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Abstract

In this short note we characterize Nash equilibrium components in terms of their topo-

logical properties. As is well known, every Nash equilibrium component is a closed semi-

algebraic set and can hence be triangulated. More precisely, it is homeomorphic to a

finite connected simplicial complex. Conversely, we provide a simple construction show-

ing that every simplicial complex is homoeomorphic to a Nash equilibrium component.

Consequently, Nash equilibrium components provide a very rich class of topological spaces

including all compact connected topological manifolds.
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1 Introduction

In non-cooperative game theory the claim that Nash equilibrium components can indeed have

any conceivable shape they can reasonably be expected have seems to have the status of a ”folk

theorem”. Few researchers in the field doubt this claim, yet no proof seems to be available,

and it is unclear what is meant by ”every conceivable shape”. In this paper we provide the

following ”folk theorem” on the topological structure of Nash equilibrium components. The

”only if” result is, of course, well known.

Theorem 1.1 A connected topological space is homeomorphic to a Nash equilibrium compo-

nent if and only if it is homeomorphic to a simplicial complex.

Thus a Nash equilibrium component has topologically no additional structure beyond what

follows directly from the definition and LLojasiewicz’ famous triangulation result (1964). The

”only if” results thus, of course, well known. For the ”if’ direction we notice first that every
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simplicial complex is homeomorphic to the union of finitely many faces of the standard simplex

in some vectorspace R
n of sufficiently high dimension. We start with such a simplicial complex

and call it a simplicial set. We will project the standard simplex one-to-one onto the union

of certain faces of the standard hypercube in the same R
n such that faces are mapped onto

unions of faces. The hypercube can be viewed as the space of mixed strategy combinations

of a game with n players where each player has two strategies. We then set the payoff of all

players at a pure strategy combination s, i.e. a vertice of the hypercube, equal to 1 if s is the

image of a point in the given simplicial complex under the projection. Otherwise we set the

payoff of all players zero. Our given simplicial complex is thus seen to be homeomorphic to

the set of strategy combinations that maximizes a joint expected utility function and is hence

homeomorphic to a closed set of Nash equilibria. So far, so simple. However, we challenge the

reader to find a short simple proof showing that this closed set of Nash equilibria is in fact a

Nash equilibrium component, i.e. to prove that there are no further Nash equilibria nearby. We

have so far not found such a short argument. Our proof relies on a rather lengthy argument

using high-order Taylor expansions made earlier by one of the authors ([Balkenborg:1994]) and

published as Proposition 4 in [BalkenborgSchlag:2007]. The difficulty might be due to the fact

that, although the sets we describe are geometrically simple, they form algebraically the level

set of a highly degenerate function containing many often non-isolated and degenerate critical

points. On the positive side, because we construct sets which are obviously strict equilibrium

sets in the sense of [BalkenborgSchlag:2007], we obtain from their Theorem 6.

Theorem 1.2 A connected topological space is homeomorphic to a Nash equilibrium compo-

nent which is asymptotically stable under the replicator dynamics if and only if it is homeo-

morphic to a simplicial complex.

We now replicate the arguments in slightly more detail and conclude with a few open questions.

2 Preliminaries

It will hence be useful to have some basic notation and terminology available.

A finite normal form game consists of a finite set of players N = {1, . . . , n}, and for each player

i ∈ N a finite pure strategy set Si and a payoff function ui : S → R on the set S :=
∏

i∈N Si of

pure strategy profiles. We denote the game by (N, u), where u = (ui)i∈N is the vector of payoff

functions. A mixed strategy σi of player i is a vector (σi(si))si∈Si
that assigns a probability

σi(si) ≥ 0 to each pure strategy si ∈ Si. We denote the set of mixed strategies of player i by
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Σi. The set of all profiles σ = (σi)i∈N of mixed strategies is denoted by Σ. The support of a

mixed strategy σi is the set of all pure strategies si with σi(si) > 0. The multilinear extension

of the payoff function ui of player i to the set Σ of all strategy profiles is

ui(σ) =
∑

s∈S

∏

j∈N

σj(sj)ui(s).

By ui(σ | si) we denote the payoff to player i when player i plays pure strategy si ∈ Si while

his opponents adhere to the mixed strategy profile σ. A strategy profile σ ∈ Σ is a Nash

equilibrium when ui(σ) ≥ ui(σ | si) holds for every player i and every pure strategy si of

player i.

BINARY GAMES. A binary game is a finite normal form game (N, u) such that Si = M =

{A, B} for every player i ∈ N , and

ui(s) ∈ {0, 1}

for all strategy profiles s = (s1, . . . , sn). To simplify notation for binary games we write σiA

for the probability that player i plays pure strategy A and σiB for the probability that player

i plays to pure strategy B.

3 Simplicial sets

A collection {v1, . . . , vk} of points in R
n is called independent if for all a1, . . . , ak in R

a1 · v1 + · · · + ak · vk = 0

implies a1 = · · · = ak = 0. A collection {v0, . . . , vk} of points in R
n is geometrically (or affine)

it independent if the collection {v1 − v0, . . . , vk − v0} is independent in R
n. Note that an

independent set is automatically geometrically independent. The convex hull

{t0 · v0 + · · · + tk · vk | ti ≤ 0 for all i and
∑

i

ti = 1}

of a geometrically independent set {v0, . . . , vk} is called a simplex. We also say that {v0, . . . , vk}

spans the simplex. For a geometrically independent set {v0, . . . , vk} we denote by [v0, . . . , vk]

the simplex that is spanned by {v0, . . . , vk}.

A collection S = {S1, . . . , Sp} of simplices in R
n is called a simplicial complex if for every two

simplices Si = [v0, . . . , vk] and Sj = [w0, . . . , wm] in S the intersection Si ∩ Sj is the simplex

spanned by the geometrically independent set

{v0, . . . , vk}
⋂

{w0, . . . , wm}.
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(In the usual definition of a simplicial complex the extra requirement is that also Si ∩ Sj ∈ S

in that case. We however do not necessarily need that in our paper.) The set S = ∪iSi is

called the carrier of the simplicial complex S. A set S ⊂ R
n is called a simplicial set if it is

the carrier of a simplicial complex.

Let ei denote the ith unit vector in R
n. For a set I ⊂ N , a standard simplex ∆I in R

N is the

simplex that is spanned by a collection

{ei | i ∈ I}

of unit vectors in R
N . A simplicial set is called standard if it is the carrier of a simplicial

complex S = {S1, . . . , Sp} of standard simplices Sj in R
N . Note that any standard simplicial

set is a union of faces ∆I of the standard simplex ∆N . The following is shown in most standard

textbooks on algebraic topology.

Proposition 3.1 Any simplicial complex is homeomorphic to a standard simplicial set.

Proof.

The following triangulation theorem is a celebrated result in geometry first proved by Llo-

jasiewicz [Llojasiewicz:1964]. A more general proof by Hironaka can be found in Algebraic

Geometry [Hironaka:1975].

Theorem 3.2 Every compact semi-algebraic set is homeomorphic to a standard simplicial set.

By definition, Nash equilibrium components are compact semi-algebraic sets, and hence this

theorem applies. Thus, from a topological point of view, the collection of simplicial sets already

captures all of the variety that we could reasonably expect to achieve in the setting of strategic

form games.

4 Cubistic sets

For a set T ⊂ N , define the characteristic vector eT ∈ R
N by

eTi =

{

1 if i ∈ T

0 otherwise.

The standard hypercube KN in R
N is the convex hull of all characteristic vectors in R

N . A

subset F ⊂ KN of the standard hypercube is a face if there are sets Z and P in N such that

F = {x ∈ Kn | xi = 0, xj = 1 for all i ∈ Z and j ∈ P}.
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If P 6= ∅, we say that the face F is an upward face. Let KN
+ be the union of all upward faces

and for a subset I ⊆ N we let KI
+ = KN

+ ∩ {x ∈ R
n | xi = 0 for i /∈ I}. A subset C of KN is

called a cubistic set if

[1] C is the union of faces of KN

[2] C is n-convex in the sense that for all points (yi, x−i) ∈ C, (zi, x−i) ∈ C and all scalars

0 ≤ α ≤ 1 the convex combination

(1 − α)(yi, x−i) + α(zi, x−i)

is in C. 1

An upward cubistic set is a cubistic set contained in KN
+ .

In order to connect the standard simplex with the “upper part” KN
+ of the standard hypercube,

it is useful to remind ourselves of two norms for vectors x = (x1, . . . , xn) ∈ R
N , namely of the

norm

‖x‖1 =

n
∑

i=1

|xi|

and of the supremum norm

‖x‖∞ = max
1≤i≤n

|xi|.

Consider now a non-zero vector x ∈ R
N with non-negative components and the ray

Lx = {λ · x | λ ≥ 0}

it generates. This ray intersects the standard simplex ∆N in the point x
‖x‖1

and the set

KN
+ in the point x

‖x‖∞

. This relationship defines a homeomorphism Φ between ∆N and KN
+ .

Moreover, each face ∆I for I ⊆ N is mapped one-to-one onto KI
+. We obtain the following

result.

Theorem 4.1 Every standard simplicial set is homeomorphic to an upward cubistic set.

Proof. Clearly, Φ maps a standard simplicial set C onto a union D of upward faces of the

standard cube. To show that C is n-convex, take two different points (yi, x−i), (zi, x−i) ∈ D.

We assume w.l.o.g. that yi > zi. Let I be the set of non-zero entries in (yi, x−i). Since

(yi,x−i)
‖(yi,x−i)‖1

∈ C, the simplex ∆I is contained in C and contains both points (yi,x−i)
‖(yi,x−i)‖1

and

(zi,x−i)
‖(zi,x−i)‖1

and all their convex combinations.

1This extends the notion of biconvexity in [AumannHart:1986].
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Because zi < 1, (yi, x−i) and (zi, x−i) have a joint component xj = 1 for j 6= i. Thus

‖(yi, x−i)‖∞ = ‖(zi, x−i)‖∞ = ‖((1 − α)yi + αzi, x−i)‖∞ = 1

and therefore ((1 − α)yi + αzi, x−i) ∈ KN
+ is for all 0 ≤ α ≤ 1 the image of a point in C.

5 Nash components

We now interpret N as the set of players in a game and interpret KN as the set of mixed

strategies in a binary game where each player has the pure strategies 0 and 1. Fix a union of

faces C of KN and let T be the set of pure strategy combinations it contains. Let u : KN → R

be the multilinear extension of the function u : {0, 1}n → R defined by

u(s) =

{

1 for s ∈ T
0 for s /∈ T

It is straightforward to check the following Lemma which describes cubistic sets as maximizers

of potentials.

Lemma 5.1 The equality of sets

C =
{

x ∈ KN | u(x) = 1
}

holds if and only if C is a cubistic set.

Now we suppose that C is a cubistic set and look at the game ΓC where each player i ∈ N

has the utility function ui = u. Then C is a strict equilibrium set of this game as defined in

[BalkenborgSchlag:2007]. This means that if (yi, x−i) ∈ C and if zi is a best reply of player

i against x−i, then (zi, x−i) ∈ C. [BalkenborgSchlag:2007] show that every strict equilibrium

set is a finite union of Nash equilibrium components which consists of stable rest points and

is an asymptotically stable set of the replicator dynamics. As a corollary of their results we

obtain

Theorem 5.2 Every cubistic set C is a finite union of Nash components of the binary game

ΓC . C is asymptotically stable and consists of stable restpoints for the replicator dynamics.

6 Summary and conclusions

In our construction the number of strategies per player is as small as possible. However,

it needs as many players as the simplicial complex has vertices. [?] provides a construction
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which identifies the set of Nash equilibria for an n-player (n ≥ 3) game with the set of Nash

equilibria in a 3-player game. Thus connected simplicial complexes are homeomorphic to Nash

equilibrium components in 3-player games. The question whether this also holds for 2-player

games is currently open.

The restriction to components is not essential in our argument. Our argument shows that

every cubistic set (and hence, up to homeomorphy, every simplicial complex) is a finite union

of Nash equilibrium components of a binary game. However, typically the game constructed

will have additional Nash equilibria. This must be the case if the Euler characteristic of the

set is not 1. If the complex has Euler characteristic 1, can we construct a game such that the

complex is homeomorphic to to the set of all Nash equilibria in this game?

We considered here only the topological structure. One might more generally ask whether any

compact connected semi-algebraic set is differomorphic or even algebraically equivalent to a

Nash equilibrium component.
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