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1 Introduction

It is not legal, fair or practical to use monetary transfers in many real-life allocation prob-
lems. University housing assignment, office allocation, and student placement into public
schools are notable examples among many others. In this paper, we consider the problem of
allocating n indivisible objects to n agents, where each agent is entitled to receive exactly one
object, when monetary transfers cannot be used and compare different allocation methods
in terms of welfare of agents when there is incomplete information about agents’ preferences.

The Random Serial Dictatorship (RSD) mechanism (sometimes referred to as the Ran-
dom Priority (RP) mechanism) is one of the most popular allocation methods. Under RSD,
first an order over agents is drawn uniformly at random and, by following this order, the
first agent is assigned his most preferred object, the second agent is assigned his most pre-
ferred object among the remaining ones, and so on. RSD is a straightforward method with
its transparent and easy to implement rules. More importantly, RSD has strong incentive
properties. More precisely, RSD is strategy-proof, that is, truth-telling is a weakly dominant
strategy. Furthermore, RSD yields the same random allocation with the core (competitive
allocation) from random endowments—endowment matchings drawn from uniform distrib-
ution. (See Abdulkadiroglu and Stnmez (1998).) These support the wide use of RSD in
practical applications.

We consider another simple allocation method, the Restricted Ranking (RR) mechanism. !
We begin by informally describing the workings of this method for which a more detailed and
formal explanation will be given later in Section 2. Under RR, each agent reports a strict
ranking over objects and in the first step, each object is allocated to an agent who ranks it as
a first choice if there is any such agent. If there are more than one agent who ranks an object
as a first choice, a random draw among these agents determines who gets that object. The
objects that are allocated and the agents who received an object in the first step are removed
and the remaining objects and agents are carried to the next step. In the second step, each
available object is allocated to an agent who ranks it as a second choice if there is any such
agent in this step, and again randomly when necessary. Similarly, the unassigned objects

and the agents who didn’t receive an object in the second step are carried to the third step,

!This mechanism is inspired by the Ranking mechanism (Pesendorfer (2000)) which is identical to the
“Restricted” Ranking (RR) mechanism except that RR impose that each agent should get only one object
whereas the Ranking mechanism does not restrict the number of objects an agent can get. RR is also similar
to the Boston mechanism, a widely-used allocation method in the school choice context, as will be discussed.
Since the Boston mechanism is applied in problems with two-sided preferences and defined as a dynamic
procedure, we prefer to call the mentioned mechanism as “Restricted Ranking” mechanism.



and we move on in this fashion. As an example, suppose three objects, {01, 02,03}, will be
allocated to three agents, {i1,is,i3}. Assume that agents’ reported preference rankings are
as follows. Agent i; ranks objects as 01 > 0o > 03, agent iy ranks as 0, > 03 > 09, and agent
13 ranks as o3 > 0y > 01. Consider object 0;. Both i; and i, rank it as a first choice. Hence,
object o, will be given to either i; or i by a fair coin toss. Without loss, let’s say agent i,
receives 0;. There is no one who ranks object oy as a first choice and i3 is the only agent who
ranks object o3 as a first choice, so i3 gets object o3. Thus, object 0o remains unassigned in
the first step and is carried to the next step. In the second step, the only available object is
09, and it will be assigned to agent i5, who didn’t receive an object in the first step and who
ranks o0y as a second choice. Thus, all the objects are allocated, and each agent receives one
object.

We consider a setting in which each agent has a strict preference ranking which is privately
known. We assume that each agent’s ranking over objects is independent of others’ rankings
and drawn from a uniform distribution over the set of all possible rankings, that is, each
possible ranking is equally likely. In this setting, we show that RR is welfare superior to
RSD in a very strong manner in large allocation problems. More precisely, our main result
is:2

When the number of objects and agents is sufficiently large, every type of every

agent has a strictly higher interim utility under the Restricted Ranking mechanism

than under the Random Serial Dictatorship mechanism.?

To prove the result, we first establish an asymptotic interim (first-order) stochastic domi-
nance relation. Precisely, we show that for each K > 1, the interim probability of obtaining
one of first K choices under RR is strictly greater than that under RSD when n, the number
of objects and agents, is large enough. We then show that this asymptotic stochastic domi-
nance easily implies that for sufficiently large n, every type of every agent has a higher interim
utility under RR regardless of the preference intensities. Hence, strong incentive properties
of RSD comes with a huge welfare cost even compare to another allocation method.

The welfare deficiency of RSD has also been demonstrated earlier by Bogomolnaia and
Moulin (BM) (2001). They present an example with four objects and four agents with a

set of preference profiles in which another random allocation is unambiguously better than

2Precise statement is presented as Theorem 1, below.

3The interim stage refers to the stage in which each agent knows his/her own preference but not others’
preferences. Hence, the interim utility is the expected utility, where expectation is over the preferences of
other agents.



RSD for each agent. Manea (2009) shows that instances of such inefficiency of RSD are in
fact prevalent in large allocation problems. In particular, he shows that as the number of
objects increases, the fraction of preference profiles for which this kind of inefficiency does
not arise vanishes. Noting the inefficiency of RSD, BM define a new allocation method, the
Probabilistic Serial (PS) Mechanism, which is based on an algorithm in which agents “eat”
probability shares of available objects and show that PS is ordinally efficient in that it cannot
be (first-order) stochastically dominated by another random allocation.* Note that our result
not only exhibits the welfare deficiency of RSD but also explicitly finds a mechanism that
dominates RSD. Furthermore, these previous results have been established under complete
information whereas our result is obtained in a setting where there is incomplete information
about preferences.

Our result about the object allocation problem where there is only one-sided preference
also has an implication about a debated comparison in the school choice context where there
are two-sided preferences.” There are two widely used mechanisms for assigning students
to schools: the well-known Deferred Acceptance (DA) mechanism® and the so-called Boston
mechanism. Our main result for object allocation problem implies the following welfare
comparison result for these school choice mechanisms.

We assume that each student’s ranking over schools is independent of others’ rankings
and each possible strict ranking is equally likely. Furthermore, assume that all the schools
have identical priorities over students, say, because they all rank students according to some
test score,” and each possible ranking over students is equally likely. Then, when each school

has one available seat, our main result implies:®

When the number of students and schools is sufficiently large, every type of every
student has a strictly higher interim utility under the Boston mechanism than

under the Deferred Acceptance mechanism.

The Deferred Acceptance and the Boston mechanisms have been the predominant allo-
cation methods in many school districts in U.S. Given the widespread use, there have been

a huge literature analyzing these mechanisms and trying to figure out which one is “bet-

w2

ter”. Earlier work compared these two school choice mechanisms mostly in terms of their

4Che and Kojima (2010) show that in a large economy with many copies of objects, PS and RSD are
asymptotically equivalent. Hence, the inefficiency of RSD becomes small in large markets.

SStudents have preferences over schools, and schools have priorities/preferences over students.

6Student Proposing Gale-Shapley Algorithm (Gale&Shapley(1962)).

"We elaborate more on this assumption later in this section.

8Precise statement will be given below as Proposition 2.
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incentive properties. The DA mechanism has been favored on these grounds since truth-
ful reporting of preferences by students is a weakly dominant strategy under the DA. (See
Dubins and Friedman (1981), Roth (1982).) The Boston mechanism, on the other hand,
is known to be vulnerable to strategic manipulation. Students may gain from misreporting
their preferences under the Boston mechanism (See Abdulkadiroglu and Sénmez (2003).).°
Furthermore, when school preferences are strict, the DA mechanism produces the student
optimal stable outcome. On the other hand, as Ergin and Sénmez (2006) show, any stable
matching can be obtained in a Nash equilibrium of the Boston mechanism under complete
information.

The welfare comparison of these two school choice mechanisms, until very recently, has
been studied under complete information when student preferences and school priorities are
commonly known. Ergin and Sténmez (2006) show that the DA mechanism is welfare superior
to the Boston mechanism under complete information.!® Again, in a complete information
environment, Chen and Sénmez (2006) provide experimental evidence that DA is better
in terms of welfare. There is a recent line of literature that compares these mechanisms
under incomplete information. Abdulkadiroglu, Che and Yasuda (2011) (henceforth, ACY)
compare these two mechanisms in terms of welfare under incomplete information but in a very
special case. They show that when students’ ordinal rankings are identical,'' and schools have
no priorities, the Boston mechanism interim dominates the Deferred Acceptance mechanism,
that is, each student’s interim payoff is weakly higher under the Boston mechanism in this
special case. Troyan (2012), allowing for more general priority structures for schools but still
assuming that students’ ordinal preferences are identical, shows that the Boston mechanism is
ex-ante welfare superior to the DA mechanism. In another work, Featherstone and Niederle
(2013) provide experimental evidence that the Boston mechanism may dominate the DA
mechanism in terms of ex-ante welfare and, in addition, truth-telling rates are almost the
same when the preferences are uncorrelated. When there is a continuum of students, Miralles
(2009) shows that the DA mechanism performs poorly when all students have the same
ordinal rankings.

Here we step away from the restrictive assumption that students have the same ordinal

rankings over schools. Instead, we consider a polar opposite case: students’ preferences

9Tn our setting with symmetric and independent preferences, however, the Boston mechanism is (Bayesian)
incentive compatible, as will be discussed.

10They also show via an example that when students have private information about their preferences,
this result does not hold and some type of students have higher utility under the Boston mechanism.

' That is, each student’s ranking over schools is the same. For example, school s; is the first choice of
every student, school s, is the second choice of every student and so on.



are independently distributed and each ordinal ranking over schools is ex-ante equally likely.
Under this assumption, the problem becomes significantly different from the ones where each
student’s ranking over schools is identical. For example, when all students have the same
ranking and schools have no priorities over students, as in ACY, the DA mechanism becomes
a trivial random assignment. More precisely, each student is assigned to each school with
equal probabilities. This is a crucial simplification which enables the welfare comparison
result in ACY. However, when students’ ordinal rankings may differ from one another as in
this paper, the equivalence of DA to random assignment no longer holds.

We now elaborate more on the assumption that schools have identical preferences (or,
priorities) over students. In many countries—for instance, China, Iran, Japan and Turkey—
students take centralized tests and the scores on these are the sole determinant of school
priorities. In other systems, schools do not have a preference over students per se, and
a central lottery is used to assign priorities to students. The manner in which schools’
preferences are determined has implications about what students know when they submit
their preferences. In the test score interpretation, it is reasonable to assume that each
student knows how he or she is ranked by the schools when submitting preferences. In the
lottery interpretation, however, a student does not know his or her priority when submitting
preferences. Our comparison result, however, is not sensitive to the two specifications—the
result that the Boston mechanism yields a higher interim welfare than the DA mechanism
holds in both cases.?

The rest of the paper is organized as follows. We first present the environment and
the main result for the object allocation problem. Then, we formally describe the above-
mentioned student assignment mechanisms, the Boston mechanism and the DA mechanism,
and state the result about the welfare comparison of these. Then, we conclude. The proofs

that are missing in the main body are relegated to Appendix.

2 The Model

Assume that there are n agents, Z = {4y, ....,i,}, and n objects, O = {o1,...,0,}, n > 2.

Each agent has a strict ranking over objects'®, and this is privately known. We assume that

12From now on, unless otherwise stated, we will focus on the lottery interpretation so that students don’t
know the priorities when reporting preferences.

13Indeed, this can also be interpreted as if agents may be indifferent between the objects, but they break
ties at random when reporting a strict ranking to run the mechanisms. Thus, we allow, for example, that
an agent does not find all objects desirable and derives positive utility only from some objects and a utility
of 0 from some (possibly multiple) objects.



each agent’s ranking over objects is independent of other agents’ rankings and each possible
strict ranking is equally likely.
We first describe two allocation methods, namely the Random Serial Dictatorship mech-

anism and the Restricted Ranking mechanism.

First, each agent reports a strict ranking over objects (which, of course, may or may not
be the true ranking) and given the reports, these mechanisms allocate objects to agents as

follows.
The Random Serial Dictatorship mechanism

Given a strict order over agents, T = (my, ..., 7T,), where 7; denotes the agent in the "

rank of this order,
Step 1: Agent 7y is assigned his favorite object.
For k > 2,

Step k: Agent my is assigned his favorite object among the ones that haven’t been assigned
in Step 1,..., Step (k — 1).

This method is called The Serial Dictatorship Mechanism. When the order over agents
is determined by a random draw from a uniform distribution over the set of all agents, it is

called The Random Serial Dictatorship Mechanism.
The Restricted Ranking mechanism

Step 1. For each object, consider agents who rank this object as a first choice, if any. If
there is exactly one such agent, assign the object to this agent. If the number of such agents
is more than one, determine the agent who gets the object according to a random draw
among these agents. If there is an object that hasn’t been allocated, or an agent who hasn’t

received an object, then move to Step 2. Otherwise, stop.

For k > 2,

Step k. For each object that hasn’t been allocated in earlier step(s), consider agents who
rank this object as a ¥" choice among those who haven’t obtained an object in earlier step(s).
Again, allocate objects among these agents, and randomly when necessary. If there is an

object that hasn’t been allocated, or an agent who hasn’t received an object, then move to
Step (k + 1). Otherwise, stop.

Note that the algorithm will stop at step &£ = n or before.
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2.1 Incentive Compatibility

We first investigate agents’ incentives for truthful reporting under these mechanisms.

We say that a mechanism is (Bayesian) incentive compatible if truthful reporting of
preference rankings is a Bayes-Nash equilibrium.!4

First, it is easy to see, and as is well known, the Random Serial Dictatorship mechanism
is strategy-proof, that is, truthful reporting of preferences is a weakly dominant strategy, and
hence (Bayesian) incentive compatible.’® On the other hand, in general, truthful reporting
may not be an equilibrium under the Restricted Ranking mechanism. We now present an
example to illustrate how an agent can become better off by manipulating his preference list

under RR.

Example 1 There are three agents {iy,i2,i3} and three objects {01,02,03}. Assume that
each agent’s type(ranking over objects) is independently drawn from the following distribu-

tion.

3
Pr(o; > 09 = 03) = pz:l

Pl"(02>-01>-03) = 1—-p=

Without loss, let’s consider agent i1. Assume that iy derives a utility of 1 from his top choice,
utility of 0.8 from his second choice and utility of O from his third choice.

Assume that 15 and i3 report truthfully and let’s check whether it is a best response for iy to
report truthfully.

Consider i, with type 01 = 0y = 03. If he reports truthfully, that is, if he reports his ranking

as 01 > 09 > 03, his interim payoff will be

47

p2<1(1)+1(0.8)+%(0))+2p(1—p)(1(1)+1 ~ 80

: 30+ 50)) + 1=

This is due to the following observations. With probability p* both of the other agents’

preferences are also 01 = 09 = 03, and hence agent iy, will receive each object with probability

%. With probability 2p (1 — p), one of the other agent’s ranking is o, = o9 = 03 and the

other’s preference ranking is oo > o1 > o03. In this case, agent iy will obtain his first choice

14To further elaborate on the interpretation that agents may be indifferent between objects (See Footnote
13), incentive compatibility requires that an agent should rank an object at a higher spot than another if he
prefers former strictly more than the latter.

15See Abdulkadiroglu and Sonmez (1998), for example.
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01 with probability % If he doesn’t receive oy, he will receive o3 since one of the agents
rank os as a first choice, so oo will be assigned to that agent in Step 1 and thus object o3 is
left to agent iy. Finally, with probability (1 — p)z, both of the other agents rank objects as
09 = 01 = 03. In this case agent i, will receive oy in Step 1 since he is the only one who

ranks this object as a first choice.

If agent iy reports his preference as oo > 01 > o3, by similar arguments his interim payoff

will be

7 08) +2(1-) (5081 50) + 0= (304 508+ 300) = 5

Hence, agent iy with type (1,0.8,0) can gain from misreporting his preferences.

However, truthful reporting of preferences becomes an equilibrium under the Restricted

Ranking mechanism when preferences are symmetric and independent:

Proposition 1 Assume that each agent’s preference ranking over objects is independent of
other agents’ rankings and each possible strict ranking is equally likely. Then, truth-telling

18 an equilibrium under the Restricted Ranking mechanism.

Proof. See Appendix A.1. =

Let’s again consider the above example to get an idea to see why truth-telling becomes
an equilibrium in the setting here. Note that in the example the rankings over objects are
not equally likely and agent i; with type (01 > 02 > 03) knows that other agents’ rankings
over objects are highly likely to be o1 > 0o > 03, which is also his true ranking. Hence, agent
i1 with type (01 = 02 = 03) can avoid this highly likely tie by reporting os > 01 > 03, which
allows him to obtain his second choice for sure. And, when his utility from his second choice
is not much lower than his utility from his top choice, as in the above example, he becomes
better off. However, under symmetry assumptions, this kind of situation does not arise since

every possible report of other agents is equally likely, which leads agents to report truthfully.

2.2 Welfare Comparison

Given these observations about agents’ incentives under the Restricted Ranking mechanism
and the Random Serial Dictatorship mechanism, we compare these mechanisms in terms of

welfare of agents under truth-telling.'6

16Note that we don’t impose truth-telling. It is an equilibrium play.
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We will say that mechanism A (strictly) interim dominates mechanism B if the interim
utility of any type of agent is (strictly) higher under mechanism A than under mechanism
BT

Denote (Pl?)RR as the interim probability that an agent obtains his k%" choice under the
Restricted Ranking mechanism when there are in total n agents and n objects and similarly
denote (P,?)RSD as the interim probability that an agent obtains his k%" choice under RSD
when the number of agents and objects is n.'®
We first establish an asymptotic interim (first-order) stochastic dominance relation be-

tween two allocation mechanisms. The proof is relegated to the Appendix.

Lemma 1 For all K > 1,

K K
dim, > (B> Jim D (P
k=1 k=1

In words, for any K > 1, the interim probability of obtaining one of first K choices under
RR is strictly greater than that under RSD when the number of objects and agents is large
enough.

In fact, the interim probability of obtaining the first choice is always higher under RR.
It is easy to see this even without doing any computation.! Under RR an agent, say agent
11, compete for his top choice, say object o1, only with agents who also rank object o, as
a first choice. Thus, if he is the luckiest among all such agents, that is, if he ranks above
all such agents in the random draw at the first step of RR, he gets his first choice. On the
other hand, under RSD, even if, as a result of the random draw, agent ¢; ranks above all the
agents who rank object 0, as a first choice, it may be the case that another agent, say agent
19, whose second choice is object 0; may get it before it’s agent i;’s turn since agent i5’s first
choice may have been assigned to an agent who ranks above i3 in the random order.

Although there is no such clear intuition to see the relation between the interim prob-
abilities of obtaining one of first K choices for a general K > 2, we show in the Appendix
by explicit calculations that the interim probability is higher under RR for any K for large

enough n.2°

1TRecall that the “interim stage” refers to the stage when each agent only knows his or her own type and
the interim utility is the expected utility calculated at the interim stage.

18Note that these probabilities don’t depend on the identity of agents or labels of objects since these
mechanisms treat identical agents/objects identically.

Y For a formal proof of this claim, we refer the reader to the Appendix.

20Computer simulations show that, in fact, we don’t need a very large market for this. For K = 2, we
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We are now ready to state our main result. We will assume that there is a number M,
which can be as large as possible, such that the number of desirable objects is at most M
for each agent. That is, each agent derives a positive utility from at most M objects and a
utility of 0 from the rest of the objects.?!

Theorem 1 Assume that there is some number M such that the number of desirable objects
for each agent is at most M. Furthermore, assume that each agent’s ranking over objects is
independent of other agents’ rankings and each possible strict ranking over the set of desirable
objects is equally likely. For sufficiently large n, the Restricted Ranking mechanism strictly

interim dominates the Random Serial Dictatorship mechanism.

Proof. The proof easily follows from the above Lemma. We refer the reader to the Appendix
for details. m

Hence, better incentive properties of RSD comes with a huge welfare cost. There is
another mechanism that is better for any agent regardless of the preference intensities.

We next look at the problem of assigning students to schools and in a certain setting
, by observing that two widely used school choice mechanisms, the Deferred Acceptance
mechanism and the Boston mechanism, are equivalent to the object allocation mechanisms
studied in this section. Therefore, we obtain a similar welfare comparison result between the

two school choice mechanisms.

3 Implications about the School Choice Problem

Let’s consider the school choice problem, the problem of assigning students to schools. Dif-
ferent from assigning objects to agents, there are two-sided preferences in the school choice
problem. Students have preferences over schools, and schools have preferences/priorities over
students.

Before moving on, we first formally define the school choice problem and two widely used

allocation methods, the Deferred Acceptance mechanism and the Boston mechanism.

3.1 The School Choice Problem

The school choice problem is one where a number of students are to be assigned to capacity

constrained schools. Each student has a strict preference ordering over schools and each

need n > 4, for K = 3, we need n > 6, for K = 4, we need n > 9, and so on.
2LOf course, the set of desirable objects may differ among agents.
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school has a strict priority ordering, possibly determined by a lottery, over students.

Formally, we have a set of students Z = {iy,...,4%,,}, a set of schools S = {s1,...,s,},
where school s € § has ¢, > 1 available seats. Each student ¢ has a strict preference profile
P, = (P, (1),..., P (n)), and each school s has a strict priority list 7; = (75 (1), ..., 75 (m))
where for all j, k such that 1 < j < k < n, student ¢ prefers school P, (j) strictly more than
school P; (k) and similarly, for each j, k such that 1 < j < k < m, student 7 (j) has a higher
priority than student 7, (k) at school s.

A matching is a function p: Z — S such that # {i € 7 : pu (i) = s} < ¢, for all s, where
i (i) = s means that student i is assigned to school s.

A school choice mechanism is a procedure that constructs a matching for each school
choice problem. We again implicitly consider school choice mechanisms to be direct mecha-
nisms that ask students to report their preference profiles and implement the corresponding

procedure given these reports and school priority lists.

We now describe two commonly used school choice mechanisms.
The Deferred Acceptance (DA) Mechanism

Step 1: Each student applies to his most preferred school. Each school tentatively accepts
students one at a time following the priority order over students until there is no seat available
or there is no other student applying to that school and rejects the remaining students, if
any.

For k > 2,

Step k: Students who were rejected in Step (k — 1) apply to their next preferred school.
Each school considers these students together with the students who were tentatively ac-
cepted in earlier steps and accepts students one at a time following the priority order over

students until there is no seat available or there is no other student applying to that school

and rejects the remaining students, if any.

The algorithm stops when there is no rejected student at some step. Students are assigned

to the final school that they were tentatively accepted.

The Boston Mechanism

Students report a strict ranking over schools, and given these rankings and the school

priorities over students, algorithm works as follows:

Step 1: Each student applies to his (reported) first choice. Each school accepts students

one at a time following the priority order over students until there is no seat available or

12



there is no other student applying to that school and rejects the remaining students, if any.
The number of available seats in each school is reduced by the number of students accepted
by that school.

In general, for k > 2,

Step k: Students who were rejected in Step (k — 1) apply to their &k choice. Seats of
each school, if available, are assigned to those students one at a time following the priority
order over students until there is no seat available at that school or there is no other student
applying to that school and the remaining students, if any, are rejected. The number of

available seats in each school is reduced by the number of students accepted by that school.

The algorithm stops when all seats of each school are filled or there are no unassigned

students.

The main difference between these two procedures is that under the Boston mechanism
each acceptance is final and immediate.?? A student who ranks a school highly and gets
accepted at earlier steps no longer faces any the competition from later applicants. On the
other hand, each acceptance under the DA mechanism is tentative and the final matching is
settled only after the last step. Hence, a student who ranks a school highly and is tentatively

accepted still faces the competition with later applicants.

3.2 Welfare Comparison of School Choice Mechanisms

We again assume that agents’ (students’, here) preferences are uncorrelated. More precisely,
each student’s ranking over schools is independent of others’ rankings and each possible strict
ranking is (ex-ante) equally likely. Assume further that schools’ preferences/priorities over

123 and each strict priority ranking over students is equally likely. Before

students are identica
moving on, recall that DA is strategy-proof but the Boston mechanism is not. However,
when students’ preferences and school priorities are as described, then truth-telling becomes
a Bayes-Nash equilibrium when the number of available seats are identical for each school.?*
Therefore, we will compare these school choice mechanisms in terms of welfare of students

under truth-telling.

22Thus, the Boston mechanism may be justly called the “Immediate Acceptance” mechanism as is some-
times referred in the literature.

23We refer the reader to Introduction for comments about this assumption.

24The proof is very similar to the proof that truth-telling is an equilibrium under the Restricted Ranking
mechanism. Furthermore, Featherstone and Niederle (2013) also proves this for the Boston mechanism in a
similar setting.
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It is easy to observe that when each school has an identical ranking of students and each
school has one available seat, then for any ranking over students the Deferred Acceptance
mechanism yields the identical assignments with the Serial Dictatorship mechanism in which
the order of agents (students, here) is according to this identical ranking of schools.?” There-
fore, when each possible ranking over students is equally likely, the interim allocation under
DA is equivalent to the one under the Random Serial Dictatorship mechanism.?® Second,
we observe that the interim random allocation under the Boston mechanism is equivalent to
the one under the Restricted Ranking mechanism when each possible priority ranking over
students is equally likely. This is not as immediate but it can be easily seen as follows. Un-
der the Boston mechanism, a student competes only with students who applies to the same
school at the exact same step. And importantly, students applying to the same school at the
same step are all alike because the only information regarding a student’s rank in the priority
list at step k is that all these students are eliminated in the earlier steps, that is, eliminated
(k — 1) times, which only means that each student ranks below some (k — 1) students in the
school priority lists and there is no additional information obtained. That is, any possible
ranking over the students applying to a school at step k is still equally likely. Thus, at the
interim stage, the computations are as if there is a random draw among students competing
at step k as in the Restricted Ranking mechanism.?”

Hence, our main result that RR interim dominates RSD implies that the Boston mech-
anism interim dominates the Deferred Acceptance mechanism in a large market. Thus,

Theorem 1 implies the following result:

Proposition 2 Assume that there is M such that the number of desirable schools is at most
M. Assume further that each student’s ranking over schools is independent of other students’
rankings and each possible ranking is equally likely. In addition, each school’s priority ranking
over students is identical and each possible ranking is equally likely. When each school has
one available seat, for sufficiently large n, the number of students and schools, the Boston

mechanism strictly interim dominates the Deferred Acceptance mechanism.

25See Balinski and Sénmez (1999), for example, for this equivalence.

26By interim allocation, we mean the random allocation that is computed before all the uncertainty are
resolved (except that each agent knows his own preference). That is, under DA, the school priorities are still
unknown to students and under RSD the random order is not realized yet.

2TThis is mostly due to the fact that different tie-breaking methods will yield the same (interim) random
allocations under the Boston mechanism, which can be seen by similar discussions as above. The same, on
the other hand, is not true for DA. See Abdulkadiroglu, Pathak, and Roth (2009), for example.
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4 Conclusion

This paper has studied allocation problems (the object allocation problem—with one-sided
preferences and the school choice problem—with two-sided preferences) where n > 2 objects
are to be allocated to n > 2 agents, and each agent is entitled to receive an object, in an
incomplete information setting in which each agent’s preference ranking is privately known.
We show that when each agent’s preference ranking over objects is independently drawn
from a uniform distribution, the celebrated RSD mechanism is dominated by another simple
mechanism, Restricted Ranking mechanism, in terms of welfare of agents in a very strong
manner. Regardless of the preference intensities of agents, each agent has a higher interim
utility under the Restricted Ranking mechanism in large markets. We also show that this
result has an implication about the welfare comparison of two widely-used school choice
mechanisms, the Boston mechanism and the Deferred Acceptance mechanism. Again in large
markets the Boston mechanism is shown to be welfare superior to the Deferred Acceptance
mechanism in the same strong manner when schools’ priorities over students are identical
and each school has one available seat.

Although symmetric and independent preferences as in our paper are commonly used in
the literature in many mechanism design problems, it is admittedly restrictive. However,
it is important to understand how different allocation mechanisms perform in terms of wel-
fare when agents’ preferences may differ, which is the case in this paper. We should note
that since our results yield strict dominance, the conclusions will still hold in close enough
settings. Nevertheless, it is of course desirable to obtain welfare comparison results when
preferences are allowed to be more general. Furthermore, especially in the school choice

context, it is limiting that each school has one available seat.?®

Maybe more importantly, in
our setting the Boston mechanism is (Bayesian) incentive compatible, which eliminates the
mostly criticized strategic disadvantage of the Boston mechanism.?® Regardless, together
with the earlier results in the literature about the welfare comparison of these two school
mechanisms, we now have two occasions, one with minimum diversity in preferences and one
with maximum diversity in preferences, in which the Boston mechanism is welfare superior
to the DA mechanism that has recently replaced the Boston mechanism in many school
districts in the U.S. due to its better incentive properties. Of course, more work in more

general environments is needed to for policy recommendations. Although the discrete alloca-

28 Although the computer simulations we run show that the same result holds when there are multiple
copies (seats), we are unable to prove this analytically but we hope that ours will be a first theoretical step
in this direction.

29 And, of course, similarly for the Restricted Ranking mechanism.
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tion problems presented here become easily intractable in more general environments when
there is incomplete information, we hope that techniques and results of this paper will be

useful for further analysis.

A Appendix

A.1 Proof of Proposition 1 (Truth-telling under the Restricted

Ranking mechanism)

Assume that each agent’s preference ranking over objects is independent of other agents’
rankings and each possible ranking over objects is equally likely. We claim that truth-telling
is an equilibrium under the Restricted Ranking mechanism.

Let the set of agents be Z = {1,...,m}, and the set of objects be O = {oy,...,0,}.
Each agent i’s preference profile be R; = (R;(1),..., R; (n)) where for all j, k such that
1 < j <k <mn, agent i prefers object R; (j) strictly more than object R; (k) .

An (ordinal) allocation mechanism ¢ is an allocation rule ¢ (R) = (¢;(R)), where
v; (R) = (goi (R))jzl,...,n such that for each j € {1,...,n}

Z@f(ﬁ’) =1

and ¢’ (R) € [0,1] for all i and j where ¢! (R) denotes the probability that agent i obtains
object o; when the reported ordinal preferences of agents are R.

We first present the following definition.

Definition 1 An allocation mechanism is neutral iff for any R and for any permutation

o : O — O over objects we have that
i (R7) = (¢; (R))’

where R? is the preference rankings of agents obtained from R according to permutation
o and (p; (R))? is the allocation rule of agent i again obtained from @, (R) according to

permutation o, that is, by changing the name of object o; to o (0;) for each j.

That is, an allocation mechanism is neutral iff the assignments do not depend on the

label of objects. If we relabel the objects, assignments change accordingly.
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We next note that when each ranking is equally likely, given that other agents report
their true preferences, the interim probability of obtaining some object only depends on the
ranking for that object under a neutral mechanism: Without loss of generality (W.l.o.g.),

consider agent ¢; and consider two preference rankings
Ri=(R(1),..Ri(k—=1),06, R} (E+1),..., R} (n))

and
=Ry Q),. . R (k—=1),0, R (E+1),..., R (n))

Note that although rankings for the other objects may be different in these preference rank-
ings, k' choice is object o} in both. We claim that the interim probability of obtaining
object o, is the same for both rankings given that other agents report their true rankings.
Let P? (Ry) be the interim probability that agent i; obtains object o, when he reports

preference ranking is Ry and other agents report their true rankings. Hence,

Py (P) = Z o (R1, R_1) Pr(R_4)

R—lz(R2w-7Rm)

where summation is over all the possible rankings of other agents.
Now, consider the permutation o over objects such that o (R} (j)) = R}*(j) for all j.

Note that, due to neutrality, since o (o) = oy, for any R_; and 7, we have that

@) (R}, Ro1) = ¢f (RY", (R-1)7) (1)

where (R_1)° is obtained from R_; by relabeling objects according to permutation o.

Now,

Ff(RY) = Y. PR R Pr(R)

R—lz(RQ»-me)

= Z O (R, (R_1)7) Pr((R_1)7)

R,1:(R2,...,Rm)

= > (B, RLy)Pr(Roy)

R_1=(R2,....,Rm)
= P (R)

where third equality is due to (1) and the fact that Pr ((R-1)”) = Pr (R_1) since each ranking
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over the objects is equally likely and independent of others’ rankings.

Hence, we will characterize a neutral allocation mechanism ¢ by (P?);_,, where P/
denotes the interim probability that an agent obtains his (reported) k™ ranked choice when
all the remaining agents report their true rankings under the mechanism ¢. Thus, truth-
telling is an equilibrium under a neutral allocation mechanism iff P” is (weakly) decreasing
in k.

Note that the Ranking mechanism is trivially neutral. We now claim that the interim
probability that agent i; obtains his (reported) k" ranked choice is decreasing in k& when all
the remaining agents report their true rankings under the Restricted Ranking mechanism.
But, this is almost immediate. Consider any state (any preference report of other agents
and random draw when necessary) in which agent i; obtains some object, say 0;. Increasing
the rank of that object will also guarantee that agent i; receives o;. Furthermore, there
may exist states such that agent ¢; does not obtain an object but by increasing the rank for
that object agent 7; may obtain that object at that state. Hence, given the observation that
the interim probability of obtaining an object only depends on the rank for that object, the
interim probability can only (weakly) increase once an object is given a higher ranking.

Hence, truth-telling is an equilibrium under the Restricted Ranking mechanism.

A.2 Proof of Theorem 1

We prove Theorem 1 in several steps. We start with computing the interim probability of
obtaining k" choice under RSD.

Lemma 2 When there are n objects and n agents, for each k € {1,...,n}, the interim
probability of obtaining k'™ ranked object under RSD, (P,?)RSD, is:

wmisD _ (n+1)
(F¥) k(k+1)n

Proof. We will simply use P instead of (P,?)RSD when there is no danger of confusion.
Let’s compute P}’ for each k > 1 and n > k.

Note that there is a recursive relation between two successive stages of RSD. At some
step, some agent obtains an object, and no other agent will be able to obtain that object
in later steps. Furthermore, the agent who obtained an object at that step will not get
any other object in later steps. Hence, that agent and the object assigned to him is out of

the problem at the beginning of the next step and we are in the isomorphic problem with
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one less agent and one less object. By using this observation, we will relate P’ to Pf‘l,
j=12,...,(n—1).

Consider an agent, say i1, and w.l.o.g., say his preference profile is such that his £*" choice
is object oy for all £ > 1. Let’s start with £ = 1 and consider the probability that agent i,
obtains object 0; when the number of agents (including ;) and objects is n.

With probability }1, 11 will be the first in the randomly drawn order and, thus, will get
his first choice, object 0;. With probability ”T_l some other agent will be chosen in the first
place. Wlog, say agent i has been chosen to be the first. If i5’s top choice is also 01, which
happens with probability %, 11 can not obtain object o;. With probability ”T’l, i9’s first
choice is different from object o;. In that case, i, will be assigned his favorite object, say os,
and we will move to second step. Since one object, object 0o, and one agent, agent iy, are
removed in the first step, at the beginning of the second step, we have (n — 1) agents and

(n — 1) objects and in that case the probability that i; obtains object o; is P!, Hence,

1 1 (/1 1
Pr=-x14" ><(—><0+n P{“l)
n n n

n
or, simply
1 n—1/n—-1
Pl = — ppt 2
P-te I () )
The claim of the Lemma for £k =1 is
1
Pln _ n -+
2n

We will prove it by induction using (2). We now verify that if the claim of the Lemma is

true for (n — 1), then the claim is true for n:

which is what we wanted to show.
Note also that P! = 1. (If there is only one agent, he will get his first choice for sure.)
That is, the claim is also true for n = 1 and hence by induction hypothesis, we have the

result.



Similarly, consider the probability of his getting his k" choice, n > k > 2, when there
are n agents and n objects.

With probability %, agent ¢; will be chosen in the first place and will get his first choice
in this case, which means that he won’t get his £ choice object for k& > 2. With probability
"T_l, some other agent, say agent iy, will be chosen in the first place. If i5’s first choice is one
of i1’s top (k — 1)th choice, one of oy, .., 04—1), which happens with probability %, object
oy becomes i1’s (k — l)th choice among the remaining (n — 1) objects. And, with probability
1

get 0,. With probability ”T’k, agent i5’s top choice is different from one of i;’s top k choices.

19’s first choice is object 0. In this case, i5 will receive o, and hence i; won’t be able to
That is, his top choice is from the set {041, ...,0,}. In that case object o remains to be
agent i,’s k' choice among the remaining (n — 1) objects. Therefore, for n > k > 2,

—k
Py = &

P+

n—1 {k—l

n

Pnfl
. ]
It is easy to verify that for any k& > 2, if the claim of the lemma is true for (n — 1), it is true

for n :

-1 k-1 —k
P = o — P+ n

-
n—1[k-1 n n—k n

n | n k;(k—l)(n—l)jL n k(k+1)(n—1)
on—-1[] 1 n—k

T on _k:(n—l)—i_k:(k—i-l)(n—l)}

_on-—1] n+1

T on _k:(k+1)(n—1)}
~ (n+1)
 k(k+1Dn

Note that Py =1 — P? = 1 since P = %L by above and hence by induction we have that
2

Py =2t Given this, P§ =1— P} — P§ =1— 2 — 2 = 1 and again by induction, we have
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that P’ = %’7} Continuing in this manner, for a general £ > 2, we have

k—1
Ho= -2 8
j=1

k—1
kE+1
- 1=y ==
2 5+

_ g k+1fk—1) 1
_ ) =

which is the desired result. =

Although we are able to explicitly calculate these probabilities for the RSD, unfortunately,
it is not easy to calculate the probabilities for each n and k£ under the Restricted Ranking
mechanism. One tractable case is when £ = 1. That is, the probability of obtaining top
choice. Assume that there n agents and n objects. Consider an agent, say i, and let’s
compute his probability of getting his first choice, again w.l.o.g. say his first choice is object
01. There are (n — 1) remaining agents. Denote the number of agents (other than agent

i1) whose first choice is object 0; be j € {0,...,n — 1}. The probability of agent i; getting
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when there are j other agents whose first choice is 0;. Hence,*"

> (6 () G
DONCY
HBIONCN
N BIOICONRCS)
- (5)

As a future reference note that P> — 1 — % as n — oo. For k > 1, by computing average

object oy is — ;+

Py =

number of objects assigned at each step, we compute the limit probabilities as n — oo.
Before moving on, we make couple of observations regarding the computation.

Under the Restricted Ranking mechanism if an agent, say agent 7;, obtains some object
in step k, this means that agent i; obtains his k" choice. Furthermore, the number of
unassigned objects after the allocation has been made at Step k is equivalent to the number
of agents that should receive an object in later steps.

Note also that under the Restricted Ranking mechanism, for any object, an agent com-
petes only with agents who rank the object at the exact same rank. Thus, the probability
that an agent receives an object at some step when there are, say J, other agents rank that
object same and haven’t received an object at earlier steps 1s ; when j > gand 1if j <gq
where ¢ is the number of objects unassigned in earlier steps.

These observations will be key in the computation below.

Note finally that the probability of k£ “successes” out of N independent “trial”’s when the

probability of success is p is given by the Binomial Distribution

b(k; N,p) = (ij)p’“ 1—p) "

and in particular,
b(0; N,p) = (1 —p)"

30 Again, when there is no danger of confusion, we simply write (P,?)RR as P
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Assume that there are n agents and n objects. We want to compute the interim probability
of obtaining k** choice under the Restricted Ranking mechanism as n — oco. We will do so

by computing the (average) number of agents obtaining an object at step k.

Step 1: Now, for any object, the probability that no agent ranks it as a first choice is

(o) = (=2) - (5)

Note that

as n — oo. Call

Hence, for any object, the probability that at least one agent ranks it as a first choice and

hence an agent obtains an object is 1 — r]. Therefore, in average there are nri objects

unassigned in Step 1. In other words, n (1 — r}) agents gets their top choice. Hence, by

symmetry and there are n agents,

PR 51— E
e

as n — oQ.

Step 2: Now, in average there are nr}" agents who haven’t obtained an object in Step 1
and hence nr{ agents to be assigned in Step 2. For any object, the probability that there

is no agent (among the ones who haven’t been assigned an object in Step 1) who ranks this

1 n—2\"1
b(0nr, —— | =
(’nrl’n—l) (n—l)

since there are nrj agents and there are (n — 1) objects that an agent can rank as a second

object as a second choice

choice.?!
Let

n

. n—9 nry
T =
2 n—1

3INote that nr] may not be an integer. We are making an abuse of notation here but we are interested
in the limit probabilities.
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and

. n—9 nry
¢z = lim < > = exp (_Q1>

n—oo \n — 1

Thus, there remains (in average) nriry objects that haven’t been assigned. In other

words, nry (1 — r%) agents obtained an object in step 2. Hence, as n — oo
P — qi (1 - q0)

In general,

Step k: There are in average nri...r;_, agents active. For any object, the probability

that no agent ranks it as k" choice is

e . . 1 n—k nr.rp_ g
: T —_— = —
A M — (k—1) n—k+1

k-1
and n (H r?) (1 —r}) objects are assigned at step k where
s=1

Note that

hence, as n — oo,
k—1
szR—> <H%’> (1 —ar)
j=1

Just to see what these numbers look like, the table below shows the limit probabilities under
RR for 1 < k < 10 and the probabilities obtained by computer simulations for n = 25.32

32Gimulations have been done as follows. We fix an agent, say agent i,, and randomly draw preference
rankings for other agents and check what object i; receives. To get the numbers listed, we repeated this for
m = 500000 times and checked how many times ¢; gets his first choice, second choice and so on.
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Furthermore, we also list the interim probabilities for RSD for n = 25.

ko PFR(n—o0) (PP (PP)™P
1 0.632121 0.6389 0.52

2 0.113233 0.1172 0.160256
3 0.057247 0.0600 0.08667
4 0.035362 0.0371 0.052

5 0.024239 0.0258 0.032051
6 0.017738 0.0190 0.024762
7 0.013583 0.0144 0.018571
8 0.010755 0.0117 0.013355
9  0.008738 0.0096 0.011556
10 0.007247 0.008 0.009455

We now turn back and prove Lemma 1, that is, we want to show

K K
lim g PP > lim E pbA
n—oo n—oo

k=1 k=1

for all K > 1.

To do so, let’s consider the limit probabilities. ((P?)* and (P7)*" for each k as

n — o00) We will make an abuse of notation and denote the limit probabilities P*® and

PESP when there is no confusion. First, by Lemma 2 we have that for all k > 1

+1
pryRSD _ T
(F%) E(k+1)n
Thus, in the limit,
1
PRSD —
F k(k+1)

Recall that -
Pt = <qu> (1 —q)
j=1

where
1
q1 = —
e
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and
k—1
gk = exp (— 11 qs)
s=1
for all £ > 2.

Given these, we prove Lemma 1. That is, we want to show that for all K > 1
K K
lim Y (PP > lim Y (PP
k=1 k=1

The proof goes as follows:

Now
PIfR <HQJ> 1_qk

Hence,

K K
ZPIfR = ZQ1~--Qk—1(1_Qk)
k=1 k=1

= 1l-q)+a(l—q)+ael—qg)+...+q..qx-1 (1 —gx)
= 1—-qq.-qx—19k

and we know that

+1
prRSD _ n
(FE) k(k+1)n
Hence, the limit probability is
PRSD — 1
b k(k+1)
Thus,
1

K

RSD _
2 B =
k=1



We, now, claim that

1
1— (K >1—- —
q192---xk 14K K+l
That is, we want to show that
_ 1
q192---dxk 14K K1l
Let us define
rx = Ingg
for each K > 1. Now,
Tk+1 =Ingryr =In(exp(—q1...9x)) = —q1---qx
and
Tk =Ingx =In(exp (—qi...qx-1)) = —q1---qx -1
—
Tk+1 = TK*(k
= rgxe’’

By definition
01q2---9xk—19xg = —1n ((JK+1)

Thus, we want to show that for all K > 1

1
—1 <
n (gr+1) K+ 1
or for all K > 2 .
Tk > —?

We prove this by induction. The claim is true for K = 2:

ri=Ing = -1
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Assume that the claim is true for K = n, we want to verify the relation for n 4+ 1. Note that

T'n+1 = f (Tn)

where

Note that

for x > —1. Now,

We want to show that

1
nel > ———
Tn41 nil
We claim that
_1 < n
e n
n—+1
or equivalently
1 n+1 1
en > =1+—
n n

Define

for > 0. Furthermore,

h(0) =0
Hence, for all n > 1,
1
h (—> >0
n
Thus,
_1 < n
e n
n+1
Therefore,
1 1 1 1
Tnp1 = f(ra) 2 f (_ﬁ) =N T Tu
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where the weak inequality comes from the fact that f is increasing together with the induction

hypothesis and strict inequality from (3). Hence, we have

K K
RR RSD
> P> B
k=1 k=1

which is the desired result.
Now, we are ready to prove Theorem 1:
Given M, the number of desirable objects, we know that we can find large enough N
such that for n > N p p
S (B S (P
k=1 k=1
for all K < M.
Take some n > N. Take any agent and assume without loss of generality that his
preference is such that he derives a utility vy from object o with v} > v}l > 0 for each
j<k< M and v} =0 for k> M. We want to show that

i RR n>ZPkRSDn

k=1

Now,

since (PM)™ + ...+ (P")™ = 1. Similarly,

3

(PP i

= o Y (PP e+ (B (0 = i)

k=1
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Thus,

M:

()™ = ()™ vy

3 =

= (P () = (PP ()P ] (o - o)

o
Il
= _

[
NE

(P o (P)™) = (PP 4o (B)™P)] (0 = i)

I
—_

(el

>

since for n > N, ((P{‘)RR +..+ (P,?)RR> > ((P{‘)RSD + ...+ (P,?)RSD> and vy > vy, for
each £ < M and v} =0 for all £ > M. This is what we wanted to show.
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