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Abstract

Agents frequently have different opinions on the decision of where to locate a public facility:
while some agents may prefer to have it closer to them, others may prefer to have it far away.
To aggregate agents’ preferences in these cases, we propose a new domain of preferences
in which agents may have single-peaked or single-dipped preferences on the location of the
facility, but such that the peak or dip is situated in the location of the agent. We characterize
all strategy-proof rules in this domain and we show that all these rules are also group strategy-
proof. We show that this family allows us to escape from the classical impossibility result
of Gibbard and Satterthwaite with meaningful rules in almost all cases. Additionally, we

characterize the subfamilies of rules that are also Pareto efficient in some focal cases.
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1 Introduction

Governments have to decide where to locate public facilities like schools, hospitals, prisons, nuclear
plants, or industrial parks. To select a location for a particular facility, the public decision makers
have to take into account not only technical constraints but also the preferences of the different

agents in the society.

Since preferences are private information and agents have incentives to reveal them truthfully
or not depending on how this information is incorporated in the selection of the final location,
the objective is to construct social choice rules that, apart from having other good properties,
induce agents to reveal their true preferences. This property is known as strategy-proofness.
Unfortunately, Gibbard [8] and Satterthwaite [11] have shown in their famous impossibility result

that no relevant strategy-proof rules can be constructed when preferences are unrestricted:

Result 1 If all ordinal preferences over the feasible locations are admissible, all strategy-proof

social choice rules with range greater than 2 are dictatorial.!

Result 1 highlights the impossibility of combining strategy-proofness and a range greater than 3
without arriving at a dictatorship. The technical condition of having a range greater than 3 can
be substituted by the more intuitive notion of Pareto efficiency without altering the impossibility

result.

Result 2 If all ordinal preferences over the feasible locations are admissible, all Pareto efficient

and strategy-proof social choice rules are dictorial.?

Given these negative results, the literature has concentrated on constructing meaningful strategy-

proof social choice rules when some preferences over the set of alternatives are not admissible. In

LA dictatorial social choice rule is one that always selects a maximal alternative of a particular agent (the

dictator), independently of the preferences of the other agents.

2There are two implicit assumptions in this result. On the one hand, there should be at least three feasible
alternatives because if there are only two, there exist rules that satisfy both criteria. On the other hand, it is
needed that the set of maximal alternatives for each admissible preference is well-defined because in other case,

Pareto efficiency can not be attained even without requiring strategy-proofness.



fact, if the preference domain is restricted in a natural way, then we can find strategy-proof social
choice rules that escape from the impossibilities of Results 1 and 2. See Barbera [1] for a survey.
The most well-known preference restriction for the location of public facilities is the one of single-
peaked preferences (see Moulin [10]) that appears naturally when the facility to be located is a
public good. Formally, an agent has single-peaked preferences on the real line if she has an optimal
point and the further one moves away from this optimal point (maintaining the direction), the
worse the locations get for this agent. For the domain of all single-peaked preferences, Moulin [10]
and Barbera and Jackson [5] show that all strategy-proof rules are generalized median voter rules.

So, in this case one can escape from Results 1 and 2.

The dual of single-peaked preferences are the single-dipped preferences. Formally, an agent has
single-dipped preferences on the real line if she has a worst possible location and the further one
moves away from this worst location (maintaining the direction) the better the locations get for
this agent. These preferences appear naturally when the facility to be located is a public bad.
For the domain of single-dipped preferences, Manjunath [9] has shown that all strategy-proof and
unanimous rules necessarily have to select an extreme element of the set of alternatives (see also
Barbera et al. [3]). Given that all these rules are also Pareto efficient, it is possible to escape from

Result 2 in this domain, but the range of these rules is still equal to 2.

Although the before mentioned frameworks are interesting ones, many public facilities cannot be
accommodated by either of them because agents differ in their evaluation: some may consider that
a particular facility is a good and want to have it built as close as possible to their own locations,
but others prefer to have it as far away as possible (they consider it a bad). Some examples are:
(i) dog parks that people could prefer to have closer to their homes or further away depending
on whether or not they own a dog; (ii) cell towers that people could prefer to have closer or
further away depending on whether they believe, contrary to the scientific evidence, that these
facilities can produce cancer or not; (iii) industrial parks that municipalities could prefer to have
closer to the city/town/village or not depending on whether they consider that this facility has

positive/negative externalities to its model of economic development; (iv) soccer stadiums that



people could prefer to have closer to them or further away depending on whether they are season
ticket holders of the team that plays there or they do not like soccer.

Given that some agents may like the facility but others not, the set of admissible preferences
to treat these cases has to include both single-peaked and single-dipped preferences. However,
unfortunately, it is easy to show that the impossibilities of Results 1 and 2 are maintained if
we allow agents to express any single-peaked or any single-dipped preference; i.e. if the domain
considered is the union of the domains of single-peaked and single-dipped preferences.> However,
the examples above are situations in which agents typically have single-peaked or single-dipped
preferences with the peak or dip situated in their locations (their homes, their municipalities, . .. ),
and this fact can then be used to construct a domain in which we can escape from the impossibilities
with interesting strategy-proof social choice rules. If the location of the agents is known by the
social planner, something that frequently occurs (for example, the regional government knows
where each municipality is located or local governments know the residence of each person), we
propose to consider a domain in which the set of admissible preferences of each agent corresponds
to all single-peaked preferences with the peak in her location and all single-dipped preferences
with the dip in her location. We will characterize all strategy proof rules and show that this new

domain allows us to escape from the impossibilities of both Results 1 and 2.

In particular, we will show that all strategy-proof rules share a common structure whose main
aspects are: (7) in a first step, all agents are asked only about their type of preferences (single-
peaked or single-dipped) and, depending on the set of agents that have single-peaked preferences,
at most two locations are preselected; (i¢) if only one alternative has been preselected, then this
alternative is finally chosen; (#i7) finally, if two alternatives has been preselected, then all agents
that are situated strictly between the two preselected alternatives have to indicate their ordinal

preference over them (and, in case of indifference, their entire preferences) and, depending on the

3To see why, observe that an agent with single-dipped preferences will manipulate any generalized median voter
rule in some instances. See Berga and Serizawa [7] for additional results showing the difficulty of expanding the

domain of single-peaked preferences without arriving at the impossibilities.



answers, it is decided which of the two preselected alternatives is finally chosen.

The particular ways to pick the preselected locations that pass to the second phase and the form
in which the final location is chosen between them have to satisfy some monotonicity conditions.
These conditions are generally not too restrictive and allows to many possibilities, which con-
stitutes the differences in the characterized rules. This allows the social planner to incorporate
other aspects of the problem (technical, economic, ecological, ...) to the social choice rule. We
will also show that all rules that cannot be manipulated by isolated agents cannot be manipu-
lated by groups of coordinated agents either; i.e., we will show that all these rules are also group

strategy-proof.

The remainder of the paper is organized as follows. Section 2 introduces the necessary notation and
definitions. Section 3 shows some conditions that defines the main structure of the strategy-proof
social choice rules. Section 4 provides a complete characterization of all strategy-proof rules in this
new domain and shows that group strategy-proofness is implied in this case by strategy-proofness.
Section 5 explains when this characterized family allows us to escape from the impossibilities
of Results 1 and 2. Section 6 characterizes the rules that satisfy strategy-proofness and Pareto

efficiency for some focal cases. Section 7 concludes. All proofs are relegated to the Appendix.

2 Notation and definitions

Consider a social planner who wants to locate a public facility in a point on a set T' C R of feasible
locations. There is a finite group of agents N (with size at least 2), and each agent belonging
to N is located at a point on the real line. We indicate the agent located at i € R by i € N.*
For the moment, we do not impose any restriction on N, on T" or on the relation between them.
For example, T' can be finite or infinite, and we could have that all agents are located at feasible

locations (N C T') or at unfeasible ones (N NT = 0).

4This notation assumes implicitly that there is at most one agent at any point of the real line. As it can be seen
from the proofs, the results of the paper still hold when allowing for multiple agents at a single point. We opted

for the simple notation, because it is intuitive to follow.



Let R; be the weak preference relation of agent ¢ € N on T. Formally, R; is a complete and
transitive binary relation. P; and I; are the strict and the indifference preference relation induced
by R;. We then say that R; is a single-peaked preference with peak ¢ if for all x,y € T such that
1> x >yori <z <y, we have that x P;y. Similarly, R; is a single-dipped preference with
dip i if for all z,y € T such that i > 2 > y or i < 2 < y, we have that y P;2.> The preference
domain of agent i is R; = RF UR;, where R} (R;) is the set of all single-peaked (single-dipped)
preferences with peak (dip) in ¢. Observe that the intersection between the preference domains of

two agents is empty.

A preference profile is a set of preferences R = (R;);cn. The domain of all admissible preference
profiles is denoted by R = x;enRi. Let R4 be the set of preference profiles such that only
the agents in A C N have single-peaked preferences. Sometimes we will write R#* to indicate the
domain of single-peaked preferences for agent i if i € A, or the domain of single-dipped preferences
for agent i if i ¢ A. Similarly, Rg and R_g are the restrictions of R to the agents in S C N and

(N'\ S), respectively. We will write R_; instead of R_g;;.

The following concepts will be useful in the course of our analysis. A non-ordered pair of alterna-
tives {z,y} is a fixed pair for agent 7 if for all a,b € {x,y} such that a < b, we cannot have that
a < i < b. Observe that given any type of preferences of agent i (single-peaked or single-dipped),
if {z,y} is a fixed pair for ¢, then this agent has always the same ordinal preferences over {z,y}.
Similarly, the ordered pair of alternatives (x, ) is said to be a fixed pair for agent i at R if for all
R; € RA, x P;y. Or, to say it differently, (z,y) is a fixed pair for i at R ifi € Aand [y <z <
ory>x>il,orifig Aand [i <y <z ori>y> x| Finally, we can see that if {z,y} is a fixed
pair for agent 4, then (x,y) is a fixed pair for one type of preferences of i and (y, z) is a fixed pair

for the other type.

The solution concept is a social choice rule, a function f : R — T that selects for each preference

5Technically speaking, these preferences only have a maximal/minimal alternative at i if i € T. Otherwise, its
most/less preferred feasible alternative would be the closest one situated at its left or the closest one situated at its

right. This difference will play an important role in Sections 5 and 6.



profile R € R a point f(R) € T. We denote the range of f in the domain R4 by R;(A). We now
introduce some properties on social choice rules. We say that f is manipulable by agent i € N if
she can benefit from misrepresenting her preferences; that is, if there is a preference profile R € R
and some alternative preference R; € R; such that f(R}, R_;) P; f(R). Then, f is strategy-proof
if it is not manipulable by any agent. Similarly, f is group strategy-proof if for all R € R, there is
no S C N and Ry € Rg such that f(Ry, R—s) P; f(R) for all i € S. The social choice rule f is
Pareto efficient if for all R € R, there is no « € T such that « R; f(R) for all i € N and z P; f(R)
for some j € N. Finally, f is dictatorial if there exists an agent i € N (called the dictator) such

that for all R € R, f(R) Rz for all z € (Jc Ry (A).

3 The main structure of the strategy-proof rules

In this section, we analyze some conditions that a strategy-proof social choice rule has to satisfy.
The union of these conditions will give us the general structure of the strategy-proof rules. In
Section 4, we will explore this structue further to obtain additional conditions that then lead to a

complete characterization.

A necessary condition on the range of f

Our first result is a necessary condition on the range of f that facilitates the further analysis. The
condition states that if a social choice rule is strategy-proof, its range can include at most two

different alternatives for a given set of agents A with single-peaked preferences.
Proposition 1 If f is strategy-proof, |Ry(A)| <2 for all AC N.

Proposition 1 shows that any strategy-proof rule can be divided into two steps. In the first step,
agents have to declare their types of preferences and depending on the set of agents with single-
peaked preferences A, one or two locations are preselected. If only one alternative is preselected,
this alternative is finally implemented. If two alternatives are preselected, the alternative that

is finally implemented has to be determined in the second step of the procedure. The follow-



ing example illustrates that there are strategy-proof social choice rules that select two different

alternatives for a given set of agents with single-peaked preferences.

Example 1 Suppose that T = {0,1,3} and N = {2,3}. Let the social choice rule f be such that
for all preference profiles R € RA, f(R) = 0 whenever 3 ¢ A, f(R) = 1 whenever 3 € A and
1P 3, and f(R) = 3 whenever 3 € A and 3 Ry 1. It is easy to see that f is strategy-proof and that

|Rs(A)| = 2 whenever 3 € A.

Since Ry(A) contains at most two preselected locations, we indicate by l;(A) and 7;(A) the
elements of Ry(A) such that If(A4) < ry(A). Then, Sf(A) = NN (lf(A),rf(A)) corresponds to

the set of agents that are located strictly between the preselected alternatives.

Decisive sets

Obviously, if I7(A) = r(A), this alternative will be finally selected. Thus, we focus throughout
this subsection on the cases when l¢(A) < r¢(A) in order to derive several conditions the second
step of a strategy-proof rule has to satisfy.® To do so, let f4 : R* = R +(A) be the binary decision
function that chooses between [f(A) and r¢(A) if the set of agents that declared to have single-
peaked preferences is equal to A. The next proposition establishes that only the preferences of the
agents belonging to Sy(A) can affect the outcome of f4. The intuition of this result is as follows:
since the two preselected locations form an ordered pair for all agents located to the left or to
the right of both [;(A) and r;(A), the binary decision function f4 must be independent of these

preferences in order to guarantee the strategy-proofness of f.

Proposition 2 If f is strategy-proof, then for all preference profiles R, R’ € R4 such that Rs,a) =

R,Sf(A)’ fa(R) = fa(R).

As a corollary of Proposition 2, we can reduce the domain of f4 from R4 to Rg Ay Also, if
l4(A) # r¢(A), then at least one agent has to be situated between the two preselected alternatives.

Then, we can partition S;(A) for a given profile R € R* into the following sets: S;(R) ={ie

6Note that these conditions apply also straightforwardly to lf(A) =715(A).



SH(A) = L(A) Pirg(A)}, S5(R) = {i € S;(A) : r4(A) P1;(A)}, and SH(R) = {i € Sp(A) :
r#(A)I;1f(A)}. This partition separates the agents that can affect the outcome of f4 into three
groups depending on their ordinal preferences over the two locations preselected in the first step.
Now, we are going to describe some particular binary decision functions that are defined by the
sets of agents that are able to impose one of the preselected alternatives over the other. These
decisive sets depend on RS} (R)» the preferences of the agents belonging to Sy (A) that are indifferent

between [f(A) and r;(A) at R, and take the following structure.

Definition 1 Given the subprofile RS}(R) of a preference profile R € R*, a family Q(RS}(R)) of

l§(A)-decisive sets over Ry(A) is a family of subsets of (Sy(A)\ S}(R)) such that:

If B e Q(RS}(R)) and C D B, then C € Q(RS;(R)).

If j € B and (BU{j}) ¢ Q(RS}(R)), then B ¢ Q(Rg;(R,)), where R’ € RA is such that

Rl ) = Ry () and Sp(R) = SH(R) U {5}

where R € R4 is such that

If B € Q(RS}(R)) and j ¢ BU S}(R), then B € Q(R’S}(R,)),

/
R,

sy = Bsyon) and S5(R) = S3(R)U {5}

17 SHR) =0, then 0 & G(Rgs () # {S5(A)).

We already indicated that the decisive sets that are able to impose lf(A) do not only depend
on S} (R), the agents that are indifferent between [;(A) and r¢(A), but also on their particular
preferences RS} (r)- We can also see from the definition that the decisive sets have to satisfy three
intuitive monotonicity properties and a non-emptiness condition. First, all supersets of a decisive
set are also decisive. Second, if a set of agents B U {j} cannot impose [;(A) when all agents
of BU{j} prefer {;(A) to r¢(A), then the set B is also not able to impose [;(A) when agent j
switches her preferences and becomes indifferent between the two preselected alternatives. Third,
if a set of agents B can impose ;(A) when all agents of B prefer {;(A) to ry(A) and agent j prefers
r(A) to lf(A), then B is also able to impose If(A) when agent j becomes indifferent between

the two preselected alternatives. Finally, the non-emptiness condition guarantees that each of



the preselected alternatives is implemented at least once if all agents have strict preferences over

Ry(A).

However, a description of a family of I;(A)—decisive sets is not sufficient to define a binary decision
function f4, because it does not provide a solution when all agents of Sy (A) are indifferent between

lf(A) and 7¢(A). In this case, we have to apply a tie-breaking rule t4 : Rg, (1) — Rf(A).

Definition 2 A binary decision function fa : Rs,;a) — Ry(A) is called a voting by collections of
17 (A)—decisive sets with tie-breakers ¢ 4 if for each subprofile RS}(R) of a preference profile R € R4,
there ezists a family of l;(A)-decisive sets over Ry(A), Q(RS}(R)), together with a tie-breaking rule
ta such that:

ta(Rg,ay) if SH(R) = S(A)

fa(Rs;a)) = § 1p(A) if S3(R) € G(Rsi())

re(A) otherwise.

A voting by collection of [;(A)—decisive sets with tie-breakers ¢ 4 is, although formally complicated
to define, a relatively simple binary decision function. First, a collection of I;(A)-decisive sets
over R¢(A) is defined for each subprofile RS;; (r) of agents belonging to S;(A) that are indifferent
between the preselected alternatives. The outcome of fa for a subprofile Rg,(4) is then [;(A) if
the set of agents of (Sy(A4)\ S} (R)) that prefer [¢(A) is a [y (A)-decisive set for RS}(R), and 77 (A)
otherwise. If Sy(A) = S%(R), the tie-breaking rule 4 is used to determine the alternative that is

ultimately chosen.

We note that our family of binary decision functions is almost identical to the family introduced
under the same name in Manjunath [9], where it is shown that these are the unique type of rules
that are strategy-proof and unanimous in the domain of single-dipped preferences when the two
alternatives to choose from are min 7T and max 7. The only difference is that the non-emptiness
requirement of the family of decisive coalitions G (RS} (r)) is always needed in Manjunath [9] and

not only when S%(R) = 0.

10



Our next result shows that the binary decision function f4 associated to a strategy-proof social

choice rule f has to be a voting by collections of {(A)-decisive sets with tie-breakers ¢ 4.

Proposition 3 If f is strategy-proof, the family of binary decision functions {fa : Rs,a) —
Ry(A)}acn is a family of voting by collections of 15(A)-decisive sets with tie-breakers ta for all

ACN.

A summary of the main structure

Propositions 1 and 3 describe the basic structure any strategy-proof social choice rule has to satisfy.
First, agents have to indicate their type of preferences (single-peaked or single-dipped). Depending
on the set of agents who declare to have single-peaked preferences, one or two alternatives are
preselected. If only one alternative is preselected, this alternative is chosen. If two alternatives are
preselected, the agents who are located strictly between these two alternatives have to indicate
their ordinal preferences over the preselected alternatives. Still, we have to ask the agents that
are indifferent between the two preselected alternatives for their entire preferences. This general

structure can be summarized in the following corollary.

Corollary 1 A strategy-proof social choice rule f can be decomposed into a function Ry : 2N 5 7?
and a family {fa : Rs;a) = Rf(A)}acn of voting by collections of ly(A)-decisive sets with tie-

breakers t 4 such that for all preference profiles R € R4, f(R) = fa(Rs,(a))-

4 A complete characterization of the strategy-proof rules

So far, we have derived the main structure of all strategy-proof rules. Next, we derive additional

necessary conditions that allow us to obtain a complete characterization.

The structure of R;

We start by analyzing the function Ry used in the first step of the strategy-proof rules and,

in particular, we are going to explain how the preselected alternatives could change as more

11



agents declare to have single-peaked preferences. To do that, we introduce the following notation:
Rs(A) # Ry(A U {i}) when l5(A) # l;(AU {i}) and rf(A) # rr(AU{i}). Observe that this
condition is different from Ry(A)NRf(AU{i}) =, as it could be the case that l;(AU{i}) = r¢(A)

or (AU {i}) = I;(A).

Proposition 4 If f is strategy-proof, for all A C N and all i € N:

o Ifry(A) <i, thenly(AU{i}) € [[;(A),d] and rp(AU{i}) € [rf(A),3]. Moreover, if Rf(A) #

Rf(A U {Z}), then lf(A U {Z}) > Tf(A).

o Ifls(A)>1, thenly(AU{i}) € [i,14(A)] and ry(AU{i}) € [i,74(A)]. Moreover, if Rf(A) #

Rp(AU{i}), then rr(AU {i}) < 1;(A).

o Ifi e (Iy(A),rs(A4), i € [f(AU{i}),rs(AU{i})] C [[;(A),rr(A)]. Additionally, if i €

Rf(A U {i}), then Rf(A u{i}) = {i} or Rf(A u{i})n Rf(A) £ 0.

Proposition 4 establishes that if agent ¢ passes from having single-dipped to single-peaked pref-
erences, the preselected alternatives in Ry(A U {i}) have to be closer to i than those in R;(A).
In fact, if agent ¢ is located strictly in between the two preselected alternatives of R;(A), then
l4(A) < ly(AU{i}) < i and r¢(A) > re(AU{i}) > ¢, that is, agent 7 is also located weakly
between the preselected alternatives of Ry(AU {i}), and the preselected alternatives weakly move
into the direction of the location of agent . Additionally, if this location ¢ belongs to Ry(AU{i}),
then either ¢ is the unique preselected location or the second preselected alternative also belongs
to Ry(A). If, on the other hand, agent 7 is located to the left or to the right of the preselected
alternatives of Ry(A), then each of the preselected alternatives of Ry(A U {i}) has to be between
the location of agent ¢ and the corresponding preselected location of Ry(A). Finally, if it turns
out that both preselected alternatives change, then ly(A U {i}) > ry(A) whenever ry(A4) < ¢ and

r(AU{i}) <1;(A) whenever ¢ < [;(A).

12



The relation between decisive sets

Next, we study additional necessary conditions that arise in the second step of the rules. In
particular, we analyze how the decisive sets change as an agent passes from having single-dipped
to single-peaked preferences. Our first result refers to the cases in which i is located strictly
between the two preselected alternatives when she declares to have single-dipped preferences and
the preselected alternatives change when ¢ announces to have single-peaked preferences in such a
way that agent ¢ is also located strictly between If(AU{i}) and ry(AU{i}). Then, ¢ is a dictator
in the second step of the social choice rule; that is, ¢ belongs to all decisive coalitions that can

impose I¢(A) or I;(AU {i}) in any profile of R4 or RA“{} in which she is not indifferent.

Proposition 5 Suppose that f is strategy-proof. Then, for all A C N and all agents i ¢ A such
that i € Sp(A) N Sp(AU{i}), |[Rp(A) N R(AU{i})| <2, and all preference profiles R € RAV{H

and R' € RA such that i SH(R)USH(R'),
B e Q(RS}(R)) if and only ifi € B
Be Q(R’S}(R/)) if and only if i € B.

The next proposition considers the case when R;(A U {i}) = R;(A). It turns then out that if
agent ¢ is situated to the left (right) of both preselected locations of Rf(A), it has to be easier
(more difficult) to select the left point of R;(A) when agent ¢ changes her type of preferences from
single-dipped to single-peaked. Here, easier (more difficult) means that the set of coalitions that
can impose the left point of R(A) when agent i declares to have single-peaked preferences has to
be a superset (subset) of the set when she declares to have single-dipped preferences. Finally, if
agent i is located between the two preselected alternatives, the set of coalitions that can impose

the left point of the range has to be invariant to the type of preferences of agent i.

Proposition 6 Suppose that f is strategy-proof. Then, for all A C N and all agents i € A such
that Ry(A) = Ry (AU {i}) and all preference profiles R € R4 and R' = (R}, R_;) € R4} such
thati ¢ S (R)US}(R’), Q(RS}(R)) c Q(R’S}(R,)) wheneveri < rg(A), and Q(R’S}(R,)) c Q(RS}(R))

whenever i > 15(A).

13



The next proposition refers to the cases when 7 is located to the left or to the right of the
alternatives in Ry(A) and only one of these locations changes when agent ¢ changes her type of
preferences from single-dipped to single-peaked. To be exact, the result states that if agent i is
located to the right (left) of R¢(A) and a coalition B is minimally decisive when agent i declares
to have single-peaked (single-dipped) preferences, then the intersection between B and all agents
with single-dipped preferences that are located between the two alternatives is a decisive set when
agent ¢ changes her type of preferences. To describe the result, we need to define g*(Rs} ( R))
for R € R4 as the set of all minimal [7(A)-decisive coalitions. Formally, B € Q*(RS}(R)) if

Be Q(RS}(R)) and there is no C C B such that C € Q(RS}(R)).

Proposition 7 Suppose that f is strategy-proof. Then, for all A C N, all agents i € A, and
all preference profiles R € RAYMNY and R = (R, R_;) € R such that l;(AU {i}) = I;(A) or

r(AU{i}) = rs(A) but not both:

o Ifi = ry(A), then for all B € G*(Rsy ), (BN (S(4)\ A) € G(RG, ().

o Ifi<ls(A), then for all B € Q*(Rg}(R,)), (BN (Sf(AU{i})\ A)) € Q(RS}(R)).

The last proposition studies what happens if 7 is situated strictly between the two preselected
alternatives of Ry(A) and i belongs to Rf(AU {i}). Then, by Proposition 4, the location of agent
i is the unique preselected location or it is accompanied by I7(A) or r#(A). In the first case, there
is no room for additional conditions in the second step of the rule. In the latter case, it turns
out that if a coalition is able to impose the point different from ¢ when she has single-peaked
preferences, the same coalition also has to be a winning coalition to impose the very same point

if agent ¢ has single-dipped preferences.

Proposition 8 Suppose that f is strategy-proof. Then, for all A C N, all agents i & A such that

i€ (Sp(A)\ Sp(AU{i})), and all preference profiles R € RAY} and R’

R!,R_;) € R such
(R;

that i ¢ S4(R'):
o Ifl;(A) =1;(AU{i}), then for all B € g*(RS}(R)), (BNA)egG(R

)
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o Ifrp(A) =rr(AU{i}), then for all B € g*(Rg}(R,)), (BNSfp(AU{i})nA) e Q(RS}(R)).

The characterization result

So far, we have established a set of necessary conditions for a social choice rule f to be strategy-
proof in addition to the main structure summarized in Corollary 1. The following theorem shows
that the union of all these necessary conditions constitutes a sufficient condition and, therefore,
we have characterized all strategy-proof social choice rules. This theorem also shows that the
characterized rules are group strategy-proof. So, this stronger property is obtained for free on the

domain R when strategy-proofness is imposed.”
Theorem 1 The following statements are equivalent:
1. The social choice rule f : R — T is strategy-proof.
2. The social choice rule f : R — T is group strategy-proof.

3. There is a function Ry : 2N — T? satisfying Proposition 4 and a family {fa : Rs,a) —
Rf(A)}acn of voting by collections of 1;(A)-decisive sets with tie-breakers ta satisfying

Propositions 5, 6, 7 and 8 such that for all preference profiles R € R%, f(R) = fa(Rs;(a))-

5 Possibility results

Theorem 1 characterizes the family of all strategy-proof rules on R. The structure of this family
depends on the relation between N and T'. In particular, it can happen that this family reduces
to the dictatorial rules when the range of the rules is at least 3, thereby arriving again at the

impossibility of Result 1. Fortunately, this is generally not the case. To characterize all situations

"Barbera et al. [2] show in their Theorem 1 that if a domain D satisfies a condition that they call sequential
inclusion, then any strategy-proof social choice rule is also group strategy-proof on D. It is also shown in their
Theorem 4 that if a domain D allows for opposite preferences and a strategy-proof social choice rule on any
subdomain of D is also group strategy-proof, then D satisfies sequential inclusion. Since our domain R allows for
opposite preferences but does not satisfy sequential inclusion, their result implies that there exists a subdomain of

R where strategy-proofness does not imply group strategy-proofness.
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in which we can escape from Result 1, we need to define a new concept: a triple {z,y,2z} C T is

full at N if NN {z,y,z} =0 and N C (min{z,y, 2}, max{z,y, z}).

Theorem 2 There are strategy proof social choice rules on R with range greater than or equal to

3 different from the dictatorial ones if and only if there is a triple of T that is not full at N.

The condition included in Theorem 2 can be explained more intuitively depending on the size of

T.

Corollary 2 The following statements hold:
e We can escape from Result 1 if |T| > 5.

o If|T| =4, we can escape from Result 1 if and only if T cannot be partitioned into Ty and

Ty such that |T1| = |T2| = 2, maxT; < min N, and max N < minT5.

o If|T| =3, we can escape from Result 1 if and only if NNT =0 or N ¢ (minT, maxT).

Theorem 2 and Corollary 2 provide an almost unanimous positive answer to the possibility of
escaping at R from the impossibility result of Gibbard [8] and Satterthwaite [11]. If there are
more than 4 alternatives, it is always possible to obtain rules that satisfy strategy-proofness (and
group strategy-proofness) with range greater than or equal to 3. Otherwise, it is sufficient to have

an agent that is located at a feasible location or at the left (or right) of at least three alternatives.®

However, the fulfillment of the condition in Theorem 2 does not necessarily imply that it is possible
to construct meaningful rules, because a priori it is possible that the addition of Pareto efficiency
leads again to dictatorial rules arriving at the impossibility of Result 2. Yet, Example 1 provides
an example of a strategy-proof and Pareto efficient social choice rule that is different from the
dictatorial rule in a particular case, showing that we can escape from this impossibility at least
in some cases. The following proposition shows a first condition that 7" has to satisfy to make it

possible to obtain a Pareto efficient rule.

8Observe that if |T| = 3 and none of these conditions are satisfied, R coincides with the universal domain.
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Proposition 9 Let T be a set of alternatives so that it is possible to find Pareto efficient rules

on R. Then, minT and maxT exist.

Proposition 9 concludes that, independently of the locations of the agents, a first necessary con-
dition on the set of feasible locations T is that it must have a minimum and a maximum. So, we
assume from now on that 7" has a minimum and a maximum. The following result characterizes
the additional conditions the relation between N and T have to satisfy to escape from Result 2.

To introduce it, we need to define I; = max{z € T: 2 < j} and r; = min{x € T : x > j}.

Theorem 3 There are Pareto efficient and strategy proof social choice rules on R different from
the dictatorial ones if and only if there are two agents i,j € N such that each k € {i,j} satisfies
one of the following conditions: (a) k € T, (b) k & (minT,maxT) or (c¢) l and ry exist; with at

least one of them satisfying (a) or (b).

According to Theorem 3 the condition to obtain Pareto efficiency additionally to strategy-proofness
without arriving at the dictatorial rules is that there is one agent located at a feasible point or to
the left (or right) of all feasible points; and another agent that satisfies any of these characteristics

or is located at a point that has a defined nearest point to both its left and right.

6 Characterizations in some particular domains

Since a general characterization of all Pareto efficient and strategy-proof rules for all sets N and T
that satisfy the conditions of Theorem 3 is quite difficult to define in an intuitive way, we consider
now two extreme cases that reflect the two conditions that are sufficient to guarantee possibility
results. First, we assume that all agents are located at the left or right of all feasible locations (that
is, the cases in which all agents satisfy condition (b) of Theorem 3). Afterwards, we consider that
all agents are located at feasible locations (that is, the cases in which all agents satisfy condition

(a) of Theorem 3).
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Agents outside the interval of feasible locations

The first condition that guarantees on its own the possibility of combining Pareto efficiency and
strategy-proofness without arriving at dictatorial rules is the presence of at least two agents at
the left or at the right of all feasible locations for the facility. We are going to provide the
characterization for the extreme case when N N (min7, max7) = (). Then, we define N; = {i €
N:i<minT} and N, = {i € N : i > maxT} as the set of agents that are located to the left

(right) of T'. Obviously, N; U N, = N.

Since no agent is located in the interior of T', only one alternative gets preselected in the first step
of the rule. Thus, the second step of the two-step functions characterized in Theorem 1 does not
apply and the range of Ry is T  instead of T2. This implies that the characterized rules are types-
only; i.e., they only depend on the type of preferences (single-peaked or single-dipped) of each
agent, but not on its particular structure. Formally, a social choice rule is types-only if for all sets
of agents A C N and all preference profiles R, R’ € R*, we have that f(R) = f(R'). It follows then
directly from Proposition 4 (first and second cases) that R is monotone: Ry(AU {i}) < Ry(A)

whenever ¢ € N; and Ry(AU{i}) > Ry(A) whenever i € N,.

Theorem 4 Let NN (minT,maxT) = (. Then, a social choice rule f : R — T is strategy-proof
and Pareto efficient if and only if there is a monotone function Ry : 2N 5 T satisfying that

R;(N;) =minT and Rs(N,) = maxT such that for all R € R* for some A C N, f(R) = Rs(A).

Theorem 4 provides a characterization of all the rules that satisfy these two natural conditions in
these situations in which all agents are at the left or at the right of all feasible locations. These
rules only ask agents about their type of preferences and the result is monotone with respect to
these preferences: if an agent at the left (respectively, at the right) of all feasible alternatives passes
from having single-dipped to single-peaked preferences, the chosen location does not move to the
right (respectively, to the left). Additionally, if all agents prefer the alternative situated most to

the left (respectively, most to the right) to the remaining ones, this location must be chosen.
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All agents located at feasible locations

The second condition that guarantees on its own the possibility of combining Pareto efficiency and
strategy-proofness without arriving at dictatorial rules is the presence of at least two agents at fea-
sible locations. We are thus interested in the extreme case when N C T and N C (min 7, maxT).
The reason to impose additionally that N N {min7T, maxT} = @ is that agents located at the
extremes have exactly the same set of admissible preferences over 7" as the agents outside of 7" and
the effect of these agents is the same as in the previous subsection. Since the description of the
Pareto efficient and strategy-proof rules is quite complex, we impose tops-onliness as an additional
condition. Formally, a social choice rule f is tops-only if for all i € N and all preference profiles
R,R € R4 suchthat {z € T: xRy forally € T} ={x € T: xR,y for all y € T}, then f(R) =
F(R).? Tt is easy to see that the possible tops of any agent i € N are t(R;) € {i,min T, maxT}.

For the sake of simplicity, we assume that the top of each agent is unique.

Before providing a formal definition of the rules, we are going to describe some of the implications
tops-onliness has in this setting. First, and foremost, the second step of the characterized rules in
Theorem 1 only applies if the two preselected alternatives in the first step are the two extremes:
minT and max7T. Otherwise, only one alternative will be preselected and, therefore, chosen.
Moreover, the absence of indifferent agents implies that the set of decisive coalitions when the
two extreme points are preselected is independent of other aspects of the problem. Thus, we can

denote the decisive sets that can implement minT" by Gy.

Let us now consider the situation when all agents have single-dipped preferences. Since both ex-
treme locations can Pareto dominate interior points, we must have that Ry()) = {min 7T, max7'}.
This allows us then to ask how the set of preselected alternatives changes when a single agent
i declares to have single-peaked instead of single-dipped preferences. Omne possibility is that
R;({i}) = Ry(0). But another possibility is that an interior point is selected. And strategy-

proofness requires then that this interior point is 7. This insight allows us to classify agents into

9Tops-onliness is a weaker property than types-onliness. Moreover, types-onliness is incompatible with Pareto

efficiency in this case.
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two groups: decisive agents, the ones that can force the outcome to be exactly her location when
the rest of agents have single-dipped preferences and they have single-peaked ones; and indecisive
agents. Let Dy C N be the set of decisive agents. We are now ready to introduce the family of

conditional two-step rules.

Definition 3 The social choice rule f is said to be a conditional two-step rule if there is a non-
empty Dy C N, a function fi : 2% — (minT,maxT), and a set of decisive sets Gy such that for

all A C N and all preference profiles R € R4,

fi(A) € min(AN Dy),max(ANDy)]  if ANDy #0)
f(R) =1 minT if ANDy =0 and {i € N :t(R;) =minT} € Gy

max T otherwise.

The conditional two-step rules work as follows: first, it establishes a partition of the set of agents
into the decisive ones Dy and the rest. Then, if all decisive agents have single-dipped preferences,
the result is one of the extreme points, otherwise an interior point situated between the location
of the decisive agents with single-peaked preferences is chosen. If the decision is between the two
extremes, the exact result is determined depending on whether the set of single-dipped agents
with top minT" belongs to G; or not. On the other hand, if an interior point has to be chosen, an

aggregator fi of the peaks of the single-peaked agents is used to choose the exact point.

Not all conditional two-step rules are strategy-proof and Pareto efficient. In particular, it follows
from Proposition 4 (first and second case) that if an interior point is chosen for some particular
set of agents A with single-peaked preferences and agent i ¢ A changes her preferences to single-
peaked, then the selected location moves weakly into direction of agent i. Formally, we say that
the conditional two-step rule f is monotone if for all A C N and i € N, f1(4) > fi(AU{i}) >4
(respectively, f1(A) < f1(AU{i}) < i) whenever f1(A) > i (respectively, f1(A4) < 4). Finally,
there is also a restriction on the set of decisive agents. We say that the conditional two-step rule
f satisfies conditional decisiveness if for all i € C for some C' € Gy, then ¢ € Dy. The following

result introduces the characterization for these cases.
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Theorem 5 Let N C T and N C (minT,maxT). A social choice rule f is strategy-proof,
Pareto efficient, and tops-only if and only if it is a monotone conditional two-step rule satisfying

conditional decisiveness.

7 Conclusions

In this paper, we considered the situation when a social planner has to locate a public facility on
a subset of the real line. Agents are assumed to have single-dipped (the facility is a bad for them)
or single-peaked (the facility is a good for them) preferences on the set of alternatives. The type
and the structure of the preferences is only known to the agents, yet the public decision maker
knows the agents’ location on the real line and that the dip or peak of the preferences of an agent

corresponds to her location.

In this setting, we show that the set of all strategy-proof social choice rules on this domain follow
a two-step procedure. In the first step, all agents have to indicate their type of preferences (single-
peaked or single-dipped) and depending on the set of agents that declare to have single-peaked
preferences, at most two alternatives are preselected. If the rule preselects only one alternative,
then this alternative is finally chosen. If two alternatives are preselected, then all agents that
are situated strictly between the two preselected alternatives have to indicate which of them they
prefer. Then, depending on the preference structure of the agents that are indifferent between the
two preselected alternatives, winning coalitions determine which of the two preselected alternatives
is selected. Additionally, we show that all strategy-proof social choice rules are also group strategy-
proof. Finally, we have shown the conditions that the sets of agents and alternatives have to satisfy
to escape from the classical Gibbard-Satterthwaite impossibility result and we have characterized

the rules that satisfy additionally Pareto efficiency in some of these domains.

These results can improve the way in which the decisions of where to locate some facilities are
taken. It complements the classical domains of single-peaked and single-dipped preferences in

such a way that the decision of which is the best domain restriction and, as a consequence, which
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are the most appropriate rules to implement in each particular problem depends on the structure
of the particular facility. To see this, consider the following two alternative assumptions: (i) the
social planner assumes that the facility is unanimously considered a good or a bad; or (ii) the social
planner allows that the facility can be considered a good or a bad by each agent, but the peak or
dip is assumed to be situated in the point in which this agent is located. If, for a particular facility,
the first assumption seems stronger (weaker), then this new framework is more (less) appropriate

than the uniform single-peaked or single-dipped one.
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Appendix

Proof of Proposition 1

Let O;(A, R_;) be the option set of agent i given the preferences R_; of the other agents and given
that the set of agents with single-peaked preferences is equal to A C N. So, alternative z € T
belongs to O;(A, R_;) if there is a preference profile R = (R;, R_;) € R* such that f(R) = x. Our
first lemma shows that if  and y belong to the option set of agent 7, then 7 is located between x

and y.

Lemma 1 Suppose that f is strategy-proof. Then, for all A C N, all agents i € N, all profiles

R € R, and all alternatives x,y € T such that x <y, if x,y € O;(A, R_;), then x < i < y.

Proof: Since z,y € O;(A, R_;), there are two preferences R;, R, € R# for agent i such that
f(R) = z and f(R,,R_;) = y. If i < x, then agent i can manipulate f at (R}, R_;) via R;
whenever i € A and at R via R} whenever i ¢ A. Similarly, if y < 4, then agent ¢ can manipulate

f at R via R} whenever i € A and at (R}, R_;) via R; whenever i ¢ A. Hence, x < i < y. O

Lemma 1 directly implies that the option set of any agent contains at most two alternatives.
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Corollary 3 Suppose that f is strategy-proof. Then, for all A C N, all agents i € N, and all

profiles R € R, |0;(A,R_;)| < 2.
The next lemma shows that f always selects a maximal alternative of an agent’s option set.

Lemma 2 Suppose that f is strategy-proof. Then, for all A C N, all agentsi € N, and all profiles

ReRA, if O;(A,R_;) = {x,y} and f(R) = =, then x R; y.

Proof: Suppose otherwise; that is, there is a preference profile R such that f(R) =z and y P; .
Since y € O;(A, R_;) by assumption, there is a preference R, € R# such that f(R),R_;) = y.

Then, agent ¢ manipulates f at R via R. Hence, zR;y. O

The next lemma is crucial to prove Proposition 1 by contradiction. It shows that if the proposition
would not be correct (i.e. f is strategy-proof and |R;(A)| > 2 for some A C N), there would be
a profile R and two preferences R, € R and R} € Rj‘ so that the outcomes at R, (R}, R_;), and

(R}, R_;) differ.

Lemma 3 Suppose that f is strategy-proof. Then, for all A C N such that |Ry(A)| > 2, there are
two agentsi,j € N and three profiles R, (R}, R_;), (R}, R—;) € RA such that f(R) # f(R., R_;) #

f(R}, R—j) # [(R).

Proof: Consider any A C N and suppose that |R¢(A)| > 2. Then, there are three preference
profiles D, D', D" € R4 such that f(D) # f(D') # f(D") # f(D). Suppose without loss of
generality that f(D) = x. Starting at D, change the preferences of all agents one-by-one so that
we end up in profile D’. Since f(D) # f(D’), the function must have changed during this process.
Let B be the profile where the outcome is still = and let (B}, B_;) be the profile when the outcome
switches the first time to another alternative, say .

Next, construct the preference D; € R4 in the following way: if f(D") # y, D; is set equal to D,
otherwise D; is set equal to D}. We can see that if f(D;, B_;) & {x,y}, then |O;(A, B_;)| > 2
contradicting Corollary 1. So, f(D;, B_;) € {x,y}. Next, consider the profile (D;, B_;) together

with the profile from B and (B, B_;) that has not the same outcome as (ﬁi,B_i). Suppose
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without loss of generality that the alternative selected at B is not equal to the one selected at
(ﬁh B_;). Then, starting at B and (ﬁl, B_;), change the preferences of all agents except i one-
by-one so that we end up in profile D" if f(D”) # y and in profile D' if f(D"”) = y. The
outcome at either of the two profiles has to change at some point of the process. Let C' and
(Ci,C_;) be the profiles where the outcomes are still z and y, respectively, and let (C%, C_g) and
(C’fgu{i}, C_(sufiy)) be the first time in which one (or both) profiles have an outcome z & {z,y}.
Assume without loss of generality that f(C%,C_g) = z. Let S = {ji,...,js} and observe that
s+1 agents have changed their preferences in the sequence to produce the three different outcomes:
first, agent ¢ changes preferences from C] to C;; then, s agents change preferences (from the ones

in Cg to the ones in C) to arrive at z. We complete the proof by induction on s.

e If s = 1, denote profile C by R, preference C; by R;, agent ji by j, and preference C}, by

R;. Then, we have established the result.
e Suppose that the statement of the proposition is correct for all s < k.

e We now prove the statement of the proposition for s = k. Consider any V' C S U {i} with
V & {S.{i}}. If f(C{,,C_v) & {x,y}, consider the sequence that starts with (C!,C_;),
passes through C, and ends at (C{,,C_y) whenever ¢ ¢ V, and the sequence that starts
with C, passes through (C},C_;), and ends at (C{,,C_y) whenever i € V. We can see that
the number of agents that have changed their preferences to produce three different results
in these sequences is smaller than k+ 1. So, the result follows from the induction hypothesis.
If, on the other hand, f(C{,,C_y) =y, then consider the sequence that starts at C, passes
through (C{,,C_y), and ends at (C%,C_g). In this sequence, the number of agents that
have changed their preferences to produce the three different outcomes is k < k4 1. The
result follows then again from the induction argument. Consequently, we assume from now

on that f(C{,,C_y) ==z forall V. .C SU{i} with V & {S, {i}}.

Next, we concentrate on f(C/Su{i}v C_(sugiy)). If f(CéU{i}7 C_(sufi})) & {z, 2}, consider the

sequence that starts at (Cgu{i}\{j}v C_(sufit\{j})) forany j € S, passes through (C/Su{i}’ C_(suih)
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and ends at (C%,C_g). In this sequence, only two individuals have changed their pref-
erences to produce the three different outcomes and, then, the induction argument ap-
plies. If, however, f(C'SU{Z.},C,(SU{i})) = z, consider the sequence that starts at (C!,C_;)
and then changes the preferences of all agents j € S one-by-one in order to end up at
(C/Su{i}v C_(su{i})). In this sequence, the number of agents that have changed their pref-
erences to produce the three different outcomes is k < k + 1. So, the induction argument

applies again. Thus, we conclude that f(C/Su{i}v C_(sufiy)) = 2.

Since f(C},C_;) = y and f(Cq,C_s) = 2, we have that O;(A, (C},C_(; ;1)) = {z,y} and

0,(4,(C C_g)) = {z,z} for all j € S. Similarly, we obtain that O;(A,C_;) = {x,y}

/

S\{7}’
and O;(A4, (Cq,C_g)) = {z, z}. So, it follows from Lemma 1 that {y, z} is a fixed pair of
alternatives for all | € SU{i}. Consider now any agent m € S and any preference R/ € R
such that y P/ x and z P)) x, which exists given the previous findings. It follows then from

Lemma 2 together with O, (A, (Cf, C_gi,m})) = {z,y} and O (4, (Cy\ ¢y, C-5)) = {2, 2}

that f(R,,,C;,C_{;my) =y and f(R),, Cg\{m}, C_gs) = z, respectively.

Finally, take the sequence of profiles that starts with (R, C;,C_r; ) and change the
preferences of all agents [ € SU {i} \ {m} so that the sequence ends at (R}, C’S\{m}, C_g).
If only y and z are chosen along this sequence, then the agent at whom the outcome changes
can manipulate f given that {y,z} is a fixed pair for all agents belonging to S U {i}. So,
there have to be at least three different outcomes along this sequence. However, observe
that the number of agents that have changed their preferences to produce the three different

outcomes is k < k + 1. So, the result follows from the induction hypothesis.

This concludes the proof. O
Now, we are ready to prove Proposition 1.

Proof of Proposition 1: Suppose that |Rf(A)| > 2. Then, by Lemma 3, there are three profiles

R,(R},R_;), (R},R_;) € R* such that f(R) = x, f(R},R_;) = y, and f(R},R_;) = z. Let

f(R}, R}, R_(;;;) = w and observe that although z, y and z are different, it could be that
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w € {z,y, z}. Also, assume without loss of generality that x < y. Next, we study the implications

of the different option sets.
(1) Since O;(A,R_;) = {x,y} and = < y by assumption, Lemma 1 implies that x < i < y.

(2) Observe that {z,w} C O;(A, (R}, R_{; ;). So, if w # 2, then w < i < z or 2 <i < w by

Lemma 1.
(3) Since O;(A4, R_;) = {z, 2}, Lemma 1 implies that z < j < z or z < j < z.

(4) Observe that {w,y} C O;(A, (R}, R_; ;3)). So, if w # y, then w < j <y ory < j < w by

Lemma 1.

We show that f is not strategy-proof by constructing manipulations depending on how w relates

to the other alternatives.

Case 1: Suppose that w =y. Then, y<i<zorz<i<yby (2)andz <j<zorz<j<uzby
(3). Observe that if y < i < z by (2), the fact that x < ¢ < y by (1) implies that ¢ < y < 4, which is
impossible. So, we must have that z < ¢ < y by (2). This, together with = < i < y by (1), implies
that {z, 2z} is a fixed pair for agent . Since x < i, z < i, and j is between x and z by (3), we also
have that either {x,y} or {y, z} is a fixed pair for agent j. Suppose that {z,y} is a fixed pair for
j (the other case is similar and thus omitted). We can then conclude that z < j <z < i < y. The

remainder of this case is divided into two parts.

e If i € A, consider any preference R € R} such that z P!’y P/ 2. Since O;(A,R_;) =
{z,y} and O;(A, (R}, R_(; ;1)) = {y, 2}, it follows from Lemma 2 that f(R}, R_;) = = and
f(R], R}, R_; jy) =y. Thus, O;(A, (R}, R_; j)) = {z,y} and, by Lemma 1, j lies between
x and y. This is a contradiction because we have already seen before that j < z < y.

o If i ¢ A, consider any preference R; € R; such that z Py P/ z. Since O;(A,R_;) =
{z,y} and O;(A, (R}, R_{; ;1)) = {y, 2}, it follows from Lemma 2 that f(R, R—;) =y and
f(RY, R}, R_(; jy) = 2. Thus, O;(A, (R}, R_; ;1)) = {y,2}. Now, we separate the proof

depending whether j belongs or not to A.
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If j ¢ A, consider any preference R} € R such that y Pj' 2 P} z. Since O;(A, R_;) = {z, 2},
Lemma 2 implies that f(R},R_;) = z. We know that O;(A, (R}, R ;1)) = {y, 2}, so
Lemma 2 also implies that f(R], R}, R_(;;;) = y. Individual i will then manipulate f
at this profile via R; to obtain z. If j € A, consider any preference R € Rj such that

x P}z P['y. Since O;j(A, R_;) = {z, 2}, Lemma 2 implies that f(R}, R_;) = . Given that
O;(A, (R, Ryijy)) = {y, 2}, Lemma 2 also implies that f(R}, RY, R_(; j;) = 2. Agent i will

then manipulate f at (R}, R—;) via R} (observe that (z,z2) is a fixed pair for i at RA).
Case 2: Suppose that w = z. The proof is similar to the one above and is thus omitted.

Case 3: Suppose that w & {y,z}. By (2), we have that z <i < wor w < i< z. Let z <1i < w.
Then, since j lies between x and z by (3) and both x and z are smaller than ¢ by (1), we conclude
that j < i. Also observe that j lies between y and w by (4) and that both y and w are greater
than ¢ by (1). Consequently, j > ¢, which cannot be. Hence, we must have w < i < z. Next,
by (4), we have that y < j < w or w < j < y. Let y < j < w. Then, (1) and (4) imply that
T <i<y<j<w. So,i < w,which contradicts that w < i. Hence, we must have that w < j < y.
Similarly we have by (3) that z < j<zorz<j<z Let z<j<z Thenw<i<z<j<u
by (2) and (3), which contradicts that < i by (1). So, we must have that z < j < z.

At this point, we can see that that the four conditions x < i <y, w < i < z, w < j < y, and
T < j < z are indeed compatible for the moment. In fact, it turns out that = and w are both
smaller than each 4 and j, which are in turn both smaller than each y and z. This also implies that
both {w,x} and {y, z} are fixed pairs for both agents ¢ and j. Finally, consider any preference
R; € Rf such that z Pjx and y Pjw. Since O;(A,R_;) = {z,2} and O;(A, (R}, R_gijy) =
{w,y}, f(R;,R_;) = z and f(Ré,Rj,R_{iyj}) = y. Then, agent ¢ will manipulate f at (R;, R_;)
via R when her fixed pair at R is (y,2) and at (R’i,]:lj, R_¢; ;3) via R; when her fixed pair at

RA is (2,9). O
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Proof of Proposition 2

We first establish the following lemma.

Lemma 4 Suppose that f is strategy-proof. Then, for any two profiles R, (R, R_g) € RA for

some A, S C N such that f(R) # f(RY, R_g) there exists a set B C S and an agent i € (S\ B)

such that f(R) = f(Rig, R_p) # (Rpuy B-(sopiy) = f(Rs, R_s).

Proof: Starting at R, construct the sequence of profiles in which we change the preferences of all
agents j € S one-by-one from R; to R). Since f(R) # f(R, R_s) by assumption, there is subset
B of S and an agent i € (S\ B) such that f(Rz, R_p) # f<R39u{i}’ R_(pugiy))- Since |Ry(A)] <2

by Proposition 1, it follows that f(R) = f(Rz, R—p) and f(R’BU{i},R_(BU{i})) = f(Ry,R_g). O

Now, we are ready to prove the proposition.

Proof of Proposition 2: Suppose there are two profiles R, R’ € R* such that Rs,a) = Rin(A) but
f(R) # f(R'). By Lemma 4, there is a set of agents B C N\ S;(A) and an agent ¢ € N\ (S;(A4)UB)
such that f(R) = f(Rle RfB) 7& f(RlBu{l}v R—(BU{i})) = f(R,) ThUS, Ol(Aa (R/Ba R—(BU{Z}))) =

R (A) by Corollary 3. Since ¢ ¢ S¢(A) by construction, this contradicts Lemma 1. O

Proof of Proposition 3

Consider any A C N and define for each subprofile RS} (r) of a profile R € RA aset G (RS} (r)) C
2N of 1;(A)-decisive coalitions in the following way: the set B belongs to Q(RS}(R)) if there is a
profile R’ € R4 such that Rgi(r) = R’S}(R,), S}(R’) = B and f(R') =1f(A).

We show first that a voting by these collections of [;(A)-decisive sets is a well-defined binary
decision function. That is, if B € Q(RS}:(R)), then for all profiles R € R4 such that B = Séc (R)
and Rs}(R) = Rsi(r), f(R) =1;(A). Suppose to the contrary that f(R) = r;(A). By definition,

there is a profile R’ € R* such that RS}(R) =R S;(R’) = B, and f(R') =1;(A). Then, by

/ .
Si(R)
Lemma 4, there is a set B C Sy(A) and an agent j € (S¢(A)\B) such that f(R') = f(Rp, R ) =

lf(A) # rp(A) = f(RBU{j}aR/_(BU{j})) = f(R). If j € S%(R) (respectively, j € S}(R)), we
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have that j € S}(R’ ) (respectively, j € S}(R’)) by assumption and agent j manipulates f at

(RBU{j}7R/_(Bu{j})) (respectively, at (Rp, R_5)) via R} (respectively, via R;).

Now we show that if B € Q(RS}(R)), BU{j} e Q(RS}(R)) for all j € (Sf(A)\ S7(R)). Suppose
otherwise. Consider a profile R € R4 such that Rs}(R) = RS}(R), S}(R) = BU{j} and f(R) =
r(A). Then, agent j manipulates f at this profile via any R} € R# such that r(A)Pjlf(A) to

obtain I(A).

Next, we show that if Sj(R) = 0, then Q(RS}(R)) # {S¢(A)} or, what is the same, that if
S4(R) = S;(A), then f(R) = l(A). Suppose to the contrary that f(R) = r;(A). Since ls(A) €
R;(A), there is a profile R € R4 such that f(R') = l;(A). It follows from Proposition 2 that
f(R) = f(Rsf(A)le,Sf(A)) = r¢(A). Then, considering the profiles R’ and (Rsf(A)7RLSf(A))
and applying Lemma 4, there is a set B C S;(A) and an agent i € (Sy(A) \ B) such that
(R, R-p) =r;(A) # 1;(A) = f(Rip, ;> B—(BUgiy))- Since I;(A) P;r;(A) by assumption, agent
i manipulates f at (R, R_p) via Rj. It is possible to show in a similar way that if S%(R) = 0,
then 0 ¢ Q(RS}(R)) or, what is the same, that if S}(R) = S;(A), then f(R) =r(A).

Now, we establish that if B € g(Rs},(R)) and j ¢ BUS}(R), then B € G(R , where R € R4

s5()

is such that RS}(R) = R,

Si(R) and S%(R') = S%(R) U {j}. Suppose to the contrary that this is

not the case and that for some R, R’ € R4 with Rgi(ry = R
f f(R)

and S%(R') = S%(R) U {j}
such that S;(R) = S;(R’) = B, although f(R) = l¢(A), we have that f(R') = r¢(A). Then, by
Lemma 4, there is a set B C S¢(A) and an agent k € (Sy(A)\ B) such that f(R) = f(Ry, R_p) =
lp(A) # 15(A) = f(Rpypy B-upry) = [(R). If k € S%(R), Ry = R}, by construction and,
then, f(R,R_p) = f(R'BU{k}, R_(pu{k})), which contradicts the fact that they are different. If
k € S7(R), agent k manipulates f at (R, R_p) via R} If, however, k € S}(R), then k € S4(R)
by construction. So, agent k manipulates f at (RlBu{k}vR—(BU{k})) via Ry. Finally, the proof
that if (BU{j}) € Q(RS;(R))7 then B ¢ Q(R’S}(R,)), where R’ € R4 is such that Rgi(r) = Rfs*;;(R)

and S%(R') = S}(R) U {j} follows a similar argument and is thus omitted.
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Proof of Proposition 4

Since the first two statements are dual, we only consider the case rf(A) < 4. First, to see
that r;(A U {i}) < i suppose otherwise. If r;(A) < i, consider a profile R € R* such that
r(AU{i}) Pjlp(AU{d}) for all j € S;(AU{i}) and r;(AU{i}) P;l;(A). Agent i then manipulates
f at R via any R € R; such that r(A U {i}) P/l;(A U {i}) in order to obtain 7¢(A U {i})
by Proposition 3. If, on the other hand, r;(A) = i, consider a profile R € RAY{"} such that
rr(A) Pjls(A) for all j € Sy(A) and ry(AU {i}) Pelf(AU{i}) for all k € Sy(AU{i}). Then,
f(R) =r;(AU{i}) by Proposition 3, and agent ¢ manipulates f at this profile via any R; € R, .
Next, we show that r;(A U {i}) > r;(A). Suppose that ry(A U {i}) < ry(A) and consider the
profile R € R4V such that r(A) Pj1;(A) for all j € Sp(A) and rp(AU{i}) Pl (AU{i}) for all
ke S;(AU{i}). It follows from Proposition 3 that f(R) = r;(AU{i}) and f(R;,R_;) = r;(A)
for all R, € R; . Then, agent ¢ can manipulate f at R via any R, € R; . Observe that a similar
argument can be used to show that {;(A U {i}) > l¢(A).

To complete this part of the proposition, we only need to show that {;(AU{i}) > r¢(A) whenever
Rf(A) # Rs(AU {i}). Suppose otherwise; that is, I[;(A U {i}) < r¢(A) and consider the profile
R € R4 such that r;(A) P;ls(A) for all j € S;(A) and (AU {i}) Pyry(AU {i}) for all k €
Sr(AU{i}). It is possible to construct such a profile because by assumption and the reasoning of
the previous paragraphs, If(A U {i}) > l§(A), and rf(AU {i}) > rf(A). Then, by Proposition 3,
f(R) =7¢(A) and f(R,,R_;) = l;(AU{i}) for any R, € R;. Thus, agent i manipulates f at R
via R}.

Finally, we consider the cases when i € (I¢(A),7¢(A)). In order to see that i < ry(AU{i}), assume
by contradiction that i > r;(AU {i}) and take a profile R € RAY{% such that r;(A) P;1;(A) for
all j € S§(A) and rp(A) Pyrg(AU{i}). Then, agent ¢ manipulates f at R via any R, € R; such
that r¢(A) P/ l§(A) in order to obtain 7¢(A) instead of any element of Rf(AU{i}). One can show
in a similar way that ¢ > l;(A U {i}). Therefore, i € [[;(AU{i}),rs(AU {i})]. We establish next
that {;(AU{i}) > lf(A) (the proof that ry(A U {i}) < r¢(A) is dual). Suppose otherwise; that

is, [;(AU{i}) < I;(A). Consider a profile R € RAY{} such that (AU {i}) P;r;(AU {i}) for all
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j € Sr(AU{i}) and I (A) Pyrs(A) for all k € S§(A). Then, by Proposition 3, f(R) = I;(AU{i}).
Thus, agent ¢ manipulates it via any R, € R; such that {;(A) P/ r;(A) in order to obtain I;(A)
instead of {;(A U {i}). We show next that if [;(A U {i}) = ¢, then r;(A U {i}) € {i,r¢(A)}.
Suppose otherwise; that is, {;(A U {i}) =4, but (AU {i}) € (i,77(A)). Then, consider a profile
R € RAY} such that rp(AU{i}) P;i for all j € Sp(AU{i}), I[;(A) Pry(A) for all k € Sy(A) and
l;(A)Pr(AU {i}). Then, by Proposition 3, we have that f(R) = r;(AU {i}). However, agent i
manipulates it via any R; € R; such that I;(A)P;r;(A) to obtain I;(A) by Proposition 3. Tt is

similar to show that if r¢(A U {i}) =4, then (AU {i}) € {l;(A4),i} and thus we omit it.

Proof of Proposition 5

Consider first the case when Rf(A) N Ry(AU{i}) = 0. We will only show that B € Q(Rg}(R,)) if
and only if i € B for all R' € R4 such that i ¢ S}(R’). The proof that B € Q(RS}(R)) iffieB
for all R € RAV1%} such that i ¢ S’;} (R) is similar. Suppose otherwise; that is, there is some profile
R € R” such that f(R) = z and y P; z, where z,y € R;(A). Assume without loss of generality
that 2 = 7¢(A). Then, consider a profile R € R4 with r;(A) P;l;(A) for all j € (Sf(A)\ {i}),
1(AU{i}) Purp(AU{d}) for all k € Sp(AU{i}), and I;(AU{i}) Pirp(A). Since f(R) = r(A), it
follows from Proposition 3 that f(R) = 7(A). However, agent 7 then manipulates f at R via any
R! € R} such that I;(AU {i}) P/ r;(AU{i}) in order to obtain I;(A U {i}) by Proposition 3.

Suppose now that |R;(A) N Ry(AU {i})] = 1. It is assumed without loss of generality that
Ri(A)NRf(AU{i}) = rp(A) = rp(AU{i}). We first show that [B € Q(RS}(R)) iff i € B for

all R € R with i ¢ S4(R)] if and only if [B € G(Ry; ) iff @ € B for all R € R* with
f

)
i ¢ S}(R')]. So, suppose first that B € G(Rg; (r)) iff i € B forall R € RAVS with i ¢ S%(R), but,
by contradiction, that there is some R’ € R* such that f(R') = x and y P! z, where 2,y € R (A).
Let = r¢(A) —the case when = = [¢(A) is similar and thus omitted— and consider a preference
R! € R; such that I;(A U {i}) P/ rs(A). If it was the case that f(R}, R’ ;) = l;(A), then
individual ¢ could manipulate f at R’ via R). Hence, f(R}, R’ ;) = rs(A). Since B € Q(RS}(R))

iff i € B for all R € R4V} with i ¢ S} (R) by assumption, we also have that for all R; € R} with
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Lr(AU{i}) Pirg(A), f(Ri,R",) = 1;(AU{i}). But agent i can then manipulate f at (R/, R’,)
via any R; € R} with [;(AU{i}) P;r;(A). Observe finally that the proof of the other implication
is similar and thus omitted. Consequently, the two implications are equivalent.

Consider now any profile R € R4 with i ¢ S}(R) such that f(R) =[ly(A). If there is a preference
R, € R such that f(R,,R_;) = r;(AU {i}) = r7(A), then strategy-proofness implies that
Oi(A,R_;) = Ry(A); in fact, if it was the case that f(R],R_;) = I;(A) for all R} € R;, then
agent i would be able to manipulate f at any profile (R;, R_;) € R* such that r;(A) R; [;(A) via
R!. Similarly, if there is a preference R; € R; such that f(R;, R_;) = r;(A), we can also conclude
that O;(A, R_;) = Ry(A). In any of these cases, given that O;(A, R_;) = Ry(A), Lemma 2 implies
that B € Q(RS}'(R)) iff i € B. If this occurs with all profiles of R#, we would obtain that i is
a dictator in all profiles of R4 and, by the equivalence obtained in the previous paragraph, i is
also a dictator in all profiles of RAY1"} and the proof is complete. So, suppose from now on that
there is a profile R € R4 with i ¢ S%(R) such that f(R) = I;(A), f(R}, R_i) = 1;(AU{i}) for all
R, € R} and f(R;,R_;) = l;(A) for all R; € R; . Then, Q(RS}(R)) = Q((RQ,R_i)S}(R;’Rii)).
We now use the definition of minimal coalitions introduced in the main text. We establish in the
next step that all minimal coalitions D € g*(RS}(R)) have to be subsets of Sy(A)NA, except agent
i. Suppose otherwise; that is, there is some D € Q*(RS}(R)) such that D\ (ANSf(A)) € {0,{i}}.
Consider the profile R € R* such that Rs}(R) = RS}(R), [;(A) Pjrs(A) for all j € DN AN
St(A), 1p(A) Pyerp(A) Plp(AU {i}) for all k € D\ (AN S¢(A)), and both 7¢(A) P ls(A) and
ri(A) Pls(AU{i}) for all I € (Sp(AU{i})\ D). Since D € g*(RS}(R)) = g*((R;,R_i)S}(RbRii))
by assumption, f(R) =1;(A) and f(R},R_;) = r;(AU {i}) = r¢(A) for any R, € R;. However,
agent i will then manipulate f at R via R/. Consequently, all minimal coalitions D must be
subsets of (AU {i}) NSy (A4).

It can be shown in a very similar way that all minimal coalitions D € G*((R}, R*j)S}(R'j,R]‘)) have
to be subsets of (S;(AU{i})\ 4) U {i}. Thus, Q*(RS}(R)) = Q*((RQ,R_i)S}(RQ’Rﬂ)) e {0,{i}}.
This implies that the range of f is 1, which contradicts the assumptions of the proposition, or

that B € Q(RS}(R)) = g((R;,R,l)S}(RLR_lﬂ iff 1 € B.
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Proof of Proposition 6

We will only show that for all preference profiles R € R4 and all R = (R, R_;) € RAVL
Q(RS}(R)) - Q(Rg}(R,)) whenever i < ry(A). Suppose there is a set C' of agents that is a winning
coalition when ¢ has single-dipped preferences but not when ¢ has single-peaked preferences; that is,
C € (G(Rsi(r)) \ Q(ng}(R,))). If i ¢ C, consider a profile R’ € R* such that Rgi}(R,,) = Rgi(r),
71(A) P/ l;(A), and for all agents k € (Sy(A) \ S4(R")), ls(A) P/ rf(A) if and only if k € C.
Then, f(R") = ly(A) and f(R],R"”;) = rf(A). Thus, agent ¢ manipulates f at R” via R;. If,

on the other hand, i € C, consider a profile R € RAY{#} such that RS?(R) =R and for all

St (RY)
€ (Sr(A)\ S}(R)), l;(A) Pyrs(A) if and only if k € C. Then, f(R) = rs(A), but agent i can

manipulate f at this profile via any R; € R; such that I;(A) P;r;(A) to obtain [(A).

Proof of Proposition 7

We will only consider the case when ¢ > r;(A) and Iy (AU {i}) = [;(A), the other three situations
are similar. So suppose that B € g*(RS}(R)) for some R € RAY{} and assume by contradiction
that there is a preference R, € R; such that (BN (Sf(A)\ A)) € G((R;, Rfi)s;(R;,R_i))- Consider

a profile R € RAY#} guch that RY,

vy = By LA PUTF (AU for k€ Sp(AUi}) if

and only if k € B, and r7(A) P/"l;(A) for all I € (BN Sf(A)NA)U (Sf(A) \ (BUA)). Then,

f(R") =14(A) and f(R},R";) =rs(A). Thus, agent i can manipulate f at R” via R;.

Proof of Proposition 8

We will only consider the case when I;(A) = l;(AU{i}) because the other is similar. By contradi-

tion, suppose that there is some B € g*(RS}(R)) for some R € R4V but (BN A) ¢ Q(Rgl(R/))
7

for some R’ = (R, R_;) € R. Then, consider a profile R € RAY{} such that RS}(R) = Rsi(r);

L (AU{i}) Pjifor j € Sp(AU{i}) ifand only if j € B and ry(A)Pyls(A) for all k € (S;(A)\(BNA)).

Then, f(R) = l;(A), but agent 7 can manipulate it via any R; € R; to obtain 75(A).
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Proof of Theorem 1

[1] = [3]: It has been shown in the corresponding propositions.

[3] = [1]: We are going to show that no agent 7 has incentives to manipulate any of these social
choice rules. We concentrate on the case when agent i has single-peaked preferences; that is, we
consider a profile R € RAY{} for some A C N and i ¢ A (the analysis of the situation when
agent ¢ has single-dipped preferences is similar and thus omitted). If f(R) = ¢, agent i cannot
manipulate f at R. If f(R) < i (we omit the situation when f(R) > i), consider the following

cases:

o If Ry(AU{i}) = {f(R)}, agent ¢ can only change the outcome of f at R by declaring a
single-dipped preference. However, we know from Proposition 4(first case) that ry(AU{i}) €
[r¢(A),i] whenever r¢(AU {i}) <i. So, for all z € R¢(A), < f(R). This implies that i

cannot manipulate f at R.

o If R;(AU{i}) = {f(R),z} and x < i, theni ¢ S;(AU{i}). So, by Proposition 2, f(R;, R_;) =
f(R) for all R; € R;‘. This implies that agent ¢ can only change the outcome of f at R
by declaring a single-dipped preference. If z < f(R), then [;(AU {i}) = = and ry(A U
{i}) = f(R). Hence, it follows from Proposition 4(first case) that f(R) € [r;(A),4] and
x € [ly(A),i]. So, for all y € R¢(A4), y < f(R) and i cannot manipulate. If, on the other
hand, z > f(R), then l;(AU{i}) = f(R) and rf(AU {i}) = . It follows from Proposition
4(first and third cases) that [;(A) <{;(AU{i}) = f(R). Now, we have two possibilities. If
R;(A) # Ry(AU{i}), we have by Proposition 4 (first case) that for all y € Ry(A), y < f(R)
and 7 cannot manipulate. If, however, I;(A) = I;(AU{i}) or rp(A) = r;(AU{i}), it follows
from Propositions 7 and 8 that f(R], R_;) = ly(A) for all R, € R; . This guarantees that

agent ¢ cannot manipulate f at R.

o If Rf(A) = {f(R),z} and = > i, then i € S;(AU {i}). By Proposition 3, we have that
f(R)R; f(R;,R_;) for all R; € R:r Then, suppose now that ¢ try to improve its welfare

at R by declaring a single-dipped preference R} € R;. We know from Proposition 4 (third
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case) that [I;(AU{i},rr(AU{i})] C [If(A),r;(A)]. There are two possibilities. If R;(A) =
R;(A U {i}), Proposition 6 implies that Q(RS},(R)) = g((R;,R,i)S}(R;’R%)). Hence, agent
i cannot manipulate in this situation. If, however, |[R¢(A) N R¢(A U {i})| < 2, we know by
Proposition 5 that ¢ is a dictator in both R;(A) and in Ry(AU {i}). Hence, agent ¢ cannot

manipulate f at R in this situation either.

Then, this statement is proved.

[3] = [2]: Take any of these social choice rules f. Assume, by contradiction, that there is a
profile R € R4, a group of agents S C N with |[S| > 1 and a subprofile Ry € Rg such that
f(Rs,R_s) P; f(R) for all i € S. We can assume without loss of generality that f(RYy, R_g) >
f(R). We can then see that all agents i < f(R) of S must have single-dipped preferences at R and
all agents i > f(RY, R_g) of S must have single-peaked preferences at R for the manipulation to
be effective.

Let A C N be the set of agents with single-peaked preferences at profile R and let C' C N be the
set of agents with single-peaked preferences at profile (R, R_g). Change the preferences of all
agents i € S one-by-one from R; to R} in the following order: (i) start with the agents belonging
to S§(A) in any arbitrary order; at the end of these changes, we will have a set of agents with
single-peaked preferences denoted by B; (ii) continue in any arbitrary order with all agents of
(Sf(B)\ Sf(A)); (iii) continue with the agents located to the left of I;(B) taking in each step the
agent located most to the right; (iv) continue with the single-peaked agents located to the right of
r¢(B) taking in each step the agent located most to the right; and (v) complete the process with
the single-dipped agents located to the right of r¢(B) taking in each step the agent located most
to the left. It is easy to see that [I;(A),rs(A)|N[I;(B)Nrs(B)] #0.

Ifi;(B) <s(C) or ry(B) < ry(C), then there is at least one agent i € (S\ S;(A)) that moves one
of the preselected locations to the right when changing her preferences from R; to R;. We divide

the analysis depending on the location of i:

e Consider first the case in which i < [;(B). Given that i ¢ S;(A4) and [I;(A),r(A)]|N[l;(B)N
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r¢(B)] # 0, we can also deduce that i < I;(A) and, therefore, i < f(R). Then, R; € R}
and R, € R; by Proposition 4 (second case). This is a contradiction with the fact that all

agents of S at the left of f(R) have single-dipped preferences at R.

Consider the case in which i > r¢(B). Then, R; € R; and R, € R by Proposition 4
(first case). Let S¢ = {i € S|i > r¢(B) and R; € R; }. Given the order of changes that
we have established, it follows from the iterated application of Proposition 4 (all cases)
that max S¢ > r;(C) and, therefore, f(R) Py ax sa f(Rg, R—s). This contradicts that S can

manipulate f at R via RY.

Consider finally the case in which ¢ € (Sf(B) \ Sf(A)). The fact that (S¢(B) \ S¢(A4)) # 0
implies that there is at least one agent j € Sy(A) NS N A such that [[;(A),r;(A4)] C
([ (AN{5}), s (A\{j})] and R € R;. Then, by Proposition 5 we have that j is a dictator
in Ry(A) and in Rf(A\ {j}). When the rest of the single-peaked agents (that is, the agents
of Sy(A)NSNA) change their preferences, Proposition 5 implies that Ry (A\ {j}) = R;(E),
where E is the set of agents with single-peaked preferences in that moment. Then, by
Proposition 6, we have that j is a dictator in Ry(E). Now, consider any agent k € (S;(A)N
(S\ A)) such that R € R;. Then, we would like to show that R;(E U {k}) = Rs(E).
Suppose by contradiction that this is not the case. Then, Proposition 4 (third case) gives
two possibilities: Ry(EU{k}) = {k} or Ry(EU{k}) € {{k,;(E)},{k,rs(E)}}. The former
is not possible because if we continue changing the preferences of the rest of agents of
(S¢(A) N (S\ A)), Proposition 4 (first and second cases) would imply that S¢(B) C Sf(A)
contradicting that i € (Sy(B)\Sy(A4)). The later case is also impossible because Proposition
8 would imply that the minimal coalitions in any profile of R¥ have to be formed by single-
peaked agents and j has single-dipped preferences in these profiles in which she is a dictator.
Therefore, Ry(E U {k}) = R;(E) and, by Proposition 6 we also have that j is a dictator in
R;(EU{k}). Repeating the same arguments we arrive at Ry(A\ {j}) = Ry(B) and j being

a dictator in Ry(B). Then, l;(B) <I;(A) and r;(A4) < rs(B).
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Given that j € A and that she was a dictator in R;(A), we necessarily need that f(R, R—_g) €
(14(A),r¢(A)) for the manipulation to be effective. Given that f(R) < f(RY, R—s), we have
that f(R) =1¢(A).

Let 74(C) > r¢(B). Then, agent i € (S§(B)\ Sf(A)) moves the right preselected alternative
to the right in some moment. By Proposition 4 (third case), R; € R} and R} € R; . Then,
given that all agents of S at the left of f(R) have single-dipped preferences at R, we must
have that ¢ € (rg(A),r¢(B)). Then, by Proposition 5, i is a dictator for Rs(B). This

contradicts that j is a dictator for the same set.

Let If(C) > l§(B). Then, agent i € (S¢(B) \ Sf(A)) moves the left preselected alternative
to the right in some moment. By Proposition 4 (third case), R; € R; and R, € R;. Then,
given that all agents of S at the right of r¢(A) have single-peaked preferences at R, we must
have that i € (I;(B),l;(A)). By Proposition 4 (third case), no agent k € (I;(B),l;(A4))
can move the left preselected alternative to the right of l;(A) and, therefore, f(Ry, R_g) =
r#(C) < r¢(A) < rg(B). Then, by Proposition 5, ¢ is a dictator for R¢(B), contradicting

that j is a dictator for the same set.

Consequently, we assume from now on that {;(B) > [;(C) and ry(B) > ry(C). Then, there are
no agents of S at the right of r;(B) with single-dipped preferences and step (v) of the chain of

changes is empty. The remainder of the proof is divided into two cases.

1. Let f(Rs,R_g) = 1;(C). Since I;(B) > I;(C) = f(Rs,R_g) and f(RYy, R_s) > f(R), we
must have that I;(B) > l;(A). By Proposition 4, there exists an agent ¢ € Sy(A) NS such
that i > l;(B) that changes her preferences from R; € R; to R, € R;. It follows then that

i > f(RYs, R_g). Given that ¢ has single-dipped preferences at R, we have a contradiction.

2. Let f(Ry,R_g) = r(C). Assume first that f(R) = ry(A). Since r;y(B) > r(C) =
f(Ry, R_g) and f(RYy,R_s) > f(R), we have that r;(B) > rs(A). By Proposition 4, there
exists an agent i € S;(A)NS that changes her preferences from R; € R} to R, € R; . Given

that ¢ < f(R) and she has single-peaked preferences at R, we have a contradiction. So, we
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assume from now on that f(R) = l;(A). We divide the analysis into three cases:

e Suppose that r7(B) < rr(A); the case when [;(B) > [;(A) is similar and thus omit-
ted. Since r¢(C) < r¢(B), we have that f(Ry,R_g) = rf(C) € (l5(A),r¢(B)]. By
Proposition 4, there exists an agent i € Sy(A) NS such that ¢ < ry(B) that changes her
preferences from R; € R; to R; € R;" Suppose first that ¢ < r¢(B). Then, Proposition
5 implies that 4 is a dictator at Ry(A) or, what is the same, that {;(A)R;rs(A). Then,
given that R; € R;, we have that [;(A)P;x for all x € (I;(A),r;(A)) and, in particular,
f(R)P;f(RYy, R_s), contradicting the fact that S can manipulate f. Suppose finally
that ¢ = r;(B). Then, i > f(RY, R_g) and has single-dipped preferences at R, which

is not possible.

e Suppose that r¢(B) > r¢(A); the case when [¢(A) > l#(B) is similar and thus omitted.
By Proposition 4 (third case), the right preselected alternative changes from r(A4) to
its left when some agent j € Sy(A) NS changes her preferences from R; € Rj' to
R; € R;. By similar arguments to ones used previously in the proof, we have that
Rr(A\ {j}) = Rs(B), I;(B) < lf(A) and that j is a dictator for both R;(A) and
R;(B). Thus, f(R) = l;(A)R;rs(A). If r¢(C) > rg(A), then f(R)R, f(RYy, R_s).
So, this cannot be.

If r¢(C) < rg(A), we have that r¢(C) < rf(A) < r¢(B) and [(B) < lf(A). This is
only possible if some agent i < I;(B) with R; € R; and/or some agent i > rs(B)
with R; € Rj change their type of preferences. Consider the case of an agent i <
l¢(B) (the analysis of agents i > r(B) is dual and thus omitted). If both preselected
alternatives changes when agent ¢ changes from R; € R; to R} € R;r, then it follows
from Proposition 4 (second case) that rf(B U {i}) < l#(B) and, then, rf(B U {i}) <
l4(A). By the iterated application of this reasoning, we obtain that r¢(C) < If(A),
which contradicts that f(RY, R—g) > f(R). If only one preselected alternative changes
when agent i changes from R; € R; to R, € R}, then it follows from Proposition 4

(second case) that {;(B U {i}) = [;(B). By the iterated application of this reasoning,
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we deduce that {;(C') = l;(B). Then, by Proposition 7, j is also a dictator for R (C).
Thus, j < r(C).

Consider now the profile (R’S\{j}, R_(s\{j1) € RCEUIY, that is, all agents i € S apart
from j have changed their preferences from R; to R.. By Proposition 4 (second case),
re(CU{j}) € [4,r¢(C)]. Thus, there is an agent i < ;(A) = f(R) of S with R; € R}
and R, € R} and/or an agent i > rp(A) > f(Rg, R_s) of S with R, € R} and
R} € R, . However, this is not possible.

e Suppose that 7¢(B) = r¢(A) and ly(B) = lf(A). Then, step (i) of the chain of changes
is empty and all agents of S\ S;(A) (steps (i43) and (iv)) move these preselected alter-
natives to the right. Additionally, we have that r;(C) = f(RYy, R—s) € (If(A),rs(A)].
Then, by Proposition 4 (second case), we have three possibilities: R¢(C) = Ry(A),
R(C) ={l;(C),rs(A)}or Ry (C) = {lf(A),r;(C)}. I Rs(C) = Ry(A), by the iterated
application of Proposition 6, we have that the set of decisive sets of agents for R;(C') is
equal to the set of decisive sets of agents for R¢(A). It follows then from f(R) =1;(A)
and f(RY, R_g) = r7(C) that there is some agent i € S N S;(A) that weakly prefers
l4(A) tors(A) at R but the other way around at (R, R_g). Then, f(R) R; f(RYg, R_s).
If either Ry (C) = {l(C),rs(A)} or Rs(C) = {lf(A),rs(C)}, then there is an agent
i€ S\ Sr(A) that changes her type of preferences. Suppose without loss of generality
that R;(C) = {lf(A),r;(C)}. Then, it follows then from the iterated application
of Proposition 7 that for all D € g((ngf(A)mS7R_(Sf(A)mS))S}(R/Sf(A)ms’R*(Sf(A)mS)))j

DN (Sf(A)\ A4) € G(( %;R—S)s}(R’S,R,S)). Since f(R) = l;(A), there is some group

De Q(RS}(R)) that strictly prefers I7(A) to r¢(A) at R. So, l(A) P;yr¢(A) R; ¢ (C) for

all i € (DN (Sf(C)\ C)). Therefore, f(Rg,R_s) =l¢(A), leading to a contradiction.

Proof of Theorem 2

<]: Suppose that there is a triple {z,y,z} C T that is not full at N. Consider first the case in

which NN{x,y, 2z} # 0. Suppose w.l.o.g. that z € N and y < z. If (N\ {z}) ¢ (y, 2), consider an
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agent j & (y,z). Then, a rule f such that Ry(A) =z ifx € A, Rf(A) =y if [AN{z,j} = {j} and
j<ylor[An{z,j} =0 and j > z] and Rs(A) = z otherwise is an strategy-proof rule with range
3, but is not dictatorial. If, however, (N \ {z}) C (y,2), a rule f such that Rf(A) =z if z € A4,
R;(A) = {y, 2z} otherwise and G (RS} (r)) containing all non-empty coalitions for all R € RA with

x ¢ A is strategy-proof and has range 3, but is not dictatorial.

Consider now the cases in which, although N N {z,y,z} = 0, N ¢ (min{z,y, 2z}, max{z,y, z}).
Assume w.l.o.g. that x < y < z and there is one agent i € N with i < z. If (N \ {i}) Z (v, 2),
consider an agent j ¢ (y,z). Then, a rule f such that Ry(A) = z if i € A, Ry(A) = y if
[An{i,j} ={j}and j <yl or [AN{i,j} =0 and j > z] and Rs(A) = z otherwise is an strategy-
proof rule with range 3, but is not dictatorial. If, however, (N \ {i}) C (y, 2), a rule f such that
Rf(A) =z ifi € A, Ry(A) = {y, 2} otherwise and Q(RS}(R)) containing all non-empty coalitions

for all R € R4 with i € A is strategy-proof and has range 3, but is not dictatorial.

=]: Suppose that all triples are full at N and that, by contradiction, there is a strategy-proof rule
f with range greater than or equal to 3 that is not dictatorial. Consider a triple {z,y, 2z} with

x <y < z contained in the range of f. Then, N C ((z, 2) \ {y}). We distinguish two cases:

Suppose first that |R¢(0)| = 1. If Ry(0) < z, we have by iterated application of Proposition 4
that z ¢ Ry(A) for any A C N, contradicting the fact that z belongs to the range of f. Similarly,
if R;(@) > x, we have by iterated application of Proposition 4 that ¢ R¢(A) for any A C N,

contradicting the fact that x belongs to the range of f.

Suppose now that |Ry(0)| = 2. If r¢(0) < z (respectively, {;(0) > x), we have by iterated applica-
tion of Proposition 4 that z ¢ R;(A) (respectively, z & Ry(A)) for any A C N, contradicting the
fact that z (respectively, z) belongs to the range of f. Then, l;(0)) < z and r¢(0) > z. Given that
no agent is located in a feasible point, we have by Proposition 4 (third case) that R¢({i}) = Rs(0)
(in this case, we will say that i is not decisive) or i € (Iy({i}),rr({i})) C [Lp(0),r(0)] (in this
case, we will say that ¢ is decisive). By Proposition 5, we have that if an agent i is decisive,

she is a dictator in Ry({i}) and in Rs((). Given that it is not possible to have more than one
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dictator at Rs((), we obtain that there is at most one decisive agent that we will denote, when
exists, by 7. Consider now any set A with |A] > 1. Suppose first that i ¢ A and we are going
to show that Rf(A) = Ry¢(P). Suppose that this occurs for all subsets D C A. Take now any
profile R € R# and suppose that f(R) & {l;(),7;()}, contrary to what we intend to show. By
construction, f(R) € (I¢(D),rs(0)). By assumption, f(R) # j for all j € A. Then, f(R) € Rs(A)
and |Ry(A)| = 2. Given that Ry(D) = {ls(0),r¢(0)} for all D C A, we have by Proposition 5 that
all agents of A are dictators in Ry(A), which obviously is not possible. Suppose now that 1€ A
and we are going to show that R;(A) = R;({i}). Suppose that this occurs for all subsets D C A
with i € D, but Rf(A) # Ry({i}). Then, by Proposition 6, we have that i is a dictator at all
R;(D). Suppose first that Sy(A) # 0. Then, we have by Proposition 5 that any agent j € Sy(A)
is a dictator at Ry(A\ {j}), which is a contradiction with the fact that i is also a dictator there.
Suppose now that S;(A) = (. We have that i € Sp(A\ {i}), but 7 & S;(A). Given that i ¢ Ry(A)

by construction, we have a contradiction with Proposition 4 (third case).

Then, R;(A) = R;({1}) if i € A and Rs(A) = Ry(0)) otherwise. If 7 does not exist, we have that
the range of f only contains min T and max T. Suppose then that i exists. Then, by Proposition
6, we have that 7 is a dictator at all Ry(A). Given that I;({i}) > I;(0) and r;({i}) < r¢(0), this

rule is dictatorial, being ¢ the dictator.

Proof of Proposition 9

We will prove that if min7T or max T does not exist, then there are no Pareto efficient rules. To
do that we need the following notation: N; = {i € N|i <infT}, N, ={i € N|i > supT}, and

N, =N\ (N, UN,).10

Suppose that min 7' does not exist (the proof when maxT does not exist is similar). Consider a
profile R € R™t such that for all i € N, and all y > i, there exists z < i with P;y. Then, there is
no Pareto efficient alternative in this profile and, therefore, it is not possible to construct a Pareto

efficient social choice rule.

101f inf T or sup T does not exist, the corresponding sets are empty.
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Proof of Theorem 3

«|: Consider first the case in which ¢ € N NT and [; and r; exist (this allows j to satisfy (a)
or (c)). Consider the social choice rule f given by R;(A) = {i} if i € A, R;(A) = {l;,r;} if
Andi,j} ={j} and Ry(A) = {minT, max T}, otherwise, with j being a dictator in all R;(A) in

which i ¢ A and I; # r;. This rule is strategy-proof and Pareto efficient.

Consider now the case in which ¢ ¢ (minT,maxT) and [; and r; exist (this allows j to satisfy
(a) or (c)). Assume w.lo.g. that ¢ < minT and consider the social choice rule f given by
Rf(A) = {minT} if i € A, Rp(A) = {l;,r;} if An{i,j} = {j} and R;(A) = {minT,max T},
otherwise, with j being a dictator in all R¢(A) in which ¢ ¢ A and [; # r;. This rule is strategy-

proof and Pareto efficient.

Consider finally the case in which 4, j ¢ (min7, maxT). Then, consider any social choice rule f
such that Ry(A) = {minT'} if for all k € (AN{s,j}), k <minT and Ry(A) = {max T} otherwise.

Again, any of these social choice rules are strategy-proof and Pareto-efficient.

=]: Suppose that NNT =@ and N C (min7T,maxT). Then, using similar arguments as in the
proof of Proposition 9 we have that Rf(#) = {min7,max7}. By similar arguments as in the

proof of Theorem 2, we have that Ry({i}) # Ry(0) for at most one agent i € N.

If Ry({i}) = Ry(0) for all i € N, we can deduce applying the same arguments as in the proof of
Theorem 2 that Ry(A) = R;(0) for all A C N. Then, consider a profile R € RY such that there
is some z € (T \ {minT, maxT}) with 2P, min TP, maxT for all i € N, which exists given the

assumptions. Then, f(R) = minT, but this location is Pareto dominated by x.

If Ry({j}) # Rys(0) for only one agent j € N, applying the same arguments as in the proof of
Theorem 2 we obtain that Ry(A) = R¢({j}) if j € A and R¢(A) = {minT, max T} otherwise. By
Propositions 5 and 6, we have that j is a dictator at all R;(A). Given that {;({j}) > minT and

r#({s}) < maxT, this rule is dictatorial, being j the dictator.
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Proof of Theorem 4

It is straightforward to see that NN (min 7, maxT') implies that the range of Ry is T' instead of T2
Then, Propositions 5 to 8 are obviously satisfied. Similarly, the condition that R; is monotone
guarantees that Proposition 4 is satisfied. Then, strategy-proofness is guaranteed by Theorem 1.
To show that these rules are Pareto efficient, take any profile R € RA. If A = N, (respectively,
A = N,), all agents prefer minT (respectively, maxT) to any other alternative, and precisely this
unanimously maximal alternative is chosen. In other case, observe that for all z,y € T, there
are two agents ¢,j € IV such that P,y and yP;z, guaranteeing than any choice in these cases is

Pareto efficient.

Consider now any strategy-proof and Pareto efficient social choice rule. Then, the rule belongs to
the one characterized in Theorem 1. Given that the range of Rf is T' by the structure of N and
T, we can concentrate directly on this function. This function is obviously monotone given that
Proposition 4 is implied by strategy-proofness. Similarly, we can derive that Ry(N;) = min7T and

R;(N,) = maxT by Pareto efficiency using the same arguments as in the previous paragraph.

Proof of Theorem 5

It can be checked easily that all conditional two-step rules f satisfying conditional decisiveness
such that f; is monotote are strategy-proof, Pareto efficient and tops-only. To see the other
implication, we start with the strategy-proof rules characterized in Theorem 1 and we investigate

the possible values of Ry in some cases.

Lemma 5 Let N CT and N C (minT,maxT), and consider any f that is strategy-proof, Pareto

efficient, and tops-only. Then, Ry(0) = {minT, maxT} and for alli € N, Ry({i}) € {{i}, Rs(0)}.

Proof: Using similar arguments as in the proof of Proposition 9, we can deduce that Ry () =
{min 7, max T'}. Consider now any Rf({i}) and suppose that R;({i}) # Rs(0). Then, |R;({i})| =

1 by tops-onliness. Then, by Proposition 4 (third case), we have that R;({i}) = 1. O
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Lemma 5 allows us to divide IV into the group of decisive agents D; and the rest. The next lemma

shows that there is at least one decisive agent.

Lemma 6 Let N CT and N C (minT,maxT), and consider any f that is strategy-proof, Pareto

efficient, and tops-only. Then, D¢ is non-empty.

Proof: Suppose that Dy = (). Applying the same arguments as in the proof of Theorem 2, we have
that Rp(A) = Ry(0) for all A C N. Then, it is easy to see that for all R € RY, min N (respectively,
max NN) Pareto dominates min 7" (respectively, maxT'). Since Ry(0)) = {min7, max T} by Lemma

5, this contradicts Pareto efficiency. Hence, Dy # (). O

Using Lemmas 5 and 6, we can now determine the selected alternative. It follows from similar
arguments as those in the proof of Theorem 2 that if AN Dy = (), then Ry(A) = Ry(0) =
{minT,maxT}. For these cases, tops-onliness implies that the minimal decisive coalitions can

only be formed by the tops of the single-dipped agents and, then, we denote them by Gy.

So, we can now concentrate on the case when ANDy # (. The proof proceeds by double induction.

1. We first consider the case when only one decisive agent ¢ has single-peaked preferences. We

have to show that for all preference profiles R € R4 such that AN Dy = {i}, f(R) =1.

(a) Let A= {i} and ¢ € Dy. Since ¢ is a decisive agent, f(R) = i by definition.

(b) Suppose that for all preference profiles R € RZ such that B C A and BN Dy = {i},
f(R) = 4. Since AN Dy = {i} by assumption and the set of preselected alterna-
tives is equal to {min T, max T} whenever all decisive agents have single-dipped pref-
erences, Rf(A\ {i}) = {minT,maxT'}. Thus, by Proposition 4 (third case), Rs(A) €
{{t},{minT, max T'}}. Moreover, by the induction hypothesis, R¢(A\ {j}) = {¢} for
all j € (A\ {i}). Then, by Proposition 4 (third case) it is not possible that Ry(A) is
equal to {minT, maxT}. We can therefore conclude that R;(A) = {{i}}; that is, we

have shown that for all R € R such that AN Dy = {i}, f(R) =1.

2. We now move to the case when a subset C' of decisive agents of size greater than one has

45



single-peaked preferences. So, we consider a preference profile R € R* such that AND =0,
|C| > 1, and we have to show that f(R) € [min C, max C]. The induction hypothesis states
that for all preference profiles R’ € R such that B C A, f(R') € [min(B N Dy), max(B N
Dy)]. Suppose by contradiction that f(R) < minC (the proof when f(R) > maxC is
similar and thus omitted). Given that (B N Dy) C C, by the induction hypothsesis, we
obtain that for all R € RA\{minC} f(f{) € [min C, max C]. Then, by Proposition 4, we have

that f(R) € [min C, max C].

Given tops-onliness, for all R € R4, f(R) = f(R') and we will consider function f; : 2V —
(min 7, max T) the function such that fi(A) = f(R) for all R € R4 such that AN Dy # (. The

fact that f1 is monotone can be deduced from Proposition 4. To deduce that f satisfies

Finally, we only have to show that f satisfies conditional decisiveness. Take any A € Gy. We have
to show that i € Dy for all i € G. Suppose by contradiction that f(R, R_;) # i for all R} € R .
If f(R,,R_;) > i, consider a preference profile R € R? such that t(R;) = minT if and only if
j € A. Then, consider R; € R} such that minT P; f(R}, R_;). Then, f(R;,R_;) = f(R}, R_;),
but agent ¢ can manipulate f via R; to obtain min7. The case f(R}, R—;) < i is similar and thus

omitted.
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