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Abstract

A learning rule is completely uncoupled if each players behavior is conditioned only on his own realized payoffs, and does
not need to know the actions or payoffs of anyone else. We demonstrate a simple, completely uncoupled learning rule such
that, in any finite normal form game with generic payoffs, the players realized strategies implements a Pareto optimal coarse
correlated (Hannan) equilibrium a very high proportion of the time. A variant of the rule implements correlated equilibrium a
very high proportion of the time.

1 Introduction
This paper builds on a recent literature that seeks to identify learning rules that lead to equilibrium without the usual assumptions
of perfect rationality and common knowledge. Of particular interest are learning rules that are simple to implement and require
a minimum degree of information about what others in the population are doing. Such rules can be viewed as models of
behavior in games with many dispersed agents and very limited observability. They also have practical application to the design
of distributed control systems, where the agents can be designed to respond to their environment in ways that lead to desirable
system-wide outcomes.

One can distinguish between various classes of learning rules depending on the amount of information they require. A rule
is uncoupled if it does not require any knowledge of the payoffs of the other players [HMC03]. A rule is completely uncoupled
if it does not require any knowledge of the actions or payoffs of the other players [FY06]. The latter paper identifies a family of
completely uncoupled learning rules that come close to Nash equilibrium (pure or mixed) with high probability in two-person
normal form games with generic payoffs. Subsequently, [GL07] showed that similar results hold for n-person normal form
games with generic payoffs. Lastly, [MYAS09] exhibited a much simpler class of completely uncoupled rules that lead to Nash
equilibrium in weakly acyclic games. These learning algorithms all have the feature that agents occasionally experiment with
new strategies, which they adopt if they lead to higher realized payoffs.

In [You09], this approach was further developed by making an agent’s search behavior dependent on his mood (an internal
state variable). Changes in mood are triggered by changes in realized payoffs relative to the agents current aspiration level.
Rules of this nature can be designed that select pure Nash equilibria in any normal form game with generic payoffs that has at
least one pure Nash equilibrium. Moreover the rule can be designed so that it selects a Pareto optimal pure Nash equilibrium
[PY10] or even a Pareto optimal action profile (irrespective of whether this action profile is a pure Nash equilibrium) [MYP11].

There is a quite different class of learning dynamics that leads to coarse correlated equilibrium (alternatively correlated
equilibrium). These rules are based on the concept of no regret. They can be formulated so that they depend only on a players
own realized payoffs, that is, they are completely uncoupled [FV97, HMC00, FL98]. However, while the resulting dynamics
converge almost surely to the set of correlated equilibria, they do not necessarily converge to – or even approximate – correlated
equilibrium behavior at a given point in time.

The contribution of this paper is to demonstrate a class of completely uncoupled learning rules that bridges these two
approaches. In overall structure the rules are similar to the learning dynamics introduced in [You09, PY10, MYP11]. Like
the no-regret rules our approach selects (coarse) correlated equilibria instead of Nash equilibria. Unlike no-regret learning,
however, our rule ‘leads to’ equilibrium in the sense that players strategies actually constitute a coarse correlated equilibrium a
high proportion of the time. In fact, as a bonus, they constitute a Pareto optimal coarse correlated equilibrium a high proportion
of the time.

∗This research was supported by AFOSR grant #FA9550-09-1-0538 and by ONR grant #N00014-09-1-0751.
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2 Preliminaries
Let G be a finite strategic-form game with n agents. The set of agents is denoted by N := {1, ..., n}. Each agent i ∈ N has
a finite action set Ai and a utility function Ui : A → R, where A = A1 × · · · × An denotes the joint action set. We shall
henceforth refer to a finite strategic-form game simply as “a game.” For any joint distribution q = {qa}a∈A ∈ ∆(A) where
∆(A) denotes the simplex over the joint action setA, we extend the definition of an agent’s utility function in the usual fashion

Ui(q) =
∑
a∈A

Ui(a)qa.

The set of coarse correlated equilibria is characterized by the set of joint distributions

CCE =

{
q ∈ ∆(A) :

∑
a∈A

Ui(a)qa ≥
∑
a∈A

Ui(a′i, a−i)qa,∀i ∈ N, a′i ∈ Ai

}

which is by definition non-empty.
In this paper we focus on the derivation of learning rules that provide convergence to an efficient coarse correlated equilibria

of the form
q∗ ∈ arg max

q∈CCE

∑
i∈N

Ui(q).

To that end, we consider the framework of repeated one-shot game where a given game G is repeated once each period t ∈
{0, 1, 2, . . . }. In period t, the agents simultaneously choose actions a(t) = (a1(t), ..., an(t)) and receive payoffs Ui(a(t)).
Agent i ∈ N chooses the action ai(t) according to a probability distribution pi(t) ∈ ∆(Ai), which is the simplex of probability
distributions over Ai. We shall refer to pi(t) as the strategy of agent i at time t. We adopt the convention that pai

i (t) is the
probability that agent i selects action ai at time t according to the strategy pi(t). An agent’s strategy at time t relies only on
observations from times {0, 1, 2, ..., t− 1}.

Different learning algorithms are specified by the agents’ available information and the mechanism by which their strategies
are updated as information is gathered. Here, we focus on one of the most informationally restrictive class of learning rules,
termed completely uncoupled or payoff-based, where agents only have access to: (i) the action they played and (ii) the payoff
they received. More formally, the strategy adjustment mechanism of agent i takes the form

pi(t) = Fi

(
{ai(τ), Ui(a(τ))}τ=0,...,t−1

)
. (1)

Recent work has shown that for finite games with generic payoffs, there exist completely uncoupled learning rules that lead
to Pareto optimal Nash equilibria [PY10] and also Pareto optimal action profile irrespective of whether or not they are a pure
Nash equilibrium [MYP11]; see also [AB11, You09, FM86]. Here, we exhibit a different class of learning procedures that lead
to efficient coarse correlated equilibria.

3 Algorithm Description
We will now introduce a payoff based learning algorithm which ensures that the empirical frequency of the joint actions
converges in probability to the coarse correlated equilibrium which maximizes the sum of the players’ average payoffs. To
achieve this objective, each agent will select sequences of actions of at most length w as opposed to single actions. The setup
is as follows:

• w: This represents the maximum length of a sequence of actions that any agent will play.

• ~Ai = ∪k=1,...,wAki : Set of possible vectored actions (or sequence of actions) that player i can select.

• ~ai ∈ ~Ai: A chosen sequence of actions by player i. For example, if at time t agent i decides to play a sequence of actions
~ai of length li = |~ai| ≤ w, then

ai(t) = ~ai(1)
ai(t+ 1) = ~ai(2)

... =
...

ai(t+ li − 1) = ~ai(li)
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The following algorithms follows the theme of [You09] where an agents search behavior is dependent on his mood (an
internal state variable). Changes in mood are triggered by changes in realized payoffs relative to the agents current aspiration
level. An informal description of the forthcoming algorithm is as follows:

• The main internal states of the players are Content (C) and Discontent (D).

• The feasible space for player i ∈ N s the set ~Ai of all action-sequences of length w or less, where w is a large positive
integer, the same for all players.

• At any given time the (temporary) strategy of a player is to play a given sequence of actions ~ai of some length li ≤ w,
and to repeat this sequence for Li consecutive periods. This is called the players benchmark strategy. His benchmark
utility is the utility he expects to get from playing a strategy. If his benchmark utility equals the utility he is getting from
his current benchmark strategy we say the benchmarks are aligned.

• A content player occasionally experiments with a different strategy in which he plays a constant action for Li consecutive
periods. If the average payoff from this experiment leads to a higher payoff than his current benchmark (aspiration level),
he switches to the new strategy, otherwise he reverts to his previous strategy. (The justification for a constant strategy is
that he cannot be sure a new action is better without trying it out for a number of periods in succession.)

• A discontent player i chooses strategies at random from ~Ai. He switches spontaneously from D to C with a probability
that is an increasing function of his current average payoff (in which case he takes his current strategy and its realized
payoff as his new benchmarks).

• A player switches fromC toD for sure if his payoff goes down for several periods in a row and he was not experimenting.
He may also switch spontaneously from C to D with a very small probability.

• The relationship between these probabilities will be spelled out later. We also omit mention of certain states that are
intermediate between C and D. Their role will become clear when we give the learning rule in detail.

3.1 Notation
At each point in time, the action of agent i ∈ N can be represented by the tuple [~ai, ai], where

• Agent i’s sequence of actions is ~ai ∈ ~Ai.

• Agent i’s current action is ai ∈ ~ai.

At each point in time an agent’s state can be represented by the tuple

xi =



~ai : Trial sequence of actions
ui : Payoff over trial sequence of actions
ki : Element of trial sequence of actions currently on
~abi : Baseline trial sequence of actions
ubi : Payoff over baseline trial sequence of actions
mi : Mood (Content, Discontent, Hopeful, or Watchful)
c
H/W
i : Counter for number of times Hopeful/Watchful periods repeated
L
H/W
i : Number of times Hopeful/Watchful periods will be repeated

• The first three components of the state {~ai, ui, ki} correspond to the sequence of actions that are currently being played
by agent i. The sequence of actions is represented by ~ai ∈ ~Ai. The counter ki ∈ {1, . . . , |~ai|} keeps track of what
component of ~ai the agent should play next. Lastly, the payoff ui represent the average payoff received over the first
(ki − 1) iterations of the action sequence ~ai.

• The fourth and fifth components of the state {~abi , ubi} correspond to the baseline sequence of actions and baseline payoff.
The benchmark sequence of actions is represented by ~abi ∈ ~Ai and the benchmark payoff ubi captures the average
payoff received for the baseline sequence of actions. The benchmark payoff is used as a gauge to determine whether
experimentations with alternative sequence of actions is advantageous.

• The sixth component of the state is the mood mi, which can take on four values: content (C), discontent (D), hopeful
(H), and watchful (W). Each of the moods will lead to different types of behavior from the player as will be discussed in
detail.
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• The seventh and eighth components of the state {cH/Wi , L
H/W
i } represent counters on the number of times that either a

Hopeful or Watchful mood has been repeated. The number LH/Wi ∈ {0} ∪ {w+ 1, . . . , wn +w} prescribes the number
of times that the intermediate state (hopeful or watchful) should be repeated. The number cH/Wi ∈ {0, 1, 2, . . . , wn+w}
prescribes the number of times that the intermediate state (hopeful or watchful) has already been repeated. Accordingly,
c
H/W
i ≤ LH/Wi . In the case when the mood is not hopeful or watchful, we adopt the convention that cH/Wi = L

H/W
i = 0.

3.2 Formal Algorithm Description
We divide the dynamics into the following two parts: the agent dynamics and the state dynamics. Without loss of generality we
shall focus on the case where agent utility functions are strictly bounded between 0 and 1, i.e., for any agent i ∈ N and action
profile a ∈ A we have 1 > Ui(a) ≥ 0. Lastly, we define a constant c > n which will be utilized in the following algorithm.

Agent Dynamics: Fix an experimentation rate ε > 0. The dynamics for agent i only rely on the state of agent i at that given
time. Let xi(t) = [~ai, ui, ki,~abi , u

b
i ,mi, c

H/W
i , L

H/W
i ] be the state of agent i at time t. For the following dynamics, each agent

only has the opportunity to change strategies at the beginning of a planning window. Accordingly, if ki > 1 then

~ai(t) = ~ai (2)
ai(t) = ~ai(ki) (3)

where ~ai(ki) denotes the ki-th component of the vector ~ai. If ki = 1, then a player makes a decision based on the player’s
underlying mood:

• Content (mi = C): In this state, the agent chooses a sequence of actions ~ai ∈ ~Ai according to the following probability
distribution

Pr [~ai(t) = ~ai] =

{
1− εc for ~ai = ~abi
εc

|Ai| for any ~ai = (ai, . . . , ai) ∈ A
|~ab

i |
i where ai ∈ Ai

(4)

where |Ai| represents the cardinality of the set Ai. The action is then chosen as

ai(t) = ~ai(1; t)

where ~ai(1; t) denotes the first component of the vector ~ai(t).1

• Discontent (mi = D): In this state, the agent chooses a sequence of actions ~ai according to the following probability
distribution:

Pr [~ai(t) = ~ai] =
1

| ~Ai|
for every ~ai ∈ ~Ai (5)

Note that the benchmark action and utility play no role in the agent dynamics when the agent is discontent. The action is
then chosen as

ai(t) = ~ai(1; t).

• Hopeful (mi = H) or Watchul (mi = W ): In either of these states, the agent selects his trial action, i.e.,

~ai(t) = ~ai (6)
ai(t) = ~ai(1; t) (7)

State Dynamics: First, the majority of the state components only change at the end of a sequence of actions. Let xi(t) =
[~ai, ui, ki,~abi , u

b
i ,mi, c

H/W
i , L

H/W
i ] be the state of agent i at time t, ai(t) = ~ai(ki) be the action that agent i played at time t,

and Ui(a(t)) be the utility player i received at time t. If ki < |~ai|, then

xi(t) =



~ai
ui
ki
~abi
ubi
mi

c
H/W
i

L
H/W
i


−→ xi(t+ 1) =



~ai
ki−1
ki

ui + 1
ki
Ui(a(t))

ki + 1
~abi
ubi
mi

c
H/W
i

L
H/W
i


1We could consider variations of deviations to stabilize alternative equilibria, e.g., correlated equilibria.
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Otherwise, if ki = |~ai| then the state is updated according to the underlying mood as follows: For shorthand notation, we define
the running average of the payoff over the trial actions as

ui(t) =
ki − 1
ki

ui +
1
ki
Ui(a(t)).

• Content (mi = C): If [~ai, ui(t)] = [~abi , u
b
i ], the state of agent i is updated as

xi(t+ 1) =
{ [

~abi , u
b
i , 1,~a

b
i , u

b
i , C, 0, 0

]
with probability 1− ε2c[

~abi , u
b
i , 1,~a

b
i , u

b
i , D, 0, 0

]
with probability ε2c (8)

If ~ai 6= ~abi , the state of agent i is updated as

xi(t+ 1) =
{

[~ai, ui(t), 1,~ai, ui(t), C, 0, 0] if ui(t) > ubi[
~abi , u

b
i , 1,~a

b
i , u

b
i , C, 0, 0

]
if ui(t) ≤ ubi

If ~ai(t) = ~abi but ui(t) 6= ubi , the state of agent i is updated as

xi(t+ 1) =
{ [

~abi , u
b
i , 1,~a

b
i , u

b
i , H, 1, L

H
i

]
if ui(t) > ubi[

~abi , u
b
i , 1,~a

b
i , u

b
i ,W, 1, L

W
i

]
if ui(t) < ubi

where LHi (or LWi ) is randomly selected from the set {w + 1, . . . , wn + w} with uniform probability.

• Discontent (mi = D): The new state is determined by the transition

xi(t+ 1) =
{

[~ai, ui(t), 1,~ai, ui(t), C, 0, 0] with probability ε1−ui(t)

[~ai, ui(t), 1,~ai, ui(t), D, 0, 0] with probability 1− ε1−ui(t).

• Hopeful (mi = H): First, it is important to highlight that if the mood of any player i ∈ N is Hopeful then ~ai = ~abi . The
new state is determined as follows: If cHi < LHi , then

xi(t+ 1) =
[
~ai, ui(t), 1,~ai, ubi , H, c

H
i + 1, LHi

]
.

If cHi = LHi and ui(t) ≥ ubi , then

xi(t+ 1) = [~ai, ui(t), 1,~ai, ui(t), C, 0, 0]

If cHi = LHi and ui(t) < ubi , then

xi(t+ 1) =
[
~ai, ui(t), 1,~ai, ubi ,W, 1, L

W
i

]
.

where LWi is randomly selected from the set {w + 1, . . . , wn + w} with uniform probability.

• Watchful (mi = W ): First, it is important to highlight that if the mood of any player i ∈ N is Watchful then ~ai = ~abi .
The new state is determined as follows: If cWi < LWi , then

xi(t+ 1) =
[
~abi , ui(t), 1,~a

b
i , u

b
i ,W, c

W
i + 1, LWi

]
.

If cWi = LWi and ui(t) < ubi , then

xsi (t+ 1) =
[
~abi , ui(t), 1,~ai, ui(t), D, 0, 0

]
If cWi = LWi and ui(t) ≥ ubi , then

xi(t+ 1) =
[
~ai, ui(t), 1,~abi , u

b
i , H, 1, n

H
i

]
.

where nHi is randomly selected from the set {w + 1, . . . , wn + w} with uniform probability.

5



4 Main Result
Before stating the main result we introduce a bit of notation. Let X denote the full set of states of the players. For a given
state x = (x1, . . . , xn) where xi =

[
~ai, ui, ki,~a

b
i , u

b
i ,mi, c

H/W
i , L

H/W
i

]
, define the ensuing sequence of baseline actions as

follows: for every k ∈ {0, 1, 2, . . . } and agent i ∈ N we have

ai(k|xi) = ~abi (k + ki)

where we write ~abi (k + ki) even in the case when k + ki > |~abi | with the understanding that this implies the component
((k + ki − 1) mod |~abi |) + 1. We express the sequence of joint action profiles by a(k|x) = (a1(k|x1), . . . , an(k|xn)). Define
the average payoff over the forthcoming periods (provided that all players play according to their baseline action) for any player
i ∈ N and period l ∈ {1, 2, . . . } as

ui(0|x) =
ki − 1
|~ai|

ui +
|~ai| − ki + 1
|~ai|

|~ai|−ki∑
k=0

Ui(a(k|x′)), (9)

ui(l|x) =
1
|~ai|

l·|~ai|−ki∑
k=l·|~ai|−ki+1

Ui(a(k|x′)). (10)

We will characterize the above dynamics by analyzing the empirical distribution of the joint distribution. To that end,
define the empirical distribution of the joint actions associated with the baseline sequence of actions for a given state x by
q(x) = {qa(x)}a∈A ∈ ∆(A) where

qa(x) = lim
t→∞

∑t
τ=0 I{a = a(τ |x)}

t+ 1
, (11)

=
∑Q

i∈N |~ai|
τ=1 I{a = a(τ |x)}∏

i∈N |~ai|
, (12)

where I{·} represents the usual indicator function and the equality derives from the fact that players are repeating finite sequence
of actions which ensures that for any k ∈ {0, 1, . . . } we have

a(k|x) = a(k +
∏
i∈N
|~ai|).

Define the set of states which induce coarse correlated equilibria through repeated play of the baseline sequence of actions as

XCCE := {x ∈ X : q(x) ∈ CCE}

Lastly, define the set of states X∗ which induce coarse correlated equilibria and are consistent, i.e.,

X∗ = {x ∈ X : x ∈ XCCE, ui(0|x) = ui(k|x) ∀i ∈ N, k ∈ {1, 2, . . . }}.

Note that in general the set X∗ need not be empty. In fact, a sufficient condition for X∗ to not be empty is{
q ∈ ∆(a) : qa ∈ ∪k=1,...w

{
0,

1
k
, . . . ,

k − 1
k

, 1
}

for all a ∈ A
}
∩XCCE 6= ∅.

The process described above can be characterized as a finite Markov chain parameterized by an exploration rate ε > 0.
The following theorem characterizing the support of the limiting stationary distribution, whose elements are referred to as the
stochastically stable states [FY90]. More precisely, a state x ∈ X is stochastically stable if and only if limε→0+ µ(x, ε) > 0
where µ(x, ε) is a stationary distribution of the process P ε for a fixed ε > 0. Our characterization requires a mild degree
of genericity in the agents’ payoff function which is summarized by the following notion of interdependence as introduced
in [You09].

Definition 1 (Interdependence). An n-person game G on the finite action space A is interdependent if, for every a ∈ A
and every proper subset of agents J ⊂ N , there exists an agent i /∈ J and a choice of actions a′J ∈

∏
j∈J Aj such that

Ui(a′J , a−J) 6= Ui(aJ , a−J).
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Theorem 1. Let G be an finite interdependent game and suppose all players follow the above dynamics. If X∗ 6= ∅, then a
state x ∈ X is stochastically stable if and only if x ∈ X∗ and∑

i∈N
ui(0|x) = max

x′∈X∗

∑
i∈N

ui(0|x′).

If X∗ = ∅, then a state x ∈ X is stochastically stable if and only if∑
i∈N

ui(0|x) = max
a∈A

∑
i∈N

Ui(a).

This theorem demonstrates that as the exploration rates ε → 0+, the process will spend most of the time at the efficient
coarse correlated equilibrium provide that the (discretized) set of coarse correlated equilibria in nonempty. If this set is empty,
then the process will spend most of the time at the action profile which maximizes the sum of the agent’s payoffs. We prove
this theorem using the theory of resistance tree for regular perturbed processes developed in [You93]. We omit the details for
brevity.

5 Conclusion
The results in this paper demonstrate that specific forms of correlated behavior can be attained through distributed learning
rules with no explicit communication between the agents. While the players long run behavior is shown to be consistent with
the most efficient coarse correlated equilibria, it is important to highlight that this results does not imply that the players’ joint
strategy at any given time constitutes an efficient coarse correlated equilibrium. Future work will focus on bridging this gap.
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