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Abstract

We study the problem of allocating n objects to n agents without monetary trans-

fers in a setting where each agent�s preference is privately known. We show that when

each agent�s ranking over objects is independent of other agents� rankings and each

possible ranking is equally likely, the celebrated Random Serial Dictatorship mecha-

nism is unambiguously welfare inferior to another allocation method, the Restricted

Ranking mechanism, when the number of agents and objects is large. More precisely,

every type of every agent has a higher interim utility under the Restricted Ranking

mechanism. This result also has an implication about the welfare comparison of two

widely used allocation methods for school choice, the Deferred Acceptance (DA) mech-

anism and the Boston mechanism: When each school ranks students identically, the

Boston mechanism is welfare superior to the DA mechanism in the same strong manner

in large markets.
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1 Introduction

It is not legal, fair or practical to use monetary transfers in many real-life allocation prob-

lems. University housing assignment, o¢ ce allocation, and student placement into public

schools are notable examples among many others. In this paper, we consider the problem of

allocating n indivisible objects to n agents, where each agent is entitled to receive exactly one

object, when monetary transfers cannot be used and compare di¤erent allocation methods

in terms of welfare of agents when there is incomplete information about agents�preferences.

The Random Serial Dictatorship (RSD) mechanism (sometimes referred to as the Ran-

dom Priority (RP) mechanism) is one of the most popular allocation methods. Under RSD,

�rst an order over agents is drawn uniformly at random and, by following this order, the

�rst agent is assigned his most preferred object, the second agent is assigned his most pre-

ferred object among the remaining ones, and so on. RSD is a straightforward method with

its transparent and easy to implement rules. More importantly, RSD has strong incentive

properties. More precisely, RSD is strategy-proof, that is, truth-telling is a weakly dominant

strategy. Furthermore, RSD yields the same random allocation with the core (competitive

allocation) from random endowments� endowment matchings drawn from uniform distrib-

ution. (See Abdulkadiro¼glu and Sönmez (1998).) These support the wide use of RSD in

practical applications.

We consider another simple allocation method, the Restricted Ranking (RR) mechanism.1

We begin by informally describing the workings of this method for which a more detailed and

formal explanation will be given later in Section 2. Under RR, each agent reports a strict

ranking over objects and in the �rst step, each object is allocated to an agent who ranks it as

a �rst choice if there is any such agent. If there are more than one agent who ranks an object

as a �rst choice, a random draw among these agents determines who gets that object. The

objects that are allocated and the agents who received an object in the �rst step are removed

and the remaining objects and agents are carried to the next step. In the second step, each

available object is allocated to an agent who ranks it as a second choice if there is any such

agent in this step, and again randomly when necessary. Similarly, the unassigned objects

and the agents who didn�t receive an object in the second step are carried to the third step,

1This mechanism is inspired by the Ranking mechanism (Pesendorfer (2000)) which is identical to the
�Restricted�Ranking (RR) mechanism except that RR impose that each agent should get only one object
whereas the Ranking mechanism does not restrict the number of objects an agent can get. RR is also similar
to the Boston mechanism, a widely-used allocation method in the school choice context, as will be discussed.
Since the Boston mechanism is applied in problems with two-sided preferences and de�ned as a dynamic
procedure, we prefer to call the mentioned mechanism as �Restricted Ranking�mechanism.
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and we move on in this fashion. As an example, suppose three objects, fo1; o2; o3g, will be
allocated to three agents, fi1; i2; i3g. Assume that agents�reported preference rankings are
as follows. Agent i1 ranks objects as o1 � o2 � o3, agent i2 ranks as o1 � o3 � o2, and agent
i3 ranks as o3 � o2 � o1. Consider object o1. Both i1 and i2 rank it as a �rst choice. Hence,
object o1 will be given to either i1 or i2 by a fair coin toss. Without loss, let�s say agent i1
receives o1. There is no one who ranks object o2 as a �rst choice and i3 is the only agent who

ranks object o3 as a �rst choice, so i3 gets object o3. Thus, object o2 remains unassigned in

the �rst step and is carried to the next step. In the second step, the only available object is

o2, and it will be assigned to agent i2, who didn�t receive an object in the �rst step and who

ranks o2 as a second choice. Thus, all the objects are allocated, and each agent receives one

object.

We consider a setting in which each agent has a strict preference ranking which is privately

known. We assume that each agent�s ranking over objects is independent of others�rankings

and drawn from a uniform distribution over the set of all possible rankings, that is, each

possible ranking is equally likely. In this setting, we show that RR is welfare superior to

RSD in a very strong manner in large allocation problems. More precisely, our main result

is:2

When the number of objects and agents is su¢ ciently large, every type of every

agent has a strictly higher interim utility under the Restricted Ranking mechanism

than under the Random Serial Dictatorship mechanism.3

To prove the result, we �rst establish an asymptotic interim (�rst-order) stochastic domi-

nance relation. Precisely, we show that for each K � 1; the interim probability of obtaining

one of �rst K choices under RR is strictly greater than that under RSD when n, the number

of objects and agents, is large enough. We then show that this asymptotic stochastic domi-

nance easily implies that for su¢ ciently large n, every type of every agent has a higher interim

utility under RR regardless of the preference intensities. Hence, strong incentive properties

of RSD comes with a huge welfare cost even compare to another allocation method.

The welfare de�ciency of RSD has also been demonstrated earlier by Bogomolnaia and

Moulin (BM) (2001). They present an example with four objects and four agents with a

set of preference pro�les in which another random allocation is unambiguously better than

2Precise statement is presented as Theorem 1, below.
3The interim stage refers to the stage in which each agent knows his/her own preference but not others�

preferences. Hence, the interim utility is the expected utility, where expectation is over the preferences of
other agents.
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RSD for each agent. Manea (2009) shows that instances of such ine¢ ciency of RSD are in

fact prevalent in large allocation problems. In particular, he shows that as the number of

objects increases, the fraction of preference pro�les for which this kind of ine¢ ciency does

not arise vanishes. Noting the ine¢ ciency of RSD, BM de�ne a new allocation method, the

Probabilistic Serial (PS) Mechanism, which is based on an algorithm in which agents �eat�

probability shares of available objects and show that PS is ordinally e¢ cient in that it cannot

be (�rst-order) stochastically dominated by another random allocation.4 Note that our result

not only exhibits the welfare de�ciency of RSD but also explicitly �nds a mechanism that

dominates RSD. Furthermore, these previous results have been established under complete

information whereas our result is obtained in a setting where there is incomplete information

about preferences.

Our result about the object allocation problem where there is only one-sided preference

also has an implication about a debated comparison in the school choice context where there

are two-sided preferences.5 There are two widely used mechanisms for assigning students

to schools: the well-known Deferred Acceptance (DA) mechanism6 and the so-called Boston

mechanism. Our main result for object allocation problem implies the following welfare

comparison result for these school choice mechanisms.

We assume that each student�s ranking over schools is independent of others�rankings

and each possible strict ranking is equally likely. Furthermore, assume that all the schools

have identical priorities over students, say, because they all rank students according to some

test score,7 and each possible ranking over students is equally likely. Then, when each school

has one available seat, our main result implies:8

When the number of students and schools is su¢ ciently large, every type of every

student has a strictly higher interim utility under the Boston mechanism than

under the Deferred Acceptance mechanism.

The Deferred Acceptance and the Boston mechanisms have been the predominant allo-

cation methods in many school districts in U.S. Given the widespread use, there have been

a huge literature analyzing these mechanisms and trying to �gure out which one is �bet-

ter�. Earlier work compared these two school choice mechanisms mostly in terms of their

4Che and Kojima (2010) show that in a large economy with many copies of objects, PS and RSD are
asymptotically equivalent. Hence, the ine¢ ciency of RSD becomes small in large markets.

5Students have preferences over schools, and schools have priorities/preferences over students.
6Student Proposing Gale-Shapley Algorithm (Gale&Shapley(1962)).
7We elaborate more on this assumption later in this section.
8Precise statement will be given below as Proposition 2.
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incentive properties. The DA mechanism has been favored on these grounds since truth-

ful reporting of preferences by students is a weakly dominant strategy under the DA. (See

Dubins and Friedman (1981), Roth (1982).) The Boston mechanism, on the other hand,

is known to be vulnerable to strategic manipulation. Students may gain from misreporting

their preferences under the Boston mechanism (See Abdulkadiro¼glu and Sönmez (2003).).9

Furthermore, when school preferences are strict, the DA mechanism produces the student

optimal stable outcome. On the other hand, as Ergin and Sönmez (2006) show, any stable

matching can be obtained in a Nash equilibrium of the Boston mechanism under complete

information.

The welfare comparison of these two school choice mechanisms, until very recently, has

been studied under complete information when student preferences and school priorities are

commonly known. Ergin and Sönmez (2006) show that the DAmechanism is welfare superior

to the Boston mechanism under complete information.10 Again, in a complete information

environment, Chen and Sönmez (2006) provide experimental evidence that DA is better

in terms of welfare. There is a recent line of literature that compares these mechanisms

under incomplete information. Abdulkadiro¼glu, Che and Yasuda (2011) (henceforth, ACY)

compare these two mechanisms in terms of welfare under incomplete information but in a very

special case. They show that when students�ordinal rankings are identical,11 and schools have

no priorities, the Boston mechanism interim dominates the Deferred Acceptance mechanism,

that is, each student�s interim payo¤ is weakly higher under the Boston mechanism in this

special case. Troyan (2012), allowing for more general priority structures for schools but still

assuming that students�ordinal preferences are identical, shows that the Boston mechanism is

ex-ante welfare superior to the DA mechanism. In another work, Featherstone and Niederle

(2013) provide experimental evidence that the Boston mechanism may dominate the DA

mechanism in terms of ex-ante welfare and, in addition, truth-telling rates are almost the

same when the preferences are uncorrelated. When there is a continuum of students, Miralles

(2009) shows that the DA mechanism performs poorly when all students have the same

ordinal rankings.

Here we step away from the restrictive assumption that students have the same ordinal

rankings over schools. Instead, we consider a polar opposite case: students� preferences

9In our setting with symmetric and independent preferences, however, the Boston mechanism is (Bayesian)
incentive compatible, as will be discussed.
10They also show via an example that when students have private information about their preferences,

this result does not hold and some type of students have higher utility under the Boston mechanism.
11That is, each student�s ranking over schools is the same. For example, school s1 is the �rst choice of

every student, school s2 is the second choice of every student and so on.
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are independently distributed and each ordinal ranking over schools is ex-ante equally likely.

Under this assumption, the problem becomes signi�cantly di¤erent from the ones where each

student�s ranking over schools is identical. For example, when all students have the same

ranking and schools have no priorities over students, as in ACY, the DA mechanism becomes

a trivial random assignment. More precisely, each student is assigned to each school with

equal probabilities. This is a crucial simpli�cation which enables the welfare comparison

result in ACY. However, when students�ordinal rankings may di¤er from one another as in

this paper, the equivalence of DA to random assignment no longer holds.

We now elaborate more on the assumption that schools have identical preferences (or,

priorities) over students. In many countries� for instance, China, Iran, Japan and Turkey�

students take centralized tests and the scores on these are the sole determinant of school

priorities. In other systems, schools do not have a preference over students per se, and

a central lottery is used to assign priorities to students. The manner in which schools�

preferences are determined has implications about what students know when they submit

their preferences. In the test score interpretation, it is reasonable to assume that each

student knows how he or she is ranked by the schools when submitting preferences. In the

lottery interpretation, however, a student does not know his or her priority when submitting

preferences. Our comparison result, however, is not sensitive to the two speci�cations� the

result that the Boston mechanism yields a higher interim welfare than the DA mechanism

holds in both cases.12

The rest of the paper is organized as follows. We �rst present the environment and

the main result for the object allocation problem. Then, we formally describe the above-

mentioned student assignment mechanisms, the Boston mechanism and the DA mechanism,

and state the result about the welfare comparison of these. Then, we conclude. The proofs

that are missing in the main body are relegated to Appendix.

2 The Model

Assume that there are n agents, I = fi1; ::::; ing, and n objects, O = fo1; :::; ong, n � 2.

Each agent has a strict ranking over objects13, and this is privately known. We assume that

12From now on, unless otherwise stated, we will focus on the lottery interpretation so that students don�t
know the priorities when reporting preferences.
13Indeed, this can also be interpreted as if agents may be indi¤erent between the objects, but they break

ties at random when reporting a strict ranking to run the mechanisms. Thus, we allow, for example, that
an agent does not �nd all objects desirable and derives positive utility only from some objects and a utility
of 0 from some (possibly multiple) objects.

6



each agent�s ranking over objects is independent of other agents�rankings and each possible

strict ranking is equally likely.

We �rst describe two allocation methods, namely the Random Serial Dictatorship mech-

anism and the Restricted Ranking mechanism.

First, each agent reports a strict ranking over objects (which, of course, may or may not

be the true ranking) and given the reports, these mechanisms allocate objects to agents as

follows.

The Random Serial Dictatorship mechanism

Given a strict order over agents, � = (�1; :::; �n), where �i denotes the agent in the ith

rank of this order,

Step 1: Agent �1 is assigned his favorite object.

For k � 2,

Step k: Agent �k is assigned his favorite object among the ones that haven�t been assigned

in Step 1,..., Step (k � 1).

This method is called The Serial Dictatorship Mechanism. When the order over agents

is determined by a random draw from a uniform distribution over the set of all agents, it is

called The Random Serial Dictatorship Mechanism.

The Restricted Ranking mechanism

Step 1. For each object, consider agents who rank this object as a �rst choice, if any. If

there is exactly one such agent, assign the object to this agent. If the number of such agents

is more than one, determine the agent who gets the object according to a random draw

among these agents. If there is an object that hasn�t been allocated, or an agent who hasn�t

received an object, then move to Step 2. Otherwise, stop.

For k � 2,

Step k. For each object that hasn�t been allocated in earlier step(s), consider agents who

rank this object as a kth choice among those who haven�t obtained an object in earlier step(s).

Again, allocate objects among these agents, and randomly when necessary. If there is an

object that hasn�t been allocated, or an agent who hasn�t received an object, then move to

Step (k + 1). Otherwise, stop.

Note that the algorithm will stop at step k = n or before.
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2.1 Incentive Compatibility

We �rst investigate agents�incentives for truthful reporting under these mechanisms.

We say that a mechanism is (Bayesian) incentive compatible if truthful reporting of

preference rankings is a Bayes-Nash equilibrium.14

First, it is easy to see, and as is well known, the Random Serial Dictatorship mechanism

is strategy-proof, that is, truthful reporting of preferences is a weakly dominant strategy, and

hence (Bayesian) incentive compatible.15 On the other hand, in general, truthful reporting

may not be an equilibrium under the Restricted Ranking mechanism. We now present an

example to illustrate how an agent can become better o¤ by manipulating his preference list

under RR.

Example 1 There are three agents fi1; i2; i3g and three objects fo1; o2; o3g. Assume that
each agent�s type(ranking over objects) is independently drawn from the following distribu-

tion.

Pr (o1 � o2 � o3) = p =
3

4

Pr (o2 � o1 � o3) = 1� p = 1

4

Without loss, let�s consider agent i1. Assume that i1 derives a utility of 1 from his top choice,

utility of 0:8 from his second choice and utility of 0 from his third choice.

Assume that i2 and i3 report truthfully and let�s check whether it is a best response for i1 to

report truthfully.

Consider i1 with type o1 � o2 � o3. If he reports truthfully, that is, if he reports his ranking
as o1 � o2 � o3, his interim payo¤ will be

p2
�
1

3
(1) +

1

3
(0:8) +

1

3
(0)

�
+ 2p (1� p)

�
1

2
(1) +

1

2
(0)

�
+ (1� p)2 (1) = 47

80

This is due to the following observations. With probability p2 both of the other agents�

preferences are also o1 � o2 � o3, and hence agent i1 will receive each object with probability
1
3
. With probability 2p (1� p), one of the other agent�s ranking is o1 � o2 � o3 and the

other�s preference ranking is o2 � o1 � o3. In this case, agent i1 will obtain his �rst choice
14To further elaborate on the interpretation that agents may be indi¤erent between objects (See Footnote

13), incentive compatibility requires that an agent should rank an object at a higher spot than another if he
prefers former strictly more than the latter.
15See Abdulkadiro¼glu and Sönmez (1998), for example.
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o1 with probability 1
2
. If he doesn�t receive o1, he will receive o3 since one of the agents

rank o2 as a �rst choice, so o2 will be assigned to that agent in Step 1 and thus object o3 is

left to agent i1. Finally, with probability (1� p)2, both of the other agents rank objects as
o2 � o1 � o3. In this case agent i1 will receive o1 in Step 1 since he is the only one who

ranks this object as a �rst choice.

If agent i1 reports his preference as o2 � o1 � o3, by similar arguments his interim payo¤

will be

p2 (0:8) + 2p (1� p)
�
1

2
(0:8) +

1

2
(0)

�
+ (1� p)2

�
1

3
(1) +

1

3
(0:8) +

1

3
(0)

�
=
51

80

Hence, agent i1 with type (1; 0:8; 0) can gain from misreporting his preferences.

However, truthful reporting of preferences becomes an equilibrium under the Restricted

Ranking mechanism when preferences are symmetric and independent:

Proposition 1 Assume that each agent�s preference ranking over objects is independent of
other agents�rankings and each possible strict ranking is equally likely. Then, truth-telling

is an equilibrium under the Restricted Ranking mechanism.

Proof. See Appendix A.1.

Let�s again consider the above example to get an idea to see why truth-telling becomes

an equilibrium in the setting here. Note that in the example the rankings over objects are

not equally likely and agent i1 with type (o1 � o2 � o3) knows that other agents�rankings
over objects are highly likely to be o1 � o2 � o3, which is also his true ranking. Hence, agent
i1 with type (o1 � o2 � o3) can avoid this highly likely tie by reporting o2 � o1 � o3, which
allows him to obtain his second choice for sure. And, when his utility from his second choice

is not much lower than his utility from his top choice, as in the above example, he becomes

better o¤. However, under symmetry assumptions, this kind of situation does not arise since

every possible report of other agents is equally likely, which leads agents to report truthfully.

2.2 Welfare Comparison

Given these observations about agents�incentives under the Restricted Ranking mechanism

and the Random Serial Dictatorship mechanism, we compare these mechanisms in terms of

welfare of agents under truth-telling.16

16Note that we don�t impose truth-telling. It is an equilibrium play.
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We will say that mechanism A (strictly) interim dominates mechanism B if the interim

utility of any type of agent is (strictly) higher under mechanism A than under mechanism

B.17

Denote (P nk )
RR as the interim probability that an agent obtains his kth choice under the

Restricted Ranking mechanism when there are in total n agents and n objects and similarly

denote (P nk )
RSD as the interim probability that an agent obtains his kth choice under RSD

when the number of agents and objects is n.18

We �rst establish an asymptotic interim (�rst-order) stochastic dominance relation be-

tween two allocation mechanisms. The proof is relegated to the Appendix.

Lemma 1 For all K � 1,

lim
n!1

KX
k=1

(P nk )
RR > lim

n!1

KX
k=1

(P nk )
RSD

In words, for any K � 1, the interim probability of obtaining one of �rst K choices under

RR is strictly greater than that under RSD when the number of objects and agents is large

enough.

In fact, the interim probability of obtaining the �rst choice is always higher under RR.

It is easy to see this even without doing any computation.19 Under RR an agent, say agent

i1, compete for his top choice, say object o1, only with agents who also rank object o1 as

a �rst choice. Thus, if he is the luckiest among all such agents, that is, if he ranks above

all such agents in the random draw at the �rst step of RR, he gets his �rst choice. On the

other hand, under RSD, even if, as a result of the random draw, agent i1 ranks above all the

agents who rank object o1 as a �rst choice, it may be the case that another agent, say agent

i2, whose second choice is object o1 may get it before it�s agent i1�s turn since agent i2�s �rst

choice may have been assigned to an agent who ranks above i2 in the random order.

Although there is no such clear intuition to see the relation between the interim prob-

abilities of obtaining one of �rst K choices for a general K � 2, we show in the Appendix
by explicit calculations that the interim probability is higher under RR for any K for large

enough n.20

17Recall that the �interim stage�refers to the stage when each agent only knows his or her own type and
the interim utility is the expected utility calculated at the interim stage.
18Note that these probabilities don�t depend on the identity of agents or labels of objects since these

mechanisms treat identical agents/objects identically.
19For a formal proof of this claim, we refer the reader to the Appendix.
20Computer simulations show that, in fact, we don�t need a very large market for this. For K = 2, we
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We are now ready to state our main result. We will assume that there is a number M ,

which can be as large as possible, such that the number of desirable objects is at most M

for each agent. That is, each agent derives a positive utility from at most M objects and a

utility of 0 from the rest of the objects.21

Theorem 1 Assume that there is some number M such that the number of desirable objects

for each agent is at most M . Furthermore, assume that each agent�s ranking over objects is

independent of other agents�rankings and each possible strict ranking over the set of desirable

objects is equally likely. For su¢ ciently large n, the Restricted Ranking mechanism strictly

interim dominates the Random Serial Dictatorship mechanism.

Proof. The proof easily follows from the above Lemma. We refer the reader to the Appendix
for details.

Hence, better incentive properties of RSD comes with a huge welfare cost. There is

another mechanism that is better for any agent regardless of the preference intensities.

We next look at the problem of assigning students to schools and in a certain setting

, by observing that two widely used school choice mechanisms, the Deferred Acceptance

mechanism and the Boston mechanism, are equivalent to the object allocation mechanisms

studied in this section. Therefore, we obtain a similar welfare comparison result between the

two school choice mechanisms.

3 Implications about the School Choice Problem

Let�s consider the school choice problem, the problem of assigning students to schools. Dif-

ferent from assigning objects to agents, there are two-sided preferences in the school choice

problem. Students have preferences over schools, and schools have preferences/priorities over

students.

Before moving on, we �rst formally de�ne the school choice problem and two widely used

allocation methods, the Deferred Acceptance mechanism and the Boston mechanism.

3.1 The School Choice Problem

The school choice problem is one where a number of students are to be assigned to capacity

constrained schools. Each student has a strict preference ordering over schools and each

need n > 4, for K = 3, we need n > 6, for K = 4, we need n > 9, and so on.
21Of course, the set of desirable objects may di¤er among agents.
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school has a strict priority ordering, possibly determined by a lottery, over students.

Formally, we have a set of students I = fi1; :::; img ; a set of schools S = fs1; :::; sng,
where school s 2 S has qs � 1 available seats. Each student i has a strict preference pro�le
Pi = (Pi (1) ; :::; Pi (n)), and each school s has a strict priority list �s = (�s (1) ; :::; �s (m))

where for all j; k such that 1 � j < k � n, student i prefers school Pi (j) strictly more than
school Pi (k) and similarly, for each j; k such that 1 � j < k � m, student �s (j) has a higher
priority than student �s (k) at school s.

A matching is a function � : I ! S such that # fi 2 I : � (i) = sg � qs for all s; where
� (i) = s means that student i is assigned to school s:

A school choice mechanism is a procedure that constructs a matching for each school

choice problem. We again implicitly consider school choice mechanisms to be direct mecha-

nisms that ask students to report their preference pro�les and implement the corresponding

procedure given these reports and school priority lists.

We now describe two commonly used school choice mechanisms.

The Deferred Acceptance (DA) Mechanism

Step 1: Each student applies to his most preferred school. Each school tentatively accepts

students one at a time following the priority order over students until there is no seat available

or there is no other student applying to that school and rejects the remaining students, if

any.

For k � 2,

Step k: Students who were rejected in Step (k � 1) apply to their next preferred school.
Each school considers these students together with the students who were tentatively ac-

cepted in earlier steps and accepts students one at a time following the priority order over

students until there is no seat available or there is no other student applying to that school

and rejects the remaining students, if any.

The algorithm stops when there is no rejected student at some step. Students are assigned

to the �nal school that they were tentatively accepted.

The Boston Mechanism

Students report a strict ranking over schools, and given these rankings and the school

priorities over students, algorithm works as follows:

Step 1: Each student applies to his (reported) �rst choice. Each school accepts students

one at a time following the priority order over students until there is no seat available or

12



there is no other student applying to that school and rejects the remaining students, if any.

The number of available seats in each school is reduced by the number of students accepted

by that school.

In general, for k � 2,

Step k: Students who were rejected in Step (k � 1) apply to their k th choice. Seats of
each school, if available, are assigned to those students one at a time following the priority

order over students until there is no seat available at that school or there is no other student

applying to that school and the remaining students, if any, are rejected. The number of

available seats in each school is reduced by the number of students accepted by that school.

The algorithm stops when all seats of each school are �lled or there are no unassigned

students.

The main di¤erence between these two procedures is that under the Boston mechanism

each acceptance is �nal and immediate.22A student who ranks a school highly and gets

accepted at earlier steps no longer faces any the competition from later applicants. On the

other hand, each acceptance under the DA mechanism is tentative and the �nal matching is

settled only after the last step. Hence, a student who ranks a school highly and is tentatively

accepted still faces the competition with later applicants.

3.2 Welfare Comparison of School Choice Mechanisms

We again assume that agents�(students�, here) preferences are uncorrelated. More precisely,

each student�s ranking over schools is independent of others�rankings and each possible strict

ranking is (ex-ante) equally likely. Assume further that schools�preferences/priorities over

students are identical23 and each strict priority ranking over students is equally likely. Before

moving on, recall that DA is strategy-proof but the Boston mechanism is not. However,

when students�preferences and school priorities are as described, then truth-telling becomes

a Bayes-Nash equilibrium when the number of available seats are identical for each school.24

Therefore, we will compare these school choice mechanisms in terms of welfare of students

under truth-telling.

22Thus, the Boston mechanism may be justly called the �Immediate Acceptance�mechanism as is some-
times referred in the literature.
23We refer the reader to Introduction for comments about this assumption.
24The proof is very similar to the proof that truth-telling is an equilibrium under the Restricted Ranking

mechanism. Furthermore, Featherstone and Niederle (2013) also proves this for the Boston mechanism in a
similar setting.
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It is easy to observe that when each school has an identical ranking of students and each

school has one available seat, then for any ranking over students the Deferred Acceptance

mechanism yields the identical assignments with the Serial Dictatorship mechanism in which

the order of agents (students, here) is according to this identical ranking of schools.25 There-

fore, when each possible ranking over students is equally likely, the interim allocation under

DA is equivalent to the one under the Random Serial Dictatorship mechanism.26 Second,

we observe that the interim random allocation under the Boston mechanism is equivalent to

the one under the Restricted Ranking mechanism when each possible priority ranking over

students is equally likely. This is not as immediate but it can be easily seen as follows. Un-

der the Boston mechanism, a student competes only with students who applies to the same

school at the exact same step. And importantly, students applying to the same school at the

same step are all alike because the only information regarding a student�s rank in the priority

list at step k is that all these students are eliminated in the earlier steps, that is, eliminated

(k � 1) times, which only means that each student ranks below some (k � 1) students in the
school priority lists and there is no additional information obtained. That is, any possible

ranking over the students applying to a school at step k is still equally likely. Thus, at the

interim stage, the computations are as if there is a random draw among students competing

at step k as in the Restricted Ranking mechanism.27

Hence, our main result that RR interim dominates RSD implies that the Boston mech-

anism interim dominates the Deferred Acceptance mechanism in a large market. Thus,

Theorem 1 implies the following result:

Proposition 2 Assume that there is M such that the number of desirable schools is at most

M . Assume further that each student�s ranking over schools is independent of other students�

rankings and each possible ranking is equally likely. In addition, each school�s priority ranking

over students is identical and each possible ranking is equally likely. When each school has

one available seat, for su¢ ciently large n, the number of students and schools, the Boston

mechanism strictly interim dominates the Deferred Acceptance mechanism.

25See Balinski and Sönmez (1999), for example, for this equivalence.
26By interim allocation, we mean the random allocation that is computed before all the uncertainty are

resolved (except that each agent knows his own preference). That is, under DA, the school priorities are still
unknown to students and under RSD the random order is not realized yet.
27This is mostly due to the fact that di¤erent tie-breaking methods will yield the same (interim) random

allocations under the Boston mechanism, which can be seen by similar discussions as above. The same, on
the other hand, is not true for DA. See Abdulkadiro¼glu, Pathak, and Roth (2009), for example.
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4 Conclusion

This paper has studied allocation problems (the object allocation problem� with one-sided

preferences and the school choice problem� with two-sided preferences) where n � 2 objects
are to be allocated to n � 2 agents, and each agent is entitled to receive an object, in an

incomplete information setting in which each agent�s preference ranking is privately known.

We show that when each agent�s preference ranking over objects is independently drawn

from a uniform distribution, the celebrated RSD mechanism is dominated by another simple

mechanism, Restricted Ranking mechanism, in terms of welfare of agents in a very strong

manner. Regardless of the preference intensities of agents, each agent has a higher interim

utility under the Restricted Ranking mechanism in large markets. We also show that this

result has an implication about the welfare comparison of two widely-used school choice

mechanisms, the Boston mechanism and the Deferred Acceptance mechanism. Again in large

markets the Boston mechanism is shown to be welfare superior to the Deferred Acceptance

mechanism in the same strong manner when schools�priorities over students are identical

and each school has one available seat.

Although symmetric and independent preferences as in our paper are commonly used in

the literature in many mechanism design problems, it is admittedly restrictive. However,

it is important to understand how di¤erent allocation mechanisms perform in terms of wel-

fare when agents�preferences may di¤er, which is the case in this paper. We should note

that since our results yield strict dominance, the conclusions will still hold in close enough

settings. Nevertheless, it is of course desirable to obtain welfare comparison results when

preferences are allowed to be more general. Furthermore, especially in the school choice

context, it is limiting that each school has one available seat.28 Maybe more importantly, in

our setting the Boston mechanism is (Bayesian) incentive compatible, which eliminates the

mostly criticized strategic disadvantage of the Boston mechanism.29 Regardless, together

with the earlier results in the literature about the welfare comparison of these two school

mechanisms, we now have two occasions, one with minimum diversity in preferences and one

with maximum diversity in preferences, in which the Boston mechanism is welfare superior

to the DA mechanism that has recently replaced the Boston mechanism in many school

districts in the U.S. due to its better incentive properties. Of course, more work in more

general environments is needed to for policy recommendations. Although the discrete alloca-

28Although the computer simulations we run show that the same result holds when there are multiple
copies (seats), we are unable to prove this analytically but we hope that ours will be a �rst theoretical step
in this direction.
29And, of course, similarly for the Restricted Ranking mechanism.
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tion problems presented here become easily intractable in more general environments when

there is incomplete information, we hope that techniques and results of this paper will be

useful for further analysis.

A Appendix

A.1 Proof of Proposition 1 (Truth-telling under the Restricted

Ranking mechanism)

Assume that each agent�s preference ranking over objects is independent of other agents�

rankings and each possible ranking over objects is equally likely. We claim that truth-telling

is an equilibrium under the Restricted Ranking mechanism.

Let the set of agents be I = f1; :::;mg ; and the set of objects be O = fo1; :::; ong.
Each agent i�s preference pro�le be Ri = (Ri (1) ; :::; Ri (n)) where for all j; k such that

1 � j < k � n, agent i prefers object Ri (j) strictly more than object Ri (k) .
An (ordinal) allocation mechanism ' is an allocation rule ' (R) = ('i (R))i where

'i (R) =
�
'ji (R)

�
j=1;:::;n

such that for each j 2 f1; :::; ng

nX
i=1

'ji (R) = 1

and 'ji (R) 2 [0; 1] for all i and j where '
j
i (R) denotes the probability that agent i obtains

object oj when the reported ordinal preferences of agents are R.

We �rst present the following de�nition.

De�nition 1 An allocation mechanism is neutral i¤ for any R and for any permutation

� : O ! O over objects we have that

'i (R
�) = ('i (R))

�

where R� is the preference rankings of agents obtained from R according to permutation

� and ('i (R))
� is the allocation rule of agent i again obtained from 'i (R) according to

permutation �, that is, by changing the name of object oj to � (oj) for each j.

That is, an allocation mechanism is neutral i¤ the assignments do not depend on the

label of objects. If we relabel the objects, assignments change accordingly.
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We next note that when each ranking is equally likely, given that other agents report

their true preferences, the interim probability of obtaining some object only depends on the

ranking for that object under a neutral mechanism: Without loss of generality (W.l.o.g.),

consider agent i1 and consider two preference rankings

R�1 = (R
�
1 (1) ; :::; R

�
1 (k � 1) ; ok; R�1 (k + 1) ; :::; R�1 (n))

and

R��1 = (R
��
1 (1) ; :::; R

��
1 (k � 1) ; ok; R��1 (k + 1) ; :::; R��1 (n))

Note that although rankings for the other objects may be di¤erent in these preference rank-

ings, kth choice is object ok in both. We claim that the interim probability of obtaining

object ok is the same for both rankings given that other agents report their true rankings.

Let P'k (R1) be the interim probability that agent i1 obtains object ok when he reports

preference ranking is R1 and other agents report their true rankings. Hence,

P'k (P1) =
X

R�1=(R2;:::;Rm)

'k1 (R1; R�1) Pr (R�1)

where summation is over all the possible rankings of other agents.

Now, consider the permutation � over objects such that � (R�1 (j)) = R��1 (j) for all j.

Note that, due to neutrality, since � (ok) = ok; for any R�1 and �, we have that

'k1 (R
�
1; R�1) = '

k
1 (R

��
1 ; (R�1)

�) (1)

where (R�1)
� is obtained from R�1 by relabeling objects according to permutation �.

Now,

P'k (R
��
1 ) =

X
R�1=(R2;:::;Rm)

'k1 (R
��
1 ; R�1) Pr (R�1)

=
X

R�1=(R2;:::;Rm)

'k1 (R
��
1 ; (R�1)

�) Pr ((R�1)
�)

=
X

R�1=(R2;:::;Rm)

'k1 (R
�
1; R�1) Pr (R�1)

= P'k (R
�
1)

where third equality is due to (1) and the fact that Pr ((R�1)
�) = Pr (R�1) since each ranking
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over the objects is equally likely and independent of others�rankings.

Hence, we will characterize a neutral allocation mechanism ' by (P'k )
n
k=1, where P

'
k

denotes the interim probability that an agent obtains his (reported) kth ranked choice when

all the remaining agents report their true rankings under the mechanism '. Thus, truth-

telling is an equilibrium under a neutral allocation mechanism i¤ P'k is (weakly) decreasing

in k.

Note that the Ranking mechanism is trivially neutral. We now claim that the interim

probability that agent i1 obtains his (reported) kth ranked choice is decreasing in k when all

the remaining agents report their true rankings under the Restricted Ranking mechanism.

But, this is almost immediate. Consider any state (any preference report of other agents

and random draw when necessary) in which agent i1 obtains some object, say o1. Increasing

the rank of that object will also guarantee that agent i1 receives o1. Furthermore, there

may exist states such that agent i1 does not obtain an object but by increasing the rank for

that object agent i1 may obtain that object at that state. Hence, given the observation that

the interim probability of obtaining an object only depends on the rank for that object, the

interim probability can only (weakly) increase once an object is given a higher ranking.

Hence, truth-telling is an equilibrium under the Restricted Ranking mechanism.

A.2 Proof of Theorem 1

We prove Theorem 1 in several steps. We start with computing the interim probability of

obtaining kth choice under RSD.

Lemma 2 When there are n objects and n agents, for each k 2 f1; :::; ng, the interim
probability of obtaining kth ranked object under RSD, (P nk )

RSD, is:

(P nk )
RSD =

(n+ 1)

k (k + 1)n

Proof. We will simply use P nk instead of (P
n
k )
RSD when there is no danger of confusion.

Let�s compute P nk for each k � 1 and n � k.
Note that there is a recursive relation between two successive stages of RSD. At some

step, some agent obtains an object, and no other agent will be able to obtain that object

in later steps. Furthermore, the agent who obtained an object at that step will not get

any other object in later steps. Hence, that agent and the object assigned to him is out of

the problem at the beginning of the next step and we are in the isomorphic problem with
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one less agent and one less object. By using this observation, we will relate P nk to P
n�1
j ,

j = 1; 2; :::; (n� 1).
Consider an agent, say i1, and w.l.o.g., say his preference pro�le is such that his kth choice

is object ok for all k � 1: Let�s start with k = 1 and consider the probability that agent i1
obtains object o1 when the number of agents (including i1) and objects is n.

With probability 1
n
, i1 will be the �rst in the randomly drawn order and, thus, will get

his �rst choice, object o1. With probability n�1
n
some other agent will be chosen in the �rst

place. Wlog, say agent i2 has been chosen to be the �rst. If i2�s top choice is also o1, which

happens with probability 1
n
, i1 can not obtain object o1. With probability n�1

n
, i2�s �rst

choice is di¤erent from object o1. In that case, i2 will be assigned his favorite object, say o2,

and we will move to second step. Since one object, object o2, and one agent, agent i2, are

removed in the �rst step, at the beginning of the second step, we have (n� 1) agents and
(n� 1) objects and in that case the probability that i1 obtains object o1 is P n�11 . Hence,

P n1 =
1

n
� 1 + n� 1

n
�
�
1

n
� 0 + n� 1

n
P n�11

�
or, simply

P n1 =
1

n
+
n� 1
n

�
n� 1
n

P n�11

�
(2)

The claim of the Lemma for k = 1 is

P n1 =
n+ 1

2n

We will prove it by induction using (2). We now verify that if the claim of the Lemma is

true for (n� 1) ; then the claim is true for n:

P n1 =
1

n
+
n� 1
n

�
n� 1
n

P n�11

�
=

1

n
+
n� 1
n

�
n� 1
n

n

2 (n� 1)

�
=

1

n
+
n� 1
2n

=
n+ 1

2n

which is what we wanted to show.

Note also that P 11 = 1. (If there is only one agent, he will get his �rst choice for sure.)

That is, the claim is also true for n = 1 and hence by induction hypothesis, we have the

result.
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Similarly, consider the probability of his getting his kth choice, n � k � 2, when there

are n agents and n objects.

With probability 1
n
, agent i1 will be chosen in the �rst place and will get his �rst choice

in this case, which means that he won�t get his kth choice object for k � 2. With probability
n�1
n
, some other agent, say agent i2, will be chosen in the �rst place. If i2�s �rst choice is one

of i1�s top (k � 1)th choice, one of o1; ::; o(k�1), which happens with probability k�1
n
, object

ok becomes i1�s (k � 1)th choice among the remaining (n� 1) objects. And, with probability
1
n
, i2�s �rst choice is object ok. In this case, i2 will receive ok and hence i1 won�t be able to

get ok. With probability n�k
n
, agent i2�s top choice is di¤erent from one of i1�s top k choices.

That is, his top choice is from the set fok+1; :::; ong. In that case object ok remains to be
agent i1�s kth choice among the remaining (n� 1) objects. Therefore, for n � k � 2,

P nk =
n� 1
n

�
k � 1
n

P n�1k�1 +
n� k
n

P n�1k

�
It is easy to verify that for any k � 2; if the claim of the lemma is true for (n� 1), it is true
for n :

P nk =
n� 1
n

�
k � 1
n

P n�1k�1 +
n� k
n

P n�1k

�
=

n� 1
n

�
k � 1
n

n

k (k � 1) (n� 1) +
n� k
n

n

k (k + 1) (n� 1)

�
=

n� 1
n

�
1

k (n� 1) +
n� k

k (k + 1) (n� 1)

�
=

n� 1
n

�
n+ 1

k (k + 1) (n� 1)

�
=

(n+ 1)

k (k + 1)n

Note that P 22 = 1� P 21 = 1
4
since P n1 =

n+1
2n
by above and hence by induction we have that

P n2 =
n+1
6n
. Given this, P 33 = 1� P 31 � P 32 = 1� 2

3
� 2

9
= 1

9
and again by induction, we have
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that P n3 =
n+1
12n
: Continuing in this manner, for a general k � 2, we have

P kk = 1�
k�1X
j=1

P kj

= 1�
k�1X
j=1

k + 1

j (j + 1) k

= 1� k + 1
k

k�1X
j=1

�
1

j
� 1

j + 1

�
= 1� k + 1

k

�
k � 1
k

�
=
1

k2

and hence by induction we have that

P nk =
(n+ 1)

k (k + 1)n

which is the desired result.

Although we are able to explicitly calculate these probabilities for the RSD, unfortunately,

it is not easy to calculate the probabilities for each n and k under the Restricted Ranking

mechanism. One tractable case is when k = 1. That is, the probability of obtaining top

choice. Assume that there n agents and n objects. Consider an agent, say i1; and let�s

compute his probability of getting his �rst choice, again w.l.o.g. say his �rst choice is object

o1. There are (n� 1) remaining agents. Denote the number of agents (other than agent
i1) whose �rst choice is object o1 be j 2 f0; :::; n� 1g. The probability of agent i1 getting
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object o1 is 1
j+1

when there are j other agents whose �rst choice is o1. Hence,30

P n1 =

n�1X
j=0

�
n� 1
j

��
1

n

�j �
n� 1
n

�n�1�j �
1

j + 1

�

=
n�1X
j=0

�
n

j + 1

��
1

n

�j+1�
n� 1
n

�n�1�j
=

nX
j=1

�
n

j

��
1

n

�j �
n� 1
n

�n�j
=

"
nX
j=0

�
n

j

��
1

n

�j �
n� 1
n

�n�j#
�
�
n� 1
n

�n
= 1�

�
n� 1
n

�n
As a future reference note that P n1 ! 1� 1

e
as n!1: For k > 1, by computing average

number of objects assigned at each step, we compute the limit probabilities as n ! 1.
Before moving on, we make couple of observations regarding the computation.

Under the Restricted Ranking mechanism if an agent, say agent i1; obtains some object

in step k, this means that agent i1 obtains his kth choice. Furthermore, the number of

unassigned objects after the allocation has been made at Step k is equivalent to the number

of agents that should receive an object in later steps.

Note also that under the Restricted Ranking mechanism, for any object, an agent com-

petes only with agents who rank the object at the exact same rank. Thus, the probability

that an agent receives an object at some step when there are, say j, other agents rank that

object same and haven�t received an object at earlier steps is q
j+1

when j � q and 1 if j < q
where q is the number of objects unassigned in earlier steps.

These observations will be key in the computation below.

Note �nally that the probability of k �successes�out of N independent �trial�s when the

probability of success is p is given by the Binomial Distribution

b (k;N; p) =

�
N

k

�
pk (1� p)N�k

and in particular,

b (0;N; p) = (1� p)N

30Again, when there is no danger of confusion, we simply write (Pnk )
RR as Pnk .
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Assume that there are n agents and n objects:Wewant to compute the interim probability

of obtaining kth choice under the Restricted Ranking mechanism as n ! 1. We will do so
by computing the (average) number of agents obtaining an object at step k.

Step 1: Now, for any object, the probability that no agent ranks it as a �rst choice is

b

�
0;n;

1

n

�
=

�
1� 1

n

�n
=

�
n� 1
n

�n
Note that

rn1 =

�
n� 1
n

�n
! 1

e

as n!1. Call
q1 =

1

e

Hence, for any object, the probability that at least one agent ranks it as a �rst choice and

hence an agent obtains an object is 1 � rn1 . Therefore, in average there are nrn1 objects
unassigned in Step 1. In other words, n (1� rn1 ) agents gets their top choice. Hence, by
symmetry and there are n agents,

PRR1 ! 1� 1
e

as n!1.

Step 2: Now, in average there are nrn1 agents who haven�t obtained an object in Step 1
and hence nrn1 agents to be assigned in Step 2. For any object, the probability that there

is no agent (among the ones who haven�t been assigned an object in Step 1) who ranks this

object as a second choice

b

�
0;nrn1 ;

1

n� 1

�
=

�
n� 2
n� 1

�nrn1
since there are nrn1 agents and there are (n� 1) objects that an agent can rank as a second
choice.31

Let

rn2 =

�
n� 2
n� 1

�nrn1
31Note that nrn1 may not be an integer. We are making an abuse of notation here but we are interested

in the limit probabilities.
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and

q2 = lim
n!1

�
n� 2
n� 1

�nrn1
= exp (�q1)

Thus, there remains (in average) nrn1 r
n
2 objects that haven�t been assigned. In other

words, nrn1 (1� rn2 ) agents obtained an object in step 2. Hence, as n!1

PRR2 ! q1 (1� q2)

In general,

Step k: There are in average nrn1 :::r
n
k�1 agents active. For any object, the probability

that no agent ranks it as kth choice is

b

�
0;nrn1 :::r

n
k�1;

1

n� (k � 1)

�
=

�
n� k

n� k + 1

�nrn1 :::rnk�1

and n
�
k�1Q
s=1

rns

�
(1� rnk ) objects are assigned at step k where

rnk =

�
n� k

n� k + 1

�nrn1 :::rnk�1
Note that

qk = lim
n!1

�
n� k

n� k + 1

�nrn1 :::rnk�1
= exp (�q1:::qk�1)

hence, as n!1,

PRRk !
 
k�1Y
j=1

qj

!
(1� qk)

Just to see what these numbers look like, the table below shows the limit probabilities under

RR for 1 � k � 10 and the probabilities obtained by computer simulations for n = 25.32

32Simulations have been done as follows. We �x an agent, say agent i1, and randomly draw preference
rankings for other agents and check what object i1 receives. To get the numbers listed, we repeated this for
m = 500000 times and checked how many times i1 gets his �rst choice, second choice and so on.
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Furthermore, we also list the interim probabilities for RSD for n = 25.

k PRRk (n!1) (P 25k )
RR

(P 25k )
RSD

1 0.632121 0.6389 0.52

2 0.113233 0.1172 0.160256

3 0.057247 0.0600 0.08667

4 0.035362 0.0371 0.052

5 0.024239 0.0258 0.032051

6 0.017738 0.0190 0.024762

7 0.013583 0.0144 0.018571

8 0.010755 0.0117 0.013355

9 0.008738 0.0096 0.011556

10 0.007247 0.008 0.009455

We now turn back and prove Lemma 1, that is, we want to show

lim
n!1

KX
k=1

PBk > lim
n!1

KX
k=1

PDAk

for all K � 1.

To do so, let�s consider the limit probabilities. ((P nk )
RR and (P nk )

RSD for each k as

n ! 1) We will make an abuse of notation and denote the limit probabilities PRRk and

PRSDk when there is no confusion: First, by Lemma 2 we have that for all k � 1

(P nk )
RSD =

n+ 1

k (k + 1)n

Thus, in the limit,

PRSDk =
1

k (k + 1)

Recall that

PRRk =

 
k�1Y
j=1

qj

!
(1� qk)

where

q1 =
1

e
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and

qk = exp

 
�
k�1Y
s=1

qs

!
for all k � 2.
Given these, we prove Lemma 1. That is, we want to show that for all K � 1

lim
n!1

KX
k=1

(P nk )
RR > lim

n!1

KX
k=1

(P nk )
RSD

The proof goes as follows:

Now

PRRk =

 
k�1Y
j=1

qj

!
(1� qk)

Hence,

KX
k=1

PRRk =
KX
k=1

q1:::qk�1 (1� qk)

= (1� q1) + q1 (1� q2) + q1q2 (1� q3) + :::+ q1:::qK�1 (1� qK)
= 1� q1q2:::qK�1qK

and we know that

(P nk )
RSD =

n+ 1

k (k + 1)n

Hence, the limit probability is

PRSDk =
1

k (k + 1)

Thus,

KX
k=1

PRSDk =
KX
k=1

1

k (k + 1)

=

KX
k=1

�
1

k
� 1

k + 1

�
= 1� 1

K + 1
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We, now, claim that

1� q1q2:::qK�1qK > 1�
1

K + 1

That is, we want to show that

q1q2:::qK�1qK <
1

K + 1

Let us de�ne

rK = ln qK

for each K � 1. Now,

rK+1 = ln qK+1 = ln (exp (�q1:::qK)) = �q1:::qK

and

rK = ln qK = ln (exp (�q1:::qK�1)) = �q1:::qK�1

=)

rK+1 = rK � qK
= rK � erK

By de�nition

q1q2:::qK�1qK = � ln (qK+1)

Thus, we want to show that for all K � 1

� ln (qK+1) <
1

K + 1

or for all K � 2
rK > �

1

K

We prove this by induction. The claim is true for K = 2:

r1 = ln q1 = �1

r2 = �e�1 = �
1

e
> �1

2
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Assume that the claim is true for K = n, we want to verify the relation for n+1. Note that

rn+1 = f (rn)

where

f (x) = xex

Note that

f 0 (x) = ex + xex � 0

for x � �1. Now,
rn+1 = f

�
� 1
n

�
= � 1

n
e�

1
n (3)

We want to show that

rn+1 > �
1

n+ 1

We claim that

e�
1
n <

n

n+ 1

or equivalently

e
1
n >

n+ 1

n
= 1 +

1

n

De�ne

h (x) = ex � x� 1

h0 (x) = ex � 1 > 0

for x > 0: Furthermore,

h (0) = 0

Hence, for all n > 1,

h

�
1

n

�
> 0

Thus,

e�
1
n <

n

n+ 1

Therefore,

rn+1 = f (rn) � f
�
� 1
n

�
= � 1

n
e�

1
n > � 1

n+ 1
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where the weak inequality comes from the fact that f is increasing together with the induction

hypothesis and strict inequality from (3). Hence, we have

KX
k=1

PRRk >

KX
k=1

PRSDk

which is the desired result.

Now, we are ready to prove Theorem 1:

Given M , the number of desirable objects, we know that we can �nd large enough N

such that for n > N
KX
k=1

(P nk )
RR >

KX
k=1

(P nk )
RSD

for all K �M .
Take some n > N . Take any agent and assume without loss of generality that his

preference is such that he derives a utility vnk from object ok with vnj > vnk > 0 for each

j < k < M and vnk = 0 for k > M . We want to show that

nX
k=1

(P nk )
RR vnk >

nX
k=1

(P nk )
RSD vnk

Now,

nX
k=1

(P nk )
RR vnk

= (P n1 )
RR (vn1 � vn2 ) +

�
(P n1 )

RR + (P n2 )
RR
�
(vn2 � vn3 ) + :::+�

(P n1 )
RR + :::+

�
P nn�1

�RR� �
vnn�1 � vnn

�
+
�
(P n1 )

RR + :::+ (P nn )
RR
�
vnn

= vnn +
n�1X
k=1

�
(P n1 )

RR + :::+ (P nk )
RR
� �
vnk � vnk+1

�
since (P n1 )

RR + :::+ (P nn )
RR = 1. Similarly,

nX
k=1

(P nk )
RSD vnk

= vnn +
n�1X
k=1

�
(P n1 )

RSD + :::+ (P nk )
RSD

� �
vnk � vnk+1

�
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Thus,

nX
k=1

�
(P nk )

RR � (P nk )
RSD

�
vnk

=

n�1X
k=1

h�
(P n1 )

RR + :::+ (P nk )
RR
�
�
�
(P n1 )

RSD + :::+ (P nk )
RSD

�i �
vnk � vnk+1

�
=

MX
k=1

h�
(P n1 )

RR + :::+ (P nk )
RR
�
�
�
(P n1 )

RSD + :::+ (P nk )
RSD

�i �
vnk � vnk+1

�
> 0

since for n > N ,
�
(P n1 )

RR + :::+ (P nk )
RR
�
>
�
(P n1 )

RSD + :::+ (P nk )
RSD

�
and vnk > v

n
k+1 for

each k �M and vnk = 0 for all k > M . This is what we wanted to show.
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