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Abstract

This paper provides a model of categorizations that are optimal for the pur-
pose of making predictions. In the beginning of each period a subject observes a
two-dimensional object in one dimension and wants to predict the object�s value in
the other dimension. The subject uses a categorization that partitions the space
of objects into categories. She has a data base of objects that were observed in
both dimensions in the past. The subject determines what category the new object
belongs to on the basis of observation of its �rst dimension. She predicts that its
value in the second dimension will be equal to the average value among the past
observations in the corresponding category. At the end of each period the second di-
mension is observed. The optimal categorization minimizes the expected prediction
error. The main result is that the optimal number of categories is determined by a
trade-o¤ between (a) decreasing the size of categories in order to enhance category
homogeneity, and (b) increasing the size of categories in order to enhance category
sample size.
Keywords: Categorization; Priors; Prediction; Similarity-Based Reasoning.

JEL codes: C72.

�This paper has bene�ted from comments by Ola Andersson, Stefano Demichelis, Tore Ellingsen,
Drew Fudenberg, Philippe Jehiel, Topi Miettinen, Robert Östling, Rani Spiegler, Tomasz Strzalecki, and
Jörgen Weibull, as well as participants at presentations at the Third Nordic Workshop in Behavioral
and Experimental Economics in Copenhagen, November, 2008, SUDSWEc in Uppsala, May 2009 and the
Stockholm School of Economics. Financial support from the Jan Wallander and Tom Hedelius Foundation
is gratefully acknowledged.

yE-mail: e.mohlin@ucl.ac.uk. Mail: Department of Economics, University College London, Gower
Street, London WC1E 6BT, United Kingdom.



1 Introduction

Numerous psychological studies have demonstrated the importance of categorical reason-
ing for human cognition in general.1 Categorical thinking also matters in many economic
contexts: Consumers categorize goods and services when deciding what to purchase, and
this leads to segmentation of markets (Smith (1965)). Firms may respond with mar-
keting strategies that take advantage of the consumers�categorizations (Punj and Moon
(2002)).In �nancial markets, investors engage in "style investing", the practice of allo-
cating funds among classes of assets rather than to individual assets (Bernstein (1995)).
Rating agencies categorize �rms in order to re�ect the probability that a �rm will default
on its debt, an activity whose importance was highlighted by the recent �nancial crisis
(Coval et al. (2009)).
In the psychological literature it is widely acknowledged that an important function of

categories is to facilitate predictions (Anderson (1990)). Prediction on the basis of cate-
gorical reasoning is relevant in situations where one has to predict the value of a variable
on the basis of one�s previous experience with similar situations, but where the past expe-
rience does not necessarily include any situation that is identical to the present situation.
One may then divide the experienced situations into categories, such that situations in
the same category are similar to each other. When a new situation is encountered one
determines what category this situation belongs to, and the past experiences in this cat-
egory are used to make a prediction about the current situation. These predictions can
be computed in advance, thereby facilitating a fast response.
In this paper I ask which categorizations are optimal in the sense that they minimize

prediction error �a notion that is made precise below. In particular, I study the optimal
number of categories without imposing any exogenous costs and bene�ts of the number of
categories. Instead both costs and bene�ts are derived endogenously from the objective of
making accurate predictions. The advantage of �ne grained categorizations is that objects
in a category are similar to each other. The advantage of coarse categorizations is that
a prediction about a category is based on a large number of observations. Comparative
statics reveal how the optimal categorization depends on the number of observations, as
well as on the frequency of objects with di¤erent properties. So far there are only a
few explicit models of categorization in economics. The question of optimality has rarely
been discussed, and those who have done so, e.g. Fryer and Jackson (2008), assume an
exogenous number of categories. The relevant literature is discussed in sections 4.3 and
5.
The focus on optimal categorizations is based on evolutionary considerations. Many

categorizations are acquired early in life, through socialization and education, or because
they are innate. From an evolutionary perspective we would expect humans to employ
categorizations that generate predictions that induce behavior that maximize �tness. It

1For overviews of the voluminous literature see e.g. Laurence and Margolis (1999), or Murphy (2002).
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seems reasonable to assume that �tness is generally increasing in how accurate the pre-
dictions are. For instance, a subject encountering a poisonous plant will presumably be
better o¤ if she predicts that the plant is indeed poisonous, rather than nutritious. For
this reason we would expect that humans have developed, and passed on, categorizations
that are at least approximately optimal, in the sense that they tend to minimize prediction
error in the relevant environments. Such a categorization will be called ex ante optimal.
In a similar way one would expect that, over time, a profession has developed catego-
rizations that are ex ante optimal for the kind of data that members of that profession
tend to encounter. Other categorizations are developed only after experience has been
accumulated �e.g. for some area of investigation where one did not have useful concepts
before. In this case we would expect evolution to have endowed us with heuristics or
algorithms that allow us to form categorizations that organize our experience in way that
tends to minimize prediction error. Categorizations that attain this goal will be called ex
post optimal.
The model is centered on a subject who lives for a certain number of periods. First she

goes through a learning phase and then a prediction phase. In each period of the learning
phase she observes an object, represented by a vector (x; y). All objects are independently
drawn from the same distribution, and are stored in a data base. A categorization is
a set of categories which together partition the set of objects. Each object�s category
membership is determined by its x-value. In the beginning of each period of the prediction
phase the subject encounters a new object and observes the x-value but not the y-value.
The y-value has to be predicted with the help of the object�s x-value and the data base
of past experiences. The new object is put in one of the categories on the basis of its x-
value. The empirical mean y-value, of the previously experienced objects in that category,
serves as prediction for the y-value of the new object. At the end of the period, after the
prediction has been made, the y-value is revealed and the information is added to the data
base. In the case of categorizations that are acquired prior to accumulating a data base,
the model assumes that the subject is endowed with a categorization at the beginning of
the learning phase, and this categorization is kept �xed for the subject�s whole life time.
In the case of categorizations that are formed after a data base has been accumulated, a
categorization is assumed to be formed in the prediction phase, and used for one prediction
only.2

It has been discussed whether categorization presupposes a notion of similarity or
not (see Goldstone (1994) and Gärdenfors (2000)). The model presented in this paper is

2The model re�ects to �ndings regarding predictions based on categorization: First, predictions about
a particular category are generally formed only on the basis of objects that were put into that category in
the past, not on the basis of objects that were put into other categories (Malt et al. (1995) and Murphy
and Ross (1994)). Second, a prediction about a particular object is generally based only on what category
the object belongs to, and does not take into account within-category correlations between properties.
This means that roughly the same prediction is made for all objects in the same category (Krueger and
Clement (1994)).
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neutral in this respect. The x-dimension may, but need not, be endowed with a metric.
The y-dimension is taken to be the real line and prediction error is measured as the
squared di¤erence between the prediction and the actual y-value of the object. Using
the probability density function over the set of objects one can de�ne the (unconditional)
expected prediction error of a categorization. In this case expectation is taken over the
set of data bases that the subject may encounter in the future. One can also de�ne
the expected prediction error conditional on a given data base. In this case expectation
is taken only over the next observation. The unconditional expected prediction error is
minimized by an ex ante optimal categorization, i.e. a categorization that is optimal prior
to a data base has been accumulated. The expected prediction error conditional on a
given data base is minimized by the ex post optimal categorization, i.e. a categorization
that is optimal for predicting next observation, given the current data base.
Note that the set-up does not presume the existence of any natural kinds, in the sense

of Quine (1969). There does not have to exist an objectively true categorization "out
there". The optimal categorization is a framework we impose on our environment in
order to predict it. The fact that we use categorizations is taken as given in this paper,
though section 4.4 uses the model to discuss why this might be the case.
As an example of a categorization that is acquired very early on, think of color con-

cepts. The subset of the spectrum of electromagnetic radiation that is visible to the
human eye allows for in�nitely �ne grained distinctions. More precisely all colors can be
described as points in the space of the three dimensions hue, saturation and lightness.
However, in every day reasoning and discourse we seem to employ only a coarse color
classi�cation, using words such as red and green. Presumably the color categorizations
that were developed and passed on to new generations were successful in the kind of en-
vironments that we faced.3 As an example of categorizations that are formed after a data
base has been accumulated, one may think of the many categorizations and classi�cations
that science has produced.
The two kinds of categorization are probably often combined. Think of a physician

who encounters a new patient in each period. The x-value could represent information
about a patient�s personal characteristics such as weight, blood-pressure, or aspects of the
patient�s medical history. The y-value could represent some dimension of the patient�s
future health. First the physician goes to medical school and learns a set of categories while
observing various patients� characteristics together with their subsequent health state.
Later she works in a hospital: In the beginning of each period she receives information
about a patient�s personal characteristics, and has to make a prediction about some aspect
of the patient�s health. In order to make such a prediction she assigns the new patient

3We could have sliced up the space of colors di¤erently. Indeed there are cultures where even the basic
color categories are di¤erent from the ones used by speakers of the English language. Still, behind the
variation there seems to be certain principles of classi�cation that are stable between cultures (see Kay
and Ma¢ (1999) and references therein). The model presented in this paper allows for the existence of
multiple optimal categorizations.
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to a category and predicts that the outcome for this patient will be like the empirical
average outcome among previous patients in that category. At the end of each period she
can observes the outcome for the current patient. Eventually she might have accumulated
su¢ ciently many observations to motivate the development of a re�ned categorization on
her own.
The main result of this paper is that optimal (both the ex ante and ex post optimal)

number of categories is determined by a trade-o¤ between the value of within-category
similarity of objects and the value of having many stored observations in each category.
Increasing the number of categories has two e¤ects. (a) The average size of each cate-
gory decreases and thus the di¤erences between objects that belong to the same category
will be relatively small. (b) The average number of experienced objects in each category
decreases. Thus generalizations about a category are based on a smaller sample, making
inferences from observed objects to future cases less reliable. Note that this trade-o¤ does
not depend on any exogenous cost of categories. The trade-o¤ sheds light on the phe-
nomenon of basic-level categories, which has received much attention from psychologists;
the most salient level of categorization is neither the most �ne-grained, nor the most gen-
eral level of categorization (Rosch et al. (1976)). The dominant view within psychology
is that the number of categories (the coarseness of the categorization) is determined by
another trade-o¤. Like in this paper, the bene�t of small categories is supposed to be
within-category homogeneity of objects. But, unlike this paper, the bene�t of having a
fewer larger categories is supposed to be that one needs to observe fewer properties of
an object in order to categorize it as belonging to a large category (Medin (1983)). The
model also predicts that experts will have a more �ne grained conceptual structure than
laymen (Tanaka and Taylor (1991)). Furthermore, comparative statics with respect to
the distribution of objects with di¤erent properties show that (i) the larger the variabil-
ity in the y-dimension, the larger is the optimal number of categories, and (ii) the more
frequent objects in one subset of the x-dimension are, the larger is the optimal number
of categories in that subset. In particular, assuming that the relationship between x-
and y-values is given by a linear regression model, the optimal number of categories is
decreasing in the variance of the error term and increasing in the slope of the regression
line. The model can be extended in various ways. The set Y may be multidimensional,
and di¤erent subject may then weigh the di¤erent dimensions di¤erently. A subject�s cost
of prediction errors may vary with x. The model also has implications for the case of a
�xed number of categories.
It should be emphasized that the inference, from properties of objects in the data

base, to the unobserved property of the present object, is not Bayesian. In particular, the
subject does not have a prior about an object�s properties before it is categorized. On
the contrary, the model of this paper is intended to shed some light on how priors are
generated. When an object is categorized, the data base is used to form a point prediction
about the new object, in a non-Bayesian, frequentist way. This point prediction should be
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interpreted as a prior (point) belief. Binmore (2007) and Gilboa et al. (2008) have argued
for the need to complement Bayesian decision theory with a theory of belief formation
that accounts for how priors are formed.
Categories are closely related to concepts. Categories can be said to be de�ned by

concepts in the sense that an object belongs to a category if an only if it falls under the
corresponding concept. Conversely, categorization is one of the most important functions
of concepts. One might suggest that we use categories because language is categorical and
say that a categorization is optimal if it is induced by a language that is optimal in some
sense. Language is undoubtedly important in shaping our concepts and categories, but
concepts seem to have come prior to language in evolution �there are animals that use
concepts even though they do not use language �and children can use certain concepts
before they have a language.4 Therefore I suggest that we try to explain the use of cate-
gories without reference to language. In addition to this, a language usually allows many
di¤erent categorizations of the same subject matter. Therefore the optimal categorization
is under-determined by the demands of communication.
The rest of the paper is organized as follows. Section 2 describes the model and

de�nes prediction error and optimality. The results are developed in Section 3 presents
the results, regarding ex ante and ex post optimality, and discusses extensions. Section
4 discusses the results and applications. Related literature is reviewed in section 5, and
section 6 concludes. All proofs are in the appendix, section 7.

2 Model

2.1 Subject and Objects

A subject lives for T periods; �rst a learning phase of L < T periods, and then a prediction
phase of T � L periods. In each period t 2 f1; :::; Tg she encounters an object, which is
represented by a point vt = (xt; yt) in a two-dimensional space V = X�Y , where Y = R.
The set X may be a closed interval [a; b] � R, or some arbitrary �nite set. Hence, the
set X need not be endowed with a metric, thus allowing for categorizations not based on
similarity, but in this case X is assumed to be �nite in order to assure the existence of a
solution.
All objects are drawn independently according to a continuous probability density

function f : V ! [0; 1], satisfying f (v) > 0 for all v 2 V . In order to abstract from
trivialities I will assume that if X = [a; b] � R then E [yjx] 6= E [yjx0] for some x; x0 2 X,
and if X is �nite then E [yjx] 6= E [yjx0] for all x; x0 2 X, x 6= x0.

4Regarding animals there is evidence that pigeons have concepts, at least in a way that enables them
to categorize objects (Herrnstein et al. (1976)). There are also studies indicating that rhesus monkeys
(Hauser et al. (1997)) have simple numerical concepts. Regarding children Franklin et al. (2005) provides
evidence that toddlers have a pre-linguistic understanding of color concepts.
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Experienced objects are stored in a data base, so at the beginning of any period t > 1
the subject has a data base vt�1 = (v1; :::; vt�1) 2 V t�1. In each period t 2 f1; :::; Lg of
the learning phase the subject observes each object in both dimensions. In the beginning
of each period t 2 fL+1; :::; Tg of the prediction phase she observes the x-value, xt, of an
object vt, and not its y-value, yt. She makes a prediction about yt on the basis of xt, and
the data base vt�1. At the end of the period uncertainty is resolved; the subject observes
yt, and updates the data base. Thus learning does not only occur in the learning phase
but continues through the whole life time.

2.2 Categories

A categoryCi is a subset of V . A categorization is a �nite set of categories C = fC1; :::; Ckg
that constitutes a partitioning of V . Let Xi be the projection of Ci onto X. Since the
category membership of an object only depends on the object�s x-value, the collection of
sets fX1; :::; Xkg form a partitioning of X, and we can write Ci = Xi � Y . Each set Xi

is assumed to be the union of �nitely many intervals.5 The relative size of categories is
constrained by some (small) number � 2 (0; 1) such that Pr (x 2 Xi) =Pr (x 2 Xj) > �
for all i and j. For the case of a �nite number of categories this implies that all categories
have positive probability. When the number of categories goes to in�nity (requiring that
X is in�nite) the assumption implies that no category becomes relatively in�nitely larger
than another category. Furthermore, the number of categories per objects is bounded
by some arbitrarily large but �nite �, i.e. k=T < �. This assumption is only made in
order to assure existence of a solution when T is small. When T is su¢ ciently large,
existence can be proved without this assumption. The set of categorizations satisfying
these assumptions, the feasible categorizations, is denoted 	. When studying optimality
of categorizations that are acquired prior to a data base all categorizations in 	 will be
considered. When studying optimality of categorizations of a given data base vt�1, I will
restrict attention to categorizations in which all categories are non-empty under vt�1. Let
	(vt�1) denote this set of feasible categorizations.
It might seem problematic to assume that categories in the same categorization are

mutually exclusive, since we have many categories that are not mutually exclusive. This
is the case for hierarchically organized concepts such as the two categories of stone and
granite. However, we generally do not use such overlapping categories for the same pre-
diction tasks. If I am interested in whether an object will burn when thrown on the �re I
might categorize the object as made of stone rather than wood, and infer that it will not
burn. In this context it is useless to know whether the object is of granite or not. But if I

5If categories are only composed of one interval the categories are required to be convex. Gärdenfors
(2000) argues that we should expect the extension of natural concepts to be convex on the grounds that
convex concepts are easier to learn than non-convex concepts. Still, I will work with the more general
assumption that the categories are the union of �nitely many intervals.
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want to build a house it may be useful to employ a narrower categorization of materials,
since granite is more solid than e.g. limestone.

2.3 Prediction

For each category Ci 2 C, and for date t, the subject has a prediction ŷit about the y-value
of objects in that category. As discussed above, it will be assumed that the prediction
equals the mean of all previously experienced objects in that category. Let

Dit = fs 2 N : s < t ^ vs 2 Cig.

This is the set of dates, prior to date t, at which objects in category Ci were observed.
Let mit = jDitj, so that

Pk
i=1mit = t� 1, for all t. Thus at date t > L the prediction for

category i is

ŷit =

�
1
mit

P
s2Dit ys if mit > 0

ŷt if mit = 0
, (1)

where

ŷt =
1

t� 1

t�1X
s=1

ys. (2)

This de�nition says that if the data base does not contain any objects in the category
that object vt belongs to, then the prediction for this object is made on the basis of
all objects currently in the data base. This seems like a natural assumption, but there
are alternatives: For instance one could assume that there is some �xed prediction error
associated with empty categories, and this would not a¤ect the results of the paper.
Alternatively one could modify the model and assume that the subject is endowed with
at least one object in each category, in period 1. Again, all the results will go through
under this alternative assumption.

2.4 Prediction Error and Optimality

For any object vt that the subject may encounter at date t, there is a unique category Ci
such that vt 2 Ci. For any data base vt�1 2 V t�1 that the subject may have at date t the
prediction yit is then determined according to (1) and (2). Given a categorization C and
a data base vt�1, the prediction error associated with a new object vt 2 Ci is de�ned as
the squared Euclidean distance between the predicted value ŷit and the true value yt, i.e.

PE
�
C; vt; v

t�1� = (yt � ŷit)2 . (3)

At the beginning of period t the data base vt�1 has been accumulated, but object vt
has not been observed yet. Given a categorization C, one might ask what the expected
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prediction error associated with vt is. The answer is given by taking expectation over all
objects vt 2 V . That is, conditional on a data base vt�1 the expected prediction error of
categorization C at date t is

EPE
�
C; vt�1

�
= E

�
PE

�
C; vt; v

t�1� jvt�1� . (4)

Furthermore, by taking expectation also over data bases vt�1 2 V t�1, one obtains the
unconditional expected prediction error of categorization C at date t;

EPE (C; t) = E
�
PE

�
C; vt; v

t�1�� . (5)

Summing over the T �L prediction tasks that the subject has to perform, one can de�ne
the total expected prediction error of a categorization C as

EPE (C; T; L) =
1

T � L

TX
t=L+1

EPE (C; t) (6)

With these equations one may de�ne the two notions of optimal categorizations that
will be the focus of this paper. For the case of categories that are acquired before a data
base has been accumulated, the relevant notion optimality is the following:

De�nition 1 A categorization C 2 	 is optimal prior to data, or ex ante optimal, if
it minimizes EPE (C; T; L).

The set of such ex ante optimal categorizations is

	� = argmin
C2	

EPE (C; T; L) .

Let k�min (and k
�
max) be the smallest (and largest) number of categories among the ex ante

optimal categorizations. That is k�min = argminC2	� jCj and k�max = argmaxC2	� jCj.
For the case of categories that are developed after a data base has been acquired we

restrict attention to categorizations 	(vt�1) whose categories are non-empty categories
under vt�1. The relevant notion of optimality for categorizations that are developed
conditional on a data base is:

De�nition 2 A categorization C 2 	(vt�1) is optimal conditional on a data base vt�1,
or ex post optimal, if it minimizes EPE (C; vt�1).
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3 Results

3.1 Preliminary Results

In order to derive an expression for EPE (C; vt�1), the expected prediction error condi-
tional on a data base vt�1, note that, for X = [a; b],

Pr ((x; y) 2 Ci) = Pr (x 2 Xi) =

Z
x2Xi

Z
y2Y

f (x; y) dxdy,

and de�ne

f (yjx 2 Xi) =
1

Pr (x 2 Xi)

Z
x2Xi

f (x; y) dx.

In caseX is �nite the integral overXi in these two expressions is replaced by a summation.
Also de�ne V ar (yi) = V ar (yjx 2 Xi). Using this one can show.

Lemma 1 The expected prediction error for a categorization C, conditional on a data
base vt�1, is

EPE
�
C; vt�1

�
=

kX
i=1

Pr (x 2 Xi)
�
V ar (yi) + (ŷit � �i)2

�
.

This expression reveals the basic trade-o¤ that determines the ex post optimal number
of categories. The term V ar (yi) measures how similar (with respect to the y-dimension)
di¤erent objects in category Ci are. The term (ŷit � �i)2 measures how close the prediction
is to the actual average of categoryCi. The ex post optimal categorization strikes a balance
between the goal of having a low within category variance and the goal of estimating the
category mean correctly. As we will see below, the same basic trade-o¤ determines the ex
ante optimal number of categories.
In order to derive EPE (C; t), �x the date t and take expectation of EPE (C; vt�1)

with respect to the data bases of size t� 1:

Lemma 2 The (unconditional) expected prediction error for a categorization C, at time
t, is

EPE (C; t) =
kX
i=1

Pr (x 2 Xi)V ar (yi)

 
1 +

t�1X
r=1

Pr (mit = r)
1

r

!

+

kX
i=1

Pr (x 2 Xi) Pr (mit = 0)E
�
(ŷt � �i)2 jmit = 0

�
,
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where mit has a binomial distribution

Pr (mit = r) =

�
t� 1
r

�
(Pr (x 2 Xi))

r (1� Pr (x 2 Xi))
t�1�r .

It will be fruitful to decompose the within-category variance (with respect to the
y-dimension), V ar (yi), into the contribution of the within-category average conditional
variance

E [V ar (yjx) jx 2 Xi] =

Z
x2Xi

f (x)

Pr (x 2 Xi)
V ar (yjx) dx,

and, what I will call, the within-category variance of the conditional expected value

V ar (E [yjx] jx 2 Xi) =

Z
x2Xi

f (x)

Pr (x 2 Xi)

�
E [yjx]�

Z
x2Xi

f (x)

Pr (x 2 Xi)
E [yjx] dx

�2
dx.

(Again, in case X is �nite the integral over Xi in these two expressions above is replaced
by a summation.) The within-category variance is the sum of the within-category average
conditional variance, and the within-category variance of the conditional expected value;6

V ar (yi) = E [V ar (yjx) jx 2 Xi] + V ar (E [yjx] jx 2 Xi) . (7)

Before providing results regarding optimal categorizations, I establish that such cate-
gorizations exist:

Proposition 1 For any t, there exist a solution to the problem of minimizing EPE (C; t),
with respect to C 2 	. For any L and T , there exist a solution to the problem of min-
imizing EPE (C; T; L), with respect to C 2 	. For any vt�1 there exist solution to the
problem of minimizing EPE (C; vt�1) with respect to C 2 	(vt�1).

It can be noted that there is no guarantee that any of these solutions are unique, thus
allowing for a (mild) form of conceptual relativism.

3.2 Ex Ante Optimal Categorizations

The following proposition describes how the optimal categorization changes with length
of the learning and prediction phases.

Proposition 2 (a) If T ! 1 then k�max=T ! 0 and k�min ! jXj. (b) There are �nite
L0 and T 0, with L0 < T 0, such that if L0 < L < T < T 0, then k�max < L.

6It is a standard result that E [V ar (yjx)] = V ar (E [yjx]). Conditioning on x 2 Xi is straightforward.
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Part (a) establishes that as T goes to in�nity it is optimal to let the number of
categories increase too, but a slower rate, so that the number of categories per object
goes to zero. In the case of a �nite X this result is a direct consequence of the �niteness
of X but in the case of an in�nite X this is a non-trivial result. Note that part (a)
implies if the learning phase, or the prediction phase, is su¢ ciently long, then all optimal
categorizations have more than one category. Part (b) says that if the learning phase
is su¢ ciently long in relation to the prediction phase then all optimal categorizations
have a smaller number of categories than the number of observations made during the
learning phase. In total, proposition 2 provides an explanation for why we typically
employ categorizations that are neither maximally �ne grained �with one object in each
category �nor maximally general �with all object in the same category. This is discussed
further section 4.1.
Now consider two subjects 1 and 2, with di¤erent total number of observations. Denote

their numbers of observations by T1 and T2 respectively. (In section 4.1 subjects 1 and
2 are interpreted as being a layman and an expert, respectively.) It is a corollary of the
previous proposition that if the di¤erences between the two subjects are large enough then
it is optimal for individual 1 to have fewer categories than individual 2. Write k�min (T )
and k�max (T ) to make the dependence of k

�
min and k

�
max on T explicit.

Corollary 1 For any T1, if k�max (T1) < jXj, then there is a T 0 such that if T2 > T 0, then
k�max (T1) < k

�
min (T2).

7

The next three propositions concern the relationship between the density f (x; y) and
the optimal categorization. The �rst result considers the marginal density over X, i.e.
f (x). Write k�min (f) and k

�
max (f) to make the dependence of k

�
min and k

�
max on f explicit.

Proposition 3 Restrict attention to the categorization of a proper subset E � X. Con-
sider two densities f0 and f1, such that for all x 2 E it holds that f0 (yjx) = f1 (yjx) and
�f0 (x) = f1 (x), for some � > 1. The lowest optimal number of categories in E is at
least as large with f1 as with f0, i.e. k�min (f0) � k�min (f1).

The more common objects from one subset of X are, the more �ne-grained should the
optimal categorization for that subset be. This is a generalization of the result in Fryer and
Jackson (2008), to the e¤ect that less frequent objects will be categorized more coarsely.
Their result assumes a �xed number of categories, whereas mine does not. They relate
the result to the possibility that ethnic minorities will be categorized more coarsely than
majorities. This will tend to lead to more stereotypical predictions about the minority
than about the majority.
The next result concerns the e¤ect of the conditional variance, V ar (yjx), on the

optimal categorization.

7Note that the restriction k�max (T1) < jXj is always satis�ed for in�nite X.
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Proposition 4 Consider two densities f0 and f1, such that f0 (x) = f1 (x), Ef0 [yjx] =
Ef1 [yjx] and V arf1 (yjx) > V arf0 (yjx) for all x 2 X. The lowest optimal number of
categories (k�min) is at least as large with f1 as with f0, i.e. k

�
min (f0) � k�min (f1).

We saw above that V ar (yi) is the sum of E [V ar (yjx) jx 2 Xi] and V ar (E [yjx] jx 2 Xi).
Proposition 4 concerns comparative statics with respect to the former term. Compara-
tive statics with respect to the latter term requires more detailed assumptions about the
distribution f .8 For this reason I now restrict attention to the following special case:
Suppose X = [0; 1] (and Y = R as before) and suppose that the relation between X and
Y is described by the classical linear regression model;

y = �+ �x+ z, (8)

where z � N (0; �2). Furthermore assume that x is uniformly distributed on X. Assume
also that the subject only makes one prediction during her life, i.e. T �L = 1 (extension
to T � L > 1 is straightforward but does not add insight). Finally, for simplicity, also
assume that subjects are endowed with one observation in each category already during
the learning phase, as mentioned in section 2.3. (The results become more tractable with
this assumption but the general insight is unaltered.) Under these assumptions we have
the following result:

Proposition 5 For any T and L the number of categories in the optimal categorization
is unique and all categories are convex with the same length along the x-axis. The optimal
number of categories is increasing in � and decreasing in �2.

Recall that for the linear regression model it holds that

� =
Cov (x; y)

V ar (y)
,

so increasing covariance of x and y increases the optimal number of categories. Increasing
the conditional variance of y decreases the optimal number of categories. This result is
very intuitive: If the covariance is large then the categories have to be narrow in order
to keep the heterogeneity of objects in each category within limits. If the variance of y is
large then (in line with proposition 4) the categories have to be broad in order to contain
enough objects to allow reasonably accurate estimates of the means of each category.

8Without any assumption on f one will only be able to make observations like the following: Consider
a categorization C 0 and a re�nement C 00, of C 0. Suppose that V ar (E [yjx] jx 2 X 0

i) � �V ar(E [yjx] jx 2
X

00

j ), � > 1, for any two categories C 0i 2 C 0 and C 00j 2 C 00 such that C 00j � C 0i. This will be the case if

the intervals over which E [yjx] is constant, are su¢ ciently small. If V ar(E [yjx] jx 2 X 00

j ) is increased
su¢ ciently much, for all C 00j 2 C 00, then categorization C 00 will yield a lower expected prediction error
than categorization C 0.
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Proposition 5 can be extended to the case of a �nite X even when there is no metric
on X, provided that we can infer an order on X from E [yjx], as described by (8).

3.3 Ex Post Optimal Categorizations

Some categorizations are formed only after a data base has been accumulated. In the
introduction it was argued that humans might have evolved an ability to form catego-
rizations that tend to minimize expected prediction error conditional on the accumulated
data base. That is, humans would have access to algorithms or heuristics that takes a
given data base as input and delivers an approximately (ex post) optimal categorization
as output, without using any information that is not in the given data base. As analysts
we might be willing to abstract from these heuristics and assume that subjects act as
if they optimized on the basis of knowledge of f . However, a more realistic approach
would specify some heuristic that could potentially be used to �nd approximately ex post
optimal categorizations. In this section I present results along both these lines.
The notion of ex post optimal categorizations is de�ned with reference to a given

data base vt�1. This means that the optimal categorization may look very di¤erent
depending on the particular data base. The results presented in this section are therefore
formulated in terms of how changes in the model�s parameters in�uences the probability
that a categorization yields a lower expected prediction error EPE (C; vt�1) than another
categorization. With this phrasing, it turns out that one can prove results that are fairly
direct counterparts to the results provided for ex ante optimal categorizations (though in
some cases more restrictive assumptions are applied).
What heuristics might a categorizing subject use to form categorizations given a data

base? Computing the expected prediction error EPE (C; vt�1) requires knowledge of the
distribution f . The subject should not be assumed to know f , because if the subject did
know f , there would be no need to base predictions on categorization, rather than using
knowledge of the density f directly. However, the subject could use the data base to
compute some estimator of EPE (C; vt�1), and then pick a categorization that minimizes
this value �possibly within an a priori restricted set of categorizations. The following
estimator could be used:

De�nition 3 Let 	(vt�1) denote the set of categorizations in which all categories have
at least two elements (mit � 2) given the data base vt�1. The sample prediction error for
a categorization C 2 	(vt�1), conditional on a data base vt�1, is

\EPE (C; vt�1) =
kX
i=1

mit

t� 1

�
1 +

1

mit

�
s2it,
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where
s2it =

1

mit � 1
X
s2Dit

(ys � ŷit)2 .

The motivation for the de�nition of \EPE (C; vt�1) comes from the following obser-
vation, which follows directly from the facts that E[ (ŷit � �i)2] = V ar (yi) =mit, and
E [s2it] = V ar (yi).

Lemma 3 For a given categorization C, and a data base vt�1. If expectation is taken
over all databases with have the same number of objects in each category as vt�1 has,9

then

E
�
EPE

�
C; vt�1

��
=

kX
i=1

Pr (x 2 Xi)

�
1 +

1

mit

�
V ar (yi) ,

and

E
h

\EPE (C; vt�1)
i
=

kX
i=1

mit

t� 1

�
1 +

1

mit

�
V ar (yi) .

The lemma implies that if the actual fraction of objects in each category (mit= (t� 1))
is equal to the probability of receiving an object in the corresponding category (Pr (x 2 Xi))

then EPE (C; vt�1) and \EPE (C; vt�1) have the same expected value.
We are now in a position to state results both regarding the actual expected prediction

error and the estimated expected prediction. More speci�cally, each of the following results
compares a categorization C 0 with a re�nement C 00. Since C 00 is a re�nement of C 0 we
have k0 < k00. Changing parameters of the model in�uences the probability that C 00 will
yield a lower expected prediction error than C 0. Changing the parameters also in�uences
the probability that C 00 will yield a lower estimated expected prediction error than C 0.
It turns out that these e¤ects are very similar, indicating that \EPE (C; vt�1) is a useful
estimator.
The �rst result regards the e¤ect of varying the size of the data base, it corresponds

to proposition 2 about ex ante optimality.

Proposition 6 (a) For any categorization C 0 with k0 < jXj categories, there is a re�ne-
ment C 00 with k00 > k0 categories such that for any � 2 (0; 1), there is a t0, such that if
t > t0 then

Pr
�
EPE

�
C 0; vt�1

�
> EPE

�
C 00; vt�1

��
> �. (9)

(b) Restrict attention to databases such that mit � 2 for all categories in C 0 and C 00. The
statement in (a) holds if (9) is replaced with

Pr
�

\EPE (C 0; vt�1) > \EPE (C 00; vt�1)
�
> �. (10)

9That is, take expectation over the data bases in the set
�
~vt�1 2 V t�1j8i : Ci 2 C ) ~mit = mit

	
.
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Part (a) says that by increasing the size of the data base, we can increase the proba-
bility that C 00 yields a higher expected prediction error than the re�nement C 00, meaning
that C 00 is closer to being optimal than C 0 is. By increasing the size of the data base
su¢ ciently much we can push this probability arbitrarily close to one. Note that the
proposition can be applied iteratively so that it holds also if C 00 is replaced by any re�ne-
ment of C 00. This implies that, for any given number k < jXj, by increasing the size of
the data base we are increasing the probability that the optimal categorizations will have
at least k categories. Part (b) goes on to state that this same relationship holds for the
estimated expected prediction error, provided that we restrict attention to data bases for
which both C 0 and C 00 are well-de�ned.
To see why it is necessary to formulate the proposition in probabilistic terms, con-

sider the following example which shows that adding an observation to a data base may
sometimes lead the optimal number of categories to decrease. Similar examples may be
constructed for minimization of estimated expected prediction error.

Example 4 Assume X = [0; 1],Y = R, V ar (yjx) = �2, f (x) = 1, and

E [yjx] =
�
0:5 if x < 0:5
0:1 if x � 0:5 .

Consider the data base v = f(0:1; 0:6) ; (0:2; 0:6) ; (0:7; 0)g. Compare a categorization C 0
consisting of only one category, with a categorization C 00 that divides X into two categories
C1 = [0; 0:5)�R and C2 = [0:5; 1]�R. It is straightforward to compute EPE (C 0; vt�1) =
�2 + 0:22 + 0:12 = �2 + 0:05 and EPE (C 00; vt�1) = �2 + 0:12 = �2 + 0:01. Thus C 00

is the ex ante optimal categorization. Now suppose one object (0:8;�0:6) is added to
the data base. We now have EPE (C 0; vt�1) = �2 + 0:22 + 0:152 = �2 + 0:0625 and
EPE (C 00; vt�1) = �2 + 0:5 � 0:12 + 0:5 � 0:42 = �2 + 0:085. Hence C 0 is the new ex ante
optimal categorization. The intuition behind this result is that the added object is such an
outlier that it needs to be "neutralized" in a larger sample, which is achieved by merging
the categories.

The next proposition tells us what happens if we restrict attention to categorizing a
subset E of X, and vary the density on E.

Proposition 7 Restrict attention to the categorization of a proper subset E � X. Con-
sider two densities f0 and f1, such that for all x 2 E; f0 (yjx) = f1 (yjx) and �f0 (x) =
f1 (x), for some � > 0. (a) For any categorization C 0 with k0 < jEj categories, there is a
categorization C 00 with k00 > k0 categories such that for any � 2 (0; 1), there is a t0, such
that for any t > t0 there is an �0 (t) such that if � > �0 (t) then

Pr
�
EPE

�
C 0; vt�1

�
> EPE

�
C 00; vt�1

��
> �, (11)
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and if � = �0 (t) then the above does not hold. Moreover, �0 (t) is decreasing in t. (b)
Restrict attention to databases such that mit � 2 for all categories in C 0 and C 00. The
statement in (a) holds if (11) is replaced with

Pr
�

\EPE (C 0; vt�1) > \EPE (C 00; vt�1)
�
> �. (12)

In other words, if t is large enough then we can increase the probability that C 00 yields
a lower expected prediction error (and estimated expected prediction error) than C 0 by
increasing the density over E, as parameterized by �.
The e¤ect of changing the conditional variance is described by the following propo-

sition. Compared to proposition 4 it makes the stronger assumption that the variance
of y conditional on x is normally distributed. The assumption is made for reasons of
tractability, and it could be conjectured that a similar result would hold in its absence.

Proposition 8 Consider a density f such that yjx � N (E [yjx] ; �2) for all x 2 X. (a)
For any categorization C 0 with k0 < jXj categories, there is a re�nement C 00 with k00 > k0
categories such that, in the set of databases with mit � 1 for all categories Ci 2 C 00, the
probability

Pr
�
EPE

�
C 00; vt�1

�
< EPE

�
C 0; vt�1

��
, (13)

is weakly increasing in V ar (yjx).10 (b) Restrict attention to databases such that mit � 2
for all categories in C 0 and C 00. The statement in (a) holds if (13) is replaced with

Pr
�

\EPE (C 00; vt�1) < \EPE (C 0; vt�1)
�
. (14)

By increasing the variance of y conditional on x one can increase the probability that
C 00 yields a higher expected prediction error (and estimated expected prediction error)
than C 0. Thus by increasing the variance one may increase the probability that the
optimal categorizations have less than k categories, for any given k > 1.
Finally, if we make the same assumptions as for proposition 5 then we obtain the

following result. Compared to proposition 5 this result is weaker since it assumes convex
categories, rather than deriving them as a result.

Proposition 9 (a) Restrict attention to categorizations with convex categories.11 (a)
For any categorization C 0 there is a re�nement C 00 such that, in the set of databases with
mit � 1 for all categories Ci 2 C 00, the probability

Pr
�
EPE

�
C 00; vt�1

�
< EPE

�
C 0; vt�1

��
, (15)

10If one did not assume yjx � N
�
E [yjx] ; �2

�
. the result would still hold for large enough t, as a

consequence of the central limit theorem.
11The probability that convex categories outperform non-convex categories, can be made arbitrarily

large by increasing t.
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is weakly increasing in �2, and weakly decreasing in �. (b) Restrict attention to databases
such that mit � 2 for all categories in C 0 and C 00. The statement in (a) holds if (15) is
replaced with

Pr
�

\EPE (C 00; vt�1) < \EPE (C 0; vt�1)
�
. (16)

By increasing the variance the slope � one can increase the probability that C 00 yields a
lower expected prediction error (and estimated expected prediction error) than C 0. Thus
by increasing � one may increase the probability that the optimal categorizations have
more than k categories, for any given k < jXj. The e¤ect of changing the conditional
variance is, of course, the same as in proposition 8.
Propositions 6-9 indicate that \EPE (C; vt�1) might be a reasonable guide to choices

between di¤erent ways of categorizing a given data base. However, it might it might be
too cognitively demanding and time consuming to compute \EPE (C; vt�1) for all catego-
rizations in 	(vt�1). For this reason the set of categories that one chooses from may be
restricted in some way. There are many restrictions that one could reasonably use.12 For
instance one could use the following procedure that restricts the set of categorizations to
those that can be obtained by successively re�ning some initial categorization:

� Start out with an initial categorization C 0. This could either be some prior catego-
rization that needs to be updated or it could be the trivial categorization with only
one category.

� Pick a category C 0i 2 C 0, and perform the following test: Create a new categorization
C 00 by splitting C 0i into two categories C

00
i1 and C

00
i2.

� If either C 00i1 or C
00
i2 contain less than two objects (given v

t�1), pick another
category C 0j (j 6= i) in C 0, and do the same test with that category.

� If both C 00i1 and C
00
i2 contain at least two objects (given v

t�1), compute the
estimator of the expected prediction error for both C 0 and C 00.

� If \EPE (C 00; vt�1) > \EPE (C 0; vt�1) then pick another category C 0j (j 6= i)
in C 0, and do the same test with that category.

� If \EPE (C 00; vt�1) < \EPE (C 0; vt�1) then let C 00 be the new benchmark
categorization.

� Continue this process until splitting categories further either would result in cate-
gories with less than two objects or would result in an increase in estimated expected
prediction error.

12Alternatively, if the subject already has some prior categorization (that needs to be updated) then
the set 	

�
vt�1

�
could be restricted to only include that prior categorization together with categorizations

that are in some way similar to that categorization.
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The process ends in a �nite number of steps. Since it restricts the choice of catego-
rizations there is no guarantee that it will deliver a categorization that is optimal within
a larger set of categories. However propositions 6-9 indicate that, among the categoriza-
tions that it considers, it will tend to pick categorizations in a way that is similar to what
minimization of expected prediction error dictates.
Categorizations that are formed in response to a data base may, of course, be modi�ed

as more data is accumulated. Eventually, the subject might suspect that the old catego-
rization could be improved to such an extent that it is worth the trouble of going through
the above procedure again. In such a setting of occasional re-categorizations, it is likely
that the succession of categorizations will display some path dependence, in the sense
that the order of observations matter for the end result. The reason is that the suggested
procedure takes the current categorization as starting point and only considers certain
re�nements thereof. The data that has been accumulated before the �rst categorization
is formed will therefore have a decisive in�uence on how the categorization is subsequently
modi�ed in response to added data points.

3.4 Extensions

3.4.1 Interest-dependent predictions

The cost of a prediction error has been assumed to be independent of x, only depending
on the distance between the predicted and the actual y-value. More realistically it could
be that predictions associated with some set E � X are considered more important than
predictions in some other set F � X. It is easy to extend the model to handle this
possibility. One may simply add a function w : X ! [0; 1] such that w (x) measures the
importance of predictions associated with x. It is straightforward to verify that changes
in w (x) will have much the same e¤ect as changes in f (x). Increasing the importance of
predictions in a set E will tend to increase the optimal number of categories in that set.

3.4.2 Multi-dimensional X and Y

The model can be extended to allow for prediction of many di¤erent attributes of an ob-
ject, represented by a vector yt 2 Y = Rn. The easiest way of doing this is to let the pre-
diction error, whose expectation should be minimized, be a weighted "city-block" metric.
Let y (j) denote the jth component of y and let z (j) be the weight put on the jth dimension.
The prediction error may be de�ned as PE (C; vt; vt�1) =

Pn
j=1 z (j) (yt (j)� ŷit (j))

2. A
similar modeling choice is made by Fryer and Jackson (2008), who also refer to empirical
evidence on the psychological relevance of the city-block metric. With this speci�cation
all of the results presented above hold for a multi-dimensional Y . The weights may di¤er
between subjects, allowing for another form of interest-dependent predictions.
It was assumed that eitherX is �nite orX is a closed interval on the real line. WhenX
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is a �nite set it is inconsequential whether objects are multidimensional or not. It is more
complicated to allow for an in�nite setX that is not one-dimensional. The di¢ culty lies in
proving that an optimal categorization exists. The problem can be handled by restricting
attention to �nding an optimal categorization within a �nite subset of categorizations.

3.4.3 Fixed number of categories

It has been shown that a subject basing predictions on categories might be better o¤
using a coarse rather than a �ne categorization. Still, the number of categories may be
restricted for other reasons which are external to the model (e.g. some cognitive cost
that is increasing in the number of categories). The model can be adapted to deliver
predictions about how the optimal categorization divides X into an exogenously given
number of categories. For simplicity I con�ne the discussion to ex ante optimality.
First, note that

Pt�1
r=1 Pr (mit = r) =r ! 0 as t ! 1, implying that EPE (C; t)

approaches
Pk

i=1 Pr (x 2 Xi)V ar (yi). The term
Pt�1

r=1 Pr (mit = r) =r is decreasing in
Pr (x 2 Xi). It follows that, as t increases it becomes less important that categories with
a high variance V ar (yi) are also categories with a high Pr (x 2 Xi). In the limit as t!1,
the optimal categorization is completely determined by V ar (yi). In this case the optimal
categorization simply maximizes the sum of within category variances. Second, suppose
that the subject categorizes a proper subset E � X and its complement separately. Re-
strict attention to the categorization of E and consider the e¤ect of increasing f (x) for
all x 2 E. The results depend on whether the total number of categories, or the number
of categories in E, is �xed. If the number of categories in E is allowed to vary, but the
total number of categories is �xed, then it follows from proposition 3 that increasing f (x)
for all x 2 E will result in a larger optimal number of categories in E. If the number of
categories in E is �xed, then increasing f (x) for all x 2 E will have an e¤ect similar to
that of increasing t, since it will decrease the term

Pt�1
r=1 Pr (mit = r) =r. Third, increas-

ing V ar (yjx) for all x will make expected variance E [V ar (yjx) jx 2 Xi], more decisive
than the variance of the expected mean V ar (E [yjx] jx 2 Xi), in determining the optimal
categorization. Finally, in the context of the linear regression model studied in proposi-
tions 5 and 9 changing �2 or � will not a¤ect the optimal categorization, since it a¤ects
V ar (yi).equally for all categories.

4 Discussion

4.1 Psychological applications

In studies of concepts and categorization with hierarchically organized concepts (e.g. an-
imal �bird �robin) it is found that there is a privileged level in the hierarchy, called the
basic level. Generally this level is named spontaneously in categorization tasks, learned
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�rst by children, and is in other ways salient (Rosch et al. (1976)). The basic level is
neither the most general level nor the most detailed level (e.g. bird rather than the su-
perordinate category animal or the subordinate category robin). If categories are useful
because they facilitate prediction then it might seem that it should be optimal to have
an in�nitely �ne grained conceptual structure, since the narrower a category is, the more
precise are the predictions that can be inferred from category membership. For example,
if something is categorized as a bird then one can infer that it lays eggs and has wings,
but if it is categorized (more �nely) as a penguin, then one can also infer that it cannot
�y but can dive. Since we do not use in�nitely �ne-grained category structures there
must be some other factor that decreases the bene�t of narrow categories. I have argued
that such a factor is constituted by the need to have a su¢ ciently large sample in each
category to generalize from. The dominant view in psychology has instead been that the
cost of �ne grained categorizations has to do with the di¢ culty of categorizing objects
into �ne grained categories: In order to make a more �ne-grained categorization one has
to observe more properties of an object (Medin (1983), and Jones (1983)). It is di¢ cult
to come up with a clean test between these two explanations. The reason is that lower
level categories both contain less objects and are associated with more stringent condi-
tions for application. Experimentally one could try to �nd a superordinate category and
a subordinate category which are equally easy to apply. The conventional psychological
explanation would then predict that the basic level will not be the superordinate of these
two categories. In contrast, explanation suggested in this paper would predict the su-
perordinate category to be basic if the subordinate category contains too few exemplars,
or is associated with too much variance. The explanations are probably best viewed as
complementary. Both may describe forces that shape our categorizations.
Experts tend to have a more �ne grained conceptual structure than laymen (Tanaka

and Taylor (1991), Johnson and Mervis (1998)). This can be explained in the present
model, with the help of proposition 1. Consider a layman with a learning phase of length
L1 and a prediction phase of T1 � L2 periods. Suppose the optimal number of categories
for this person is k1. An expert is distinguished by that she goes through more extensive
training, L2, or a longer prediction phase T2 � L1, than the layman The model predicts
that if these di¤erences between an expert and a layman, then it is optimal for the expert
to have larger number of categories than the layman; k2 > k1. This may also explain why
some populations use a more �ne-grained category structure than other populations: For
instance, people in traditional subsistence cultures tend to have more speci�c biological
categories than e.g. American college students (Berlin et al. (1973), Solomon et al. (1999)).
Needless to say there are other possible explanations for this phenomenon.

4.2 Heterogeneous priors

As mentioned in the introduction the model can be seen as describing a way of generating
priors. This interpretation allows us to distinguish various sources of heterogeneous pri-
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ors. Clearly, di¤erent experience, in the form of di¤erent databases will lead to di¤erent
predictions, for a given common categorization. More importantly even subjects with the
same experience may arrive at di¤erent priors, if they use di¤erent categorizations. In
the case of ex ante categorizations this might be due to the fact that they have learned
categorizations from cultures or trades which have developed in response to di¤erent dis-
tributions f . In the case of ex post categorizations is may be due to the subjects having
had di¤erent data bases at time they formed their categorizations, even if subsequent
observations have made their data bases identical. Furthermore di¤erent interests, as
discussed in section 3.4, and as represented by di¤erent weights w (on X) and z (on Y ),
will lead to di¤erent optimal categorizations.

4.3 Categorization in Game Theory

There are some interesting game theoretic studies of the impact of coarse reasoning on
decision making and equilibrium: Jehiel (2005) develops a notion of analogy based ex-
pectations equilibrium for extensive form games. Players bundle together the nodes of
the opponents into analogy classes in order to predict the opponents�behavior. A player
expects the same behavior in all nodes in an analogy class. In equilibrium these expec-
tations are correct on average. The equilibrium is parameterized by the analogy classes,
which are exogenous. Jehiel and Samet (2007) de�ne a notion of valuation equilibrium.
Players bundle their own strategies into di¤erent similarity classes, when predicting their
own payo¤s. The same payo¤ is expected for each strategy in the same similarity class.
Again, in equilibrium the expectations are correct on average. The similarity classes are
exogenous, even though Jehiel and Samet discuss the possibility of endogenizing them.
There is also a literature, starting with Dow (1991) that examines the optimal way to
partition a state space in the face of limited memory. In these models the number of cells
in the partition is determined exogenously by the bound on memory, and the subject has
a prior on the state space.
The results obtained above could potentially be used as a way of endogenizing the

number of cells, and possibly also the structure of the cells, in such models. At least,
the results could motivate restrictions on the set of feasible partitions. The full model
developed above is not suitable for these purposes. Rather it can be taken as inspiration
for simpler modeling devices that can be applied more readily to game theoretic con-
texts. Propositions 6 and 7 imply that optimal categories should not contain too few
observations. This could motivate a restriction that each cell of a feasible partition needs
to be reached with at least some minimum probability in equilibrium.13 Moreover, in
accordance with proposition 8) this threshold probability should be increasing in the ex-
pected variance E [V ar (yjx) jx 2 Xi], and in line with line with proposition 9 it should
be decreasing in the variance of the expected mean V ar (E [yjx] jx 2 Xi). Analyzing the

13Such a restriction is mentioned by Jehiel (2005), note 22.

21



implications of such restrictions is beyond the scope of this paper.14

4.4 Why use Categories?

This paper builds on the assumption that we use categories to make predictions. The
assumption is based on a substantial body of psychological research establishing that
categorical thinking permeates human cognition, including prediction. Nevertheless, one
might ask why we use categorizations rather than some other method for making pre-
dictions. In particular one might suggest that one could employ some form of similarity
based reasoning instead, for instance as formalized by kernel-based regressions. On this
approach the prediction of y conditional on x will be a weighted average of nearby obser-
vations, where the weights put on an observation (x0; y0) is a decreasing function of the
distance between x and x0. One obvious limitation of this approach is that it will not
work unless the subject has access to some metric on X. In contrast, as shown above,
prediction based on categorization is possible even when there is no such metric available.
The objects are then grouped solely on the basis of their y-values. In essence such a
categorization creates a similarity relation �objects sharing the same category are similar
and objects not sharing the same category are dissimilar. The question of whether cate-
gorizations are based on similarity relations or not is subject to debate (insert ref), and
will not be discussed further here. However, even if one is willing to assume that subjects
have a on X there are some further potential shortcomings of kernel based predictions,
compared with predictions based on categorizations.
Presumably categorizations are used in order to facilitate fast predictions; when facing

a new object the subject simply puts the object in a category and uses the corresponding
prediction. Of course, the subject might decide to devote more time to the prediction
problem, but in that case the categorization-based prediction might be modi�ed by other
modes of prediction-making. Hence category-based and kernel-based predictions should be
compared for the case when predictions are produced in a relatively fast and automatic
way. In this case predictions have to be computed in advance. Note that this line of
reasoning does not depend of on whether the categorization was acquired before the
subject had accumulated a data base, or formed on the basis of an accumulated data
base. Once a categorization is in place predictions are computed in advance.
A subject basing predictions of categories will use something like the following proce-

dure: At the beginning of period t the subject has stored k pairs (ŷit;mit) of predictions
and samples sizes, one for each category. She then observes xt, identi�es Ci, such that
xt 2 Ci and predicts ŷit. At the end of period t she observes yt and uses it to computes an
updated prediction ŷit+1 = (mitŷit + yt) = (mit + 1) for category Ci. and replaces (ŷit;mit)
with (ŷit+1;mit+1).
14It might be fruitful to note the analogy between the thresholds discussed here and the lexicographic

costs of states that have been imposed in the literature on games played by �nite automata (Abreu and
Rubinstein (1988)).
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In contrast, a subject basing predictions on kernel based estimation will use a pro-
cedure akin to the following: At the beginning of period t the subject has stored t � 1
di¤erent objects (x; y) and a number of jXj predictions ŷtjx. She then observes xt, and
uses the corresponding prediction ŷtjxt. At the end of period t she adds the observation
(xt; yt) to her memory. She computes an updated prediction ŷt+1jx for each x within
some distance � of the observed xt. (Observation xt has positive weight only in the
computations of predictions ŷtjx0 for x0 that are within distance � from xt.)
In conclusion, for the case of categories and similarity relations that are acquired

prior to data, the kernel-based procedure has at least three drawbacks. (1) It requires
the subject to store a larger number of predictions; jXj rather than k predictions. (2) It
requires the subject to update a larger number of predictions after each new observation; in
the kernel based procedure the subject has to update all predictions associated with values
x that are within distance � of the new observation xt; in the category based procedure
only k predictions are updated. (3) It stores more information about observations; t� 1
individual observations rather than k pairs (ŷit;mit).

4.5 Philosophy of Science Applications

4.5.1 Interplay of Observation and Categorization

Consider a scientist who wants both to develop new theories, in the form of new concepts,
and to make new observations, in order to make better predictions. The scientist can
in�uence what observations she makes by choosing what experiments to perform. For a
given categorization the subject chooses the numbers of observations in di¤erent categories
fmitgki=1, under the restriction that

Pk
i=1mit = t � 1, and mit � 1 for all i. She would

like to minimize expected prediction error

E
�
EPE

�
C; vt�1

�
jfmitgki=1

�
=

kX
i=1

Pr (x 2 Xi)
�
V ar (yi) + E

�
(ŷi � �i)2 jmit

��
=

kX
i=1

Pr (x 2 Xi)

�
1 +

1

mit

�
V ar (yi) .

The �rst equality uses lemma 1 and the second equality uses the same logic as the proof of
lemma 2. Immediately one sees that, for a given categorization, it is optimal to choose to
make observations in categories that have a large probability mass and/or a large variance.
It is also evident that the marginal bene�t of new observations is decreasing.
Forming new categories and concepts is intellectually demanding. More speci�cally

it seems reasonable to assume that this cost is not continuous in the magnitude of the
conceptual change; even small changes are likely to involve some strictly positive minimal
costs. Thus there is reason not to perform re-categorization continuously. Rather, it is op-
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timal to perform such activities occasionally. Directly after a re-categorization the bene�t
of new observations is high and e¤orts are rationally directed at performing experiments
within the framework of the current categorization. After a while the marginal bene�t of
new observations has declined su¢ ciently much to make it more valuable to invest e¤orts
in category formation rather than observation. In this way periods of observation with
�xed categories and periods of re-categorization will alternate. Note the similarity with
how Kuhn (1970) describes the interaction of normal science and scienti�c revolutions.

4.5.2 Predicates Suitable for Induction

The model may serve to clarify intuitions regarding Goodman�s "new riddle of induction"
(Goodman (1955)). Let X = fgreen; blueg� ft < t�; t � t�g, were t� is some future date.
Consider two categorizations C 0 = fgreen; blueg, and C 00 = fgrue; bleeng, where an object
v is grue if it is green and observed before t� of blue and observed after t�, and an object is
bleen if blue before t� or green after t�. Two subjects accumulate observations of emeralds.
Subject 1 uses categorization C 0 and hence registers each emerald as green. Subject 2 uses
categorization C 00 so each emerald is recorded as being grue. The subjects would like to
predict the color of emeralds observed after date t�. Both subjects predict that emeralds
observed after t� will be like the emeralds observed before t�. This means that subject 1
predicts that they will be green (or bleen in the terminology of subject 2) and subject 2
predicts that they will be grue (or blue in the terminology of subject 1). Assuming that
emeralds will in fact continue to be green after t� (they will change from grue to bleen in
the terminology of subject 2) we can compute prediction errors. Regardless of whether
we evaluate prediction error with Y = fgreen; blueg or Y = fgrue; bleeng subject 1 will
make correct predictions while subject 2 will make incorrect predictions. The problem that
Goodman points out is that in advance there is no way of distinguishing the predicates
blue/green from grue/bleen. The solution hinted at here is to use second-order inductions,
as discussed by Quine (1969): Inductions involving predicates like grue/bleen tend to yield
large prediction errors. Hence we make a second-order inductive inference to the e¤ect
that we should avoid such concepts when engaging in �rst-order inductive inference.

5 Related Literature

Fryer and Jackson (2008) consider a notion of optimal categorization. Their model has
similarities with the present model; objects are represented as vectors in some space of
features, and the prediction about a new object in a category is based on the average of
past objects in that category. But there are also some important di¤erences: First, the
number of categories is exogenously given. Second, although the purpose of categorization
is to generate predictions Fryer & Jackson do not de�ne optimality in terms of minimiza-
tion of prediction error. Instead they de�ne the optimal categorization as the one that
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minimizes the sum of within-category di¤erences between objects that have already been
encountered. Third, the probability of encountering di¤erent objects is not modeled.15

As a consequence the trade-o¤ that is central to the present paper cannot be formulated
within their framework.
Al-Najjar and Pai (2010) develop a model of coarse decision making, which is applied

to categorization. It should be noted that the �rst version of their paper is dated Decem-
ber 2008, whereas the �rst version of my paper was presented before that, on November
14, 2008, at the Third Nordic Workshop in Behavioral and Experimental Economics in
Copenhagen. Like in my paper a subject categorizes two-dimensional objects with respect
to one dimension in order to predict the other dimension. With the help of Vapnik Cher-
vonenkis theory they provide results regarding the set of categorizations that guarantee
a worst case predictive performance below some threshold. Worst case is taken both over
the set of distributions and over the set of categorizations. Their results are e¤ectively
about what I have called ex ante categorization.
Peski (2010) studies categorization in a quite di¤erent setting. There are in�nitely

many properties and objects. A state of the world speci�es which of the properties that
each object has. Properties are modeled as discrete, and similarity is de�ned in terms of
sharing properties. Peski argues for the usefulness of categorization by compares predic-
tions based on Bayesian updating with predictions based on a categorization algorithm.
The analysis depends crucially on a symmetry assumption: The Bayesian prior over the
states of the world is symmetric, in the sense that it is invariant with respect to relabeling
of objects and properties. Under this assumption predictions based on the categoriza-
tion algorithm will asymptotically approach the predictions based on Bayesian updating.
Thus a Bayesian subject with a symmetric prior will expect to asymptotically perform
approximately the same regardless of whether she uses Bayesian updating or follows a
categorization algorithm. If the state of nature is in fact drawn from a symmetric dis-
tribution, then a subject following the categorization algorithm will asymptotically make
predictions that are no worse than the predictions made by a subject who knows the
distribution. In my model, there is no subjective prior, and the true distribution need
not be symmetric. It should also be noted that Peski�s results are asymptotic, relying
on a su¢ cient data condition, which states that the number of observations asymptoti-
cally becomes in�nitely much larger than the number of distinct features in the data base
of past observations (although there are in�nitely many properties and objects). In my
model categorization is instead a consequence of scarcity of data.
Other, more distantly related models of categorization are due to Mullainathan (2002)

and Anderson (1991). Gilboa and Schmeidler (2003) model case-based predictions; given
a data base of past cases the subject�s task is to rank the likelihood of di¤erent outcomes in
a new case. Gilboa et al. (2006) provide an axiomatization of a similarity based prediction

15When relating their optimality criterion to utility maximization, they simply assume that the distri-
bution of future objects will be the same as the empirical distribution of already encountered objects.
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rule for the case of predicting a real-valued variable y. The rule states that the value of y
in the case at hand will be equal to a similarity weighted average of that variable in the
past cases. The axiomatization assures that there exists such a similarity function if and
only if the probability rankings made by the subject, given various data bases, satis�es
certain axioms. The axiomatization only tells us that a similarity function exists, not
what it looks like. One may view a categorization as a special similarity function that
treat all cases in the same category as exactly similar to each other and treat a case in a
category as completely dissimilar to any case outside that category. I restrict attention
to the set of such similarity functions, and instead of providing an axiomatization I seek
to characterize the optimal such function.
Pothos and Chater (2002) put forward an account of categorization that builds on

the idea that the simplest categorization, as measured by code length, will be preferred.
In their model there is a trade-o¤ between reducing the number of categories (thereby
simplifying the representation of similarity of categories) and reducing the number of
objects within each category (thereby simplifying the representation of the within-category
similarity). On this account the optimal categorization is one that maximizes simplicity,
rather than predictive success (see Chater (1999) on the link between simplicity and
prediction).
In the �eld of machine learning there are several models related to categorization. The

approach most relevant to the kind of unsupervised categorization studied in this paper
is cluster analysis (for a review see e.g. Jain et al. (1999)). In cluster analysis one seeks
to partition a set of objects in a way that maximizes some measure of within cluster sim-
ilarity and between cluster dissimilarity. Still, there are important di¤erences compared
to the present paper. In cluster analysis one would not de�ne optimality with respect to
the underlying distribution generating the data base. This stands in contrast with the
de�nitions of both ex ante and ex post optimality. It does not con�ict with minimization
of the estimator of expected prediction error. However, the cluster algorithms that I know
of do not cluster a set of two-dimensional objects by de�ning clusters with respect to one
dimension (X) and evaluating the clusters with respect to the other dimension (X), in
contrast with categorization based on the estimated expected prediction error.

6 Conclusion

I have provided a framework for the study of optimal categorization for the purpose of
making predictions. The optimal number of categories is endogenous to the model. A
small category results in smaller variance of objects in that category. A large category
leads to a large number of experienced objects in the category, thus improving the precision
of the predictions of the category mean. Thus the optimal categorization strikes a balance
between �tting and over-�tting. This can explain the fact that the privileged level of
categorization � the so-called basic level � is neither the coarsest nor the �nest one.
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Comparative statics yield several predictions about how the optimal categorization varies
with the number of observations and the distribution of objects. It would be interesting
to test experimentally some of the predictions of the model that have not been tested
before, such as the predictions that the optimal number of categories are increasing in the
variance of the density.

7 Appendix

All proof are given for the case of an in�nite set X = [a; b], and extending the results to
the case of a �nite X is straightforward, unless stated otherwise.

7.1 Preliminaries

Proof of Lemma 1. We have

EPE
�
C; vt�1

�
=

kX
i=1

Z
(x;y)2Ci

f (x; y) (y � ŷit)2 d (x; y)

=
kX
i=1

Z
y2Y

�Z
x2Xi

f (x; y) dx

�
(y � ŷit)2 dy

=
kX
i=1

Z
y2Y

Pr (x 2 Xi) f (yjx 2 Xi) (y � ŷit)2 dy,

where the last equality uses the de�nition of f (yjx 2 Xi). Note that

(y � ŷit)2 = (y � �i)2 + (ŷit � �i)2 � 2 (y � �i) (ŷit � �i) .

Using this we have

EPE
�
C; vt�1

�
=

kX
i=1

Pr (x 2 Xi)

�Z
y2Y

f (yjx 2 Xi) (y � �i)2 dy + (ŷit � �i)2
�

�
kX
i=1

Pr (x 2 Xi) 2

�Z
y2Y

f (yjx 2 Xi) ydy � �i
�
(ŷit � �i)

The desired result follows from the facts that the second factor on the right hand side is
equal to zero, andZ

y2Y
f (yjx 2 Xi) (y � �i)2 dy = V ar (yjx 2 Xi) = V ar (yi) .
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Proof of Lemma 2. We have

EPE (C; t) = E
�
EPE

�
C; vt�1

��
=

kX
i=1

Pr (x 2 Xi)V ar (yi)

+

kX
i=1

Pr (x 2 Xi)

t�1X
r=1

Pr (mit = r)E
�
(ŷit � �i)2 jmit = r

�
+

kX
i=1

Pr (x 2 Xi) Pr (mit = 0)E
�
(ŷt � �i)2 jmit = 0

�
.

The number of objects in a category, mit, has a binomial distribution as follows

Pr (mit = r) =

�
t� 1
r

�
(Pr (x 2 Xi))

r (1� Pr (x 2 Xi))
t�1�r .

If r > 0 then E [ŷitjmit = r] = �i, so

E
�
(ŷit � �i)2 jmit = r

�
= V ar (ŷitjmit = r)

=
rX
j=1

1

r2
V ar (yijmit = r)

=
1

r
V ar (yi) .

Plugging this into the expression above yields the desired result.

Proof of Proposition 1. (i) First consider minimization of EPE (C; t). Since t � T
we require k < �T . For any T let 	(�; �) � 	 be the set of categorizations such that
k < �T and such that the number of unconnected subsets of each category is uniformly
bounded above by �. Any categorization C 2 	(�; �) with k categories can be described
by a set of T�� � 1 points on [a; b] together with a mapping from the induced (T��)
subintervals to the set f1; 2; :::; kg. Take any mapping � from subintervals to f1; 2; :::; kg.
Choosing a categorization among the categorizations that are consistent with the mapping
� is equivalent to choosing a point z in the compact set

Z =
n
z 2 [a; b]T���1 : zj � zj+18j 2 f1; :::; T��� 2g

o
.

Furthermore, since f is continuous in x, EPE (C; t) is continuous in z. Hence by Weier-
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strass�maximum theorem there exists a solution z� (�) to the problem of minimizing
EPE (C; t) with respect to categorizations that are consistent with the mapping �. This
was for a given mapping � from subintervals to f1; 2; :::; kg. Since there are only a �-
nite number of mappings from T�� subintervals to the set f1; 2; :::; kg, the desired result
follows for minimization of EPE (C; t).
(ii) Extension to EPE (C; T; L) is straightforward.
(iii) Finally consider minimization of EPE (C; vt�1). Recall that by de�nition all

categories in 	(vt�1) are non-empty under vt�1. Since vt�1 is �nite, the set 	(vt�1) is
therefore �nite. Existence of a solution is therefore trivial.

7.2 Ex ante optimality

The following two lemmata will be used in the proof of proposition 2.

Lemma 4 Let E and F be disjoint intervals. We have

Pr (x 2 E [ F )V ar (yjx 2 E [ F )�
X

I2fE;Fg

Pr (x 2 I)V ar (yjx 2 I) � 0,

with equality if and only if E [yjx 2 E] = E [yjx 2 F ].

Proof of Lemma 4. Note

Pr (x 2 I)V ar (yjx 2 I) =
Z
y2Y

Pr (x 2 I) f (yjx 2 I) (y � E [yjx 2 I])2 dy,

and

Pr (x 2 I) f (yjx 2 I) =
Z
x2I
f (x; y) dx,

for I 2 fE;F;E [ Fg. Using this one can show

Pr (x 2 E [ F )V ar (yjx 2 E [ F )�
X

I2fE;Fg

Pr (x 2 I)V ar (yjx 2 I)

=
X

I2fE;Fg

Pr (x 2 I)
Z
y2Y

f (yjx 2 I)
�
(y � E [yjx 2 E [ F ])2 � (y � E [yjx 2 I])2

�
dy.

That the left hand side is weakly positive follows from the fact that the function

q (z) =

Z
y2Y

f (yjx 2 I) (y � z)2 dy.

is minimized at z = E [yjx 2 I]. The weak inequality holds with equality if and only if
E [yjx 2 E [ F ] = E [yjx 2 E] = E [yjx 2 F ].
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Lemma 5 If k=t � 
 then

t�1X
r=1

Pr (mit = r)
1

r
>


�

(1� 1=t) .

Proof of Lemma 5. Since r is binomially distributed we have

E [mit] =
t�1X
r=0

Pr (mit = r) r = (t� 1) Pr (x 2 Xi) .

This implies

t�1X
r=1

Pr (mit = r) r = (t� 1) Pr (x 2 Xi)� Pr (mit = 0) � 0 = (t� 1) Pr (x 2 Xi)

Since g (x) = 1
x
is concave, Jensen�s inequality implies

t�1X
r=1

Pr (mit = r)
1

r
� 1Pt�1

r=1 Pr (mit = r) r
=

1

(t� 1) Pr (x 2 Xi)
. (17)

Let pmax = maxi Pr (x 2 Xi) and pmin = mini Pr (x 2 Xi). Note that pmax < 1 �
(k � 1) pmin and since pmin > �pmax, we have pmax < 1� (k � 1) �pmax or equivalently

pmax <
1

((k � 1) �+ 1) =
1

k�� �+ 1 .

Since � 2 (0; 1) this implies pmax < 1=k�. Using this in (17) we get

1

(t� 1) Pr (x 2 Xi)
� 1

(t� 1) pmax
>

k�

(t� 1) .

Use k=t � 
 to obtain
k�

(t� 1) �
t
�

(t� 1) =

�

(1� 1=t) .

Proof of Proposition 2. The proof of part (b) is very similar to the proof of part
(a), and therefore omitted. The proof of part (a) is as follows:
(i) Assume k =

p
t. If t ! 1 then k =

p
t ! 1 and k=t = 1=

p
t ! 0. Moreover,

by the assumption mini Pr (x 2 Xi) > �maxi Pr (x 2 Xi) t!1 implies Pr (x 2 Xi)! 0
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for all i. Write

kX
i=1

Pr (x 2 Xi)V ar (yi) =

kX
i=1

�Z
x2Xi

f (x) dx

�Z
y2Y

f (yjx 2 Xi) (y � �i)2 dy.

For any t, let all sets Xi be intervals of length (b� a) =k. (Note that it is not su¢ cient to
let Pr (x 2 Xi)! 0, we need the categories to be convex). If k !1 then the right hand
side approachesZ

x2X
f (x)

�Z
y2Y

f (yjx) (y � E (yjx))2 dy
�
dx =

Z
x2X

f (x)V ar (yjx) dx. (18)

Moreover, note that if k=t! 0 then, for then for all i,

t�1X
r=1

Pr (mit = r)
1

r
! 0,

Hence if t!1
EPE (C; t)!

Z
x2X

f (x)V ar (yjx) dx, (19)

and thus

EPE (C; T; L)! 1

T � L

TX
t=L+1

Z
x2X

f (x)V ar (yjx) dx =
Z
x2X

f (x)V ar (yjx) dx.

It follows that for any " > 0 there are �nite numbers k0, L0 and T 0 such that if L > L0 or
T > T 0, then there is a categorization with k > k0, in such that����EPE (C; T; L)� Z

x2X
f (x)V ar (yjx) dx

���� < ".
(ii) Assume that there is some � such that k � �. If t!1 then

EPE (C; t)!
kX
i=1

Pr (x 2 Xi)V ar (yi) .

The continuity of f and the assumption that E [yjx] 6= � for some x, together with lemma
4, implies that

kX
i=1

Pr (x 2 Xi)V ar (yi) >

Z
x2X

f (x)V ar (yjx) dx.
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Hence not allowing k !1 as t!1 is suboptimal.
(iii) Now restrict attention to the set of categorizations with k=t � 
 > 0. By lemma

5 we have

EPE (C; t) >

kX
i=1

Pr (x 2 Xi)V ar (yi)

�
1 +


�

(1� 1=t)

�
. (20)

Let t!1. By t � k=
 this implies k !1. As before this also implies Pr (x 2 Xi)! 0
for all i. In this limit the right hand side of the above equation is minimized by using con-
vex categories. The reason is that since f is continuous, maxx;x2Xi jV ar (yjx)� V ar (yjx0)j
approaches zero if Xi is convex, whereas this need not be the case of categories are not
convex. If categories are convex and t!1, then the right hand side of (20) approachesZ

x2X
f (x)V ar (yjx) dx (1 + 
�) .

Thus, for any " there is some t0 such that if t > t0 then�����
kX
i=1

Pr (x 2 Xi)V ar (yi)

�
1 +


�

(1� 1=t)

�
�
Z
x2X

f (x)V ar (yjx) dx (1 + 
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This implies that there is some t0 such that if t > t0 then

EPE (C; t) >

Z
x2X

f (x)V ar (yjx) dx (1 + 
�) .

Comparing this with (19) we see that it is suboptimal to restrict attention to categoriza-
tions with t � k=
.

Proof of Corollary 1. The proof is omitted since it follows fairly straightforwardly
from proposition 2.

Proof of Proposition 3. Write EPEE;f (C; t) to make the dependence upon f
explicit. Suppose C 0 is an optimal categorization of E at date t given f0, i.e. C 0 2
argminC2	EPEE;f0 (C; t), and suppose that there is no other optimal categorization with
a lower number of categories. This categorization C 0 strikes an optimal balance between
the goal of having a few large categories in order to minimize the factors

Pt�1
r=1 Pr (mit = r)

1
r

and Pr (mit = 0) (one of each for each category), and the goal of having many small cat-
egories in order to minimize the factors V ar (yi) (one for each category). Decreasing the
number of categories will lead to an increase in at least one of the factors V ar (yi) and a
decrease in at least one of the factors

Pt�1
r=1 Pr (mit = r)

1
r
and Pr (mit = 0). The former

e¤ect will dominate the latter so that the total e¤ect will be an increase in prediction
error �otherwise C 0 would not be an optimal categorization with a minimal number of
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categories.16

Now suppose one uses the same categorization C 0 when the distribution is f1 (rather
than f0). All the factors

Pt�1
r=1 Pr (mit = r)

1
r
and Pr (mit = 0) are smaller under f1 than

under f0. But we have
f (x)

Pr (x 2 Xi)
=

f (x)R
x2Xi f (x) dx

,

and
f1 (x)R

x2Xi f1 (x) dx
=

�f0 (x)R
x2Xi �f0 (x) dx

=
f0 (x)R

x2Xi f0 (x) dx
.

so from the expressions for E [V ar (yjx) jx 2 Xi] and V ar (E [yjx] jx 2 Xi) together with
equation (7), one sees that all the factors V ar (yi) and E

�
(ŷt � �i)2 jmit = 0

�
are the same

under f0 and f1. Also all the factors E
�
(ŷt � �i)2 jmit = 0

�
are una¤ected. Hence, keeping

C 0 �xed, the only di¤erence between f0 and f1 is that the factors
Pt�1

r=1 Pr (mit = r)
1
r
and

Pr (mit = 0), are smaller under f1 than under f0. Since it was suboptimal to decrease
the number of categories relative to C 0 under f0 it must be (even more) suboptimal to
decrease the number of categories relative to C 0 under f1.

Proof of Proposition 4. Write EPEf0 (C; t) and EPEf1 (C; t) to make the depen-
dence on the distribution explicit. Note that f0 (x) = f1 (x) = f (x) for all x, so that
E [yjx], and Pr (mit = r) are the same for f0 and f1 for all x, i, t, and r.
(i) Use (7) and note that V ar (E [yjx] jx 2 Xi) is the same under f0 and f1. It follows

that

V arf1 (yi)� V arf0 (yi) = (Ef1 [V arf1 (yjx) jx 2 Xi]� Ef0 [V arf0 (yjx) jx 2 Xi])

= E [V arf1 (yjx)� V arf0 (yjx) jx 2 Xi]

=
1

Pr (x 2 Xi)

Z
x2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx.

(ii) For j 2 f0; 1g we have

Efj
�
(ŷt � �i)2 jmit = 0

�
= Efj

�
(ŷt � �)2 jmit = 0

�
+ (�� �i)2 + 2 (�� �i)2 (E [ŷtjmit = 0]� �) ,

16The e¤ect on the factors E
h
(ŷt � �i)2 jmit = 0

i
of increasing the number of categories is ambiguous,

but if these terms are decreased by increasing the number of categories it still must be the case that the
total e¤ect on expected prediction error, of increasing the number of categories, is positive.
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and

Efj
�
(ŷt � �)2 jmit = 0

�
= V arfj (ŷtjmit = 0)

=
1

t� 1V arfj (yjx =2 Xi)

=
1

t� 1
�
E
�
V arfj (yjx) jx =2 Xi

�
+ V ar (E [yjx] jx =2 Xi)

�
.

so

Ef1
�
(ŷt � �i)2 jmit = 0

�
� Ef0

�
(ŷt � �i)2 jmit = 0

�
= Ef1

�
(ŷt � �)2 jmit = 0

�
� Ef0

�
(ŷt � �)2 jmit = 0

�
=

1

t� 1 (E [V arf1 (yjx) jx =2 Xi]� E [V arf0 (yjx) jx =2 Xi])

=
1

t� 1E [V arf1 (yjx)� V arf0 (yjx) jx =2 Xi]

=
1

Pr (x 2 Xi)

1

t� 1

�Z
x=2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx
�
.

(iii) From (i) and (ii) it follows that

EPEf1 (C; t)� EPEf0 (C; t) =M1 +M2, (21)

where

M1 =
kX
i=1

�Z
x2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx
� 

1 +
t�1X
r=1

Pr (mit = r)
1

r

!
,

and

M2 =
1

t� 1

kX
i=1

Pr (mit = 0)

�Z
x=2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx
�
.

For any categorization C 0 with k > 1, note that both M1 and M2 can be decreased by
changing to some categorization with fewer categories. Suppose that C 0 is an optimal
categorization for t, and f1, i.e. C 0 2 argminC2	EPEf1 (C; t), and suppose that there is
no other optimal categorization with a lower number of categories. From the right hand
side of (21) we see that any categorization that minimizes EPEf0 (C; t) will have at least
as many categories as C 0.

Proof of Proposition 5. We assume that the subject observes at least one object
in each category during the learning phase. Thus the maximal number of categories in a
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category is now t � 1 � (k � 1) = t � 1 rather that t � 1. This requires us to revise the
expression for the expected prediction error as follows:

EPE (C; t) =
kX
i=1

Pr (x 2 Xi)V ar (yi)

 
1 +

t�kX
r=0

Pr (mit = r)
1

r + 1

!
,

where mit has a binomial distribution

Pr (mit = r) =

�
t� k
r

�
(Pr (x 2 Xi))

r (1� Pr (x 2 Xi))
t�k�r .

Note that the assumption that x is uniformly distributed on X, implies that f (x) = 1
for all x 2 X, and hence that f (x; y) = f (yjx). Then derive the variance of y in interval
Ai = [ai; bi). We have

Pr (x 2 Ai) = bi � ai,
and

f (yjx 2 Ai) =
R
x2A f (y; x) dx

Pr (x 2 Ai)
=

1

bi � ai

Z
x2Ai

f (yjx) dx,

and

E (yjx 2 Ai) =
�
�+ �

(ai + bi)

2

�
.

Using this we get, after a fair amount of manipulation,

V ar (yi) =
�2 (bi � ai)2

12
+ �2. (22)

(a) Now we show that the optimal categories are intervals on the x-axis. Take a
categorization C where not all categories are convex. Without loss of generality one can
assume that there is a category C� such that X� = [Ss=1[as; bs), with bs < as+1. Let
EPE� (C; t) denote the expected prediction error for objects in this category;

EPE� (C; t) = V ar (y�)

 
1 +

t�kX
r=0

Pr (m�t = r)
1

r + 1

!
.

Consider a categorization C 0 that is a modi�cation of C such that X 0
� = [a1; b) where

b = a1 +
PS

s=1 (bs � as). The other categories are only moved to the right so that if,
under categorization C the point p > a1 was a boundary point between two categories
then, under categorization C 0 this boundary is located at the point p +

PS
s=1 (bs � as).
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Let EPE� (C 0; t) denote the expected prediction error for objects in category C� 2 C 0;

EPE� (C; t) = V ar (y�)

 
1 +

t�kX
r=0

Pr (m�t = r)
1

r + 1

!
.

Since Pr (m�t = r) = Pr (m�t = r) and V ar (y�) > V ar (y�) we have EPE� (C 0; t) <
EPE� (C; t). From equation 22 we see that the expected prediction error for objects in
the other categories are una¤ected so EPE (C 0; t) < EPE (C; t). Hence the categorization
with a convex category is better than the one with a non-convex category.
We have shown that an optimal categorization with k categories has Xi = [ai; bi) for

i 2 f1; :::; k� 1g and Xk = [ak; bk] = [ak; 1]. Letting di = bi� ai, we seek a categorization
that minimizes

EPE (C; t) =
kX
i=1

(bi � ai)
 
�2 (bi � ai)2

12
+ �2

! 
1 +

t�kX
r=0

Pr (mit = r)
1

r + 1

!
,

where

Pr (mit = r) =
(t� k)!

r! (t� k � r)! ((bi � ai))
r (1� (bi � ai))t�k�r .

Since EPE (C; t) is quadratic in bi � ai it is optimal to have bi � ai = 1=k for all i. Since
we have assumed T � L = 1 this �nishes the proof of (a).
(b) With bi � ai = 1=k for all i, the probability Pr (mit = r) is the same for all i so

write Pr (mit = r) = Pr (mt = r). We have

EPE (C; t) =

 
�2

12

�
1

k

�2
+ �2

! 
1 +

t�kX
r=1

Pr (mt = r)
1

r + 1

!
.

Let C 0 and C 00 be categorizations with k0 and k00 categories respectively. It is easy to
verify that

EPE (C 00; t)� EPE (C 0; t) = �2M1 + �
2M2.

where

M1 =
1

12

 �
1

k00

�2 
1 +

t�k00X
r=0

Pr (m00
it = r)

1

r + 1

!
�
�
1

k0

�2 
1 +

t�k0X
r=0

Pr (m0
it = r)

1

r + 1

!!

and

M2 =

 
t�k00X
r=0

Pr (m00
it = r)

1

r + 1
�

t�k0X
r=0

Pr (m0
it = r)

1

r + 1

!
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Note that M2 > 0. Thus EPE (C 00; t) � EPE (C 0; t) is increasing in �2. If M1 > 0 then
EPE (C 00; t) > EPE (C 0; t) for all � and �2. If M1 < 0 then EPE (C 00; t) � EPE (C 0; t)
is decreasing in � and attains negative values if � is large enough.

7.3 Ex post optimality

Lemma 6 (a) For any categorization C

P lim
t!1

EPE
�
C; vt�1

�
=

kX
i=1

Pr (x 2 Xi)V ar (yi) .

(b) Consider an initial database vt0�1 and any categorization C 2 	(vt0�1). Add t � t0
objects to the data base.

P lim
t!1

\EPE (C; vt�1) =
kX
i=1

Pr (x 2 Xi)V ar (yi) .

Proof of Lemma 6. (a) Consider a category Ci 2 C. Suppose that mit � 2. It can
be veri�ed that

(ŷit � �i)2 =
 
1

mit

X
s2Dit

ys

!2
+ �2i � 2�i

1

mit

X
s2Dit

ys.

Let mit ! 1. Since, for each category i, fysg is an i.i.d. sequence with E [ys] = �i we
can use Kinchine�s law of large numbers and Slutsky�s lemma to conclude that

P lim
mit!1

(ŷit � �i)2 =
�
�2i + �

2
i � 2�i�i

�
= 0.

In other words, for any " > 0 and � 2 (0; 1), there is an M such that if mit > M then

Pr
�
(ŷit � �i)2 < "

�
> �1=2.

Moreover, for any M there is a t0 such that if t > t0 then

Pr (mit > M) > �
1=2.

This implies that, for any " > 0 and � 2 (0; 1), there is a t0 such that if t > t0 then

Pr
�
(ŷit � �i)2 < "

�
> �.
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Thus, for any for any " > 0 and � 2 (0; 1), there is a t0 such that if t > t0 then

Pr

 
kX
i=1

Pr (x 2 Xi) (ŷit � �i)2 < "
!
> �.

Since EPE (C; vt�1) � 0, the desired result follows:
(b) Similar to the proof of (a), using the standard result P limmit!1 s

2
it = V ar (yi).

Proof of Proposition 6. (a) Let C 0 be a categorization with k0 categories. Since
E [yjx] is not constant across X, there exists a 
 > 0, and a categorization C 00 with k00 > k0
categories, such that

k0X
i=1

Pr (x 2 X 0
i)V ar (yi)�

k00X
i=1

Pr (x 2 X 00
i )V ar (yi) = 
.

By lemma 6;
P lim
t!1

�
EPE

�
C 0; vt�1

�
� EPE

�
C 00; vt�1

��
= 
.

The desired result follows.
(b) Analogous to (a).

Proof of Proposition 7. Follows from lemma 6 in a way similar to the proof of
proposition 6. For a given t, increasing � leads to an increase in the probability that
mit > M .

Proof of Proposition 8. (a) Without loss of generality suppose that C 0 has one
category, named 0, and C 00 has two categories, named 1 and 2. Without loss of generality
assume that C 00 is chosen so that

V ar (E [yjx] jx 2 Xi) < V ar (E [yjx] jx 2 X0) (23)

for i 2 f1; 2g. Fix m1t � 1 and m2t � 1 and only consider data bases with these numbers
of objects in each category. We have

EPE
�
C 00; vt�1

�
� EPE

�
C 0; vt�1

�
= Pr (x 2 X1)

�
V ar (y1) + (ŷ1t � �1)2

�
+ Pr (x 2 X2)

�
V ar (y2) + (ŷ2t � �2)2

�
� Pr (x 2 X0)

�
V ar (y0) + (ŷt � �0)2

�
.
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The assumption that V ar (yjx) is constant across X implies

E [V ar (yjx) jx 2 X0] = Pr (x 2 X1)E [V ar (yjx) jx 2 X1]

+ Pr (x 2 X2)E [V ar (yjx) jx 2 X2] ,

Together with the decomposition of V ar (yi) given by (7) this implies

EPE
�
C 00; vt�1

�
� EPE

�
C 0; vt�1

�
= Pr (x 2 X1)

�
V ar (E [yjx] jx 2 X1) + (ŷ1t � �1)2

�
+ Pr (x 2 X2)

�
V ar (E [yjx] jx 2 X2) + (ŷ2t � �2)2

�
� Pr (x 2 X0)

�
V ar (E [yjx] jx 2 X0) + (ŷt � �0)2

�
=M1 +M ,

where

M1 =
X
i2f1;2g

Pr (x 2 Xi) (V ar (E [yjx] jx 2 Xi)� V ar (E [yjx] jx 2 X0)) .

and
M =

X
i2f1;2g

Pr (x 2 Xi)
�
(ŷit � �1)2 � (ŷt � �0)2

�
Note that M1 is independent of V ar (yjx). We can rewrite M as

M = Pr (x 2 X1)

�
�21
m1t

�
Z1 + Pr (x 2 X2)

�
�22
m2t

�
Z2 � Pr (x 2 X)

�
�20
m0t

�
Z0

Where

Zi =

�
ŷit � �i
�i=
p
mit

�2
,

for i 2 f0; 1; 2g. Since f (yjx) is normally distributed f (yjx 2 Xi) is normally distributed,
with some variance �2i . Then ŷit (being the average of i.i.d. draws) is normally distributed
with variance �2i =mit, and

ŷit � �i
�i=
p
mit

� N (0; 1) (24)

It follows that �
ŷit � �i
�i=
p
mit

�2
� �2(1),

39



for i 2 f0; 1; 2g.17 Using (7), M can be further decomposed as M =M2 +M3 where

M2 =
X
i2f1;2g

Pr (x 2 Xi)

�
V ar (E [yjx] jx 2 Xi)

mit

Zi �
V ar (E [yjx] jx 2 Xi)

m0t

Z0

�
,

and

M3 = V ar (yjx)
X
i2f1;2g

Pr (x 2 Xi)

�
1

mit

Zi �
1

m0t

Z0

�
.

Thus we have found that

EPE
�
C 00; vt�1

�
� EPE

�
C 0; vt�1

�
=M1 +M2 +M3,

where M1 and M2 are independent of V ar (yjx). Note that the assumption (13) implies
M1 > 0. It also implies that, for any realization (z1; z2; z0) of (Z1; Z2; Z0), it holds that
if M3 > 0 then M2 > 0. Pick any realization (z1; z2; z0). If M3 > 0 then M2 > 0 and
hence EPE (C 00; vt�1)� EPE (C 0; vt�1) > 0 independently of V ar (yjx). If M3 < 0 then
EPE (C 00; vt�1) � EPE (C 0; vt�1) is increasing in V ar (yjx). This latter fact shows that
the probability of EPE (C 00; vt�1) > EPE (C 0; vt�1) is increasing in V ar (yjx). This was
for given numbers m1t and m2t, but the same reasoning holds for any choice of m1t � 1
and m2t � 1.
(b)Without loss of generality suppose that C 0 has one category, named 0, and C 00 has

two categories, named 1 and 2. Without loss of generality assume that C 00 is chosen so
that V ar (E [yjx] jx 2 Xi) < V ar (E [yjx] jx 2 X0) for i 2 f1; 2g. Fix m1t � 2 and m2t � 2
and only consider data bases with these numbers of objects in each category. We have

\EPE (C 00; vt�1)� \EPE (C 0; vt�1) =
1

t� 1
�
(m1t + 1) s

2
1t + (m2t + 1) s

2
2t � (m0t + 1) s

2
0t

�
=

1

t� 1

�
m1t + 1

m1t � 1
�21Z1 +

m2t + 1

m2t � 1
�22Z2 �

m0t + 1

m0t � 1
�20Z0

�
,

where
Zi =

mit � 1
�2i

s2it.

Since yjx � N (E [yjx] ; �2) we have Zi � �2(mit�1). Note that this distribution is indepen-
dent of �2i . We can write

\EPE (C 00; vt�1)� \EPE (C 0; vt�1) =
1

t� 1 (M1 +M) ,

17If mit !1 is large then (24) holds by virtue of the central limit theorem, even if yjx is not normally
distributed.
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where

M1 =
m1t + 1

m1t � 1
V ar (E [yjx] jx 2 X1)Z1 +

m2t + 1

m2t � 1
V ar (E [yjx] jx 2 X2)Z2

� m0t + 1

m0t � 1
V ar (E [yjx] jx 2 X0)Z0,

and

M2 = V ar (yjx)
�
m1t + 1

m1t � 1
Z1 +

m2t + 1

m2t � 1
Z2 �

m0t + 1

m0t � 1
Z0

�
.

Note that M1 is independent of V ar (yjx). The assumption (13) implies that, for any
realization (z1; z2; z0) of (Z1; Z2; Z0), it holds that if M2 < 0 thenM1 < 0. If M2 < 0 then

M1 < 0 so that \EPE (C 00; vt�1) < \EPE (C 0; vt�1) regardless of V ar (yjx). If M2 > 0 and

M1 > 0 then \EPE (C 00; vt�1) > \EPE (C 0; vt�1) regardless of V ar (yjx). If M2 > 0 and

M1 < 0 then \EPE (C 00; vt�1)� \EPE (C 0; vt�1) is increasing in V ar (yjx). This latter fact
shows that the probability of \EPE (C 00; vt�1) > \EPE (C 0; vt�1) is increasing in V ar (yjx).
This was for given numbers m1t and m2t, but the same reasoning holds for any choice of
m1t � 2 and m2t � 2.

Proof of Proposition 9. (a) The proof is similar to the proof of proposition 8.
Without loss of generality suppose that C 0 has one category, named 0, and C 00 has two
categories, named 1 and 2. Fix m1t � 1 and m2t � 1 and only consider data bases with
these numbers of objects in each category. Similar to the proof of proposition 8 we can
write

EPE
�
C 00; vt�1

�
� EPE

�
C 0; vt�1

�
=M1 +M2

where, using (22),

M1 =
X
i2f1;2g

Pr (x 2 Xi) (V ar (E [yjx] jx 2 Xi)� V ar (E [yjx] jx 2 X0))

+
X
i2f1;2g

Pr (x 2 Xi)

�
V ar (E [yjx] jx 2 Xi)

mit

Zi �
V ar (E [yjx] jx 2 X0)

m0t

Z0

�

=
X
i2f1;2g

Pr (x 2 Xi)
�2

12

��
1 +

1

mit

Zi

�
d2i �

�
1� 1

m0t

Z0

�
d20

�
,
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and

M2 =
X
i2f1;2g

Pr (x 2 Xi)

�
E [V ar (yjx) jx 2 Xi]

mit

Zi �
E [V ar (yjx) jx 2 X0]

m0t

Z0

�

=
X
i2f1;2g

Pr (x 2 Xi)�
2

�
1

mit

Zi �
1

m0t

Z0

�
.

Note that, for any realization (z1; z2; z0) of (Z1; Z2; Z0); if M2 < 0 then M1 < 0. Pick any
realization (z1; z2; z0). If M2 < 0 then M1 < 0 so EPE (C 00; vt�1) � EPE (C 0; vt�1) < 0
regardless of � and �2. If M2 > 0 and M1 > 0 then EPE (C 00; vt�1)�EPE (C 0; vt�1) > 0
regardless of � and �2. If M2 > 0 and M1 < 0 then EPE (C 00; vt�1) � EPE (C 0; vt�1) is
decreasing in � and increasing in �2.
(b) From the proof of proposition 8, using the expressions for V ar (E [yjx] jx 2 Xi)

and E [V ar (yjx) jx 2 X0] we have

M1 =
�2

12

�
d21
m1t + 1

m1t � 1
Z1 + d

2
2

m2t + 1

m2t � 1
Z2 � d20

m0t + 1

m0t � 1
Z0

�
,

and

M2 = �
2

�
m1t + 1

m1t � 1
Z1 +

m2t + 1

m2t � 1
Z2 �

m0t + 1

m0t � 1
Z0

�
.

We know the e¤ect of �2 from proposition 8. To see the e¤ect of �, note that if M2 < 0

then M1 < 0 so that \EPE (C 00; vt�1) < \EPE (C 0; vt�1) regardless of �. If M2 > 0 and

M1 > 0 then \EPE (C 00; vt�1) > \EPE (C 0; vt�1) regardless of �. If M2 > 0 and M1 < 0

then \EPE (C 00; vt�1)� \EPE (C 0; vt�1) is decreasing in �.
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