
 1

A Folk Theorem for Stochastic Games with Infrequent 
State Changes* 

 

(Very Preliminary) 

 

Marcin Pęski** 

Thomas Wiseman*** 

 

 

April 2011 

 

 

Abstract 

Fudenberg and Yamamoto (forthcoming) and Hörner, Sugaya, Takahashi, and 

Vieille (forthcoming) study dynamic stochastic games with finite states, and give 

conditions on monitoring under which a folk theorem holds as players become very 

patient (so that players discount vanishingly little both the time until the next period and 

the expected time until the next state transition).  Here, we consider the case what 

happens as the length of a period shrinks, but players’ rate of time discounting remains 

fixed.  Now the discounting between periods shrinks to zero in the limit, but the 

discounting of the expected time until a state transition does not.  Our main result is a 

folk theorem that holds under Fudenberg, Levine, and Maskin’s (1994) monitoring 

conditions.  Unlike FY and HSTV, we do not require that the stochastic game be 

irreducible.  
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1. Introduction 

 

 T 

 Literature review. 

 Examples. 

 

2. Model 

 

 There are N expected-utility maximizing players playing an infinite-horizon 

stochastic game.  The time between periods is given by ∆ > 0, and all players discount the 

future at rate r > 0 (so that the per-period discount rate is re δ− ∆ ≡ .)  There is a finite set 

S of K payoff-relevant states of the world.  In each different state s, the stage game G(s) 

has different payoffs but the same set of action profiles A = A1 × A2 × … × AN, where Ai is 

the (finite) set of actions for player i.  (The assumption that the set of actions is 

independent of the state is without loss of generality – if, for example, a player has fewer 

actions in one state than in another, we can add a “dummy” action identical to an existing 

action.)  In each period t, the state s is publicly observed.  Then each player i chooses an 

action ai ∈ Ai and observes a public signal y drawn from the distribution ρ(a, s) with 

finite support Y, where a is the profile of actions of all players.  Player i’s payoff when 

his action is ai and signal y is realized in state s is ui(ai, y, s); let gi(a, s) be player i’s 

expected payoff when action profile a is played in state s: 

 

 gi(a, s) [ ( , )( )] ( , , )i i
y Y

a s y u a y sρ
∈

≡ ∑ .  

 

Denote by g(a, s) the vector of expected payoffs for each player.  At the end of period in 

which when action profile a is played in state s, the probability that the state changes to 

state s′ ≠ s is equal to ∆ ˆ( ; , )s a sγ ′ :  the constant rate ˆ( ; , )s a sγ ′  multiplied by the period 

length ∆.  That is, the transition probability per unit of time is fixed, so (for small ∆) the 
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transition probability per period is proportional to the length of the period.  With the 

remaining probability 1 – ∆ ˆ( , )a sγ , where 

 

 ˆ ˆ( , ) ( ; , )
s s

a s s a sγ γ
′≠

′≡ ∑ , 

 

the state does not change.  Note that when the period length ∆ is close to zero, then the 

discount rate per period δ is approximately equal to 1 – r∆, and so the probability of 

transition from state s to state s′ given action profile a in each period, ∆ ˆ( ; , )s a sγ ′ , is 

approximately equal to  1 ˆ(1 ) ( ; , )r s a sδ γ ′− .  Since we will focus on the limiting case as ∆ 

→ 0, for notational simplicity we will re-specify the per-period transition probabilities as 

(1 ) ( ; , )s a sδ γ ′− , where 

 

 1 ˆ( ; , ) ( ; , )rs a s s a sγ γ′ ′≡ . 

 

Similarly, we re-specify the probability that no transition occurs as 1 (1 ) ( , )a sδ γ− − , 

where 

 

 ( , ) ( ; , )
s s

a s s a sγ γ
′≠

′≡ ∑ . 

 

  We will then consider the limit as δ → 1. 

 All these definitions extend in a natural way to mixed actions.  This structure is 

common knowledge.  We assume that a public randomization device is available to the 

players. 

 The set of public histories in period t is equal to Ht ≡ Y t–1 × St, with element ht = 

(s1, y1, … , yt–1, st ), where st denotes the state at the beginning of period t and yt denotes 

the public signal realized at the end of period t.  Player i’s private history in period t is i
th  

= (s1, y1, ai,1, … , yt–1, ai,t–1, st ), where ai,t is player i’s action in period t; Ht ≡ (Y × Ai)t–1 × 
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St is the set of such private histories.  Define H tt H≡∪ and Hi i
tt H≡∪ .  A strategy for 

player i is a mapping αi : i
iH A→∆ .  A public strategy for player i is a mapping σi : 

iH A→∆ .  Let Σi and P
iΣ , respectively, denote the set of strategies and the set of public 

strategies for player i; let Σ and ΣP denote the sets of strategy profiles and of public 

strategy profiles, respectively.  Given a profile of strategies α ∈ Σ and an initial state s ∈ 

S, player i’s expected payoff in the dynamic game, ( , )v a sδ , is given by 

  

 1

1
( , ) (1 ) ( , )t

t t
t

v a s E g a sδ δ δ
∞

−

=
= − ∑ , 

 

where the expectation is taken with respect to the distribution over actions and states 

induced by the strategy α and initial state s.  For each public strategy σ ∈ ΣP and public 

history h ∈ H, the continuation payoffs ( , )v hδ σ  are calculated in the usual way. 

 Let  specify the vector of continuation payoffs as a function of 

next period’s state.   For each such u, current state s, and action profile a, we define a 

vector of payoffs 

 

 . 

 

We refer to  as the pseudo-instantaneous payoff (or just the pseudo-payoff) 

from playing action profile a in state s, given continuation payoffs u.  To motivate the 

name, we note that the expected payoff in this situation is given by 

 

  

   

 =  , 
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 where . 

 

Thus, we can represent the expected payoff as a convex combination of the pseudo-

instantaneous payoff and the continuation payoff if no state transition occurs.  This 

definition will be useful later. 

 

2.1  Feasible and individually rational payoffs 

 

 Define the (convex hull of) the set of feasible payoffs in initial state s, ˆ ( )V sδ , as  

 

 . 

 

Note that, in contrast to the setting in FY and HSTV, the set of feasible payoffs ˆ ( )V sδ  

varies with the state even in the limit as δ approaches 1: the payoffs to the stage game 

vary with the state, and both the discount rate and the rate of transition between states are 

fixed per unit of time as δ grows. 

 For each player i and state s, we define player i’s public minmax payoff in state s, 

( )im sδ , as 

 

 ( ) min max (( , ), )
P P

i i i i
i i im s v sδ δ

σ σ
σ σ

− −
−

∈Σ ∈Σ
≡  . 

 

Next, define the (convex hull of the) set of feasible and individually rational payoffs in 

initial state s, ( )V sδ , as 

 

 { }( ) co ( , ) :  and ( , ) ( ( )) ,i
P

iV s v s v h m s h i N h Hδ δ δ δσ σ σ≡ ∈Σ ≥ ∀ ∈ ∀ ∈  
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Note that ( )V sδ  typically is not equivalent to the set { }ˆ ( ) : ( ) i iv V s v m s i Nδ δ∈ ≥ ∀ ∈ .  

EXAMPLE. 

 Finally, let  denote the set of payoffs that are feasible and that after 

every history yield each player a payoff at least ε greater than his minmax payoff: 

 

 { }( ) co ( , ) :  and ( , ) ( ( ))  ,i
P

iV s v s v h m s h i N h Hδ δ δ δ
ε σ σ σ ε≡ ∈Σ ≥ + ∀ ∈ ∀ ∈ . 

 

Later we will consider conditions under which ( )V sδ
ε  converges to ( )V sδ  as ε shrinks to 

0.  (Note that even in a standard repeated game, with only one state, that convergence 

may not occur – for example, if the profile of minmax profiles is Pareto optimal.) 

 

2.2  Identifiability 

 

 Definitions of pairwise full rank and individual full rank are the same as in FLM. 

 

Identifiability Condition:  The identifiability conditions of FLM’s Theorem 6.2 are 

satisfied in every state. 

 

3. Results 

 

 The uniform interior condition requires that there exists some positive d such that 

in each state s there is a payoff vector in the interior of ( )V sδ
ε that lies at a distance of at 

least r from the boundary of ( )V sδ
ε .   For any vector v ∈ RN and scalar d > 0, let B(v, d) 

denote the closed ball centered at v with radius d. 

 

Uniform Interior Condition:  Let ε > 0 be given.  For high enough values of δ, there 

exists d > 0 and vs ∈ ( )V sδ
ε  for each state s such that B(vs, d) ( )V sδ

ε⊆ . 
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With that definition, we can state our main result, a folk theorem: 

 

Theorem 1.  Let ε > 0 be given.  Suppose that the Uniform Interior Condition holds for ε, 

and that the Identifiability Condition holds.  Then there exists δ* < 1 such that the 

following holds:  for any initial state s, any ˆ ( )v V sδ
ε∈ , and any δ ≥ δ*, there exists a 

perfect public equilibrium strategy profile σ such that ( , )v sδ σ  = v̂ . 

 

 The proof is based on the techniques in the proof of FLM’s folk theorem for 

games with imperfect public monitoring.  That proof shows that any smooth set of 

payoffs W strictly in the interior of the feasible and individually rational set can be 

attained in equilibrium – a key step is to show that any payoff on the boundary of W can 

be achieved as the weighted average of a stage-game payoff in the current period that lies 

outside W (thus the requirement that W is strictly in the interior of the feasible set) and 

expected continuation payoffs that lie in W.  Here, we want to do something similar, with 

pseudo-instantaneous payoffs taking the place of the stage-game payoffs.  We have to do 

some work to ensure that there is a pseudo-payoff outside ( )V sδ
ε  in each direction (and, 

of course, for every state).  As a building block, we considers strategies that, after each 

period, with positive probability switch permanently to a strategy that yields payoffs in 

the middle of ( )V sδ
ε .  Later (in Lemma 3), we will show that any payoff in ( )V sδ

ε  can be 

attained with such strategies. 

 

3.1  η-Modified Strategies 

 

 Given ε, suppose that the Uniform Interior Condition holds, and for each state s 

fix a payoff vector vs as in the statement of that condition.  Let σ s denote a strategy that 

yields vs in state s (and at least ( ( ))im s hδ ε+  for all players after every history, by the 

definition of ( )V sδ
ε .) 
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 Fix η ∈ (0, 1).  For any public strategy profile σ, construct the η-modified 

strategy ( )ησ σ  in the following way:  there are K + 1 regimes, regime 0 and regime s for 

each state s.  Play begins in regime 0.  After any period in which play was in regime 0, 

the state was s, and the state did not change, the regime switches to s with probability η(1 

– δ), and otherwise remains in regime 0.  After any period in which play was in regime 0, 

the state was s, and the state transitions to s′ ≠ s, the regime switches to s′ with 

probability η, and otherwise remains in regime 0.  Regime s is absorbing for all s.  In 

regime 0, strategy ( )ησ σ  specifies exactly the same play as strategy σ.  If play switches 

to regime s after period t, then in each period t′ > t, after t′ -period history ( , )t th h ′ , 

strategy ( )ησ σ  follows the prescription of strategy ( )s
thσ ′ .  That is, the continuation 

payoff after the switch to regime s is vs. 

 Next, define the set of individually rational payoffs achievable using η-modified 

strategies, starting from state s: 

 

{ }, ( ) co ( ( ), ) :  and ( ( ), ) ( ( )) ,i
P

iV s v s v h m s h i N h Hδ η δ η δ η δσ σ σ σ σ≡ ∈Σ ≥ ∀ ∈ ∀ ∈ . 

 

Our first lemma establishes that for any state s and any payoff v ∈ , ( )V sδ η , we can pick 

any direction and find an action profile a and continuation payoffs in , (  )V sδ η ′ (where s′ 

is the state in the next period) such that the pseudo-payoff from a is at least δηd farther in 

that direction than any payoff in , ( )V sδ η . 

 

Lemma 2.  Suppose that the Uniform Interior Condition holds.  Choose any state s and 

any vector λ ∈ RN such that ||λ|| = 1.  Then there exist an action profile a and 

continuation payoffs ( )s s Su ′ ′∈ , with , (  )su V sδ η
′ ′∈  for all states s′ , such that 

 

 
, ( )

( , , ) max
v V s

a s u d v
δ η

δλ ψ δη λ
∈

⋅ ≥ + ⋅ . 
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Proof of Lemma 2:  Pick v* ∈ 
, ( )

max
v V s

v
δ η

λ
∈

⋅  and corresponding strategy profiles σ and  

ση(σ) such that   v*, and  for each player i and 

public history h.  For simplicity, suppose that σ is a pure strategy.  Let ( )su y′  denote the 

continuation payoff in state s′ under σ when the realization of the public signal is y, and 

let ( ) ( , )( ) ( )s syu a a s y u yρ′ ′′≡ ∑  be the expected value of ( )su y′  when a is played.  

(Note that these are also the continuation payoffs under ση(σ) if play stays in regime 0.) 

 We can write v* as 

 

 
[ ]

[ ]

* (1 ) ( , ) (1 ) ( ; , ) (1 ) ( )

[1 (1 ) ( , )] (1 (1 )) ( ) (1 )

s s
s s

s s

v g a s s a s u a v

a s u a v

δ δ δ γ η η

δ δ γ η δ η δ

′ ′
′≠

′= − + − − +

+ − − − − + −

∑
 

  

 [ ]( , ) ( , , (1 ) ( ) ) [1 ( , )] (1 (1 )) ( ) (1 ) ,s sa s a s u a v a s u a vδβ ψ η η β η δ η δ= − + + − − − + −  

 

where for each state s′, sv ′  is the payoff vector in the interior of ( )V sδ
ε  described in the 

Uniform Interior Condition, and ( )s s Sv v ′ ′∈≡  is the vector of those payoffs.  Thus, 

 

[ ] [ ]

( , ) ( , , (1 ) ( ) ) *

[1 ( , )] (1 (1 )) * ( ) (1 ) *s s

a s a s u a v v

a s v u a v v

δβ λ ψ η η

β η δ λ η δ λ

⎡ ⎤⋅ − + −⎣ ⎦
⎡ ⎤= − − − ⋅ − + − ⋅ −⎣ ⎦

.          (1) 

 

For each state s′ ≠ s, choose 
,

*

( )
maxs

v V s
u v

δ η
λ′

′∈
∈ ⋅ .  Then since ,( ) ( )su a V sδ η

′ ′∈ , 

 

 * ( )s su u aλ ′ ′⎡ ⎤⋅ −⎣ ⎦  ≥ 0, and *
s su vλ ′ ′⎡ ⎤⋅ −⎣ ⎦  ≥ d by the Uniform Interior Condition. 

 

Thus, letting u* *( )s s Su ′ ′∈≡ , we have 
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 ( , , *) ( , , (1 ) ( ) )a s u a s u a vδ δλ ψ ψ η η⎡ ⎤⋅ − − +⎣ ⎦  

 *( , ) ( , )
1 ( , ) 1 ( , )s s

a s a su v d
a s a s

δγ δγηλ η
δγ δγ′ ′⎡ ⎤≥ ⋅ − ≥⎣ ⎦+ +

. 

 

Similarly, [ ]* ( )sv u aλ ⋅ −  ≥ 0, and [ ]* sv vλ ⋅ −  ≥ d, so we have 

 

 ( , , *) *a s u vδλ ψ⎡ ⎤⋅ −⎣ ⎦  

( , , *) ( , , (1 ) ( ) ) ( , , (1 ) ( ) ) *a s u a s u a v a s u a v vδ δ δλ ψ ψ η η λ ψ η η⎡ ⎤ ⎡ ⎤= ⋅ − − + + ⋅ − + −⎣ ⎦ ⎣ ⎦  

 ( , ) ( , , (1 ) ( ) ) *
1 ( , )

a s d a s u a v v
a s

δδγ η λ ψ η η
δγ

⎡ ⎤≥ + ⋅ − + −⎣ ⎦+
 

 ( , ) (1 )(1 ( , ))
1 ( , ) ( , )

a s a sd d
a s a s

δγ δ βη η
δγ β

− −
≥ +

+
 (using Equation 1) 

 ( , ) 1 (1 )(1 ( , ))
1 ( , )

a s a s d d
a s

δγ δ δγ η η
δγ

+ − − +
= =

+
     Q.E.D. 

 

PICTURES. 

 

 Our next lemma shows that for any state s and any ε > 0, the set ( )V sδ
ε  is 

contained in the set , ( )V sδ η  of payoffs achieved through η-modified strategies, if the 

probability η of a regime change is small enough. 

 

Lemma 3.  Fix a state s ∈ S and ε > 0.  Then there exists η  such that ( )V sδ
ε ⊆ , ( )V sδ η  

for all η ≤ η . 

 

Proof of Lemma 3:  First, define M as the highest absolute value of the expected stage-

game payoff to any player from any action in any state:  M ≡ maxi,a,s gi(a, s).  Similarly, 

let Γ ≡ max,a,s ( , )a sγ  be the highest possible total transition rate away from any state.  
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Note that for any strategy σ, the probability in any period, under the η-modified strategy 

( )ησ σ , that play switches from regime 0 to some regime s is η if a state transition occurs 

and η(1 – δ) otherwise.  That probability is bounded above by  

 

 (1 ) [1 (1 )] (1 ) (1 ) (1 ) (1 ) (1 )δ η δ η δ δ η δ δ ηΓ − + −Γ − − = − + Γ < − +Γ . 

 

Thus, 

 

 ( , ) ( ( ), )v s v sδ δ ησ σ σ− ( ) 11

1
(1 ) (1 ) 1 (1 ) (1 ) tt

t
M δ δ η δ η

∞
−−

=
≤ − +Γ − − +Γ∑  

 
( )

1(1 ) (1 )
1 1 (1 ) (1 )

M δ η
δ δ η

= − +Γ
− − − +Γ

 

 1(1 ) (1 )
1 (1 )

M Mη η
δη

= +Γ ≤ +Γ
+ +Γ

. 

 

It follows that for (1 )M
εη +Γ≤ , ( )V sδ

ε ⊆ , ( )V sδ η  for all s.    Q.E.D. 

 

 Now we can prove Theorem 1. 

 

Proof of Theorem 1:  Follows FLM’s proof of Theorem 6.2. 

 

 

 

4. Summary and Discussion 

 

This paper  

 



 12

 

References 

 

Fudenberg, D., Levine, D., and Maskin, E. (1994).  “The Folk Theorem with Imperfect 
Public Information,” Econometrica, 62, pp. 997-1039. 

 
Fudenberg, D. and Yamamoto, Y. (forthcoming).  “The Folk Theorem for Irreducible 

Stochastic Games with Imperfect Public Monitoring,” Journal of Economic 
Theory. 

 
Hörner, J., Sugaya, T., Takahashi, S., and Vieille, N. (forthcoming).  “Recursive Methods 

in Discounted Stochastic Games: An Algorithm for δ → 1 and a Folk Theorem,” 
Econometrica. 

 
 

 


