implies that the range of Rf is T instead of T 2.

Then, Propositions 5 to 8 are obviously satisfied. Similarly, the condition that Rf is monotone

guarantees that Proposition 4 is satisfied. Then, strategy-proofness is guaranteed by Theorem 1.

To show that these rules are Pareto efficient, take any profile R ∈ RA. If A = Nl (respectively,

A = Nr), all agents prefer minT (respectively, maxT ) to any other alternative, and precisely this

unanimously maximal alternative is chosen. In other case, observe that for all x, y ∈ T , there

are two agents i, j ∈ N such that xPiy and yPjx, guaranteeing than any choice in these cases is

Pareto efficient.

Consider now any strategy-proof and Pareto efficient social choice rule. Then, the rule belongs to

the one characterized in Theorem 1. Given that the range of Rf is T by the structure of N and

T , we can concentrate directly on this function. This function is obviously monotone given that

Proposition 4 is implied by strategy-proofness. Similarly, we can derive that Rf (Nl) = minT and

Rf (Nr) = maxT by Pareto efficiency using the same arguments as in the previous paragraph.

Proof of Theorem 5

It can be checked easily that all conditional two-step rules f satisfying conditional decisiveness

such that f1 is monotote are strategy-proof, Pareto efficient and tops-only. To see the other

implication, we start with the strategy-proof rules characterized in Theorem 1 and we investigate

the possible values of Rf in some cases.

Lemma 5 Let N ⊂ T and N ⊂ (minT,maxT ), and consider any f that is strategy-proof, Pareto

efficient, and tops-only. Then, Rf (∅) = {minT,maxT} and for all i ∈ N , Rf ({i}) ∈ {{i}, Rf (∅)}.

Proof: Using similar arguments as in the proof of Proposition 9, we can deduce that Rf (∅) =

{minT,maxT}. Consider now any Rf ({i}) and suppose that Rf ({i}) 6= Rf (∅). Then, |Rf ({i})| =

1 by tops-onliness. Then, by Proposition 4 (third case), we have that Rf ({i}) = i. �
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Lemma 5 allows us to divide N into the group of decisive agents Df and the rest. The next lemma

shows that there is at least one decisive agent.

Lemma 6 Let N ⊂ T and N ⊂ (minT,maxT ), and consider any f that is strategy-proof, Pareto

efficient, and tops-only. Then, Df is non-empty.

Proof: Suppose that Df = ∅. Applying the same arguments as in the proof of Theorem 2, we have

that Rf (A) = Rf (∅) for all A ⊆ N . Then, it is easy to see that for all R ∈ RN , minN (respectively,

maxN) Pareto dominates minT (respectively, maxT ). Since Rf (∅) = {minT,maxT} by Lemma

5, this contradicts Pareto efficiency. Hence, Df 6= ∅. �

Using Lemmas 5 and 6, we can now determine the selected alternative. It follows from similar

arguments as those in the proof of Theorem 2 that if A ∩ Df = ∅, then Rf (A) = Rf (∅) =

{minT,maxT}. For these cases, tops-onliness implies that the minimal decisive coalitions can

only be formed by the tops of the single-dipped agents and, then, we denote them by Gf .

So, we can now concentrate on the case when A∩Df 6= ∅. The proof proceeds by double induction.

1. We first consider the case when only one decisive agent i has single-peaked preferences. We

have to show that for all preference profiles R ∈ RA such that A ∩Df = {i}, f(R) = i.

(a) Let A = {i} and i ∈ Df . Since i is a decisive agent, f(R) = i by definition.

(b) Suppose that for all preference profiles R ∈ RB such that B ⊂ A and B ∩Df = {i},

f(R) = i. Since A ∩ Df = {i} by assumption and the set of preselected alterna-

tives is equal to {minT,maxT} whenever all decisive agents have single-dipped pref-

erences, Rf (A \ {i}) = {minT,maxT}. Thus, by Proposition 4 (third case), Rf (A) ∈

{{i}, {minT,maxT}}. Moreover, by the induction hypothesis, Rf (A \ {j}) = {i} for

all j ∈ (A \ {i}). Then, by Proposition 4 (third case) it is not possible that Rf (A) is

equal to {minT,maxT}. We can therefore conclude that Rf (A) = {{i}}; that is, we

have shown that for all R ∈ RA such that A ∩Df = {i}, f(R) = i.

2. We now move to the case when a subset C of decisive agents of size greater than one has
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single-peaked preferences. So, we consider a preference profile R ∈ RA such that A∩Df = C,

|C| > 1, and we have to show that f(R) ∈ [minC,maxC]. The induction hypothesis states

that for all preference profiles R′ ∈ RB such that B ⊂ A, f(R′) ∈ [min(B ∩Df ),max(B ∩

Df )]. Suppose by contradiction that f(R) < minC (the proof when f(R) > maxC is

similar and thus omitted). Given that (B ∩ Df ) ⊂ C, by the induction hypothsesis, we

obtain that for all R̂ ∈ RA\{minC}, f(R̂) ∈ [minC,maxC]. Then, by Proposition 4, we have

that f(R) ∈ [minC,maxC].

Given tops-onliness, for all R̄ ∈ RA, f(R) = f(R′) and we will consider function f1 : 2N →

(minT,maxT ) the function such that f1(A) = f(R) for all R ∈ RA such that A ∩Df 6= ∅. The

fact that f1 is monotone can be deduced from Proposition 4. To deduce that f satisfies

Finally, we only have to show that f satisfies conditional decisiveness. Take any A ∈ Gf . We have

to show that i ∈ Df for all i ∈ Gf . Suppose by contradiction that f(R′i, R−i) 6= i for all R′i ∈ R
+
i .

If f(R′i, R−i) > i, consider a preference profile R ∈ R∅ such that t(Rj) = minT if and only if

j ∈ A. Then, consider R̂i ∈ R+
i such that minT P̂i f(R′i, R−i). Then, f(R̂i, R−i) = f(R′i, R−i),

but agent i can manipulate f via Ri to obtain minT . The case f(R′i, R−i) < i is similar and thus

omitted.
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