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1 Introduction

Many everyday tasks require individuals to act collectively and to coordinate for the
pursuit of a common goal. Examples include musicians from an orchestra who need
to act together in a specific way in order to play some intended symphony, or players
from a soccer team who have to coordinate with each other so that they can eventually
score a goal. Even among other tasks that could be done by a single individual, many
would be achieved more effectively through teamwork, e.g., painting a house, carrying
an heavy object. A common property of all these situations is that each individual in the
team acts as a team member and intends to do his part in the joint action of the team.
Collective intentionality has been, through the last decades, a central topic in social
philosophy (see e.g., [20, 16, 6, 7]) as well as in economics (see e.g., [1, 2, 18, 19]).

The general aim of this work is to use game theory to bridge the gap between
individually egoistic behavior and social cooperation in the context of strategic interac-
tions. For this purpose, we provide an analysis of a central theory from the economics
literature, which explains how agents, either human or artificial, can manage to solve
coordination problems in the context of a joint activity: Bacharach’s theory of team
reasoning. After discussing the limitations of this theory in modeling some intuitive
social behavior, we present our own original model of social ties and show the various
advantages it offers compared to Bacharach’s theory, especially in the context of social
interactions in which different competing groups may coexist. The study we present in
this article focuses on the central concept of group identification, which often allows
to uncover the ‘focal point’ required to solve a given coordination problem [15]. For
example, consider two agents, say Alice and her partner Bob who have to paint their
room together. Let us assume that they can paint it either in blue or in green and that
they both prefer to paint it in green. Moreover, each of them is responsible for buying
a tin of paint. Which color of paint will Alice and Bob buy? The solution in which
each of them buys a tin of green paint becomes the ‘focal point’ of their coordination
problem, because it satisfies their common goal, i.e., to paint the room in green. There-
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fore, if Alice and Bob reason as team members, they will likely coordinate on the joint
action of buying two tins of green paint, which is the most useful for the whole team.

2 Problems of co-operation

In this section, we consider the most well-known type of two player games that involves
co-operation, and where classical economic theories fail to predict the behavior actually
followed by human beings. A general form of this sort of games is depicted in Figure 1,
in which case each player (Alice and Bob as respectively the row player and the column
player) can either cooperate (i.e., playC) or defect (i.e., playD). The main obvious
characteristics of this game is that both players can then obtain the same payoff if and
only if they manage to coordinate with each other (i.e., they each getx or y depending
on whether they both playC orD).

(x,x )

(y,y )(z, 0)

(0,z )C

C

D

D

Alice

Bob

Figure 1: Game involving co-operation (with0 < y < x and0 ≤ z)

However, another important property of the game in Figure 1 is that the value of
the payoffz can provide some incentives for each individual to defect. In fact, Table
1 shows that the game in Figure 1 can refer to three different well known games from
the literature, depending on the payoffz.

Constraints onz Gameclassifications

z = 0 Hi-Lo matching game
y ≤ z < x Stag-Hunt game
x ≤ z Prisoner’sDilemma

Table 1: Various classifications of games

In the particular case of the Hi-Lo matching game (i.e., whenz = 0), one can detect
no incentive for each individual to defect. However, the interesting observation is that
traditional game theory interprets it as a social dilemma where no prediction can be
made (the game indeed yields two distinct Nash equilibria, i.e.,(C,C) and(D,D)),
although it is shown in [2, 9] that people largely coordinate on the most rewarding
outcome for both players, i.e.,(C,C).

Concerning the Stag-Hunt game (i.e., wheny ≤ z < x), also known as the “as-
surance game” or the “trust dilemma”, although it appears to have the same theoretical
properties as the Hi-Lo game (the game then yields the same two Nash equilibria),
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it introduces some incentives for defecting: in fact, playingC involves a risk of los-
ing if the other player defects, whereas playingD ensures a payoff of at leasty > 0.
However, as for the Hi-Lo game, experimental evidence has shown that people largely
cooperate by playingC even if it is risky to do so [21].

Finally, the situation characterized by the Prisoner’s Dilemma (i.e., whenx ≤ z)
increases further the above incentives so that cooperating now becomes strictly domi-
nated by defecting for both players (i.e.,(D,D) then becomes the unique Nash equilib-
rium). Yet, various experimental studies have also shown a non-negligible cooperation
rate (of reaching the(C,C) outcome) in such scenarios, which varies between 30-40%
(see e.g., [17]).

In order to formally analyze such social dilemmas in more details, let us first define
a classical strategic game structureG.

Definition 2.1 (Standard Strategic Game)A strategic game is a tupleG = 〈Agt, {Si|i ∈
Agt}, {Ui|i ∈ Agt}〉 where:

• Agt = {1, . . . , n} is the set of agents;

• Si defines the set of strategies for agenti;

• Ui :
∏
i∈Agt Si → R is a total payoff function mapping every strategy profile to

some real number for some agenti.

Let us denoteSJ =
∏
i∈J Si the set of joint strategies performed by every group of

agentsJ ∈ 2Agt∗ where2Agt∗ = 2Agt\{∅}. For notational convenience, throughout
the paper we writeS instead ofSAgt.

One might then wonder whether current theories of social preferences proposed in
the field of behavioral economics (see [10] for an overview of these theories) are able to
explain empirical evidences of mutual cooperation in the previous types of games (i.e.,
coordinating on(C,C)). The main idea of these theories consist in ‘transforming’ the
agents’ utility in the original game on the basis of some social feature such as altruism,
inequity aversion or fairness in order to obtain a new game in which equilibria can be
computed using classical solution concepts (e.g., Nash equilibrium).

The theory of social preferences that seems to be most relevant to the above games
relies on the notion of fairness. In [8], Charness & Rabin indeed propose a specific form
of social preferences they callquasi-maximinpreferences. In their model, group payoff
is computed by means of a social welfare function which corresponds to aweighted
combination of Rawls’maximinand of the utilitarian welfare function (i.e., summation
of individual payoffs) (see [8, p. 851]).

Formally, for every solutions ∈ S, according to Charness & Rabin’sfairness
model, the utility function of playeri ∈ {Alice,Bob} is given by:

UFi (s) = (1− λ) ∙ Ui(s) + λ ∙ SWi(s)

whereλ ∈ [0, 1] andSWi(s) defines the social welfare function as follows:

SWi(s) = δ ∙ min
j∈Agt

Uj(s) + (1− δ) ∙
∑

j∈Agt

Uj(s)
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whereδ ∈ [0, 1].
The two parametersλ andδ can be interpreted as follows:λ measures how much

player i cares about pursuing the social welfare versus his own self-interest. In the
social welfare function,δ measures the degree of concern for helping the worst-off
person versus maximizing the total social surplus. Settingδ = 1 corresponds to the
pure “maximin” principle (or “Rawlsian” criterion), while settingδ = 0 corresponds to
pure utilitarianism.

However, although such a model allows to explain why people choose to cooperate
in the context of the Prisoner’s Dilemma, it remains indecisive in the case of the Hi-Lo
game or the Stag-Hunt game. In fact, in the latter games, such a model appears to be
of no help because, for any possible value ofδ andλ, the two solutions(C,C) and
(D,D) remain Nash equilibria in the resulting transformed game. As a consequence,
similarly to the original game considering pure self-interested agents, no prediction can
be made.

Since current theories of social preferences are not sufficient to explain the behav-
ior observed in situations like the Hi-Lo game and the Stag-Hunt game, we provide
through the next sections some alternative theories that allow to correctly model and
explain such observations1. As those theories refer to the concept of collective utility,
let us first extend our previous formalization of a strategic game from Definition 2.1 so
that it incorporates the group utility function.

Definition 2.2 (Game with Group Utility) A strategic game with group utility is a tu-
pleG′ = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈ 2Agt∗}〉 where:

• Agt = {1, . . . , n} is the set of agents;

• Si defines the set of strategies for agenti;

• UJ :
∏
i∈Agt Si → R is a total payoff function mapping every strategy profile to

some real number for some teamJ .

For notational convenience, throughout the paper, we writeUi instead ofU{i}.
While nothing specifies how to compute each group utility in Definition 2.2, one

can define those in terms of individual payoffs. As some examples, the following
principles can be considered, which are well known to be the most realistic.

For everyJ ∈ 2Agt∗ and everys ∈ S, let us define:

• pure utilitarianism:UJ(s) =
∑
i∈J Ui(s)

• themaximinprinciple:UJ(s) = mini∈J Ui(s)

Note, however, that such a collective utility function may however be defined dif-
ferently.

1Other theories of social preferences such as altruism, reciprocity [13], and inequity aversion [10] are not
discussed here because they simply reduce the game from Figure 1 to another type of Hi-Lo matching game.
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3 Team reasoning

In this section, we consider the well-known concept of team reasoning, which was first
introduced by Bacharach in [1] in order to explain observed behavior in the game from
Section 2. In order to interpret the intuitive behavior in such games, some theorists have
indeed proposed to incorporate new modes of reasoning into game theory. For instance,
starting from the work of Gilbert [11] and Reagan [14], some economists and logicians
[12] have studied team reasoning (also calledwe-modereasoning) as an alternative to
the best-response reasoning assumed in traditional game theory [19, 1, 9] (also called
I-modereasoning). Team-directed reasoning is the kind of reasoning that people use
when they perceive themselves as acting as members of a group or team [19]. That
is, when an agenti engages in team reasoning, he identifies himself as a member of
a group of agentsJ and conceivesJ as a unit of agency acting as a single entity in
pursuit of some collective objective. A team reasoning player acts for the interest of
his group by identifying a strategy profile that maximizes the collective payoff of the
group, and then, if the maximizing strategy profile is unique, by choosing the action
that forms a component of this strategy profile.

3.1 Definitions

In order to formally illustrate Bacharach’s original theory introduced in [1], let us
extend the strategic game defined by Definition 2.2 in Section 2, and consider what
Bacharach calls anunreliable team interaction(UTI) structure, that is, a game struc-
ture in which there is a probability that a given player identifies with a team and chooses
the action which maximizes the team benefit (i.e., the player plays in thewe-mode), and
another probability that the player is a self-interested agent who tries to maximize his
own benefit (i.e., the player plays in theI-mode)2. In this sense, the interaction is
“unreliable” because there is no certainty that a player will reason and act as a team
member.

Definition 3.1 (Unreliable Team Interaction) An unreliable team interaction struc-
ture is a tupleUTI = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈ 2Agt∗}, {Ωi|i ∈ Agt}〉 where:

• 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈ 2Agt∗}〉 is a strategic game with group utility
according to Definition 2.2;

• Ωi is a probability distribution over the setTi = {J ∈ 2Agt∗|i ∈ J}.

Intuitively, for any agenti ∈ Agt, Ti is the set of groups agentimay identify with.
For everyJ ∈ Ti, Ωi(J) is the probability that agenti identifies with teamJ (i.e.,
the probability that agenti reasons and acts as a member of teamJ). In the definition
of anUTI structure it is implicitly assumed that an agenti identifies with a unique
team at a given moment which can be either the singleton{i}, which corresponds to
agenti playing in theI-mode, or some set of agentsJ ∈ Ti such that|J | > 1, which
corresponds to agenti playing in thewe-mode.

2As a matter of simplicity in our model, we assume the absence of any outside signal observable by
the players, since it does not appear to be relevant to our study (such signals are considered in Bacharach’s
originalUTI structure from [1]).
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The set of group identification statesT is defined asT =
∏
i∈Agt Ti. Elements of

T are denoted byt, t′, . . .. Given some group identification statet ∈ T , we write ti
to denote the element oft corresponding to agenti (i.e., the group agenti identifies
with according tot). The probability distributionΩ over the setT is defined asΩ =∏
i∈Agt Ωi. Given some〈J1, . . . , Jn〉 ∈ T , Ω(〈J1, . . . , Jn〉) is the probability that

“agent1 identifies with teamJ1 andagent2 identifies with teamJ2 and... andagentn
identifies with teamJn”.

In [1], Bacharach further introduces the notion of aprotocol, which consists in
specifying a strategy for every groupJ ∈ 2Agt∗. Formally, a protocolα is a function
mapping every teamJ ∈ 2Agt∗ to a strategy profilesJ ∈ SJ . The set of all protocols
is denoted byΔ. Intuitively, given a protocolα and a teamJ , α(J) specifies the
strategy that the agents inJ shouldplay according to the protocolα, when identifying
themselves as members of teamJ . Note that ifJ is a singleton{i}, α({i}) is nothing
but the action that the agenti shouldplay according to the protocolα, when reasoning
in theI-mode.

Given the probability distributionΩ on the set of group identification statesT , one
can then express the expected value of a given team protocolα ∈ Δ for some team
J ∈ 2Agt∗:

EVJ(α) =
∑

t∈T

Ω(t) ∙ UJ(s
α,t
1 , . . . , s

α,t
n ) (1)

where, for everyi ∈ Agt, sα,ti is the action of agenti in the strategy profileα(ti).
Intuitively, EVJ(α) measures how much utility teamJ can expect from the protocol
α.

Furthermore, given two protocolsα andβ, and a groupJ ∈ 2Agt∗, we writeαJ ∙
β−J to denote the protocol such thatαJ ∙ β−J(J) = α(J) and for allH ∈ 2Agt∗ such
thatH 6= J , αJ ∙ β−J(H) = β(H).

This allows us to express the concept of anUTI equilibrium as follows:

Definition 3.2 (Uti Equilibrium) A protocolα is an UTI equilibrium if and only if:

∀J ∈ 2Agt∗, ∀β ∈ Δ, EVJ(βJ ∙ α−J) ≤ EVJ(αJ ∙ α−J)

In order to illustrate the aboveUTI structure, let us consider the game presented
in Section 2. The corresponding structureUTI = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}, {Ωi|i ∈ Agt}〉 can therefore be defined as follows:

• Agt = {a, b} wherea andb respectively stand for Alice and Bob;

• Sa = Sb = {C,D};
S{a,b} = {(D,D), (D,C), (C,D), (C,C)};

• The individual payoff functions are defined according to Figure 1 (where0 <
y < x):
Ua(C,C) = Ub(C,C) = x;
Ua(D,D) = Ub(D,D) = y;
Ua(D,C) = Ub(C,D) = z;
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Ua(C,D) = Ub(D,C) = 0;
The group payoff function may then be freely defined according to themaximin
principle3, e.g.,
U{a,b}(C,C) = x;
U{a,b}(D,D) = y;
U{a,b}(C,D) = U{a,b}(D,C) = 0;

• for everyi ∈ {a, b}, Ωi is defined as follows:
Ωi({i}) = ωi
Ωi({a, b}) = 1− ωi

whereωi and1−ωi respectively characterize the probability that playeri reasons
in theI-mode/ we-mode.

In the case of the preceding game, let us consider the protocolα such thatα({a}) =
α({b}) = C andα({a, b}) = (C,C). Protocolα simply specifies that both players
choose strategyC independently of reasoning in theI-modeor in thewe-mode. Sim-
ilarly, let us consider the alternative protocolβ such thatβ({a}) = β({b}) = D and
β({a, b}) = (C,C). In this case, protocolβ specifies that both players choose strat-
egyD when reasoning in theI-modeand choose strategyC when reasoning in the
we-mode.

Table 2 then illustrates the conditions under which either of the above protocols
(α or β) is the uniqueUTI equilibrium in the aboveUTI structure, depending on the
value of payoffz and the group identification parametersωa andωb.

Group payoff Conditions Conditions Unique

functions onz on ωa and ωb UTI equilibria

maximin 0 ≤ z ωa∙ωb
ωa+ωb

> y
x+y

α

pure

0 ≤ z < y ωa∙ωb
ωa+ωb

> 2y−z
2x+2y−2z

utilitarianism

y ≤ z < x max(ωa, ωb) >
y

x+y−z

x < z ≤ 2x 0 ≤ ωa, ωb ≤ 1 β
2x < z max(ωa, ωb) <

z/2−y
z−x−y

Table 2: Predictions in theUTI structure

The main observation that can be made from Table 2 is that, whenever0 ≤ z < x,
for some sufficiently high probabilityωa or ωb that either agenta or b identifies as a
member of team{a, b}, playing strategyC becomes the only optimal choice no matter
whethera andb actuallyreason in theI-modeor in thewe-mode(cf. protocolα).

However, there exist some notable differences between using the maximin principle
of pure utilitarianism as the group payoff function. In fact, one should note that the
determination of the unique equilibriumα is independent of the value ofz when using
the maximin principle. As an example, if one assume thatx = 10 andy = 5 in the

3One could similarly use the pure utilitarian criterion as the group payoff function.
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aboveUTI structure, and that both players similarly identify as a member of group
{a, b}, i.e.,ωa = ωb, thenα is the uniqueUTI equilibrium wheneverωa, ωb > 2/3,
independently of whether theUTI structure represents an Hi-Lo game, a Stag-Hunt
game, or a prisoner’s dilemma (i.e., no matter the value ofz).

On the other hand, when using the pure utilitarianism criterion, the determination
of aUTI equilibrium is more complex as it relies on the value ofz. In the context of
the Hi-Lo game or the Stag-Hunt game (i.e., when0 ≤ z < x), protocolα can again
be the unique equilibrium for some sufficiently high probability of identifying with the
group. However, in the case of the prisoner’s dilemma where mutual cooperation is the
best outcome for the group (i.e., whenx < z < 2x), protocolβ is always the unique
optimal solution, no matter the players’ level of group identification4: if one identifies
with the group, then one will playC, else one will playD. One should also note that,
in the particular case where there is no unique best outcome for the group (i.e., when
z > 2x), if both players sufficiently identify with the group andωa = ωb, then there
exists no uniqueUTI equilibrium (solutions(C,D) and(D,C) become equally good
for both players).

Let us now give a more precise interpretation of a team reasoning structure in terms
of a classical strategic form game.

Definition 3.3 (Induced Strategic Game)Given an unreliable team interaction struc-
tureUTI = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈ 2Agt∗}, {Ωi|i ∈ Agt}〉, the corresponding
induced strategic game is a tupleGuti = 〈Agt′, {S′J |J ∈ Agt

′}, {U ′J |J ∈ Agt
′}〉

where:

• Agt′ = 2Agt∗;

• for eachJ ∈ Agt′, S′J = SJ ;

• for eachJ ∈ Agt′, U ′J is the utility function onS′ such that

U ′J(s) = EVJ(α)

whereα ∈ Δ is the protocol such that, for everyH ∈ Agt′, α(H) = sH .

According to Definition 3.3, everyUTI structure induce a strategic form game
with a player for every coalition in the original game. For example, in the aboveUTI
structure for the game from Section 2, the induced strategic game would include three
players, i.e., Alice, Bob, and the team whose members are Alice and Bob.

As already shown in [1], it is straightforward to demonstrate the following propo-
sition.

Proposition 3.1 Given an unreliable team interaction structureUTI = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}, {Ωi|i ∈ Agt}〉, the protocolα ∈ Δ is anUTI equilibrium
if and only if the strategy profiles such thatsJ = α(J) for all J ∈ 2Agt∗ is a Nash
equilibrium in the strategic gameGuti induced byUTI.

4Note that, wheneverz = x, then there exist no uniqueUTI equilibrium: both protocolsα andβ are
UTI equilibria.
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3.2 Limitations

Although Bacharach’s theory of team reasoning improves over Binmore’s theory of
empathetic preferences, as it allows to model situations in which different competing
coalitions coexist, it has some limitations that we want to discuss here.

As pointed out in Section 3, Bacharach’s theory relies on the assumption that ev-
ery agent identifies with a unique team at a given time. This is a strong assumption,
as it prevents from modeling situations in which an agent plays as a member of more
than one group. To illustrate this, consider a scenario where one faces the dilemma
between cooperating with a close friend, and cooperating with a family member (as-
suming the friend and the family member cannot cooperate with each other). In this
case, Bacharach’s theory predicts that the individual will choose over these two op-
tions, even though a more egalitarian solution might exist that would satisfy equally all
players. This limitation is therefore particularly relevant when modeling more flexible
and heterogenous multiagent systems in which different coalitions might be formed
whose intersections are non-empty.

Another problem of the theory of team reasoning concerns the exogenous proba-
bilistic distributionsΩi in the definition of anUTI structure. In fact, it is not com-
pletely clear how they should be interpreted. While such probabilities may depend on
some intrinsic features of the game such as the payoff structure, they may also be de-
termined by some pre-existent social relationships between the players. Bacharach’s
theory however remains vague regarding this issue.

Apart from the previous conceptual restrictions and ambiguities, the theory of team
reasoning has a technical limitation which lies in the complexity of the problem of
computing equilibria in the context of teamwork by using Nash equilibrium (see Propo-
sition 3.1). In fact, as Definition 3.3 indicates, given a structureUTI = 〈Agt, {Si|i ∈
Agt}, {U ′J |J ∈ 2

Agt∗}, {Ωi|i ∈ Agt}〉, the size of the set of agentAgt′ in the game
Guti induced byUTI is exponential inAgt, in particular we have|Agt′| = 2|Agt|− 1.
In other words, if one wants to use Nash equilibrium in order to computeUTI equilib-
ria, he has to increase exponentially the size of the structure of interaction.

In the next section we present a model of social ties which provides a simpler
approach to group reasoning and collective decision making. The interesting aspect
of this model is that it allows to compute equilibria in the context of collaborative
activity by using the concept of Nash equilibrium and without increasing the size of
the structure of interaction.

4 A theory of social ties

In this section, we introduce a new model that characterizes well the agents’ behavior
in the presence of social ties. The aim of such a model is to explain the complex so-
cial dilemmas such as the game from Section 2 by simply following the main idea on
which theories of social preferences are based (see e.g., [10, 8]), that is: (1) the idea of
performing some utility transformation in a given game, and then (2) of applying clas-
sical solution concepts from game theory (e.g., Nash equilibrium) in the transformed
game in order to find equilibria. Indeed, similarly to theories of social preferences, our
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starting assumption is that the existence of a social tie between two individuals may
have an impact on their utilities, in the sense that the utility that an agent attaches to a
given option may be affected by his social ties with other agents. In the next section,
we explain in detail how social ties may affect an agent’s utility function.

4.1 Definitions

Let us now introduce a social ties game, which extends the strategic game structure
presented in Definition 2.2 (see Section 2).

Definition 4.1 (Social Ties Game)A social ties game is a tupleST = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}, k〉 where:

• 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈ 2Agt∗}〉 is a strategic game with group utility
according to Definition 2.2;

• k is a total functionk : 2Agt∗ → [0, 1], such that:

C1 ∀i∈Agt,
∑
J⊆Agt\{i} k(J ∪ {i}) = 1

Every parameterk(J) in Definition 4.1 should be seen as a measure of the social
closeness within the groupJ in the current game context. In particular,k(J)measures
how much every member ofJ is socially tied with the groupJ . Settingk(J) to 0
corresponds to a non-existing tie with groupJ for all members ofJ , whereas setting
k(J) to 1 means that every member fromJ is strongly tied with groupJ . Moreover,
k({i}) stands for agenti’s measure of selfishness.

According to ConstraintC1, every agent’s identifications with every (sub)group
are exclusive, i.e., an agent can neither fully identify with different groups, nor identify
with no group at all (in the most extreme case, the agenti is maximally selfish in the
sense thatk({i}) = 1).

The following definition introduces the notion of social ties utility function, i.e.,
how an agent’s utility is affected by his social ties.

Definition 4.2 (Social Ties Utility) For every strategy profiles ∈ S, the social ties
utility function of playeri is given by:

USTi (s) =
∑

J⊆Agt\{i}

k(J ∪ {i}) ∙ max
s′J∈SJ

UJ∪{i}(s−J , s
′
J)

In Definition 4.2,S−J denotes the set of joint strategies for the coalitionAgt\J
(i.e.,S−J = SAgt\J ), andUJ(s) stands for groupJ ’s utility function, as it is described
in Definition 2.2.

The general idea of our model, which is formally expressed by the preceding social
ties utility functionUSTi (s), is that, in the presence of a strong tie with a groupJ , agent
i does not face a full strategic problem anymore. Indeed, the utility of the strategy
profile s for agenti becomes independent of what other agents fromJ\{i} do in this
strategy profile (i.e.,sJ\{i}). Therefore, agenti only needs to reason strategically
regarding the choices of every player outside ofJ , and choose the action from the
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strategy profile which maximizes groupJ ’s utility. As a result,i’s way of reasoning
can be interpreted as “do the right thing for the groupJ , assuming that all other players
in J also do the right thing for the groupJ”.

As in the previous section, let us now interpret the above social ties game in terms
of a classical strategic form game.

Definition 4.3 (Induced Strategic Game)Given a social ties gameST = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}, k〉, the corresponding induced strategic game is a tupleGst =
〈Agt, {Si|i ∈ Agt}, {U ′i |i ∈ Agt}〉 where:

• U ′i(s) = U
ST
i (s) for every strategy profiles ∈ S.

Moreover, as a concrete example of such a social ties game, let us again consider
the type of interactions illustrated in Figure 1 from Section 2. Let us first restate the
social ties utility function from Definition 4.2, which can be simplified as follows when
applied to any two player game (i.e.,|Agt| = 2). For everyi ∈ Agt and everys ∈ S:

USTi (s) = (1− k(Agt)) ∙ Ui(s) + k(Agt) ∙ max
s′−i∈S−i

UAgt(si, s
′
−i)

Starting from the matrix payoff from Figure 1, Figure 2 represents the correspond-
ing transformed utilities for each player based on themaximinprinciple as the group
utility function, and where an extremely strong social tie exists between Alice and Bob
(i.e.,k(Agt) = 1).

(x,x )

(y,y )(y,x )

(x,y )C

C

D

D

Alice

Bob

Figure 2: Transformed utilities (withk(Agt) = 1)

In this case, it is easy to show, through iterated elimination of strictly dominated
strategies, that the only Nash equilibrium resulting from this transformation is(C,C).
One should note that each player’s choice becomes independent of the opponent’s
choice. In other words, the initially strategic problem becomes a classical problem
of individual decision making that each player has to solve. More generally, Table 3
depicts the predictions that can be made in this game depending on the value ofz and
social tie parameterk(Agt).

The main observation one can make from Table 3 is that strategyC strictly dom-
inatesD in the context of some sufficiently strong social tie between both players in
such a social ties game. However, as for team reasoning (see Table 2 in Section 3),
some difference appear between the two types of group payoff functions. Under the
assumption of the maximin principle, the agents’ behavior is independent of whether
the game characterizes an Hi-Lo game, a Stag-Hunt game, or a prisoner’s dilemma
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Group payoff Conditions Conditions Unique
functions onz on k(Agt) Nashequilibria

maximin 0 ≤ z k(Agt) > y/x

(C,C)pure
0 ≤ z < 2x

k(Agt) > (z − x)/x
utilitarianism andk(Agt) > y/(2x− y)

Table 3: Predictions in the strategic game induced byST

(i.e., it does not rely on the value ofz). On the other hand, when using the pure util-
itarianism criterion, the same prediction can be made only if the group has a unique
favourite outcome (i.e., whenz < 2x). In the case where this condition is not satisfied
(i.e., whenz ≥ 2x), social ties cannot help the players to cooperate with each other:
they are then unable to coordinate as both(C,D) and(D,C) become equally optimal
solutions5.

4.2 Analysis

The following theorem demonstrates the ability of social ties to converge towards play-
ing a Nash equilibrium solution.

Theorem 4.1 For any strategic game with group utilityG′ = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}〉, there exists a social ties gameST = 〈G′, k〉 whose induced strategic game
has a Nash equilibrium in pure strategies.

One can show, through the proof of Theorem 4.1, that there exist games with group
utility G′ that do not yield a unique Nash equilibrium in the strategic game induced
by any social ties gameST = 〈G′, k〉. In this case, as several distinct equilibria are
unable to make any clear prediction, one should note that exploiting the group utility
as done by such aST game therefore becomes irrelevant6. However, notice that, for
any game with group utilityG = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈ 2Agt∗}〉 such that
argmaxs′∈SUAgt(s

′) is a singleton (i.e., the groupAgt has a unique goal), there exists
a social ties gameST = 〈G′, k〉 such thatk(Agt) = 1 and the game induced byST
has a unique pure strategy Nash equilibrium.

4.3 Relationship with team reasoning

Let us now provide a comparative analysis of the social ties game with the previous
theory of team reasoning (see Section 3). For this purpose, we first focus on the partic-
ular case of two-player games before extending the analysis to anyn-player game such
thatn ≥ 2.

5The resulting transformed game then corresponds to a version of the well known Battle of the Sexes
game (see, e.g., Figure 3).

6This remark also applies to the theory of team reasoning from the previous section.
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4.3.1 Comparison in any two-player game

In the context of two-player games, let us first specify the various similarities that can
emerge when considering subclasses of the above models of team reasoning and social
ties. In order to do so, we then consider some binary interpretation of those game
structures, which can be defined as in Definition 4.4.

Definition 4.4 (Binary Games) A binary unreliable team interactionBUTI is a struc-
tureUTI = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈ 2Agt∗}, {Ωi|i ∈ Agt}〉 where there exists
t ∈ T such that:

• for everyi ∈ Agt, Ωi(ti) = 1;

• for everyi, j ∈ Agt such thati 6= j, j ∈ ti if and only ifi ∈ tj .

A binary social ties gameBST is a gameST = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}, k〉 where:

• for everyJ ⊆ Agt, k(J) ∈ {0, 1}.

According to theBUTI structure, there is no uncertainty about which group each
agent identifies with. In such a structure, the concept of a protocol can be reduced to
a simple strategy profile, which therefore allows the comparison with someST game.
Moreover, note that in this case, an agent identifies with a group if and only if other
members of that group also identify with it. Similarly, theBST game represents an
extreme interpretation of theST game where every agent can only identify with a
unique group.

Thus performing a detailed analysis of such binary two-player games can reveal
their similarities under the previous constraints from Definition 4.4, as shown through
Theorem 4.2.

Theorem 4.2 Given a strategic game with group utilityG′ = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}〉 with |Agt| = 2, a binary social ties gameBST = 〈G′, k〉 and a binary un-
reliable team interaction structureBUTI = 〈G′, {Ωi|i ∈ Agt}〉, such thatk(Agt) =
Ωi(Agt) = 1 for everyi ∈ Agt:

(1) if the game induced byBST has a unique Nash equilibriums ∈ S, thens is the
unique solution such that every protocolα ∈ Δ defined byα(Agt) = s is an
UTI equilibrium inBUTI.

(2) if there exists a unique solutions ∈ S such that every protocolα ∈ Δ defined
by α(Agt) = s is anUTI equilibrium inBUTI, thens is the unique Nash
equilibrium in the game induced byBST .

Theorem 4.2 therefore indicates that binary versions of both game structures always
make the same predictions regarding the agents’ behavior in any two-player game.

Moreover, another common property that both models share is their reliance on the
concept of group intentions. In fact, in anUTI structure as well as in aST game, the
formation of a group implies that all members of this group seek to satisfy the group’s
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objective, that is, they aim at reaching the highest possible payoff for the group. How-
ever, it appears that, depending on the type of interactive situation being considered,
such a collective goal may not be clearly determined. As an example, one may consider
the two-player game in Figure 3, which corresponds to the well-known Battle of the
Sexes game.

(10, 5)

(5, 10)(0, 0)

(0, 0)U

D

D

R

Figure 3: Battle of the Sexes

In the context of this game, it is straightforward to show that anyUTI structure
and anyST game will always be indecisive, no matter the type of group identification
involved. Such an observation is obviously justified by the fact that the group made of
the two players does not have a unique goal (i.e., both solutions(U,D) and(D,R) are
equally good for the group according to either utilitarianism or the maximin principle).
As a consequence,ST games andUTI structures simply become irrelevant in such a
game.

Nevertheless, beside the previously highlighted similarity, one can observe some
significant mathematical differences between both theories. In fact, the major differ-
ence existing between both game structures is related to the type of reasoning followed
by the agents: unlike theUTI structure, theST game considers agents that do not
exclusively reason in any binary mode (e.g., eitherI-modeor we-mode), but instead
assumes that they behave according to some subjective combination of selfishness and
blind trust and cooperation. As a result of this important difference, both game struc-
tures can disagree about the predicted outcome. More formally, this distinction be-
tween both game structures leads to the following theorem:

Theorem 4.3 There exists a strategic game with group utilityG′ = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}〉 with |Agt| = 2, and a social ties gameST = 〈G′, k〉 whose
induced game has a unique Nash equilibriums ∈ S, such that, for any unreliable
team interactionUTI = 〈G′,Ω〉, if a protocolα ∈ Δ is anUTI equilibrium, then
(sα,t1 , . . . , s

α,t
|Agt|) 6= s for any group identification statet ∈ T .

Following Theorem 4.3, and as already mentioned in Section 3.2, such a differ-
ence between both game structures can be emphasized by considering more complex
multiagent systems that involve the formation of sub-coalitions whose intersections are
non-empty.

Furthermore, it is worth noting that Bacharach’s unreliable team interaction also
differs from our social ties game as it considers opportunistic behavior. In fact, Bacharach’s
concept of a team protocol (see Section 3.1) specifies what each player should do in
both modes of reasoning (i.e., inI-modeand inwe-mode). As a consequence, assuming
a situation where the probabilityω of reasoning inwe-modefor each player is suffi-
ciently high (e.g.,ω = 0.9) implies that a player who reasons inI-modewill seek to
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maximize his own payoff, given what the other player does while reasoning inwe-
mode. In other words, such anI-modereasoner, surrounded bywe-modereasoners,
will act as an opportunist. On the other hand, our model does not characterize such a
type of behavior as it uniquely specifies what the players should do based on the level
with which they similarly identify with the group. As a result, this difference leads to
the following theorem:

Theorem 4.4 There exists a strategic game with group utilityG′ = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}〉 with |Agt| = 2, and an unreliable team interactionUTI =
〈G′,Ω〉whose uniqueUTI equilibriaα ∈ Δ specifies a solutions = (sα,t1 , . . . , s

α,t
|Agt|)

for some group identification statet ∈ T , such thats cannot be a Nash equilibrium in
the game induced by any social ties gameST = 〈G′, k〉.

4.3.2 Comparison in anyn-player game

Let us now extend the previous analysis with considering more complex interactive
situations that involve more than two players.

We have demonstrated in Section 4.3.1 that both modelsUTI andST face the same
limitation whenever the collective goal or intention (i.e., the most preferred outcome)
is ambiguous in two-player games. We now intend to show that, although this remark
remains true, diverging group intentions are interpreted differently by the two theories.

In fact, as a means to emphasize this difference, we define a restricted class of
strategic games with unambiguous group intentions according to Definition 4.5.

Definition 4.5 (Game with Unambiguous Group Intentions) A game with unambigu-
ous group intentions is a game with group utilityG′ = 〈Agt, {Si|i ∈ Agt}, {Ui|i ∈
Agt}〉 as defined in Definition 2.2, such that, for everyJ ∈ 2Agt∗:

C2 for everyJ ∈ 2Agt∗ s.t. |J | > 1 and everys−J ∈ S−J , if there exists′J , s
′′
J ∈ SJ

s.t.UJ(s′J , s−J) = UJ(s
′′
J , s−J) = maxs′′′J ∈SJ UJ(s

′′′
J , s−J), thens′J = s

′′
J .

In Definition 4.5, ConstraintC2 simply ensures that no group can have multiple
goals at once, that is, every group has a unique preferred outcome. Note that this
constraint indeed rules out interactive situations such as the game in Figure 3.

Thus performing a detailed analysis of any binaryn-player game can reveal their
equivalence under the previous constraintC2, as shown through Theorem 4.5.

Theorem 4.5 Given a strategic game with group utilityG′ = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}〉 with |Agt| > 2, a binary social ties gameBST = 〈G′, k〉, and binary unreli-
able team interaction structureBUTI = 〈G′, {Ωi|i ∈ Agt}〉, such thatk(J) = Ωi(J)
for everyJ ∈ 2Agt∗ and everyi ∈ J :

(1) if the game induced byBST has a unique Nash equilibriums ∈ S, thens is the
unique solution such that the protocolα ∈ Δ defined byα(J) = sJ for every
J ∈ 2Agt∗ is anUTI equilibrium.

(2) if G′ satisfies ConstraintC2 from Definition 4.5, and there exists a unique so-
lution s ∈ S such that the protocolα ∈ Δ defined byα(J) = sJ for every
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J ∈ 2Agt∗ is anUTI equilibrium inBUTI, thens is the unique Nash equilib-
rium in the game induced byBST .

Theorem 4.5 therefore generalizes Theorem 4.2 from Section 4.3.1 and shows that
binary versions of both game structures can make the same predictions regarding the
agents’ behavior in anyn-player game that satisfies ConstraintC2.

However, the need for an additional constraint on the original game structureG′ in
Theorem 4.5 (i.e., ConstraintC2) points out to another important conceptual difference
concerning the type of transformation each model is based upon. Indeed, Bacharach’s
concept of team reasoning relies on what he calls agency transformation, which con-
sists in conceiving the situation not as a decision making problem for individual agents,
but as a decision making problem for the group as an agent. Alternatively, our concept
of group identification relies on some payoff transformation, that is, each agent in-
ternalizes the intentions of the group before considering the situation as a classical
decision making problem. As a consequence of such a conceptual difference, it can
lead the above binary models to make different predictions whenever ConstraintC2 is
not satisfied, as shown through Theorem 4.6.

Theorem 4.6 There exists a strategic game with group utilityG′ = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}〉, a binary unreliable team interaction structureBUTI =
〈G′, {Ωi|i ∈ Agt}〉, and a unique solutions ∈ S, such that the protocolα ∈ Δ
defined byα(J) = sJ for everyJ ∈ 2Agt∗ is anUTI equilibrium inBUTI, and
s cannot be a Nash equilibrium in the game induced by any binary social ties game
BST = 〈G′, k〉.

Moreover, another consequence of the different types of transformation each model
relies on concerns the complexity for computing an equilibrium solution. In fact, unlike
for Bacharach’sUTI structures,ST games consider the standard concept of a strategy
profile, as in traditional game theory (UTI structures instead consider protocols, as
depicted in Section 3.1). As shown through Definition 4.3, a consequence is that the
strategic gameGst induced by any social ties gameST does not increase the complex-
ity of computing the equilibrium solution, which is indeed an important difference with
Bacharach’sUTI structure: given a game with group utilityG′, the gameGst induced
by anyST = 〈G′, k〉 only transforms the utility function of the original gameG′ (the
number of agents remains unchanged here). Finding a Nash equilibrium in the game
Gst therefore appears to be mathematically simpler than finding such a solution in the
gameGuti induced by anyUTI = 〈G′, {Ωi|i ∈ Agt}〉.

5 Summary and future work

In this work, we provide a comparative analysis of two economic theories that allow to
explain collective behavior in situations that involve co-operation. After discussing the
limitations of Bacharach’s theory of team reasoning, we introduce a new model of so-
cial ties, which appears to be well suited to model collective behavior in the context of
complex strategic interactions. The advantages of our model compared to Bacharach’s
theory have been highlighted.
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Future work include refining the measure of social ties in the above model. In
fact, one may wonder how the social closeness of a group is determined (i.e., function
k in Definition 4.1). It is reasonable to assume that a group is made of agents who
share some individual ties between each of its members. Expressing the above social
ties functionk in terms of individual ties however appears not to be an easy task: a
player may indeed be very close individually to every member of a group without being
socially close to the group itself. We indeed believe that an agenti’s identification with
some groupJ does not only rely oni’s individual ties with each member ofJ , but
also on each other member’s ties with each other withinJ . As an attempt to fill this
gap, we will show that the above model of social ties can be interpreted in terms of an
alternative game that incorporate such individual ties.

Furthermore, while we argue, through our model of social ties, that cooperation
can be explained through the modification of the players’ individual preferences, we
will also discuss a different approach introduced by Binmore [3, 4, 5], which relies
on the concept of empathetic preferences. Although this theory offers another relevant
explanation of cooperative behavior, we will show its limitation to model complex
social interactions as it does not incorporate strategic reasoning.
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A Proofs of Theorems

A.1 Proof of Theorem 4.2

We here demonstrate that, given a strategic game with group utilityG′ = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}〉 with |Agt| = 2, the predictions made by both game structures
BST = 〈G′, k〉 andBUTI = 〈G′, {Ωi|i ∈ Agt}〉 are equivalent wheneverk(Agt) =
Ωi(Agt) for everyi ∈ Agt.
Let us first consider theBST game.

From Definitions 4.4 and 4.2, it follows that, inBST , for everyi ∈ Agt, s ∈ S,
and forJ = Agt\{i}, we have:

USTi (s) = max
s′J∈SJ

UAgt(si, s
′
J) (1)

Then (1) allows to state that, givens ∈ S is a Nash equilibrium solution in the
strategic game induced byBST , then for every agenti ∈ J , we have:

USTi (s) = UAgt(s) (2)
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where:

UAgt(s) = max
s′∈S
UAgt(s

′) (3)

Moreover, the fact thats is a unique Nash solution in the game induced byBST
implies that the groupAgt has a unique goal such that, for every joint strategys′ ∈ S:

if UAgt(s) = UAgt(s
′), thens = s′ (4)

In other words, all agents inAgt will maximize the group utility given, and they
will do so by performing the unique joint strategys ∈ S that allows it.

As a result, one can state that a solutions ∈ S is a unique Nash equilibrium induced
byBST if and only if the conditions (3) and (4) hold.

Let us now similarly consider theBUTI structure.
Definition 4.4 means that every agent can only identify with a unique group. It

follows from this definition that there exists a unique group identification statet ∈ T
such that:

ti = Agt for everyi ∈ Agt (5)

It follows from Definition 4.4 that for every teamJ ∈ 2Agt∗ and every protocol
α ∈ Δ, the expected value can be simplified as follows:

EVJ(α) = UJ(s
α,t
1 , . . . , s

α,t
n ) (6)

One can note from (6) that, if protocolα is anUTI equilibrium, then, for every
J ∈ A, we have:

EVJ(α) = max
s′J∈SJ

UJ(s
′
J , s

α,t
−J) (7)

wheresα,t−J is the combination of actions of all agentsi ∈ Agt\J specified by the
strategy profileα(ti). However, it follows from (5) and (7) that, for every coalition
J ∈ 2Agt∗ such thatJ 6∈ Agt (i.e., for every team nobody identifies with), and for
everyα ∈ Δ,EVJ(α) remains constant. This implies that every such groupJ is simply
irrelevant to the computation of theUTI equilibrium. As a result, it is immediate to
show that there exists a unique solutions ∈ S such that every protocolα ∈ Δ defined
by α(Agt) = s is anUTI equilibrium if and only if the conditions (3) and (4) hold.

A.2 Proof of Theorem 4.3

We consider a two-player strategic game with group utilityG′ = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}〉whose individual payoff matrix is represented in Figure 4(a) for both players in
Agt = {a, b}. Moreover, we take as the group payoff function the classical utilitarian
principle (i.e., for anys ∈ S, U{a,b}(s) = Ua(s) + Ub(s)).

The obvious main characteristics of the game depicted in Figure 4(a) is that both
players’ outcome is uniquely determined by a single player (i.e., Playera).

We then define a corresponding social ties gameST = 〈G′, k〉 such thatk({a, b}) =
0.5. One should then note that, in order to satisfy Definition 4.1, we must have that
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Figure 4: Simple dictator games

k({a}) = k({b}) = 0.5. The resulting strategic game induced byST is depicted in
Figure 4(b). In this case, it is straightforward to show that the unique Nash equilibrium
in this game is(C,D).

On the other hand, let us now consider a corresponding structureUTI = 〈G′, {Ωi|i ∈
Agt}〉 such thatω defines the probability that Playera reasons inwe-mode, that is
Ωa({a, b}) = ω andΩa({a}) = 1− ω 7.

Table 4 illustrates the expected values for every possible protocol in the game from
Figure 4 (note that all protocol specify the sam unique action forb, that is,αi({b}) =
D).

Protocols Expected values
αi αi({a}) αi({a, b}) EVa(αi) EV{a,b}(αi)

α1 A (A,D) 8 8
α2 B (B,D) 5 12
α3 C (C,D) 7 11
α4 A (B,D) 8− 3ω 8 + 4ω
α5 A (C,D) 8− ω 8 + 3ω
α6 B (A,D) 5 + 3ω 12− 4ω
α7 B (C,D) 5 + 2ω 12− ω
α8 C (A,D) 7 + ω 11− 3ω
α9 C (B,D) 7− 2ω 11 + ω

Table 4: All protocols in the dictator game A (Figure 4(a))

It is then straightforward to show from Table 4 and Definition 3.2 that, for any value
of ω such that0 < ω < 1, the structureUTI yields the uniqueUTI equilibriumα4.
Indeed, for every0 < ω < 1, we have:

EV{1,2}(α4) > EV{1,2}(α1) EV{1}(α1) > EV{1}(α6)
EV{1}(α4) > EV{1}(α2) EV{1}(α5) > EV{1}(α7)
EV{1}(α5) > EV{1}(α3) EV{1}(α1) > EV{1}(α8)
EV{1,2}(α4) > EV{1,2}(α5) EV{1}(α4) > EV{1}(α9)

7Note that the probability functionΩb is irrelevant here as Playerb cannot influence the outcome of the
game.
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Moreover, Playera will play A wheneverω = 0 whereas Playera will play B
wheneverω = 1. As a result, there exist noUTI structure build on the gameG′ that
has anUTI equilibrium specifying Playera to playC, as predicted by the above social
ties gameST .

A.3 Proof of Theorem 4.4

We here consider a two-player strategic game with group utilityG′ = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}〉 whose individual payoff matrix is represented in Figure 5 for
both players inAgt = {a, b}.

(2,−1)

(1, 0)(1, 1)

(0, 1)U

L

D

R

Figure 5: Game with no pure strategy Nash equilibrium

Note that such a game does not yield any pure strategy Nash equilibrium in its
original version. As before, we take as the group payoff function the same classical
utilitarian principle for anys ∈ S.

We then define a corresponding structureUTI = 〈G′, {Ωi|i ∈ Agt}〉 such that the
probabilityω that both players reason inwe-modeis sufficiently high, e.g.,Ωa({a, b}) =
Ωb({a, b}) = ω = 0.9. In this particular case, this leads to a uniqueUTI equilibrium
protocolα ∈ Δ defined by:

α({a}) = U
α({b}) = L
α({a, b}) = (D,L)

However, while considering any possible corresponding social ties gameST =
〈G′, k〉, one can similarly remark that the unique Nash equilibrium solution(DL)may
exist in the strategic game induced byST wheneverk({a, b}) ≥ 1/2 (otherwise, the
game has no equilibrium solution). One can therefore observe that the solution(U,L)
specified by the protocolα (when botha andb are inI-mode) cannot be a Nash equi-
librium in the game induced by any social ties gameST .

However, it is worth pointing out that the strategy profile(U,L) can only be pre-
dicted by someUTI structure as a suboptimal solution, as it is subject to some oppor-
tunistic behavior of a fewI-modereasoners that are surrounded bywe-modeplayers.

A.4 Proof of Theorem 4.5

We here demonstrate that, given a strategic game with group utilityG′ = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}〉 with |Agt| > 2, both game structuresBST = 〈G′, k〉 and
BUTI = 〈G′, {Ωi|i ∈ Agt}〉 can be transformed into simpler strategic gamesGbgi
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andGbuti.
Let us first transform theBST game.

From Definitions 4.4 and 4.2, it follows that, for everyi ∈ Agt, s ∈ S, and for
someJ ⊆ Agt\{i}:

USTi (s) = max
s′J∈SJ

UJ∪{i}(s−J , s
′
J) (1)

From (1), Definition 4.1 and ConstraintC1 allow to state that, for every agentj ∈ J
such thatj 6= i:

USTj (s) = max
s′K∈SK

UK∪{j}(s−K , s
′
K) (2)

whereK = J ∪ {i}\{j}

LetC denote the set of actual coalitions in theBST game:

C = {J ∈ 2Agt∗|k(J) = 1} (3)

Note that
⋃
J∈C J = Agt and

⋂
J∈C = ∅.

Then (1) and (2) allow to state that, givens ∈ S is a Nash equilibrium solution in
the strategic game induced byBST , then for every coalitionJ ∈ C and every agent
i ∈ J , we have:

USTi (s) = UJ(s) = max
s′J∈SJ

UJ(s
′
J , s−J) (4)

Moreover, the fact thats is a unique Nash solution in the game induced byBST
implies that every groupJ ∈ C has a unique goal such that, for every joint strategy
s′J ∈ SJ :

if UJ(sJ , s−J ) = UJ(s
′
J , s−J), thensJ = s

′
J (5)

In other words, agents inJ will maximize the group utility given the strategies of
other agents outsideJ , and they will do so by performing the unique joint strategy
sJ ∈ SJ that allows it.

Furthermore, one should note that, for every solutions ∈ S:

UJ(s) ≤ max
s′J∈SJ

UJ(s
′
J , s−J) (6)

As a result from (4), (5) and (6), the current gameBST = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}, k〉 can be transformed into a simplified strategic gameGbgi = 〈Agt′, {S′J |J ∈
Agt′}, {U ′J |J ∈ Agt

′}〉 where each groupJ ∈ C acts as a single agent, that is:

Agt′ = C
S′J = SJ
U ′J(s

′) = UJ(s) wheres′ ∈ S′ ands ∈ S are
such thats′K = sK for everyK ∈ C.

Note that through this game transformation,1 ≤ |Agt′| ≤ |Agt|. In the particular
case where every agent inAgt is selfish (i.e.,ki(∅) = 1 for every i ∈ Agt), then
|Agt′| = |Agt|.
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It is then straightforward to show, through (4), (5) and (6) and the definition of
the Nash equilibrium, that, if a solutions ∈ S is a unique Nash equilibrium in the
game induced byBST , then a solutions′ ∈ S′ is a unique Nash equilibrium in the
transformed strategic gameGbgi, such thats′J = sJ for everyJ ∈ C. Conversely, as
ConstraintC2 ensures that every groupJ ∈ C has a unique goal in any gameBST
andGbst, it implies that if a solutions ∈ S is a unique Nash equilibrium inGbst, then
a solutions′ ∈ S′ is a unique Nash equilibrium in the game induced byBST , such
thats′J = sJ for everyJ ∈ C.

Let us now similarly transform theBUTI structure.
Definition 4.4 means that every agent can only identify with a unique group. It

follows from this definition that there exists a unique group identification statet ∈ T
such that: ⋃

i∈Agt

ti = Agt and
⋂

i∈Agt

ti = ∅ (7)

Given this unique group identification statet that satisfies (7), one can therefore
define the set of active teamsA as follows:

A = {J ∈ 2Agt∗|∀i ∈ J, ti = J} (8)

It follows from (8) and Definition 4.4 that for every teamJ ∈ 2Agt∗ and every
protocolα ∈ Δ, the expected value can be simplified as follows:

EVJ(α) = UJ(s
α,t
1 , . . . , s

α,t
n ) (9)

One can note from (9) that, if protocolα is anUTI equilibrium, then, for every
J ∈ A, we have:

EVJ(α) = max
s′J∈SJ

UJ(s
′
J , s

α,t
−J) (10)

wheresα,t−J is the combination of actions of all agentsi ∈ Agt\J specified by the
strategy profileα(ti). Note that, for every coalitionK ∈ 2Agt∗ such thatK 6∈ A
(i.e., for every team nobody identifies with), and for everyα ∈ Δ, EVK(α) remains
constant. This implies that every such groupK is simply irrelevant to the computation
of theUTI equilibrium.

As a result from (7), (8), (9) and (10), a structureBUTI = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}, {Ωi|i ∈ Agt}〉 can be transformed into a simplified strategic gameGbuti =
〈Agt′′, {S′′J |J ∈ Agt

′′}, {U ′′J |J ∈ Agt
′′}〉 where every active teamJ ∈ A acts as a

single agent, that is:

Agt′′ = A
S′′J = SJ
U ′′J (s

′) = UJ(s) wheres′ ∈ S′ ands ∈ S
such thats′K = sK for everyK ∈ A.

Note that through this game transformation,1 ≤ |Agt′′| ≤ |Agt|. In the particular
case where every agent is selfish (i.e.,ti = {i} for every i ∈ Agt), then |Agt′′| =
|Agt|.
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It is then straightforward to demonstrate from (10) and Definition 3.2 that ifs ∈ S′′

is the unique solution such that the protocolα ∈ Δ defined byα(J) = sJ for every
J ∈ 2Agt∗ is anUTI equilibrium in theBUTI structure, thens is the unique Nash
equilibrium in the transformed strategic gameGbuti. Conversely, ifs ∈ S′′ is the
unique Nash equilibrium in the transformed strategic gameGbuti, thens is the unique
solution such that the protocolα ∈ Δ defined byα(J) = sJ for everyJ ∈ 2Agt∗ is an
UTI equilibrium in the originalBUTI structure. Note that in the last case, a protocol
α may not be the onlyUTI equilibrium inBUTI as the strategy profile specified by
α(K) is irrelevant and can therefore take any value fromSK for everyK 6∈ A.

Finally, given a strategic game with group utilityG′ = 〈Agt, {Si|i ∈ Agt}, {UJ |J ∈
2Agt∗}〉 that satisfies ConstraintC2, a binary unreliable team interaction structure
BUTI = 〈G′, {Ωi|i ∈ Agt}〉, and a social ties gameBST = 〈G′, k〉, it is imme-
diate to show that the corresponding transformed gamesGbuti andGbst are equivalent
wheneverC = A.

A.5 Proof of Theorem 4.6

We consider a three-player strategic game with group utilityG′ = 〈Agt, {Si|i ∈
Agt}, {UJ |J ∈ 2Agt∗}〉 whose individual payoff matrix is represented in Table 5 for
all players inAgt = {1, 2, 3}. Moreover, we take as the group payoff function the max-
imin principle (i.e., for everyJ ∈ 2Agt∗ and everys ∈ S, UJ(s) = mini∈J Ui(s)).

Actions Utilities
Player1 Player2 Player3 Player1 Player2 Player3

A A A 5 5 0
A A B 5 5 0
A B A 0 0 0
A B B 0 0 0
B A A 4 4 4
B A B 0 0 5
B B A 5 5 0
B B B 3 3 3

Table 5: A three-player coordination game

The main characteristics of this game is thatG′ does not satisfy ConstraintC2 from
Definition 4.5. In fact, if Player 3 selectsA, then the team{1, 2}made of the two other
players appears to have diverging goals, that is, solutions(A,A,A) and(B,B,A) are
equally the best option for the group{1, 2}.

Let us now define a corresponding structureBUTI = 〈G′, {Ωi|i ∈ Agt}〉 such
thatΩ1({1, 2}) = Ω2({1, 2}) = 1, andΩ1({1, 3}) = Ω3({1, 3}) = Ω2({2, 3}) =
Ω3({2, 3}) = Ω1({1, 2, 3}) = Ω2({1, 2, 3}) = Ω3({1, 2, 3}) = 0.

In this case, it is straightforward to show that every protocolα ∈ Δ that is anUTI
equilibrium is defined byα({1, 2}) = (A,A) andα({3}) = (B) 8.

8Note that every groupJ ∈ 2Agt∗ such thatα(J) 6= {1, 2} andα(J) 6= {3} is irrelevant asJ is an
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Similarly, we define a binary social ties gameBST = 〈G′, k〉 and determine the
various prediction such a game can make depending on the valuation of the functionk.
The corresponding sets of Nash equilibria in the game induced byBST can be found
in Table 6.

k12 k13 k23 k123 Predictedoutcomes

(A,A,A)
0 0 0 0 (A,A,B)

(B,B,B)
(A,A,A)

1 0 0 0 (A,A,B)
(A,B,A)

0 1 0 0 (B,B,B)
(A,A,A)

0 0 1 0 (A,A,B)
(B,B,B)

0 0 0 1 (B,A,A)

Table 6: Predictions (Nash equilibria in the induced game) based on social ties

One can therefore observe from Table 6 that there exits noBST structure such that
the solution(A,A,B) is the unique Nash equilibrium in the game induced byBST .

inactive team.

25


