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Abstract— In this paper, we investigate the relationship be-
tween uncertainty and a designer’s ability to influence social
behavior. Pigovian taxes are a common approach to social
coordination. However, guaranteeing efficient behavior typically
requires that the system designer has complete knowledge of
the user population’s sensitivity to taxation. In this paper, we
explore the effect of relaxing this requirement in the context
of congestion games with affine costs. Focusing on the class of
scaled Pigovian taxes, we derive the optimal tolling scheme that
minimizes the worst-case efficiency loss under uncertainty in
user sensitivity. Furthermore, we derive explicit bounds which
highlight how the level of uncertainty in sensitivity degrades
performance.

I. INTRODUCTION

As engineered systems and their users become increas-
ingly interconnected, engineers must consider not only mere
system design, but also efficient system utilization [1]. It is
widely known that uninfluenced social systems often exhibit
suboptimal behavior. This is a well-researched topic in many
fields, including electric power markets [2], communication
spectrum sharing [3], and traffic congestion [4]. Accordingly,
a central design challenge is to influence social behavior
through admissible mechanisms in these systems to promote
efficient outcomes.

To analyze the role of social coordination in engineered
systems, we model the behavior of a system’s users as
a game between the users, in which each user chooses
his actions to maximize his personal benefit. Equilibrium
behavior established by every user acting in this way is
known as a Nash equilibrium. It is widely known that Nash
equilibria need not be efficient in any global sense. It is
common to quantify the efficiency losses inherent in Nash
equilibria by a metric known as the “price of anarchy” of
a system, defined as the worst-possible ratio between the
efficiency of a Nash equilibrium behavior and that of an
optimal behavior [5], [6]. The price of anarchy has been
analyzed for a variety of engineered systems [7], [8], [9].
This leads to the central question: how may social behavior
be influenced to reduce the price of anarchy?

A common methodology for social coordination is known
as a Pigovian tax [10]. Under a Pigovian tax, users are
charged a tax equal to the negative effect they have on other
users; thus, each user is incentivized to choose actions that
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maximize the public benefit. In a general sense, Pigovian
taxes are attractive since they guarantee that Nash equilib-
rium behavior exactly equals system optimal behavior. This
type of taxation strategy has been suggested as a solution
to industrial pollution [11], harmful speculative trading in
financial markets [12], and road congestion [13], to name a
few.

To illustrate a social coordination setting in which Pigo-
vian taxes apply, we turn to the problem of road congestion.
It is well-known that Nash equilibria in routing games are
often inefficient [14], and a central research focus has been
to influence routing behavior using tolls to promote efficient
routing. In the congestion setting, a Pigovian tax is known as
a marginal-cost toll or congestion toll; each driver is charged
a toll equivalent to the congestion caused by an additional
unit of traffic [15], [16], [17]. An inherent challenge is that
congestion is experienced in units of time, but tolls are
charged in units of money. If the designer lacks perfect
information regarding drivers’ price-sensitivity, it will not in
general be possible for the designer to levy a perfect toll.

Recent research has sidestepped this issue by fixing all
system variables and deriving a tolling strategy that optimizes
a fixed instance of the system [18]. It has been shown that
under a general class of congestion games, this type of fixed
tolling can optimize Nash Equilibria [19].

While these results represent successes, they rely strongly
on a complete characterization of the network structure, user
capabilities, and price sensitivities. Accordingly, it may be
that small variations in any of these parameters could lead
to highly suboptimal behavior; uncertainty in any of these
parameters may dramatically reduce a designer’s ability to
influence social behavior and could in general lead to a
degradation in efficiency from the uninfluenced case. Little
research has been done to characterize the effect of this
uncertainty on the ability to coordinate a social system.

With these limitations in mind, we initiate a study on the
relationship between information and a designer’s ability to
influence social behavior. Specifically, we investigate uncer-
tain user price-sensitivity for a routing problem in a class
of congestion games: the set of network routing games such
that each edge in a network possesses a congestion function
that is affine in the number of edge users. Congestion games
of this type have been extensively studied in the existing
literature [20], [21], [14].

For this class of congestion games, we develop a dis-
tributed tolling scheme that increases routing efficiency for
any bounded uncertainty of the user population’s price-
sensitivity. We show that under certain common utilization
conditions, provided that the population’s price-sensitivity is



range-restricted, scaled marginal-cost tolls always increase
efficiency. Furthermore, we show that the unique marginal-
cost toll scale factor that minimizes the price of anarchy is
the geometric mean of the upper and lower bounds of the
population’s price sensitivity. That is, our toll on a road is
a function only of that road’s congestion properties and the
ratio of the population’s sensitivity bounds – it is independent
of the traffic flow rate and the network topology.

We also provide a tight bound on the price of anarchy
for games using our specified tolling methodology. This
price of anarchy depends only on the ratio of the user
population’s sensitivity bounds; it is independent of network
cost functions, network topology, and overall traffic rate.
Thus, for a broad class of games, we concisely characterize
the relationship between information and efficiency.

II. MODEL

A. Network Definition

Consider a network (V,E), which consists of a vertex set
V and edge set E ⊆ (V ×V ). Each edge e ∈ E is associated
with a latency function of the affine form

le(fe) = defe + ce, (1)

where fe designates the flow on edge e.
In this paper, we will focus on characterizing the efficiency

of flows induced by individuals’ strategic behavior. Specifi-
cally, we focus on the setting in which there is a population of
users seeking to traverse the network from a common source
to a common destination. Consequently, each user chooses
its path from a common set of paths P = {p1, p2, . . . , pn}
where each path p ∈ P consists of a set of edges, i.e.,
P ⊆ 2E . We define the total mass of the population to be
r ≥ 0. Using these definitions, let a game G be defined by
the tuple G = (V,E,P, {le}e∈E , r), and let G represent the
class of all such games G.

B. Network Flows

For a game G, the set of feasible flows f(G) =
(fp1 , fp2 , . . . , fpn) is characterized by

F (G) =

{fp}p∈P : fp ≥ 0 and
∑
p∈P

fp = r

 ,

where fp designates the flow on path p. For a given flow
f(G) ∈ F (G), the latency lp(f(G)) of any path p ∈ P is
the sum of the latencies of edges in that path:

lp(f(G)) =
∑
e∈p

le(fe), (2)

where fe is the flow on edge e given f(G), i.e.,

fe =
∑

p∈P:e∈p
fp. (3)

Thus, the total latency on the network is the flow-weighted
sum of all path latencies:

L(f(G)) =
∑
p∈P

fp · lp(fp). (4)

Users are concerned with minimizing their latencies, so
the cost Jp to a user of any path p ∈ P is the path latency:

Jp(f(G)) =
∑
e∈p

le(fe). (5)

We focus in particular on the setting in which each user
chooses the path with the lowest cost. A routing obtained in
this way is known as a Nash flow [14], which corresponds to
a feasible flow fne(G) ∈ F (G) such that for all pi, pj ∈ P

fnepi > 0, fnepj > 0 =⇒ Jpi(f
ne(G)) = Jpj (fne(G)), (6)

fnepi > 0, fnepj = 0 =⇒ Jpi(f
ne(G)) ≤ Jpj (fne(G)). (7)

We define an optimal flow on G as

fopt(G) = inf
f(G)∈F (G)

L(f(G)).

Then we define the price of anarchy of G as

PoA(G) = sup
G∈G

L(fne(G))

L(fopt(G))
. (8)

C. Tolling for Known Homogeneous Populations

The network owner, wishing to enforce optimal routing,
charges a toll τe(fe) on each link in the network, adding
to the link user’s cost. A Pigovian toll, also known as a
marginal-cost toll, is of the form τe(fe) = defe. In general,
these marginal-cost tolls induce optimal routing. Homogene-
ity of users is a common assumption when analyzing worst-
case behavior [21]; it is a simple approach that can often be
used to bound the behavior of heterogeneous populations.
The clear benefit of tolling functions of the Pigovian form
is that they can be assigned in a distributed manner; each
edge toll is a function only of the congestion properties of
that edge. For latency functions of the form in (1), Pigovian
tolls modify (5) to give a path cost of

Jp(f(G)) =
∑
e∈p

[2de(fe) + ce] . (9)

In [14], it is shown that cost functions of this form always
induce optimal behavior.

D. Tolling for Unknown Homogeneous Populations

In real systems, it is often true that users exhibit price-
sensitivities that are unknown or that vary from day to
day. We model this price sensitivity with a parameter β ∈
[βL, βU]. Intuitively, high β implies high aversion to toll.
Incorporating price sensitivity, we represent the cost of a
path generally as

Jp(f(G)) =
∑
e∈p

[le(fe) + βτe(fe)] . (10)

In the case when β is known precisely, an optimal
marginal-cost toll is of the form τe(fe) = defe/β; with this
toll, (10) clearly simplifies to (9). We desire to exploit the
distributed nature of marginal-cost tolls, so we investigate
tolling functions of the form τe(fe) = µdefe, where µ ≥ 0 is
a common factor for every edge, and scales with our estimate
of the true β of the population. We call tolls of this form



scaled marginal-cost tolls. These tolls further modify (5) to
give the final form of our path cost function

Jp(f(G)) =
∑
e∈p

[(1 + βµ)defe + ce] . (11)

These modified cost functions induce a new Nash flow
which we denote fne(µ;G, β). For simplicity of notation,
we define the total latency of this Nash flow under scaled
marginal-cost tolls as

Lne(µ;G, β) = L(fne(µ;G, β)), (12)

Where L(f(·)) is defined as in (4). Note that µ is our control
parameter; G and β represent the system and population we
are attempting to control.

Therefore, given a game G, we seek to characterize the
scaled marginal-cost tolls which minimize the worst-case to-
tal latency for G given a range of user price sensitivities. That
is, we seek to characterize solutions µ∗ to the optimization
problem

Lne(µ∗;G, β) = inf
µ≥0

(
sup

β∈[βL,βU]

(Lne(µ;G, β))

)
. (13)

III. MAIN RESULT

We show that under reasonable utilization constraints,
the solution to the optimization problem defined in (13) is
independent of the underlying game G.

Definition 3.1: A game G = (V,E,P, {le}e∈E , r) is
fully-utilized if ∀r̄ ≥ r, ∀pi ∈ P , fnepi (µ = 0;G, β) > 0.
That is, all paths are in use in an un-tolled Nash flow, and
increasing r will not cause any path flow to decrease to zero.
In Section V-A we show that this definition applies to a broad
class of games.

Theorem 3.2: Consider any game G that satisfies Defini-
tion 3.1. Let

µ∗ =
1√
βLβU

. (14)

Then µ∗ satisfies

Lne(µ∗;G, β) = inf
µ≥0

(
sup

β∈[βL,βU]

(Lne(µ;G, β))

)
.

Furthermore, let G∗ represent the class of all games G
satisfying Definition 3.1. For β ∈ [βL, βU],

PoA (µ∗;G∗, β) =
4
(

1 +
√
βL/βU + βL/βU

)
3
(

1 +
√
βL/βU

)2 . (15)

Thus, µ∗ ensures that the worst-case total latency of a
game is limited to a minimum for any range-restricted β.

Note that when βL = 0, meaning that it is not possible
to influence behavior with tolls, we obtain the well-known
price of anarchy of 4/3 derived in [21]. On the other hand,
if βL = βU, meaning that the price-sensitivity of all users is
known precisely, we obtain a price of anarchy of 1, implying
that complete information allows complete control.

Note also that µ∗ depends only on βL and βU; it is
independent of G. This allows us to define a distributed rule

for our edge tolls so that we can set each edge’s toll without
knowledge of the overall network topology, and guarantees
a reduction in total latency from the un-tolled network.

IV. PROOF OF RESULTS

The proof proceeds as follows:
1) In Lemma 4.1 we show that in games satisfying

Definition 3.1, the flow on any path can be decomposed
as the sum of a term depending on r and a term
depending on µ.

2) In Lemma 4.2 we show that for such games,
Lemma 4.1 implies that scaled marginal-cost tolls al-
ways decrease latency by a quantity that is independent
of the traffic rate r.

3) Lastly, we show that the properties proved in
Lemma 4.2 lead to a characterization of the unique
marginal-cost toll scale factor that minimizes worst-
case total latency for uncertain sensitivity. We then
derive the price of anarchy under our optimal marginal-
cost tolls.

For simplicity, we will henceforth express fnep (µ;G, β) as
merely fnep when the dependence on µ, G, and β is clear.

Our proof utilizes the following definition: for any
pi, pj ∈ P ,

dij =

{ ∑
e∈pi∩pj de, pi ∩ pj 6= ∅

0, pi ∩ pj = ∅ . (16)

Intuitively, dij is the amount that fnepi affects Jpj (fne). Note
that dij = dji.

Lemma 4.1: For any game G = (V,E,P, {le}e∈E , r)
satisfying Definition 3.1, for any µ ≥ 0, the Nash flow on
each path pi ∈ P is of the form

fnepi = rRi +
1

1 + µβ
Mi, (17)

where the coefficients Ri ∈ R and Mi ∈ R have no
dependence on µ, r, or β, and satisfy the following equations:∑

pi∈P
Ri = 1, (18)∑

pi∈P
Mi = 0, (19)∑

pk∈P
Rkdik =

∑
pk∈P

Rkdjk, (20)∑
pk∈P

Mkdik +
∑
e∈pi

ce =
∑
pk∈P

Mkdjk +
∑
e∈pj

ce, (21)

where pi, pj , pk ∈ P .
Proof: First, we prove the decomposition of the path

flows. Then we show that due to the properties induced by
Definition 3.1, the coefficients Ri and Mi satisfy (18)-(21).

Combining (11) and (3), the cost of path pi is

Jpi(f
ne) =

∑
e∈pi

(
(1 + βµ)de

( ∑
pk:e∈pk

fnepk

)
+ ce

)
. (22)



Define d̄e(p) in the following way:

d̄e(p) =

{
de, e ∈ p
0, e /∈ p.

Now, (22) can be written as

Jpi(f
ne) = (1 + βµ)

∑
e∈pi

∑
pk∈P

d̄e(pi)f
ne
pk

+
∑
pi∈P

ce

= (1 + βµ)
∑
pk∈P

fnepk

∑
e∈pi

d̄e(pi) +
∑
pi∈P

ce

= (1 + βµ)
∑
pk∈P

fnepk dik +
∑
e∈pi

ce. (23)

Since fne is a Nash flow and every path flow is positive,
by (6) all path costs are equal, so ∀pi, pj ∈ P ,

∑
pk∈P

fnepk (dik − djk) =
1

1 + βµ

∑
e∈pj

ce −
∑
e∈pi

ce

 . (24)

Thus, each {i, j} defines an equation of the form∑
pk∈P f

ne
pk
aij = bij . We take any distinct1 |P| − 1 of these

equations and combine them with
∑
pk∈P f

ne
pk

= r to obtain
a |P|-dimensional system of linear equations, which can be
described by the following matrix equation:

Afne = b.2 (25)

A solution to (25) represents a Nash flow for (G, β, µ), and
in [22] it is shown Nash flows always exist for congestion
games of the type considered in this paper. Since b is of the
form

b =


b1/(1 + βµ)

...
b|P|−1/(1 + βµ)

r

 , (26)

Any solution fne must be a linear combination of 1/(1+βµ)
and r.3 That is, ∀pi ∈ P , fnepi can be represented as shown
in (17). Note that {Ri} and {Mi} have no dependence on
µ, r, or β.

Clearly, since G satisfies Definition 3.1, Ri must be
nonnegative for every path pi ∈ P . Note also that ∀µ > 0,
fnepi (µ;G, β) > 0 since fnepi (0;G, β) > 0. That is, (17) is
robust to increases in tolls.

Next, we derive two important properties of Ri and Mi.
Substituting (17) into

∑
pi∈P f

ne
pi = r, we obtain

r

∑
pi∈P

Ri − 1

+
1

1 + µβ

∑
pi∈P

Mi

 = 0. (27)

1Note that {i, j} is not distinct from {j, i}.
2With abuse of notation, here we represent the tuple of path flows as a

column vector.
3To see this, perform Gaussian elimination on the augmented matrix

[A b] to solve for f . Note that matrix row operations only involve sums of
elements of b, never products.

Since (27) must hold for any arbitrarily large r and for all
µ ≥ 0, we obtain the proof of (18) and (19):∑

pi∈P
Ri = 1,∑

pi∈P
Mi = 0.

Now, substituting (17) into (24) and simplifying, we obtain

r
∑
pk∈P

Rk (dik − djk)

+
1

1 + µβ

∑
pk∈P

Mk (dik − djk) +
∑
e∈pj

ce −
∑
e∈pi

ce

 = 0.

(28)

Similarly to above, since (28) must hold for any arbitrarily
large r and for all µ ≥ 0, we obtain the proof of (20)
and (21): ∑

pk∈P
Rkdik =

∑
pk∈P

Rkdij ,∑
pk∈P

Mkdik +
∑
e∈pi

ce =
∑
pk∈P

Mkdjk +
∑
e∈pj

ce,

Which completes the proof.
Lemma 4.2: For any game G = (V,E,P, {le}e∈E , r)

satisfying Definition 3.1, there exists a function Lr(r) de-
pending only on r, and a constant Kµ ≥ 0, such that

Lne(µ;G, β) = Lr(r)−
µβ

(1 + µβ)
2Kµ. (29)

Here, we show for total latency a similar quality to that
expressed for flows in Lemma 4.1; namely, rate and tolls have
independent effects on the total latency. This is a crucially-
important property of games satisfying Definition 3.1, since
it allows us to define tolling rules without knowledge of r.

Proof: First, we show the decomposition of the total
latency of a Nash flow. We then show that the total latency
of every Nash flow is of the specific form shown in (29).

Substitute (17) into (4) and simplify to obtain

Lne(µ;G, β) = Lr(r) +
r

1 + µβ
ζ + η, (30)

where

Lr(r) =
∑
pi∈P

r2 ∑
pj∈P

dijRiRj + r
∑
e∈pi

ceRi

 , (31)

ζ =
∑
pi∈P

∑
pj∈P

dij (RjMi +RiMj) ,

η =
∑
pi∈P

∑
pj∈P

dij
(1 + µβ)2

MiMj +
∑
e∈pi

ce
1

1 + µβ
Mi

 .
(32)

Note that the second term in (30) depends on both r and
µ. The following argument shows that ζ = 0. By factoring



and reversing sum order, we obtain

ζ =
∑
pi∈P

Mi

∑
pj∈P

Rjdij +
∑
pj∈P

Mj

∑
pi∈P

Ridij .

Choose any pk ∈ P . By Lemma 4.1, ∀pi, pk ∈ P ,∑
pj∈P Rjdij =

∑
pj∈P Rjdkj , and analogously, ∀pj , pk ∈

P ,
∑
pi∈P Ridij =

∑
pi∈P Ridik. Thus, ζ can be written as

ζ =

∑
pi∈P

Mi

 ∑
pj∈P

Rjdkj +

∑
pj∈P

Mj

 ∑
pi∈P

Ridik.

By Lemma 4.1, we know that each term in parentheses equals
0, so ζ = 0. This allows us to express the total latency as the
sum of a function dependent on r, and a function dependent
on µ and β. Thus, we see here the decoupling of the effects
of rate and tolls.

Consider now the 1/(1 + µβ)2 term of (32) and denote it
Kµ:

Kµ =
∑
pi∈P

Mi

∑
pj∈P

dijMj . (33)

By (21) in Lemma 4.1, ∀pi, pk ∈ P , we know that∑
pj∈P

dijMj =
∑
pj∈P

dkjMj +
∑
e∈pk

ce −
∑
e∈pi

ce.

Accordingly, we can write Kµ as∑
pi∈P

Mi

∑
pj∈P

djkMj +
∑
e∈pk

ce

− ∑
pi∈P

Mi

∑
e∈pi

ce.

By Lemma 4.1 we know that
∑
pi∈PMi = 0. Therefore Kµ

is simply
Kµ = −

∑
pi∈P

∑
e∈i

ceMi.

We can then express (30) as

Lne(µ;G, β) = Lr(r) +

(
1

(1 + µβ)
2 −

1

(1 + µβ)

)
Kµ

= Lr(r)−
µβ

(1 + µβ)
2Kµ. (34)

To complete the proof of the lemma, we show that Kµ ≥
0. Equation (34) clearly shows that

Lne(0;G, β) = Lr(r). (35)

That is, Lr(r) represents the total latency of the un-
tolled system. Equations (34) and (35) show that for a given
game G, if some toll decreases latency, then all tolls must
decrease latency. Since µ = 1/β always results in optimal
routing4 (i.e., a reduction in latency), it must be true that
for any G, Kµ ≥ 0. Thus, scaled marginal-cost tolls always
decrease total latency. This property of the total latency of a
Nash flow lets us concisely quantify the effect of tolls, and
leads directly to our proof of the optimal marginal-cost toll
scale factor.

4See (9) and (11) in Section II.

Proof of Theorem 3.2. Consider the partial derivative
of (29) with respect to β:

∂Lne(µ;G, β)

∂β
= − ∂

∂β

(
µβ

(1 + µβ)
2 ·Kµ

)

=

(
µ(µβ − 1)

(1 + µβ)3

)
Kµ. (36)

From (36), it can be seen that Lne(µ;G, β) has a minimum
at β = 1/µ, so the end-points of the β-range give the worst
possible latencies:

sup
β∈[βL,βU]

{Lne(µ;G,β)}=max{Lne(µ;G,βL),Lne(µ;G,βU)}.

Consider now the partial derivative of Lne(µ;G, β) with
respect to µ:

∂Lne(µ;G, β)

∂µ
=

(
β(µβ − 1)

(1 + µβ)3

)
Kµ. (37)

Clearly, for any β > 0, Lne(µ;G, β) has a minimum at
µ = 1/β. Furthermore, since Lne(1/β;G, β) = L(fopt(G)),
it must be true that

Lne(1/βL;G, βL) = Lne(1/βU;G, βU).

Thus, since Lne(µ;G, β) is continuous in µ, there must exist
some µ∗ ∈ [1/βU, 1/βL] such that

Lne(µ∗;G, βL) = Lne(µ∗;G, βU).

It can easily be verified from (29) that

µ∗ =
1√
βLβU

. (38)

Now we bound the inefficiency of a game G under tolls as
defined in (38). Since we know that an un-tolled latency can
never be more than 4/3 times an optimal latency, from (29)
we can write

Lne(0;G, β)

Lopt(G)
=

Lr(r)

Lr(r)− 1
4Kµ

≤ 4

3
. (39)

This allows us to compute a bound on Kµ:

Kµ ≤ Lr(r). (40)

It follows algebraically that for µ∗ as defined in (38),
β ∈ [βL, βU], and G∗ as defined in the statement of the
theorem,

PoA(µ∗;G∗, β) =
4
(

1 +
√
βL/βU + βL/βU

)
3
(

1 +
√
βL/βU

)2 .

We show that this bound is tight in Section V-B with Pigou’s
Example.



V. DISCUSSION

A. A Note on Full Utilization

To see that Definition 3.1 applies to a broad class of
networks, consider a simple network of n parallel links, with
latency functions of the form specified in (1). Due to the
simplicity of the network, P = E. Let

Ḡ = (V,E,P, {le}e∈E , r̄).

Suppose that every path pi carries positive rate fnepi (Ḡ) in a
Nash flow. That is, all links have equal cost. Now, let

G = (V,E,P, {le}e∈E , r),

where r > r̄. That is, our only change from Ḡ to G is
that we increased the traffic rate for G. By increasing the
overall traffic rate, there must be some path pj such that
fnepj (G) > fnepj (Ḡ). Thus,

Jpj (fnepj (G)) ≥ Jpj (fnepj (Ḡ)).

This implies that for any path pi 6= pj ,

Jpi(f
ne
pi (G)) ≥ Jpj (fnepj (Ḡ)) = Jpi(f

ne
pi (Ḡ)).

Since cost functions are nondecreasing, this implies that
fnepi (G) ≥ fnepi (Ḡ). That is, no path flow decreased; thus, all
networks of n parallel links such that all links carry positive
flow satisfy Definition 3.1. There are many ways to extend
this class of networks; for example, simple arguments can
show that any combination of parallel networks in series with
other parallel networks also satisfies Definition 3.1.

B. Pigou’s Example

To demonstrate these results, let us turn to a simple
canonical network routing problem known as Pigou’s Ex-
ample [20], illustrated in Figure 1. In this example, traffic
has access to two routes: the first, a costly constant-latency
route; the second, a congestion-sensitive route. Let r = 1.
Without tolls, all traffic prefers route 2 since no user can
improve her latency by using route 1, and the total latency
Lne(0;G, β) = 1. 5

However, consider the optimal routing: the traffic splits
evenly between the routes so that fp1 = fp2 = 0.5; now half
the population experiences a latency of 0.5 and half 1, so
the total latency is L(fopt(G)) = 3/4, a 25% improvement.

We know that charging a toll equal to f2 (corresponding
to µ = 1/β; see (9) and (11) in Section II) on route 2 will
enforce this optimal flow. Now assume that all users share
some value of β ∈ [βL, βU]. Consider for example the case
in which β = βL. If our toll is f2/βL, the routing will still
be optimal. However, for β > βL, a disproportionate number
of users will divert to route 1.

5The astute reader will notice that this example does not strictly satisfy
Definition 3.1. This will not adversely impact our analysis, because we may
consider the case in which r = 1+ε for ε > 0. Then fp1 = ε and fp2 = 1,
so Definition 3.1 is satisfied. We take the limit as ε → 0, and all analysis
proceeds as before.

Fig. 1. Pigou’s Example. Network used in Section V-B to demonstrate
the price of anarchy for scaled marginal-cost tolls and uncertain user
populations.

β µ τ2 fp1 fp2 Lne(µ : G, β)
βL = 1 1 fp2 0.5 0.5 0.75
βU = 9 1 9fp2 0.9 0.1 0.91
βL = 1 1/3 (1/3)fp2 0.75 0.25 0.8125
βU = 9 1/3 3fp2 0.25 0.75 0.8125

TABLE I
TOLLS AND TOTAL LATENCY IN PIGOU’S EXAMPLE

Now, the Nash flow induced by µ > 0 is such that fp1 =
β/(µ+ β) and fp2 = µ/(µ+ β). Thus the total latency is

Lne(µ;G, β) =
β

(µ+ β)
+

(
µ

µ+ β

)2

=
(µ)2 + β(µ+ β)

(µ+ β)2
. (41)

It is easy to verify that for µ = µ∗ = (βLβU)−1/2 as
prescribed by Theorem 3.2 and β = βL, the total latency is

Lne(µ∗;G, βL) =

(
1 +

√
βL/βU + βL/βU

)
(

1 +
√
βL/βU

)2 . (42)

Since L(fopt(G)) = 3/4, the result in (42) proves the
tightness of the price of anarchy specified in Theorem 3.2.

Table I presents some numerical examples. In particular,
if β ∈ [1, 9], then for µ = µ∗ = 1/3, the total latency will
never be worse than 0.8125, nearly a 19% improvement over
the un-tolled case.

C. Braess Topology

To illustrate a network that may not satisfy Definition 3.1,
we turn to a second canonical example: that of Braess’s
Paradox [23], [14]. The topology in Braess’s Paradox has
been used to show that adding links to a graph can increase
the cost of a Nash flow; we use it to show that increasing
the total rate of flow can cause an individual path flow to
decrease.



Fig. 2. Braess’s Topology. For d2 = d3 = 0, no game using this topology
satisfies Definition 3.1. However, for d2 = 1, d3 = 2, games using this
topology can satisfy Definition 3.1.

Variant R1 R2 R3

1 1 −1 1
2 1/3 1/6 1/2

TABLE II
VALUES OF Ri FOR BRAESS TOPOLOGY

Consider the network in Figure 2. Note that in the canon-
ical Braess’s Paradox network, d2 = d3 = 0. We consider
two variants of the network: in Variant 1, d2 = d3 = 0; in
Variant 2, d2 = 1, d3 = 2. Traffic routes from node A to node
D, and has a choice of three paths. Define p1 = {e1, e3},
p2 = {e1, e5, e4}, and p3 = {e2, e4}. The values of Ri
(refer to Lemma 4.1 in Section IV) for each variant appear
in Table II.

For Variant 1, R2 = −1. This means that increasing the
total traffic rate will actually decrease the amount of traffic
using path 2, which is to say edge 5. Thus this network never
satisfies Definition 3.1, and our optimal toll analysis is not
necessarily valid.

For Variant 2, the topology is unchanged, but the modified
latency functions have changed routing behavior dramati-
cally. Now Ri ≥ 0 for every path, so all path flows are
increasing in r, and thus if all paths are in use, the game
satisfies Definition 3.1. Thus, scaled marginal-cost tolls can
never degrade network performance.

D. Price of Anarchy

Our expression for the price of anarchy in Theorem 3.2
succinctly characterizes the relationship between efficiency
and information about the user population. It illustrates the
intuitive principle that with perfect information, a designer
can achieve perfect efficiency. Figure 3 shows how the price
of anarchy varies with βL/βU. Note that for any value of
this ratio, the price of anarchy is less than 4/3; that is, less
than that of an un-tolled network.

Though imperfect information does degrade efficiency, the
figure shows that high levels of efficiency are maintained
even for a relatively high level of uncertainty. Note that even
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Fig. 3. Price of anarchy for games using our scaled marginal-cost tolling
rule, as a function of the precision with which we know the user population’s
price-sensitivity.
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Fig. 4. Efficiency Loss in Pigou’s Example with respect to true beta for
µ = 1/3 and r = 1. Note that the efficiency loss is equal at the endpoints
of the β-range, and perfect efficiency is achieved at the geometric mean of
the endpoints.

when β is only known within a factor of 10, the efficiency
loss is less than 10%.

Our price of anarchy result is encouraging for two reasons.
First, this worst-case analysis was obtained from assuming
that the entire population lies at one of the extremes of the
range. This assumption, though important to establish the
bound, is likely to be unrealistic for most systems. Any β
closer to our geometric mean tolling parameter will yield
even better performance than the price of anarchy suggests.
This is illustrated in Figure 4; the figure was generated using
values from Pigou’s Example in (see Section V-B) with
r = 1, βL = 1, βU = 9, and µ = 1/3. The horizontal axis
represents the true β of the population; thus it is easy to see
that values close to the geometric mean allow only very low
efficiency loss.

Second, the analysis contains a strong assumption of
homogeneity; all users are required to have identical values



of β. This is also unlikely in real systems. Consider a
population whose β-values are distributed over some range.
More rigorous analysis is needed, but our simulations and
intuition have suggested that if a greater mass of users
are closer to the geometric mean than to the endpoints
of the range, tolls would achieve considerably improved
performance.

VI. CONCLUSIONS

Effective design for social coordination requires informa-
tion about a system’s user population; we have provided
initial results on the relationship between the quality of this
information and the efficiency of Nash equilibria resulting
from a tolling scheme. In our model, imperfect information
caused a bounded degradation of efficiency, but relatively
high efficiency was maintained even for high levels of
uncertainty. Future research will focus on extending this
result to broader classes of games. In particular, we hope to
eliminate the requirement that games satisfy Definition 3.1
and develop a tolling rule applicable to all affine-cost routing
games.

In the model addressed in this paper, we have shown that
even under uncertainty, it is possible to achieve significant
gains in the efficiency of social behavior with a simple
distributed taxation scheme. Our model strongly assumes ho-
mogeneity of the population’s price sensitivities; as research
progresses, we hope to relax this assumption. Homogeneity
is rare in practice, and incorporating the effects of hetero-
geneity into our models will be a crucial step. In particular,
uncertain heterogeneous populations may be well-suited to
heterogeneous tolls or a level of price discrimination. A
crucial question is: what gains in efficiency are possible if
we charge different tolls for different users?

This work has found the optimal toll among a specific class
of tolling functions: Pigovian marginal-cost tolls scaled by a
uniform factor. It remains to be shown how our tolls compare
with tolls of some other form. Are these tolls the best of
any possible toll? A more comprehensive review of general
taxation functions for uncertain populations is required to
answer this question.
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