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Abstract

In this paper we consider roommate problems with strict preferences. Stability con-

cepts for these problems (the core, the largest consistent set, the von Neumann

Morgenstern stable set, ...) can be defined using a notion of direct or indirect dom-

inance. This choice leads to striking differences in terms of which matchings are

expected to be stable. In this paper we adopt, and slightly adapt, the notion of

absolute stability introduced by Harsanyi (1974): a roommate problem is absolutely

stable if indirect dominance implies direct dominance. We then fully characterize

absolutely stable roommate problems. Our main result is that a roommate problem

is absolutely stable if and only if two conditions on the preferences are satisfied. We

also show that absolute stability does not guarantee the solvability of a roommate

problem. We then concentrate on solvable roommate problems and show that an

absolutely stable roommate problem is solvable when there does not exist “ring” of

three agents such that the members of this ring prefer each other above any other

agent. In fact, the core of a solvable absolutely stable roommate problem is unique:

all agents who mutually ’top rank’ each other are matched to each other and all

other agents are single.

JEL classification: C71, C78
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1 Introduction

In many social situations, agents may team up in pairs or remain on their own.

Gale and Shapley (1962) coined such situations as roommate problems. Roommate

problems are a generalization of the well-known marriage problem, for which Gale

and Shapley (1962) showed that there always exists a stable matching: all agents are

matched to an acceptable partner and no two agents prefer being matched to one

another over being matched to their current partner. It is well known that the set

of stable matchings is equivalent to the core of a matching problem. Even though

the concept of the core has attractive properties and has been used widely in the

literature, it has some important drawbacks and limitations. First and foremost,

unlike in the marriage problem, the core may not exist in roommate problems.

Second, the core may not satisfy external stability: a matching can be outside the

core and not be blocked by a stable matching. This has been pointed out by Ehlers

(2007) in the case of the marriage problem. Third, when deviating, the core relies

on a direct dominance concept: one matching directly dominates another if some

coalition of agents can find and enforce another matching which is preferred by

all members of that coalition. Agents do not consider that their action may trigger

other deviations, that is, the deviation is myopic. In order to take further deviations

into account, Harsanyi (1974) introduced the notion of indirect dominance, which

was later formalized by Chwe (1994). In a roommate problem1, an end matching

indirectly dominates an initial matching if the end matching can replace the initial

matching through a sequence of matchings, such that, at each matching along the

sequence, all deviators are strictly better off at the end matching compared to the

status-quo they face. Indirect dominance thus captures the idea that farsighted

agents consider the end matching that their matching(s) may lead to. It is immediate

that direct dominance implies indirect dominance but not vice versa.

These drawbacks have led to the literature to expand in two directions by in-

troducing alternative solution concepts and by introducing farsightedness through

indirect dominance. The various solution or stability concepts (Core, Stable Sets,

Largest Consistent Set, ...) can be defined using either a direct or an indirect dom-

inance relation. The main lesson to be drawn from the literature is that this choice

very often yields striking differences in terms of which matchings are expected to be

1
More generally farsightedness has been introduced in the study of hedonic games, to which

roommate problems belong (Diamantoudi and Xue, 2003).
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stable. Regarding the marriage problem, Ehlers (2007) characterized von Neumann

Morgenstern stable sets using the direct dominance relation, if such sets exist. He

shows that these can be larger than the core. Mauleon et al (2011), using Chwe’s

(1994) definition of indirect dominance, showed the existence of and completely char-

acterized the von Neumann Morgenstern farsightedly stable sets: a set of matchings

is a von Neumann Morgenstern farsightedly stable set if and only if it is a singleton

and belongs to the core. They also showed that the Farsighted Core can be empty.

Klaus et al. (2011) investigated von Neumann Morgenstern farsightedly stable sets

in the roommate problem and showed that these need not always exist or that they

can contain more than one element.

A natural question to ask is if we can characterize the domain of preferences

of the agents such that indirect dominance implies direct dominance in a match-

ing problem2. Harsanyi (1974), in a cooperative game theory setting and using

somewhat different dominance definitions3, was the first to introduce this idea. He

defined the relation ”x indirectly dominates y” to be trivial if ”at the same time

x directly dominates y” and defined a game to be absolutely stable if every possible

indirect dominance relation is also trivial. Weber (1976), using the Harsanyi’s domi-

nance definitions, provided a full characterization of absolutely stable games for the

class of normalized monotonic games.

To the best of our knowledge, no characterization of absolute stability is available

for other settings. In this paper we fully characterize the absolutely stable room-

mate problems when agents have strict preferences. Our main result (Proposition

2) is that a roommate problem is absolutely stable if and only if two conditions

are satisfied. We say that when two agents prefer to be matched to one another

than being on their own, then these two agents are mutually acceptable. The first

condition is akin to ’reciprocity’ as it states that mutually acceptable agents must

prefer each other to agents that are acceptable to them but not vice versa. Now

2
In a similar vein, but in the context of social choice, Barberá et al. (2010) studied restrictions

of preferences such that individual and group strategy-proofness become equivalent concepts.

3
Harsanyi (1974) introduced two different notions of indirect dominance. The first is based

on the idea of a monotone chain: ”x indirectly dominates y” if there exists a monotone chain

connecting ”x and y”. This means that along the sequence connecting ”x and y”, deviating agents

do not only prefer x to the status quo but in addition their deviation must also be preferred to the

status quo. The second definition is the one we have introduced above and formalized by Chwe

(1994): matchings along the sequence are not required to directly dominate each other.
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take any agent i and let us rank the set of his mutually acceptable agents according

to agent i�s preferences. The second condition states that if any agent k of this set,

different from the lowest ranked one, has a mutually acceptable agent l he prefers

to agent i, then agent l must be i�s lowest ranked mutually acceptable agent and

agent k must be i�s second worst mutually acceptable agent. Suppose for instance

that agents i and k are matched. This condition implies that anytime agent k looks

for and finds a better partner, then either i can find a better partner than k or she

prefers to be on her own.

We then describe some features of agents’ preferences in a roommate problem

which is absolutely stable. These features depend on the cardinality of the sets of

mutually acceptable agents in the problem.

We subsequently show (Proposition 3) that a roommate problem with three

agents who prefer being matched to being single is always absolutely stable. Such

a roommate problem may have an empty core from which we conclude that the

notion of absolute stability has little in common with well known restrictions on

preferences guaranteeing existence and/or uniqueness in the roommate problem such

as α-reducibility (Alcalde, 1995) or more generally, the weak top coalition property

(Banerjee et al., 2001).

Next, we focus on and characterize solvable absolutely stable roommate prob-

lems. We show in Proposition 4 that an absolutely stable roommate problem is

solvable when there does not exist a structure in the preference profile called “ring”,

formed by three agents such that the members of this ring prefer each other above

any other agent. This allows us to state (Proposition 5) that, if it exists, the core

of an absolutely stable roommate problem is unique. In fact, in the core all agents

who mutually ’top rank’ each other are matched to each other and all other agents

are single.

The rest of the paper is organized as follows. Section 2 introduces roommate

problems. Section 3 defines absolute stability and contains our main results. Section

4 concludes.

2 Roommate problems

A roommate problem, is a pair (N,P ) where N is a finite set of agents and P is a

preference profile specifying for each agent i ∈ N a strict preference ordering over
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N . That is, P = {P (1), ..., P (i), ..., P (n)}, where P (i) is agent i’s strict preference

ordering over the agents in N , including herself which can be interpreted as the

prospect of being alone. For instance, P (i) = 1, 3, i, 2, ... indicates that agent i

prefers agent 1 to agent 3 and she prefers to remain alone rather than to get matched

to anyone else. We denote by R the weak orders associated with P . We write j �i k

if agent i strictly prefers j to k, j �i k if i is indifferent between j and k, and j �i k

if j �i k or j �i k.

A matching µ is a function µ : N → N such that for all i ∈ N , if µ(i) = j, then

µ(j) = i. Agent µ(i) is agent i’s mate at µ; i.e., the agent with whom he is matched

to share a room (possibly herself). We denote by M the set of all matchings. A

matching µ is individually rational if each agent is acceptable to his or her partner,

i.e. µ(i) �i i for all i ∈ N . We denote the set of individually rational matchings

for a roommate problem (N,P ) by I(N,P ). For a given matching µ, a pair {i, j}
(possibly i = j) is said to form a blocking pair if they are not matched to one another

but prefer one another to their partner at µ, i.e. j �i µ(i) and i �j µ(j). A matching

µ is stable if it is not blocked by any individual or any pair of agents. We denote the

set of stable matchings for a roommate problem (N,P ) by S(N,P ). A roommate

problem (N,P ) is solvable if S(N,P ) �= ∅. Otherwise, it is called unsolvable.

We extend each agent’s preference over her potential partners to the set of match-

ings in the following way. We say that agent i prefers µ� to µ, if and only if agent

i prefers her partner at µ� to her partner at µ, µ�(i) �i µ(i). Abusing notation, we

write this as µ� �i µ. A coalition S is a subset of the set of agents N .4 For S ⊆ N ,

µ(S) = {µ(i) : i ∈ S} denotes the set of mates of agents in S at µ. A matching µ

is blocked by a coalition S ⊆ N if there exists a matching µ� such that µ�(S) = S

and for all i ∈ S, µ� �i µ. If S blocks µ, then S is called a blocking coalition for

µ. Note that if a coalition S ⊆ N blocks a matching µ, then there exists a pair

{i, j} (possibly i = j) that blocks µ. The core of a roommate problem consists of

all matchings which are not blocked by any coalition. Note that for any roommate

problem the set of stable matchings equals the core.

Definition 1. Given a matching µ, a coalition S ⊆ N is said to be able to enforce

a matching µ� over µ if the following conditions hold: (i) µ�(i) /∈ {µ(i), i} implies

{i, µ�(i)} ⊆ S and (ii) µ�(i) = i �= µ(i) implies {i, µ(i)} ∩ S �= ∅.

4
Throughout the paper we use the notation ⊆ for weak inclusion and � for strict inclusion.
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In other words, this enforceability condition5 implies both that any new pair in

µ� that does not exist in µ should be between players in S, and that in order to

destroy an existing pair in µ, one of the two players involved in that pair should

belong to coalition S.6 Notice that the concept of enforceability is independent of

preferences. Furthermore, the fact that coalition S ⊆ N can enforce a matching µ�

over µ implies that there exists a sequence of matchings µ0, µ1, ..., µK (where µ0 = µ

and µK = µ�) and a sequence of disjoint pairs {i0, j0}, ..., {iK−1, jK−1} (possibly

for some k ∈ {0, 1, ..., K − 1}, ik = jk) such that for any k ∈ {1, ..., K}, the pair

{ik−1, jk−1} ∈ S can enforce the matching µk over µk−1.

Definition 2. A matching µ is directly dominated by µ�, or µ� > µ, if there exists

a coalition S ⊆ N of agents such that µ� �i µ ∀i ∈ S and S can enforce µ� over µ.

The direct dominance relation is denoted by >. An alternative way of defining

the core of a roommate problem is by means of the domination relation. A matching

µ is in the core if there is no subset of agents who, by rearranging their partnerships

only among themselves, possibly dissolving some partnerships of µ, can all obtain

a strictly preferred set of partners. Formally, a matching µ is in the core if µ is

not directly dominated by any other matching µ� ∈ M. Given a profile P , we

denote the set of matchings in the core by C(>). Even though the core may be

empty in roommate problems, as Gale and Shapley (1962) showed, several papers

are devoted to analyze the core as solution for this matching problem. See for

instance Tan (1991), Chung (2000), Diamantoudi et al. (2004) and Iñarra et al.

(2010).

We now introduce the indirect dominance relation. A matching µ� indirectly

dominates µ if µ� can replace µ in a sequence of matchings, such that at each

matching along the sequence all deviators are strictly better off at the end matching

µ� compared to the status-quo they face. Formally, indirect dominance is defined as

follows.

5
This enforceability condition has also been used in Mauleon et al. (2011) and in Klaus et al.

(2011).

6
Notice that this enforceability condition is similar to the enforceability condition defined in

Roth and Sotomayor (1990). That is, a coalition S can enforce the set of pairs in the matching

µ�
that concerns its members if and only if every agent in S is matched to an agent in S and vice

versa.
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Definition 3. A matching µ is indirectly dominated by µ�, or µ � µ�, if there exists

a sequence of matchings µ0, µ1, ..., µK (where µ0 = µ and µK = µ�) and a sequence

of coalitions S0, S1, ..., SK−1 such that for any k ∈ {1, ..., K},

(i) µK �i µk−1 ∀i ∈ Sk−1, and

(ii) coalition Sk−1 can enforce the matching µk over µk−1.

The indirect dominance relation is denoted by �. It is clear that direct dom-

inance implies direct dominance, if µ < µ� then µ � µ� , since direct dominance

can be obtained by setting K = 1 in Definition 3. Recently, Mauleon et al. (2011)

have shown that, in marriage problems (a particular case of the roommate problem

where agents are partitioned in two sets), an individually rational matching µ indi-

rectly dominates µ� if and only if there does not exist a pair {i, µ�(i)} that blocks µ.

Klaus et al. (2011) have generalized this result for roommate problems, and they

have shown that an individually rational matching µ indirectly dominates another

individually rational matching µ� if and only if there does not exist a pair {i, µ�(i)}
that blocks µ. We refer to these papers for a proof.

Proposition 1. (Klaus et al. (2011)) Let (N,P ) be a roommate problem and µ, µ� ∈
I(N,P ). Then, µ � µ� if and only if there does not exist a pair {i, µ�(i)} that blocks

µ.

Diamantoudi and Xue (2003), showed that if a matching belongs to the core,

then it indirectly dominates any other matching.

Lemma 1. If µ ∈ C(>), then ∀µ� �= µ, it holds that µ� � µ.

3 Absolutely Stable Roommate Problems

Let (N,P ) be a roommate problem. Following Harsanyi (1974)’s definition of ab-

solutely stable games, we define a roommate problem to be absolutely stable if and

only if indirect dominance implies direct dominance.

Definition 4. A roommate problem (N,P ) is absolutely stable if the following

condition holds:

µ� � µ ⇔ µ� > µ, ∀µ, µ� ∈ M.
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In order to find the restrictions on P such that the problem is absolutely stable,

we will introduce some definitions.

Let i ∈ N . We denote by t(i) the most preferred partner for agent i. That is,

t(i) �i j for any j ∈ N .

Definition 5. Let (N,P ) be a roommate problem. TP denotes the set of agents

who are ranked as top choice by their top choice; i.e.,

TP = {i ∈ N : ∃j ∈ N such that j = t(i) and i = t(j)} .

Notice that if i ∈ TP , then t(t(i)) = i.

Definition 6. Given the problem (N,P ), the set MAi
P denotes the set of mutually

acceptable agents for i, that is MAi
P = {j ∈ N : j �i i and i �j j}. Let ω(i) ∈

MAi
P denote the least preferred partner for i in this set; i.e., ∀k ∈ MAi

P : k �i ω(i).

Let MAi,k
P denote the set of mutually acceptable agents of i who are less preferred

than k, that is MAi,k
P = {j ∈ MAi

P : k �i j}.

Definition 7. Given the problem (N,P ), the set Ai
P denotes the set of agents who

are acceptable to i, but not mutually acceptable; i.e., Ai
P = {j ∈ N : j �i i and j �j

i}.

We extend each agent’s preferences over potential partners to sets of agents in

the following way. We say that agent i prefers a set MAi
P to a set Ai

P , if and only if

agent i prefers every agent in MAi
P to any agent in Ai

P . Abusing notation, we write

this as MAi
P �i Ai

P .

The following concept is key for the existence of stable matchings in roommate

problems.

Definition 8. Let (N,P ) be a roommate problem. A ring S = {s1, ..., sk} ⊆ N is

an ordered set of agents such that k ≥ 3 and for all i ∈ {1, ..., k}, si+1 �si si−1 �si si

(subscript modulo k).

The existence of odd rings in the preference profile is a necessary condition for

the emptiness of the core in a roommate problem, as the following lemma shows:

Lemma 2. Let (N,P ) be a roommate problem such that C(>) = ∅. Then, there

exists a ring S = {s1, . . . , sk}, where k is odd.
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This lemma is straightforward from the necessary and sufficient condition pro-

vided by Tan (1991). We refer the reader to Appendix A for a compilation of

definition and results about solvability of roommate problems.

Our main result characterizes the absolutely stable roommate problems.

Proposition 2. A roommate problem (N,P ) is absolutely stable if and only if the

preference relation P satisfies the following two conditions:

(i) ∀i ∈ N , MAi
P �i Ai

P ,

(ii) ∀i ∈ N , if ∃k ∈ MAi
P \ {ω(i)} and ∃l ∈ MAk

P such that l �k i then MAi,k
P =

{l}.7

The first condition can be interpreted as “reciprocity”, in the sense that those

agents to whom like agent i more are also more preferred by agent i. The second

condition says that if two agents i, j are mutually acceptable but j prefers another

mutually acceptable agent k more that i. Then, there cannot be any agent mutually

acceptable for i less preferred than j, different from k. In other words, k is the least

preferred potential partner for i among the mutually acceptable, and there are no

agents in agent i’s preferences less preferred than j but more preferred than k.

Example 1. The following example shows a roommate problem which is absolutely

stable.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8)

2 1 1 5 4 7 8 6

3 3 5 1 1 8 6 7

4 5 3 3 5 6 7 8

5 2 2 4 2

1 4 4 2 3

In this problem, the set of mutually acceptable agents are MA1
P = {2, 3, 4, 5},

MA2
P = MA3

P = {1}, MA4
P = {5, 1} and MA5

P = {4, 1}, MA6
P = {7, 8}, MA7

P =

{6, 8} and MA8
P = {6, 7}. Notice that first condition is satisfied since these agents

are in the first rows of each agent’s preferences. Consider for instance agent 1’s

preferences, P (1). Notice that agents 1 and 4 are mutually acceptable and 4 is not

7
Notice that l equals ω(i).
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the worse agent in MA1
P , however, 5 �4 1. Then, by condition (ii) of Proposition

2, agent 5 must be the immediate less preferred agent than 4 for agent i. Notice that

{6,7,8} form an odd ring in the preferences.

Now, we present a Remark describing some features of agents’ preferences in

a roommate problem which is absolutely stable. These features depend on the

cardinality of the sets of mutually acceptable agents in the problem.

Remark 1. Let (N,P ) be an absolutely stable roommate problem,

1. Let i be an agent such that |MAi
P | > 2 and assume, without loss of generality,

that MAi
P = {j1, . . . , jk,ω(i)} such that jm �i jm+1, ∀m ∈ {1, . . . , k − 1} and

jk �i ω(i).

a. ∀j ∈ MAi
P \ {jk,ω(i)}, t(j) = i,

b. t(j) ∈ {i,ω(i)}

b.1 If t(jk) = i then either ω(i) ∈ TP or t(ω(i)) ∈ {i, t(i)}, and

b.2 If t(jk) = ω(i) then t(ω(i)) = jk

2. Let i be an agent such that |MAi
P | ≤ 2. Then either t(i) ∈ TP or i ∈ S where

S is a ring in P such that |S| = 3 and ∀si ∈ S, si+1 �si si−1 �si j for any

j ∈ N \ {si+1, si−1}.

3. For all i /∈ TP , there is no agent j /∈ TP such that i ∈ MAj
P , except from those

belonging to a ring S in P such that |S| = 3 and ∀si ∈ S, si+1 �si si−1 �si j

for any j ∈ N \ {si+1, si−1}.

Example 2 ((Example 1 continued)). In this example, the only agent satisfying

|MAi
P | ≥ 2 is agent 1 with MA1

P = {2, 3, 4, 5} and 2 �1 3 �1 4 �1 5. We

can see that ∀j ∈ {2, 3}, t(j) = i (condition (a)). Moreover, it must happen that

t(4) ∈ {1, 5} (condition (b)). In this case, t(4) = 5 and therefore t(5) = 4 (condition

(b.2)).

On the other hand, all the other agents satisfy |MAi
P | ≤ 2. For all agent i ∈

{2, 3, 4, 5}, we can check that t(i) ∈ TP . Agents in the set {6, 7, 8} form a ring

satisfying that ∀si ∈ {6, 7, 8}, si+1 �si si−1 �si k for all k ∈ N \ {si+1, si−1}.
Notice also that among agents from 1 to 5, there is no pair of agents who do not

belong to TP such that there are mutually acceptable. In our example, the only agent
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who is not in TP is agent 3, and there is no agent j in P (3) such that t(3) �3 j �3 3

and j ∈ MA3
P .

The following result shows that all roommate problems such that |N | = 3 in

which all players prefer to be matched to being unmatched are absolutely stable.

Proposition 3. Let (N,P ) be a roommate problem such that |N | = 3 and ∀i ∈ N :

j �i i if j �= i. Then (N,P ) is absolutely stable.

Note that this class of roommate problems can have an empty core when the three

players form an odd ring in P . This then implies that the notion of absolute stability

has little in common with restrictions on preferences which guarantee the existence

of stable matching and/or the uniqueness of stable matchings [e.g. α-reducibility

(Alcalde, 1995) or more generally, the weak top coalition property (Banerjee et al.,

2001)].

The following proposition characterizes the absolutely stable roommate problems

with a non-empty core.

Proposition 4. Let (N,P ) be an absolutely stable roommate problem. C(>) �= ∅ if

and only if there is no ring S in P such that |S| = 3 and ∀si ∈ S, si+1 �si si−1 �si j

for any j ∈ N \ {si+1, si−1}.

The following result, derived from the previous one, states that if a matching

problem is absolutely stable and the core is non-empty, it has a unique stable match-

ing, which consists of the matching in which all agents who mutually top rank each

other are matched to one another and all other agents remain single

Proposition 5. Let (N,P ) be an absolutely stable problem. Then, (i) the core is

unique, C(<) = {µC}, and (ii) for all i ∈ TP , µC(i) = t(i), and for all j /∈ TP ,

µC(j) = j.

Example 3 ((Example 1 continued)). In this example, we have already seen that

there is a ring S = {6, 7, 8} in P such that |S| = 3 and ∀si ∈ S, si+1 �si si−1 �si j

for any j ∈ N \ {si+1, si−1}. Therefore this roommate problem is unsolvable, that is

there is no stable matching.

Consider the roommate problem derived from the previous one such that N =

{1, 2, 3, 4, 5} and P = {P (1), P (2), P (3), P (4), P (5)}. In this case, there is no ring

in preferences satisfying the conditions above and therefore the problem is solvable.

The core, in this case, is formed by the matching µ∗ = {{1, 2}, {3}, {4, 5}}.
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4 Conclusion

We have characterized absolute stable roommate problems, when preferences are

strict. That is, we have obtained under which conditions on preference profiles

indirect dominance implies direct dominance in roommate problems.

Furthermore, we have characterized when these problems have a non-empty core.

This characterization has allowed us to state that the core, when it is not empty, is

unique and each pair is formed either by two agents who are ranked top choice each

other or by a singleton.
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Appendix A

Tan (1991) establishes a necessary and sufficient condition for the solvability of

roommate problems with strict preferences in terms of stable partitions. This notion,

which is crucial in the investigation of the core for these problems, can be formally

defined as follows:

Let A = {a1, ..., ak} ⊆ N be an ordered set of agents. The set A is a ring if

k ≥ 3 and for all i ∈ {1, ..., k}, ai+1 �ai ai−1 �ai ai (subscript modulo k). The set

A is a pair of mutually acceptable agents if k = 2 and for all i ∈ {1, 2}, ai−1 �ai ai

(subscript modulo 2).8 The set A is a singleton if k = 1.

A stable partition is a partition P of N such that:

(i) For all A ∈ P , the set A is a ring, a mutually acceptable pair of agents or a

singleton, and

(ii) For any sets A = {a1, ..., ak} and B = {b1, ..., bl} of P (possibly A = B), the

following condition holds:

if bj �ai ai−1 then bj−1 �bj ai,

for all i ∈ {1, ..., k} and j ∈ {1, ..., l} such that bj �= ai+1.

Condition (i) specifies the sets in a stable partition, and condition (ii) contains

the notion of stability to be applied between these sets (and also inside each set).

Note that a stable partition is a generalization of a stable matching. To see this,

consider a matching µ and a partition P formed by pairs of agents and/or singletons.

Let A = {a1, a2 = µ(a1)} and B = {b1, b2 = µ(b1)} be sets of P . If P is a stable

partition then Condition (ii) implies that if b1 �a1 a2 then b2 �b1 a2, which is the

usual notion of stability. Hence µ is a stable matching.

The following assertions are proven by Tan (1991).

Remark 2. (Iñarra et. al. (2010)) (i) A roommate problem (N, (�x)x∈N) has no

stable matchings if and only if there exists a stable partition with an odd ring.9 (ii)

Any two stable partitions have exactly the same odd rings.(iii) Every even ring in

a stable partition can be broken into pairs of mutually acceptable agents preserving

stability.

8
Hereafter we omit subscript modulo k.

9
A ring is odd (even) if its cardinality is odd (even).
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Appendix B

Proof of Proposition 2. (⇒) By contradiction, we will show that if one of the

conditions (i) or (ii) is not satisfied, then µ � µ� � µ > µ�.

• Suppose that condition (i) is not satisfied. Then there exists an agent i ∈ N

such that k �i j for some k ∈ Ai
P and some j ∈ MAi

P . Let µ2 be a matching

such that µ2(i) = k and µ2(s) = s for every s �= i, k, and let µ1 be a matching

such that µ1(i) = j and µ1(s) = s for every s �= i, j. Then µ1 � µ2 (since

k �k i, agent k enforces the matching in which every agents is alone, and

this matching is blocked by {i, j} enforcing µ1). However, µ1 ≯ µ2 since

µ2(i) �i µ1(i).

• Suppose that condition (ii) is not satisfied. Then there exists an agent k ∈
MAi

P \{ω(i)} and an agent l ∈ MAk
P such that l �k i and {l} �= MAi,k

P . Then

it must be the case that there exists some agent j �= l such that j ∈ MAi,k
P .

Let µ2 be a matching such that µ2(i) = k and µ2(s) = s for every s �= i, k, and

let µ1 be a matching such that µ1(k) = l, µ1(i) = j and where µ1(s) = s for

every s �= i, k, l, j. Then µ1 � µ2 (since {k, l} block µ2 enforcing a matching

in which i and j are alone, and this matching is blocked by {i, j} enforcing

µ1). However, µ1 ≯ µ2 since µ2(i) �i µ1(i).

(⇐) Now we will prove that if µ1 � µ2 and conditions (i) and (ii) are satisfied,

then µ1 > µ2.

Given that µ1 � µ2, we define the set of agents who have a different partner in both

matchings. Let D = {i ∈ N : µ1(i) �= µ2(i)}.
First, we prove that for any agent i ∈ D such that µ1(i) �= i, µ1(i) �i µ2(i).

By contradiction, let µ1(i) = j and let µ2(i) = k and assume that k �i j (which

implies that k �= j). Notice that j ∈ MAi
P because otherwise {i, j} will never be

formed contradicting µ1 � µ2. Since µ1 � µ2 and i prefers µ2 to µ1, we must have

that k prefers µ1 to µ2 because, otherwise, {i, k} would be a blocking pair of µ1

contradicting that µ1 � µ2 [see Proposition 1 of Klaus et al. (2011)] . By condition

(i), we have that k ∈ MAi
P . Then, the new partner of k at µ1, µ1(k) = l (l �= k, j),

and such that l �k i, also belongs to the set of mutually acceptable agents of player

k, l ∈ MAk
P . But then, according to (ii), it must be that MAi,k

P = {l}. But this is

a contradiction, since j ∈ MAi,k
P . Hence, player i should also prefer µ1(i) to µ2(i).
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Second, consider any agent i in D such that µ1(i) = i and µ2(i) = k. Since

µ1 � µ2, then either µ1(k) �k i and k deviates leaving agent i unmatched (with

µ1(k) also preferring µ1 to µ2), or i �i k and agent i individually deviates.

Let D� = {i ∈ D : µ1(i) �i µ2(i)}. Then the coalition D� deviates from µ2

enforcing µ1 (agents in D \ D� are singletons at µ1) and µ1 > µ2 as we wanted to

prove.

Proof of Remark 1. We will show the different parts of this remark by contra-

diction.

1. Assume that (a) is not satisfied. That is, there exists an agent j ∈ MAi
P \

{jk,ω(i)} such that t(j) �= i. This implies that ∃k ∈ N such that t(j) = k and

k �j i. By condition (i) of Proposition 2, k ∈ MAj
P and then by condition (ii)

of Proposition 2, MAi,j
P = {k}. However, this contradicts that {jk,ω(i)} ⊆

MAi,j
P .

Now we will show that (b) must be satisfied as well. The fact that t(jk) ∈
{i,ω(i)} is straightforward from condition (ii) of Proposition 2.

In order to prove (b.1), let t(jk) = i. First, we will show that if ω(i) /∈ TP

then either t(ω(i)) = i or t(ω(i)) = t(i). Let ω(i) /∈ TP . Then, there exists and

agent k such that t(ω(i)) = k and t(k) = l �= ω(i) so l �k ω(i) and by condition

(i) of Proposition 2, l ∈ MAk
P . If k = i we are done, so assume that k �= i.

Since k �ω(i) i and i ∈ MAω(i)
P , by condition (i) of Proposition 2, k ∈ MAω(i)

P .

Thus, ∃k ∈ MAω(i)
P \ {ω(ω(i))} and ∃l ∈ MAk

P such that l �k ω(i). Then, by

condition (ii) of Proposition 2, it holds that {l} = MAω(i),k
P . Since k �ω(i) i

and i ∈ MAω(i)
P , we have that l = i. Given that l ∈ MAk

P and l = i, it

holds that k ∈ MAi
P . Let k �= t(i), otherwise we are done. Then since

i ∈ MAk
P \ {ω(k)} and there exists an agent k� ∈ MAi

P such that k� �i k

(remember that k �= t(i)), by condition (ii) of Proposition 2, {k�} = MAk,i
P .

But this implies that k� = ω(i) and this is a contradiction since ω(i) �i k. So

we have proved that when ω(i) /∈ TP either t(ω(i)) = i or t(ω(i)) = t(i).

Now we will show that if t(ω(i)) /∈ {i, t(i)}, then ω(i) ∈ TP . Let t(ω(i)) = k

with k �= i, t(i). By condition (ii) of Proposition 2, either t(k) = ω(i) and

we are done, or there exists an agent l ∈ MAk
P such that l �k ω(i) and

{l} = MAω(i),k
P , which implies that l = i. Following the previous reasoning,

15



we achieve the same contradiction (ω(i) �i k) and this proves that ω(i) ∈ TP

as desired.

Next, we proceed to prove (b.2). Let t(jk) = ω(i). We will prove that in this

case t(ω(i)) = jk. Since i ∈ MAjk
P , we have that ω(i) ∈ MAjk

P \ {ω(jk)}. By

condition (ii) of Proposition 2, either t(ω(i)) = jk and we are done, or there

exists an agent k ∈ MAω(i)
P such that k �ω(i) jk and {k} = MAjk,ω(i)

P . Then,

k = i, with i ∈ MAω(i)
P \ {ω(ω(i))}. Hence, by condition (ii) of Proposition

2, we have that for any j ∈ MAi
P \ {ω(i)}, j �i ω(i), then {j} = MAω(i),i

P .

But |MAi
P \ {ω(i)}| > 1, and then {j} = MAω(i),i

P for all j ∈ MAi
P \ {ω(i)},

contradicting the uniqueness of MAω(i),i
P .

2. Let i be an agent such that |MAi
P | ≤ 2. We will prove that either t(i) ∈ TP or

agent i belongs to a ring S such that |S| = 3 and ∀si ∈ S, si+1 �si si−1 �si t

for any t ∈ N \ {si+1, si−1}.

Consider first that MAi
P = {j} and assume that t(j) = k with k �= i. By

the reasoning in [1.], if |MAj
P | > 2, then t(k) = j and we are done. So let

|MAj
P | ≤ 2. Since k ∈ MAj

P \{ω(j)}, by condition (ii) of Proposition 2, either

t(k) = j or there exists an agent l ∈ MAk
P such that l �k j and {l} = MAj,k

P .

However, this implies l = i (since MAi
P = {j} and |MAj

P | ≤ 2). And this is

a contradiction since i ∈ MAk
P but k /∈ MAi

P . Hence, if MAi
P = {j}, then

either t(j) = i or t(j) = k with t(k) = j.

Without loss of generality, let MAi
P = {j, k} with j �i k. Since j ∈ MAi

P \
{ω(i)} and by condition (ii) of Proposition 2, we deduce (following the same

reasoning as before) that t(j) ∈ {i, k}. Let assume that t(j) = k, otherwise

we are done. We will show that then t(k) = j.

Assume that there exists an agent s ∈ MAj
P \ {i, k} such that s �j i. Since

j ∈ MAi
P \ω(i), by condition (ii) of Proposition 2, {s} = MAi,j

P , which implies

s = k. Therefore, there cannot be any agent s between k and i in agent j’s

preferences (with k �j s �j i).

Consider now the case such that there exists an agent s ∈ MAj
P such that

i �j s. Then |MAj
P | > 2 and by the reasoning of [1.], t(j) = k implies

t(k) = j.
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Let MAj
P = {k, i} with k �j i. Then, k ∈ MAj

P \ ω(j) and by condition (ii)

of Proposition 2, either t(k) = j and we are done or there exists and agent

l ∈ MAk
P such that l �k j and {l} = MAj,k

P , which implies l = i. Given that

there cannot be any agent between i and j in agent k’s preferences, we have

that S = {i, j, k} form a ring in P such that ∀si ∈ S, si+1 �i si−1 �i t for any

t ∈ N \ {si+1, si−1}. Therefore if t(j) = k, then either t(k) = j or i ∈ S where

S is a ring in preferences with |S| = 3 and ∀si ∈ S, si+1 �i si−1 �i t for any

t ∈ N \ {si+1, si−1}.

3. Now, we will prove, by contradiction, that there is no pair of agents not belong-

ing to TP who are mutually acceptable among themselves, except from those

belonging to an odd ring S such that |S| = 3 and ∀si ∈ S, si+1 �i si−1 �i t

for any t ∈ N \ {si+1, si−1}. Assume that there are two agents i, j /∈ TP such

that i ∈ MAj
P and they do not belong to a ring with the features mentioned

above. First, notice that |MAi
P | ≤ 2, otherwise by [1.], i ∈ TP and this is a

contradiction. We know by [2.] that t(i) ∈ TP , which implies that t(i) �= j,

since j /∈ TP . Let t(i) = k (with k �= j). Since k �i j, by condition (i) of

Proposition 2, we have that k ∈ MAi
P \ {ω(i)}. Since i /∈ TP , it follows that

t(k) �= i, and there is at least one agent, l, with l = t(k). By condition (i) of

Proposition 2, l ∈ MAk
P \ {ω(k)} with l �k i. By condition (ii) of Proposition

2, {l} = MAi,k
P , which implies l = j and therefore t(k) = j. However, this

contradicts j /∈ TP given that, as mentioned above, t(i) = k with k ∈ TP .

Proof of Proposition 3. Suppose that ∀i ∈ N , j �i i if j �= i but (N,P ) is not

absolutely stable.. Then there exist µ1 and µ2 such that µ1 � µ2 but µ1 ≯ µ2. First

note that neither µ1 nor µ2 can be the matching in which every agent is a singleton,

since this matching is directly dominated by all other matchings (because all agents

prefer to be matched over being unmatched). There are three possible matchings:

µi = {{i}, {j, k}}, µj = {{j}, {i, k}} and µi = {{k}, {i, j}}. Assume, without loss

of generality, that µ2 = µk and µ1 = µj. The same reasoning could be applied

for any other pair of matchings satisfying µ1 � µ2. Since µ1 � µ2 it must be [by

Proposition 1] that i is better off in µ1 (since j is worse off being unmatched). Note

that k is also better off in µ1 since she is unmatched in µ2. But then i and k can

enforce µ1 over µ2 and they are both better off, contradicting that µ1 ≯ µ2.

17



Proof of Proposition 4. (⇒) The existence of a ring S in the preferences with

|S| = 3 and ∀si ∈ S, si+1 �si si−1 �si j, for any j ∈ N \ {si+1, si−1}, is a sufficient

condition for non-existence of stable matchings in any stable matching (absolutely

stable or not). We prove it as follows:

Let µ be a matching such that µ(si) = j for some si ∈ S and some j /∈ S. This

matching is blocked by the pair {si, si−1}. Therefore any matching containing a pair

formed by an agent in the ring and an agent outside the ring is not stable. Consider

then a matching µ� satisfying that µ�(si) = si+1 and µ�(si−1) = si−1 (given that

|S| = 3, maximizing the number of agents in the ring matched among themselves,

there is always one agent in the ring who is alone at µ�). This matching is blocked

by the pair {si−1, si+1}. Therefore any matching in which agents in S are matched

among themselves is not stable. Hence, there is no matching stable as we wanted to

prove.

(⇐) Now, we will show that if a roommate problem is absolutely stable and

unsolvable then there exists a ring S in P satisfying that |S| = 3 and ∀si ∈ S,

si+1 �si si−1 �si j for any j ∈ N \ {si+1, si−1}.
Let (N,P ) be unsolvable and absolutely stable. Since (N,P ) is unsolvable there

exists a ring S = {s1, ..., sk} ⊆ N where k is odd (an odd ring). See appendix A.

• We first show that it must be that |S| = 3. Suppose not, then consider

{s1, ..., s4} ⊂ S. Let µ2 be a matching such that µ2(s2) = s3 and µ2(s) = s for

every s /∈ {s2, s3}, and let µ1 be a matching such that µ1(s1) = s2, µ1(s3) = s4,

and µ1(s) = s for every s /∈ {s1, ..., s4}. Then µ1 � µ2. However, µ1 ≯ µ2

since µ2(s2) �s2 µ1(s2). This contradicts absolute stability of (N,P ).

• We now show that for any si ∈ S there cannot exist an agent j /∈ S such that

j ∈ MAsi
P . Suppose first that j ∈ MAsi

P and si+1 �si j. Let µ2 be a matching

such that µ2(si) = si+1 and µ2(s) = s for every s /∈ {si, si+1}, and let µ1 be

a matching such that µ1(si+1) = si−1, µ1(si) = j, and µ1(s) = s for every

s /∈ S ∪ {j}. Then µ1 � µ2. However, µ1 ≯ µ2 since µ2(si) �si µ1(si). This

contradicts absolute stability of (N,P ). Suppose instead that j ∈ MAsi
P and

j �si si+1. Let µ2 be a matching such that µ2(si) = si−1 and µ2(s) = s for

every s /∈ {si, si−1}, and let µ1 be a matching such that µ1(si) = j, µ1(si−1) =

si+1, and µ1(s) = s for every s /∈ S ∪ {j}. Then µ1 � µ2. However, µ1 ≯ µ2

since µ2(si−1) �si−1 µ1(si−1). This contradicts absolute stability of (N,P ).
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• We finally show that for any si ∈ S there cannot exist an agent j /∈ S such that

j �si si−1. Suppose not, then from the argument developed in the paragraph

above we must have that j ∈ Asi
P . Then let µ2 be a matching such that

µ2(si) = j and µ2(s) = s for every s /∈ {si, j}, and let µ1 be a matching such

that µ1(si) = si−1 and µ1(s) = s for every s /∈ {si, si−1}. Then µ1 � µ2. Note

in particular that, since j ∈ Asi
P , agent j is better off in µ1. However, µ1 ≯ µ2

since µ2(si) �si µ1(si). This contradicts absolute stability of (N,P ).

But then we have found a ring S in P such that |S| = 3 and ∀si ∈ S, si+1 �si

si−1 �si j for any j ∈ N \ {si+1, si−1}.

Proof of Proposition 5. To prove (i) consider an absolutely stable roommate

problem, (N,P ), with more than one matching. By Lemma 1, we know that the

matchings in the core dominate each other indirectly. However, by Proposition 2,

they do not dominate each other directly, contradicting that the problem is abso-

lutely stable. Hence the core must be unique.

To prove (ii) suppose then that there is an agent i who is not matched in the

core to her most preferred partner. Let j = µC(i) such that t(i) �i j. Since j �= t(i),

there exists an agent k such that k �i j. Let µ2 be a matching such that µ2(i) = k

and the rest of the individuals are unmatched. By Lemma 1, µC � µ2. Assume that

i �k k, then µC ≯ µ2 since k �i j and the pair {i, j} does not block µ2 and enforce

µC . Therefore, k �k i. Then {k} blocks µ2 enforcing a new matching in which

agent i is unmatched. So if µC > µ2, then i = j proving that either µC(i) = t(i) or

µC(i) = i.
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