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Abstract

We consider a model in which two players choose between learning about the
quality of a risky option (modelled as a Poisson process with unknown arrival rate),
and competing for the use of a single shared safe option that can only be used by
one agent at a time. Firstly, when players cannot reverse their decision to switch to
the safe option, the socially optimal policy makes them experiment for longer than
they would if they played alone. The equilibrium in the two-player game is in this
case always inefficient and involves too little experimentation. As the competition
intensifies, the inefficiency increases until the players behave myopically and entirely
disregard the option-value associated with experimenting on the risky option. Sec-
ondly, when the decision to switch to the safe option is revocable, the player whose
risky option is most likely to pay off will interrupt his own experimenting and, with
view to easing the opponent’s pressure on the common option, force him to experi-
ment more intensely. Even if this does not succeed, the first player will eventually
resume his own experimenting and leave the common option for the opponent to
take. This result is striking and at odds with intuitions from standard bandit models.
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1 Introduction

Consider an agent who searches for an option with which to be matched: a job, a spouse,
a second-hand car, a flat-share. Information about the quality of a match is slow to arrive.
In this context it is natural to think about the option as a one-armed bandit. If there are
other agents in the market engaging in similar search and only one agent at a time can
access an option, we refer to this phenomenon as congestion. For instance to learn about
the quality of a second-hand car, you need to take it for a test-drive. While you are doing
this no other agent can.

Spending time learning about the quality of an option is costly in that it involves the
risk of losing access to other options. While you are test-driving one car, other agents may
be buying other cars without you having had the opportunity to test these. This can be
thought of as the opportunity-cost of learning. At the same time, you may now be willing
to spend more time learning about that one car if you knew that another potential buyer
is interested in it. If you leave it, he is likely to buy it, making it henceforth unavailable
to you. There is a pressure exerted by the “second in line”.

These sorts of considerations are common in all kinds of strategic situations. In the race
towards developing a new technology a firm’s incentive to invest in a new research project
rather than relying on some averred method depends on the strategy of the competitor
if the market can only support one producer. The love interest of a pretender may be
enhanced by the presence of a rival. When looking for a parking-space, do we take the one
we just spotted or continue driving in the hope of finding a space closer to the cinema, but
at the risk of losing the first one?

Furthermore, the fact that buyers may come to face these strategic situations has been
internalised by some markets. For instance, web-sites like Amazon or Opodo will tell you
when there is only one copy of this book left in stock, or only one seat left on that airplane,
thus bringing to your attention that browsing one more book or flight may come at the
cost of losing the one you just considered. We could also think of tips for wedding-gown
sales provided in the feminine press: because most stores only allow customers to take x
items into the dressing room, brides-to-be are advised to ask friends along who can then
hold on to gowns they don’t want to return to the floor, where other potential buyers may
take them.

The aim of this paper is to propose a simple model of experimentation with congestion,
in which to analyse the trade-offs from strategic interaction. We consider a model in which
two players choose between learning about the quality of their risky option and switching
to a common option. In this market, congestion arises if both players want to be matched
with the common option. To underline the strategic incentives around the common option,
we assume that nothing can be learned from it: it is “safe” in that it delivers a known
constant flow-payoff.



Risky options are modelled as Poisson processes whose arrival rates are unknown to the
players. We also assume that the arrival rates of the risky options are independent so
that each player can learn nothing about the quality of his risky option from the actions
or payoffs of the other player. Each risky option is either “good” and yields a lump-sum
payoff of 1 at rate A to the player activating it, or it is “bad” and always yields zero. This
assumption makes the motion of beliefs monotonic: as long as a risky option is activated
and does not produce a success, the belief about the quality of that option decreases. Once
an option has produced a success, it is known to be good. So in our model, the strategic
interaction takes place as players wait for the first Poisson event. During the game, players
observe each other’s actions and payoffs and so share a common belief about the qualities
of the risky options.

The safe option yields a flow payoff of 0 < a < A with certainty to the player occupying
it and this is common knowledge. A player who occupies the safe option gains absolute
priority over its use; his opponent can then only use the safe option if the first player leaves
it and returns to his risky option. If both simultaneously decide to move from their risky
option to the safe option, then a tie-break rule specifies the probability with which either
player gains access to the safe option.
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Fach player has access to his risky option and to a shared safe option that can
only be occupied by one player at a time. Player i’s risky option is good with prior
probability po, player j’s with prior probability qq.

Our main result is two-fold: First, we show that strong preemption motives arising as
part of the strategic interaction mean that the equilibrium always involves inefficiently low
levels of experimentation and unraveling of the exit decision. This was to be expected in
light of the literature on preemption games (Fudenberg and Tirole (1985)), and our model
affords us a clear illustration of the mechanism leading to the inefficiency. The second,
more striking result is that when the exit decision is revocable, in equilibrium a player
may strategically block the safe option temporarily in order to force the other player to
experiment. This is possible because the first player can commit to leaving the safe option
eventually, even as his opponent’s demand for the safe option intensifies.



To our knowledge, this model is the first to present the disappearance of an option from
a multi-armed bandit as the result of strategic interaction. Dayanik et al. (2008) examine
the performance of a generalised Gittins Index for the case in which a player must decide
at each point in time which of N arms to activate, knowing that arms may exogenously
break down, and thereby disappear from the choice set, temporarily or permanently. In
particular they observe that the potential disappearance of arms may disrupt learning as
the optimal policy is increasingly biased towards maximising one’s payoff based on current
information (“exploitation”) and away from acquiring new information (“exploration”) as
the probabilities of breakdown of arms increase.

In the economic literature, multi-armed bandit models have been augmented with var-
ious other strategic complications, for instance by assuming that learning takes place in
teams, as in Keller, Rady, and Cripps (2005), or by assuming that the qualities of different
arms are correlated, as in Murto and Valimaki (2008). In particular, they have been widely
used to model job search (Jovanovic (1979)) and more recently to describe within-firm job
allocations and trial periods for new recruits once their wage contract has been set. The
explicit modelling of prices can then be dispensed with. For instance, Camargo and Pas-
torino (2010) point out that incentive pay is not widespread when employment happens
at a probationary stage.

The bandit problem translates into the job assignment example as follows: Assuming
that the productive characteristics of a new recruit are not perfectly observable, but that
information about a worker’s ability can be acquired by observing the worker’s perfor-
mance on a given task, the employer trades off the profit loss he may incur if the new
recruit is ill-suited to the task with the benefit of acquiring new information about that
worker’s skill. If the worker does not know his own skill, he faces a similar problem.

In the context of our model, consider a firm in which two workers have been recruited to
perform identical jobs. Each worker does not yet know his level of skill at that particular
task, and both workers’ skills are independent. If he discovers that he is skilled, a worker’s
expected payoff is positive, if he is unskilled, his payoff is zero. At any time, a worker can
ask for the support of a scarce management resource. In that case credit is irrevocably
shared and the worker earns less than if he were skilled and succeeded by himself, but
more than if he were unskilled and trying to work by himself. Crucially, the manager can
assist only one worker at a time.

If the initiative to assist workers lies with the manager, he behaves like a social planner.
We find that he would optimally let workers try to solve the task by themselves for longer
than he would if there were only one worker. If on the other hand, it is the worker’s
decision to solicit the manager’s assistance, workers face a strategic situation in which the
trade-off between learning and collecting a payoff is supplemented by a race to the safe op-
tion. We find that in equilibrium, the threat of congestion makes workers act increasingly
myopically, leading to extreme inefficiencies.



More generally in the context of two-sided matching markets in which information about
the quality of a match arrives slowly, the inefficient unravelling caused by the incentive to
anticipate the decision of opponents is well documented, for instance in markets for lawyers
(Posner et al. (2001)) or gastroenterologists (Niederle and Roth (2009)). A popular ex-
ample in the economic literature is the US market for new doctors (Roth (1984)). In the
early 1940’s hospitals would hire medical students as future interns or residents two years
in advance of their graduation, so that the matching was done before crucial information
about students (such as skills or preferences for a particular medical specialisation) became
available. The results in this paper may contribute to better understanding pathologies of
decentralised matching markets, in which agents only gradually learn about the quality of
their match.

To illustrate the equilibrium with irrevocable exit, we can think of the village sweetheart
who has two suitors. Only one suitor at a time may date the sweetheart, or they may
pursue their search for a partner in the city, where there is no congestion. In equilibrium
we find that the suitor who is most likely to be successfully paired in the city will date
the village sweetheart first with the sole aim of deterring the rival, who is then forced to
search in the city. If the rival were successfully paired there, the first suitor would be able
to also search in the city or return to the village sweetheart without fear of rivals. But in
equilibrium we find that the first suitor will eventually leave the sweetheart and search in
the city even if the rival’s claim to the village sweetheart is not dropped but intensified.

The paper is organised as follows: In Section 2 we formally model the risky and the safe
options, the evolution of beliefs about the quality of the risky options as well as the rules
of precedence for access to the congested safe option. These will constitute the building
blocks for subsequent sections. We then present a set of the efficient benchmarks in Sec-
tion 3. When there is no congestion (3.1), the planner problem reduces to a single-player
two-armed bandit problem. We define the myopic and the optimal threshold beliefs, which
will be recurring concepts throughout the paper. When there is congestion we describe the
planner solution for the case where the decision to allocate a player to the safe option is
irrevocable (3.2) and then when that decision is revocable (3.3). Finally, we consider the
two-player games in which we present the trade-offs from strategic interaction and derive
the Markov Perfect Equilibria of the games again distinguishing between the cases of ir-
revocable and revocable exit, for which we have provided efficient benchmarks. Section 5
concludes and suggests directions for further research.

2 Model

In this section, we define the basic elements of the model on which all remaining sections of
this paper will build: the risky option and the motion of beliefs about the quality of a risky
option, the safe (potentially congested) option and the precedence rules determining access
to the safe option. In all sections, time is continuous, p denotes the common discount rate,



and each player maximises his expected discounted payoff over an infinite time horizon.

Risky option: Each risky option is either “good” and yields a lump-sum payoff of 1 at
Poisson rate A to the player activating it, or it is “bad” and always yields zero. The quality
of each option is independently drawn at the beginning of the game: player ¢’s risky option
is good with probability pg and player j’s risky option is good with probability ¢y. This is
common knowledge. If a risky option has produced a success, it is known to be good. As
long as a risky option produces only unsuccessful trials, the belief about that option being
good decreases.

Beliefs: Payoffs are publicly observed, so given the players’ common prior (pg, qo) about
the qualities of player ¢ and player j’s risky options respectively, players share a common
posterior at each date t > 0 denoted (p;, q:). If over the time interval [t,t + A), A > 0,
a player, say i, activates his risky option without it producing a success, the belief about
player i’s option at t + A is
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This is decreasing in A: the longer the player experiments without a success, the less
optimistic he becomes about his risky option being good. By Bayes’ rule we obtain that
p+dp = %. The law of motion followed by the belief when the risky option is
activated over the time interval dt — 0 and produces only unsuccessful trials is then

Pi+A =

(1) dp = —p(1 — p)Adt.

Notice that this expression is maximised when p = 1/2 and that when priors are different
beliefs don’t move at the same rate. Once a risky option has produced a success, the com-
mon belief about that option is equal to 1 and remains there forever. At any date ¢t > 0
the expected arrival rate on player i’s (j’s) risky option is piA (¢:\). Whenever p;, # ¢; we
refer to the player with the highest expected arrival rate as the more optimistic player and
to his opponent as the more pessimistic player.

Safe option: The safe option yields a flow payoff of a with certainty to the player oc-
cupying it and this is common knowledge. We choose a € (0, \) with the implication that
when the risky option is known to be good, it is strictly preferred to the safe option, and
vice-versa when a risky option is known to be bad.

Precedence rule: While each player has exclusive and unconstrained access to his risky
option, both players have access to the safe option, but it can only be activated by one
player at a time. A player who occupies the safe option gains absolute priority over its use;
his opponent can then only use the safe option if the incumbent player leaves it and returns
to his risky option. If both players simultaneously switch from their risky option to the safe
option, then a tie-break rule allocates the safe option to player ¢ with probability ¢ € (0, 1).



3 Efficient Benchmarks

In this section we present a series of planner problems intended as efficient benchmarks for
the models of strategic interaction in Section 4. First we consider the situation in which
there is no congestion on the safe option (Section 3.1). Each player then faces an identical
two-armed bandit problem with one risky and one safe arm. The socially optimal policy
is to let each player experiment with his risky option for high enough beliefs. If the risky
option produces a success, the player should never switch to the safe option. If it does
not and the player becomes increasingly pessimistic about the quality of his risky option,
he should permanently switch to his safe option when his belief hits the threshold value
py > 0, which we refer to as the single-player optimal threshold belief.

We also define the single-player myopic threshold belief, py; > py, below which the im-
mediate payoff from the safe option exceeds the immediate payoff from the risky option.
The belief pys is the optimal threshold of an infinitely impatient or “myopic” player. In
contrast a non-myopic player finds it optimal to continue playing the risky option on the
interval (py,py) in the hope of it producing a success as long as he is able to return to
the safe option at a later date: for the patient player the available safe option generates a
positive option value, making experimentation beyond the myopic threshold worthwhile.

We then assume that the safe option can be played by at most one player at a time. If
a risky option is known to be good, it is optimal never to let the player allocated to that
option switch to the safe option. If neither option produces a success, the planner will
eventually allocate one player to the safe option. In Section 3.3, we assume that the plan-
ner can do this without restrictions. In Section 3.2 however, we assume that the decision
to let one player choose the safe option cannot be revoked, even if the other risky option
should produce a success.

When this is the case, the planner allocates the player with the lowest belief, say player
J, to the safe option once the belief about his risky option being good hits a threshold.
This threshold is always below the single-player threshold. This is because the safe op-
tion provides an option value for both players: allocating player j to the safe option costs
player ¢ the option value. This is internalised by the planner who therefore delays the exit
of player j. The higher the belief of the optimistic player, the lower the option value of the
safe option for him and the closer the socially optimal exit belief of the pessimistic player
to his single-player optimum.

When exit is revocable, the planner problem is akin to a standard multi-armed bandit
problem. At each date the planner may activate two out of three arms (two risky, one
safe) over a time interval A > 0 so as to maximise his expected discounted payoff. The
planner solution is analog to the Gittins Index policy: he either allocates both players to
their risky options or allocates the player with the lowest expected Poisson arrival rate to
the safe option. We present the solution to the planner’s problem as A — 0.



3.1 No congestion - Single player model

First assume that there are two safe options. The planner maximises the join payoff of
both players. Since the qualities of the risky options are uncorrelated and players cannot
hinder one another’s access to the safe option, the planner problem is equivalent to solving
two single-player problems: a player, say player i, has access to his risky option and to the
safe option as described in Section 2.

Formally, the single agent solves the following dynamic problem: at each ¢, he chooses
which option to activate from the set {S, R}, where S and R denote the safe and risky
options respectively. The state is summarised by the belief p;.

For p; < 1, i.e. for histories in which the risky option has not yet produced a success let
k; denote the probability with which the agent activates the risky option during the time
interval [t, ¢+ dt). The player chooses a path {k;};>o that maximises his expected payoft:

E [/ e " [k p A+ (1 — k) a] dt | po
0

Notice that if the player were to play myopically (p — o0), he would only compare the
immediate payoff from playing R with the immediate payoff from playing S. We call the
“myopic stopping belief”, p,s, the belief at which the myopic player finds it optimal to
irreversibly switch to the safe option:

a
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In contrast, a more patient player (p < co) will experiment with the risky option in the
hope of discovering that it is good. Let V(p) denote the value function associated with
this problem. By Bellman’s Principle of Optimality the value function V(p) solves the
following dynamic programme: for all p € [0, 1]

V(p) = max{L"V (p), L°V (p)}
with

LSV (p) =9
LRV (p) = pAdt(1 + (1 — pdt)2) + (1 — pAdt)(1 — pdt)V (p + dp)

where we have used the approximation e *% ~ (1 — pdt). When a trial on the risky option
does not produce a success dp is defined in Equation 1.

We solve the agent’s problem in Appendix A and obtain the threshold belief at which
the agent optimally switches to the safe option:

ap

bv = AMp+A—a)



Throughout this paper, we will refer to py as the single-player optimal threshold, and to
par as the single player myopic threshold. Notice that py < pas, that both are increasing
as the value of the safe option, a, increases and that py tends to pys as p — oco. Lemma 1
describes the optimal behaviour in the single-player game and presents the value function.
The detail of the proof can be found in Appendix A.

Lemma 1. For p > py, playing the risky option is optimal and

p+A

Wm=p%+a_m<1;ﬁi(lw >*g;@&
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while for p < py, playing the safe option is optimal and V(p) = %.

The first term, p%, is the payoff from activating the risky option forever. The second
term reflects the option value of being able to switch to the safe option. It is increasing
as p decreases, i.e. as the player becomes more pessimistic about the quality of the risky
option. It is equal to zero when p = 1 and strictly positive for all p € [0,1) which is why,
for beliefs p € (py,par) the patient player continues to experiment with the risky option
even though he would be maximising his immediate payoff by switching to the safe option.
When p = py, the expected payoff from the risky option is so low, that the player prefers
switching to the safe option.

3.2 Planner Solution - Irrevocable exit

We now consider the planner problem in a model where two players each have access to a
risky option as described in the previous section, but there is only one safe option that can
be occupied by at most one player at a time. The social planner maximises the sum of both
players’ payoffs. At each date, he has the choice between letting both players experiment
(RR) or retiring one player to the safe option irrevocably so that the other player must
continue to experiment on his risky option forever (RS).

If there were two safe options, the planner solution would be to let each player follow the
single-player optimal policy derived in Section 3.1. Here, however, the planner may only
retire one player to the safe option. There is now an additional option value compared
with the single-player game: suppose a player’s option is good but has not yet produced
a success. If the player switches to the safe option, not only does he forego his own profit
from the good option, there is now the additional loss of his opponent’s option-value from
being able to switch to the safe option. Because such mistakes are more costly here, there
will be more experimentation than in the single-player game. We show that it is optimal
for the planner to eventually retire the most pessimistic player (Lemma 2) and to make
both player experiment beyond their single-player threshold (Lemma 3).

Let p; and ¢; respectively denote the belief at ¢ that player i’s and player j’s risky options
are good. Each belief follows the laws of motion described in section 3.1. The state at t is
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summarised by the vector of beliefs (ps, q;) € [0, 1]2.

Lemma 2. If in state (p,q) the policy RS is optimal, the planner necessarily allocates the
pessimistic player to the safe option.

Proof: Assume by way of contradiction that the policy which allocates the player with
belief max(p, q) to the safe option in state (p,q) is optimal when p # ¢. The joint contin-
uation utility in state (p, q) is then min(p, q)% +4< max(p, q)% + 4. So the policy which
allocates the player with belief max(p, ¢) to the safe option in state (p, q) is dominated by
the policy which retires the more pessimistic player in that state. [J

We now formally describe the planner’s problem. Because we have assumed that 0 <
a < )\, it is by design optimal never to retire a player whose risky option has produced a
success. If only one risky option has produced a success, the joint payoff is then maximised
by letting the other player follow the optimal single-player policy. As long as neither risky
option has produced a success, i.e. for states such that (p,q) € [0,1)?, let x; € [0, 1] denote
the probability with which the planner makes both players activate their risky options
during the time interval [t, ¢+ dt). Then with probability (1 — x;) the planner irrevocably
retires the pessimistic player to the safe option. The planner chooses a path {x; }:+>¢ subject
to the constraint that exit is irrevocable, so as to maximise the expected joint payoft:

E [/OOO e P (ke(pe + @)X + (1 — Ky) max(pe, ¢:) A+ al) dt | (po;qo)]| ,

where (pg, qo) € [0,1)? is the vector or prior beliefs. Let W(p, q) denote the value function
associated with this problem. It solves the following dynamic program: for all (p,q) €
[0,1)%,

(2) W(p,q) = max {x L W(p.q) + (1 - 5) L"™W(p,q)}
where, by Lemma 2, we have
RS A a
L™W(p, q) := max(p, q); + o

The payoff to the policy RR satisfies:

LEW(p, q, ) := pAdt gAdt 2252 1 (1 — pAdt)(1 — gAdt)(1 — pdt) W(p', ¢)
+pAdt (1 — gAdt) [222 + (1 — pdt)V (¢')]
+gAdt (1 — pAdt) [A2 + (1 — pdt)V (p)]

where V' (p) denotes the value function of the single-player game (Lemma 1) and p’ = p+dp
is defined in Equation 1.
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Solving the planner’s problem (cf. Appendix B), we find the set of threshold beliefs at
which the planner irrevocably allocates the player with the lowest belief to the safe option,
forcing the other player to experiment on his risky option forever. That set of threshold
beliefs is depicted in Figure 1 below.

Lemma 3. In states (p,q) such that p > q, it is optimal for the planner to irrevocably
retire the player with the lowest belief (player j) to the safe option if and only if

ap
Adtp—a+tpVip)—pA

where the threshold is equal to qy when p = 1. Otherwise, he optimally lets both players
activate their risky options. Conversely for states such that p < q.
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Figure 1: Threshold beliefs in the planner problem with irrevocable exit.

Regardless of the prior (pg, qo), the pessimistic player always experiments for longer than
in the single-player case. This is because his switching to the safe option would cancel
the option-value it affords to the optimistic player. That option-value increases when the
optimistic player’s belief falls, increasing the discrepancy between the pessimistic player’s
exit belief and the optimal single-player threshold. That discrepancy is maximised when
Po = qo- In contrast, when the belief of the optimistic player tends to one, the option-value
for him of being able to switch to the safe option tends to zero and the pessimistic player’s
exit belief tends to his single-player optimal threshold belief.

If po = qo (cf. trajectory 1 in Figure 1) then as long as both players play their risky
option without success we have p; = ¢;. The planner then optimally allocates either player
to the risky option when the beliefs hit the threshold value

1
. 2
Dw - 3 [)\ +p \/()\ +p) 4ap] < pv.
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If he allocates, say, player i to the safe option, p remains forever equal to pyy,. Player
j meanwhile is forced to experiment forever. If his risky option is bad ¢, will gradually
decrease towards zero following the law of motion dg = —q(1 — ¢)Adt. If his risky option
is good it will eventually produce a success.

If po > qo (cf. trajectory 2 in Figure 1) then as long as both players play their risky
option without success the state moves following the trajectory depicted above. Once the
state reaches the threshold described in Lemma 3 the planner allocates player j to the
safe option. Then ¢ remains constant while p gradually decreases to zero if player ¢’s risky
option is bad, or jumps to one with positive probability if the option is good.

3.3 Planner Solution - Revocable exit

We now consider the planner’s problem when the decision to retire one player to the safe
option is revocable. The planner is de facto playing a multi-armed bandit problem: at
each date the planner chooses to activate two out of three arms (two risky, one safe) over
a time interval A > 0 so as to maximise his expected discounted payoff. The optimal
policy, following which the planner either allocates both players to their risky options or
allocates the player with the lowest expected Poisson arrival rate to the safe option, will
therefore be the equivalent of the Gittins Index! policy for our setting. In light of this,
Lemma 4, the analogue to Lemma 2 in the previous section, seems trivial: an arm with a
higher expected arrival rate produces a higher Gittins index. We present the solution? to
the planner’s multi-armed bandit problem as A — 0. As in the previous section, the state
at t is summarised by the vector of beliefs (py, ¢;) € [0, 1%

Lemma 4. If the policy RS is optimal in state (p,q), then the planner allocates the pes-
simistic player to the safe option.

Proof: Trivial in view of the optimality of the Gittins Index Policy: A risky option’s
Gittins index is increasing in its expected arrival rate. [J

We now formally describe the planner’s problem. For states such that (p,q) € [0,1)?, let
Rt € [0,1] denote the probability with which the planner makes both players activate their
risky options during the time interval [t,¢ + dt). With probability (1 — ;) the planner
lets the player with the highest posterior belief at ¢ activate their risky option during the
time interval [t,¢ + dt), while the player with the lowest posterior belief activates the safe
option. The planner chooses a path {&;};>o that maximises the expected joint payoff:

E [/OOO e (Re(pr + q) X+ (1 — Ri)[max(ps, ¢;) A+ a]) dt | (po,qo)|

1For a good summary of Gittins’ pairwise interchange argument, cf. Frostig and Weiss (1999).

2Because it involves the planner alternating between two options, the existence of that solution is
problematic in continuous time. Being aware of the existence issues in the limit, we concentrate on the
discrete-time approximation and will use the intuition from a discrete-time problem.
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where (po, qo) € [0,1)? is the vector or prior beliefs. Let U(p, q) denote the value function
associated with this problem. It solves the following dynamic program: for all (p,q) €
[07 1)27

(3) U(p, q) = max{L"™U(p, q), L"*U(p,q)}.

Here RR denotes the policy whereby both players play their risky option and RS the
policy where the planner allocates the player with the lowest belief to the safe option, while
the player with the highest belief experiments on his risky option.

We first derive the payoff from playing the policy RS forever. Consider states p > ¢ such
that player ¢’s risky option has a higher probability of generating a success than player j’s
option. As long as neither risky option produces a success, the policy RS involves first
making the player with the high belief (player i) activate his risky option while player j
occupies the safe option. Then ¢ does not evolve while p decreases towards ¢ following the
law of motion for active options: dp = —pA(1 — p)dt. Once p = ¢, the planner alternates
the players on the safe option®, generating the payoff A(p) as described in appendix C.

Then, for p > ¢, the payoff to the policy RS is (1 — e~ %) (% +p %) + e " A(q), where
s=+In [1(1;(1%] , which equals zero for p = ¢. Simplifying, we have that for all (p, ¢) such
that p > ¢,

o= (1= (50555) ) (o03) + (5t525) 0

with the corresponding expression holding for p < g.

To get an intuition about A(p), consider discrete-time planner problem in the state p = g.
As seen in the previous section, if exit is irrevocable then once the planner follows policy
RS he always allocates the same player, say j, to the safe option. The belief p about the
quality of player i’s risky option then decreases at rate dp = —p(1 — p)AA, for a positive
but small time interval A. In contrast, when exit is revocable, the planner can alternate
players on the safe option. He can therefore let the players successively play their risky
option in state p, thus getting twice as many trials at each belief p as when exit is irre-
vocable. The law of motion of beliefs is then dp = —%p(l — p)AA. Notice that, as with
irrevocable exit, when p — 0, the value of the RS policy, A(p), tends to 2 which is the
value of the multi-armed bandit problem when both risky options are known to be bad

and there is only one safe option.

3This policy does not make sense in continuous time, but recall that we are reasoning as though the
model were in discrete time and let time intervals tend to zero.
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The payoft to the policy RR satisfies:

L™U(p, q) == pAdt gAdt 2222 + (1 — pAdt) (1 — gAdt)(1 — pdt) U(p', )
+pAdt (1 — gAdt) [—jﬁ + (1= pdt)V(q)]
+gAdt (1 — pAdt) [222 + (1 — pdt)V (p')]

where V' (p) denotes the value function of the single-player game (Lemma 1) and p’ is de-
fined in Equation 1. The set of threshold beliefs at which the planner allocates the most
pessimistic player to the safe option is depicted below.

Lemma 5. The solution to the planner problem with revocable exit is depicted below:
For states (p,q) in the shaded area, the planner optimally allocates the player with the
lowest belief to the safe option over a period A > 0. For states in the white area, the
planner optimally lets both players activate their risky option over a period A > 0. On
the boundary, the planner is indifferent between the two policies. For A — 0, the planner
solution is depicted in Figure 2 below.

Proof: Cf. Appendix D.
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Figure 2: Set of states in which policy RS is optimal (shaded area) and threshold
beliefs in the planner problem with revocable exit.

Consider the portion of the graph for p > q¢. When p = 1, the socially optimal threshold
belief is gy, the threshold belief in the single-player game. This is because when p = 1,
player ¢ knows with certainty that his risky options is good, and so he will never threaten
the safe option, so that player j effectively plays as in the single-player game. When p = g,
the threshold belief py; = ¢y is derived in Appendix D.
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4 Two-Player Game

We now consider the game in which there is congestion: as long as one player plays the
safe option, it is unavailable to the other player. The players now interact strategically.
They not only face the trade-off between exploration and exploitation, as in the single-
player case, they must now consider the possibility of their opponent blocking their access
to the safe option, temporarily or permanently. As a consequence, players will now have
preemption motives. In section 4.1 we assume that once a player chooses to play the safe
option, he may not return to his risky option. In this way, the decision to retire to the
safe option is irrevocable. In Section 4.2, we will relax this assumption. Then a player can
decide to temporarily occupy the safe option, before returning to his risky option.

In Section 4.1 we consider the strategic situation for which the planner problem anal-
ysed in Section 3.2 sets the efficient benchmark. We saw that because a player irrevocably
switching to the safe option cancels the option-value it affords the other player, it is so-
cially optimal for the pessimistic player to experiment for longer than in the single-player
game. When players act strategically and compete for access to the safe option, they both
have incentives to preempt the other player’s switch. In equilibrium, the pessimistic player
switches to the safe option in a state such that the optimistic player has no preemption
motives. When there is sufficient competition between the players this will involve the
pessimistic player switching to the safe option when the optimistic player’s belief equals
the myopic threshold.

The equilibrium will therefore be inefficient in the sense that the player capturing the
safe option does so too early compared with the efficient threshold. When we intensify
the degree of competition (by setting the priors closer to one another) this inefficiency
increases until, for py = qo, the players behave myopically and completely disregard the
option value associated with experimenting on the risky option.

When exit is revocable (section 4.2), the player occupying the safe option is able to
return to his risky option if his opponent’s experimenting results in a success. In that
case, relieved of the opponent’s pressure on the safe option, the first player can achieve
the utility of the single-player game. A player now has incentives to postpone his own
experimenting and occupy the safe option thus forcing his opponent to experiment in the
hope of his producing a success and dropping his claim to the safe option.

In equilibrium, when there is sufficient competition for the safe option, the player with
the highest expected arrival rate (the “optimist”) temporarily occupies the safe option and
forces the pessimist for experiment for a given duration of time. That duration increases
with the competition for the safe option. Moreover it is such that the pessimist is always
forced to experiment for longer than he would have in the single-player game. That du-
ration is, however, finite and if the pessimist’s experimenting is unsuccessful, the optimist
eventually resumes his own experimenting, freeing the safe option for the pessimist. This
result may be surprising in light of intuitions from the standard multi-armed bandit prob-
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lem, in which a player never returns to any option he has rejected in the past.

4.1 Irrevocable Exit

We now consider the game in which two players each have access to a risky option and
there is only one safe option that can be occupied by at most one player at a time. The
risky and the safe options, as well as the rules of precedence are as described in section 2.
We assume that exit is once-and-for-all: once a player occupies the safe option, he may not
switch back to his risky option. Under this condition, the assumption that the congested
option is safe is without loss of generality: it could also be a risky bandit with expected
arrival rate a.

Each player faces the trade-off between exploration and exploitation as described in the
single-player game. Additionally, a player takes into account the fact that he loses the
option-value from being able to switch to the safe option at a later date if his opponent
occupies the safe option. As a result, in this game, there will be preemption motives lead-
ing to the unraveling of the exit decision.

We derive the Markov Perfect Equilibrium of this game and compare it with the planner
solution derived in section 3.2. We find that in equilibrium, the pessimistic player captures
the safe option, and does so when the optimistic player’s beliefs are greater than or equal
to his myopic threshold belief. Though the pessimistic player would like to experiment
until his belief reaches py, he is better-off exiting in a state in which his opponent has
no preemption motives. The allocation of the safe option is efficient in that it goes to
the same player as in the planner solution. However, the amount of experimentation by
the pessimistic player is always inefficiently low. The closer the priors of the players, the
greater the competition for access to the safe option, and the more inefficient the equilib-
rium.

Let us formally describe each player’s problem. At each date, a player either chooses to
activate his risky option over the time interval [t + dt) (R) or to irrevocably switch to the
safe option (S)* so as to maximise his expected discounted payoff. As in previous sections,
the state is summarised by the vector of posterior beliefs (p;, ¢;) € [0, 1]%.

Because we have assumed that 0 < a < A, retiring to the safe option is strictly domi-
nated for a player whose risky option has produced a success. If only one risky option has
produced a success, the other player follow the optimal single-player policy. We define a
(Markovian) strategy k‘(.) for player i to be the mapping k° : [0,1)? — [0,1] from states
(pt, q¢) to ki, the probability that player ¢ plays his risky option at t. A (Markov-Perfect)
equilibrium is a pair of strategies (k*(.), k7(.)) such that the strategy of player i maximises

4Notice that the set of possible actions is not history dependent: we assumed that if a player switches
to the safe option when that is already occupied by the opponent, the player “bounces” back to his risky
option.
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his expected discounted payoff conditional on the strategy of player j (subject to the con-
straint that exit is irrevocable), and vice-versa.

As in the previous sections, V'(.) denotes the value function in the single-player game.
Let W(.) denote the value function in the two-player game with irrevocable exit. Given
that, as long as neither player is occupying the safe option, player j uses the Markovian
strategy k7(.) and plays his risky option in state (p, q) with probability &/(p, q), player 4’s
value function solves the dynamic problem:

W(p,¢; k') = max }{ki(p,q) LW(p,q; ¥) + (1 = K'(p.q)) L°W(p, ¢; k') }

ki (p,q)€0,1
where

LSW(p,q; k7)== K (p,q) ¢+ (1 =K (p,q)) T"(p,q),

a
p

LW (p,q; k) := pAdt (1 + e—pdt%>

(4) +(1 — pAdt) ((1 — K (p,q)) e*"p'2

ki (p, @) € gAY (1) + (1= QAW ¢ 1) )

and with p’, ¢’ as defined in Equation 1. The corresponding expression holds for player
j. Because ties are broken in favour of player ¢ with probability ¢, player ¢ and j’s payoffs
from a tie are respectively:

; a A i a A
T'(p) = p+(1 L) p 5 T (p) = (1 L)pﬂp o

We now derive the unique® equilibrium of this game. We first show that there can be no
equilibrium in mixed strategies (Lemma 6). Disregarding equilibria in weakly dominated
strategies, we then present the Markov Perfect Equilibrium in the two-player game with
irrevocable exit (Theorem 1). This equilibrium is inefficient, and we describe how it falls
short of the planner solution derived in section 3.2.

Lemma 6. There exists no positive time interval [t,t + dt), dt > 0 on which both players
best-respond to one another by playing strictly mized strategies.

Proof: Suppose player j plays a strategy that lets him exit with positive probability
at two distinct dates. If in state (p,q) player j switches to the safe option with strictly
positive probability, player ¢ can only be indifferent between his two pure strategies, when
his belief is p = pys. So there is no strictly positive time-interval over which player ¢ is
indifferent between switching to the safe option and continue activating his risky option.
The detail of the proof can be found in Appendix E. [J

5Up to variations in weakly dominated strategies, which do not affect the equilibrium allocation or exit
date.
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As long as player j switches to the safe option with strictly positive probability, player i
is essentially trading off the payoff from winning a tie-break and irrevocably switching to
the safe option, a/p, with the payoff from being stuck forever on this risky option, pA/p.
In states (p,q) such that p = pys, the myopic exit belief in the single-player game, these
payoffs are equalised and player i is indifferent between the outcomes, while in states (p, q)
such that p # pys, player i has strict preferences for either option. The remainder of this
section hinges on this observation.

From Lemma 6, we conclude that the equilibrium strategies, given an initial state (po, qo),
involve either player switching to the safe option with certainty at some date ¢ > 0 when
the state is (p(t),q(t)). As argued in detail in Appendix F such an instantaneous switch
cannot be an equilibrium in states (p, q) such that p < pys, ¢ < qus, as a player’s opponent
then has strict incentives to preempt the player’s switch. Over that support, there would
be unraveling of the exit decisions as players try to anticipate one another’s switch. the
preemption motives only disappear once at least one player is indifferent between switch-
ing to the safe option and staying with his risky option. Conversely, for beliefs above the
myopic threshold, irrevocably switching to the safe option is strictly dominated by the
strategy whereby the player commits to his risky option forever.
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Figure 3: FEquilibrium strategies of player i and player j when exit is irrevocable.
If a state (p,q) is in the green (dark) area, the player plays the safe option, if it is
in the orange (light) area, the player plays his risky option.

Theorem 1. Consider the strategy profile illustrated above:

Q<QM7p<pM> p<pM7 q<QM7

; 0 if ¢ ¢g=aqu, p<pm ; 0 4§ pP=pm, < qu

k_Z 3 = ) ) 7k] , J— ? 9
1 else. 1 else.

This constitutes the unique MPE of the game (up to variations in weakly dominated
strategies for histories in which the safe option has already been allocated, so that they do
not affect the allocation of the objects, given an initial state)
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Proof: Cf. Appendix F. An intuition of the proof is given in the following illustrations. [

We now illustrate the resulting allocation and compare it with the planner solution for
the case in which both risky options are in fact bad, so that beliefs never jump to one.
Notice that in moving from case 1 to case 3, i.e. as the discrepancy in priors increases, the
equilibrium exit belief of the pessimistic player gets closer to his single-player threshold -
and also to the socially optimal exit belief.
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Figure 4: In Case 1, the prior is pg = qp > %. In Case 2, the priors py > qo are
such that at date ¢ > 0 satisfying p, = pys we have that ¢, > gy, while in Case 3
we have that ¢; < qy.

Case 1: If the prior is pg = qo > %, then in equilibrium both players switch to the
safe option when beliefs reach the single-player myopic threshold belief, py; = §. At that
point, both players are indifferent between activating their risky option and switching to
the safe option, as long as their opponent switches with strictly positive probability. Be-
cause players cannot be indifferent between switching when beliefs are py; and switching
at a later date, both players switch at py; with probability 1. Switching at an earlier date
is strictly dominated.

In the planner solution, both players would only have switched to the safe option at
pw < pyv. The extreme inefficiency here comes from the fact that competition from the
other player is most intense® when py = qo. As we will see in the next two cases, when one
player is more pessimistic than the other, the inefficiency is mitigated.

Case 2:  Here in equilibrium, player ¢ uses the strategy whereby he continues activating
his risky option for all p > py; and player j switches to the safe option with certainty when
p = py. As long as player j switches with positive probability when p = pys, player @ is
indifferent between playing R and S in that state, and has no incentive to preempt player

5Relate to preemption games.
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J’s exit.

Notice that player j, who is more pessimistic than player i, is allocated the safe option
with certainty, and the belief about his risky option remains constant forever, while the
belief about player ¢’s risky option gradually decreases according to the law of motion for
active options: dp = —pA(1 — p)dt.

The more pessimistic player j is relative to player i , the closer the exit belief of player
J becomes to gy, and the less inefficient the equilibrium. This is intuitive: if a player is
more optimistic that another, he poses less of a threat to his opponent, who is then under
less pressure to secure the safe option, and can experiment for longer.

Case 3:  Here player 7 is so optimistic relative to player j that even when the belief
about player j’s risky option reaches the single-player threshold gy, the belief about player
1’s risky option is still above the myopic threshold belief p,;, and player ¢ strictly prefers
activating his risky option to switching to the safe option.

Player j then effectively plays a single-player game and switches to the safe option when
q = qv. Then inefficiency is even lower than in the previous two cases, and as pg — 1, the
equilibrium tends to the planner solution.

Even though all equilibria described above are inefficient in the sense that there is less
experimenting than in the planner solution, they are efficient in the sense that the safe
option is always allocated to the most pessimistic player. The inefficiency of the level of
experimentation is maximised when py = ¢9. In that case, the lost option-value to the
optimist is the highest conditional on the exit date of the pessimist. In the two-player
game, this intensifies competition and makes the pessimist exit earlier, while in the plan-
ner solution, the loss of the option-value is internalised by the planner who then postpones
the exit of the pessimistic player.

4.2 Revocable Exit

In this section we assume that a player who is occupying the safe option may later re-
turn to the risky option. That is, the decision to switch to the safe option is revocable.
When exit is irrevocable, the more pessimistic player, say player 7, is the first to switch
to the safe option in equilibrium and the other player is forced to experiment with his
risky option forever. If player i’s experimenting results in a success, then for him switch-
ing to the safe option is dominated. Player j is then relieved of the threat of congestion
and is de facto facing the single-player problem of Section 3.1. If the state is such that
q > qv, player 7 would then like to return to his risky option and resume his experimenting.
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While this is not possible with irrevocable exit, when exit is revocable this is the most
desirable outcome for a player. So much so that in equilibrium players have incentives
to temporarily force their opponent to experiment with the sole aim of eliminating the
threat of congestion. Let it be noted that there are no informational externalities to an
opponent’s success as the qualities of the players’ risky options are independent.

Let us formally describe each player’s problem. At each date, a player either chooses
to activate his risky option (R) or the safe option (S) over the time interval [t 4 dt). We
assume that if a player switches to the safe option when it is already occupied by the
opponent, the player “bounces” back to his risky option. Each player tries to maximise
his expected discounted payoff. As in previous sections, the state at date ¢ is summarised
by the vector of posterior beliefs (p;, ¢;) € [0, 1]°.

As before, once a risky option has produced a success, the player occupying it never
finds it optimal to switch to the safe option and the other player optimally plays as in the
single-player game. We define a (Markovian) strategy k'(.) for player i to be the map-
ping k' : [0,1)2 — [0,1] from states (p;, q;) to ki, the probability that player i plays his
risky option at ¢ over the time interval [t +dt). A (Markov-Perfect) equilibrium is a pair of
strategies (k(.), k%(.)) such that the strategy of player i maximises his expected discounted
payoff conditional on the strategy of player j, and vice-versa.

Let U(.) denote the value function in the two-player game with revocable exit. Condi-
tional on player j using the Markovian strategy k7(.) player i’s value function solves the
dynamic problem:

Ulp, k") = max  {k'(p,q) L°U(p,q; F) + (1 = K'(p,q)) L°U(p, ¢ ')}
k(p,a)€[0,1]

where

(5)
LSU(p, q; k) = [1— (1=K (p,q))(1 — )] (adt + e=*%[gdt V(p) + (1 — gAdt) U(p, ¢; k7))

+(1 = K (p,q))(1 —0) <p)\dt (1 + e‘pdt%> + (1 = pAdt)e ¥ U(p/, ¢; 159))

LU(p, ¢; E‘j) = pAdt (1 + e—pdt%

+(1 = pAdt) (1 = K (p,q)) e ** U, q; k) B
+K (p, q) e [gAdt V(p') + (1 — gAdt) U(p', ¢ K)])

and with p’, ¢ as defined in Equation 1. The corresponding expressions hold for player j.
Notice that for k% = 1, LU(p, ¢; 1) solves the same differential equation as LEW(p, ¢; 1)
in the previous section.

We derive the Markov Perfect Equilibrium of this game (Theorem 2). Disregarding equi-
libria in weakly dominated strategies, this equilibrium is unique in the two-player game
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with revocable exit. All proofs are relegated to the appendix and we concentrate on de-
scribing the mechanics of the equilibrium, drawing parallels with the equilibrium in Section
4.1 when pertinent. To this end, we first define some notation (4.2.1) that will then serve
to define the equilibrium strategies and illustrate the equilibrium dynamics (4.2.2).

4.2.1 Notation

Let us first define the functions S(.,.), Ro(.,.) and Ry(.,.). For each function, the first
argument is the current belief about the quality of the risky option of the player to whom
the payoff accrues. The second argument is the current belief about the quality of his
opponent’s risky option. For (p,q) € [0,1]?,

S<$ay) =

DL

A
Ro(z,y) = x —,
o(®,y) )

A
Ri(z,y,0) =2 = (1—e O 4 L eor(1 gy o),
1Y P

The function S(.,.) denotes the utility of occupying the safe option until the opponent’s
experimenting produces a success and then to play as in the single-player game, collecting
payoff V(z). The first term, %, is the utility of having to play the safe option forever.
The second term reflects the option-value of being able to adopt the optimal single-player
behaviour should the opponent’s experimenting prove successful. This is decreasing in vy,
the probability of the opponent’s risky option being good.

There are two channels through which that option-value can be nullified. The first ob-
tains if y — 0 so that the opponent’s experimenting never produces a success and the
player occupying the safe option never gets the opportunity to behave as a single player.
The second obtains if = is below the single-player threshold belief, so that V(z) = 5 In
this case, even if the opponent’s experimenting produces a success the player occupying
the safe option does not return to his risky option.

The function Ry(.,.) denotes the utility of being forced to experiment forever. This is
the payoff accruing to a player if his opponent occupies the safe option forever or until
the first player’s experimenting is successful. The function R;(.,.,o) denotes the utility
of being forced to experiment for a duration of time o before regaining access to the safe
option and occupying it forever. This is the payoff accruing to a player if his opponent
occupies the safe option and leaves it after a duration of time o. In all case, the belief
about the quality of the risky option which is not being activated remains constant over
time.

22



We now define boundaries in [0, 1]* that will be relevant in describing the equilibrium
strategies and illustrating the equilibrium dynamics. Let By(.) denote the function that
satisfies, for all (z,y) € [0,1]%,

(6) © < By(y) < Ro(z,y) < S(x,y).

The set of states {(p,q) : p = Bo(q)} is illustrated for ¢ < gy in Figure 5. Notice that
By(q) is increasing in ¢ and that By(0) = pas.

In states (p, q) such that ¢ = By(p), player 7 is indifferent between being forced to experi-
ment until successful, achieving the payoff Ry(p, ¢), and forcing his opponent to experiment
until successful, and achieving the payoff S(p,q). We show in Appendix G.1 that when
q < qur, if player j occupies the safe option, he never leaves it unless player i’s experiment-
ing produces a success. Player i therefore indeed faces the choice above when ¢ < ¢;; and
trades off the payoffs Ro(p,q) and S(p,q).

At this point, let us highlight one striking feature of the equilibrium dynamics by making
the naive assumption that a player never returns to his risky option unless his opponent’s
experimentation produces a success. Such a strategy seems in line with intuitions from
the standard bandit model: once a player leaves his risky option, he never returns to it.
Moreover, why would a player have stronger incentives to leave the safe option if his op-
ponent’s experimenting is unsuccessful? As the opponent becomes more pessimistic about
the quality of his risky option, his demand for the safe option intensifies. The first player
would then be more likely to permanently lose access to the safe option if he were to leave it.

We find however, that in equilibrium, there are states in which the player occupying
the safe option will eventually leave it even if he is certain that his opponent will then
occupy it permanently. For ¢ < ¢y, consider any state (p, ¢) such that S(p,q) > Ro(p,q),
and assume that player i is occupying the safe option - his preferred choice. As player
j experiments unsuccessfully the common belief about the quality of his risky option de-
creases, while the belief about player i’s risky option remains constant. In Figure 5, the
state evolves towards the p-axis along a vertical trajectory. If the initial state (p, q) is such
that p < pys, then the subsequent states never leave the set {(p,q) : S(p,q) > Ro(p,q)}. If
instead the initial state is such that p > pys, the subsequent states eventually fall into the
set {(p,q) : S(p,q) < Ro(p,q)}, and player i prefers returning to his risky option, even if
that means losing access to the safe option forever.

This is driven by the fact that p > pys. Recall that for these beliefs we have that p% > %,
and player ¢ prefers occupying his risky option forever to occupying the safe option forever.
The ability to proceed as in the single-player game if the opponent is successful augments

the payoff to choosing the safe option by ¢ /\Ler [V(p) — %] > 0, making the safe option
more attractive relative to the risky option than with irrevocable exit. For ¢ sufficiently
high, player ¢ may therefore be willing to occupy the safe option in states in which he

would prefer the risky option once and for all when exit is irrevocable. The additional
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term however decreases with ¢, the likelihood of the opponent’s risky option being good,
and eventually player ¢ switches back to his risky option, and our naive assumption proves
incorrect.

In states such that ¢ € [0,qy] and p € [By(0), Bo(qar)], therefore, player j knows that
player ¢ will only temporarily force him to experiment. More precisely, if player ¢ occupies
the safe option in state (p,q) such that g € [0, qy] and p € [Bo(0), Bo(q)], he will leave it
after a time span o}l of unsuccessful experimenting by player j, where o satisfies

—Xod

q e
~ B, .
P 0<q6A”5+1—q)

Therefore in state (p, q) player j's expected payoff from being forced to experiment for the
duration o} before being able to switch to the safe option is Ri(q,p, Ug).

Notice that the payoff to player ¢ from forcing player j to experiment for the duration
ogis:
(1 —q+ qe ) ((1 - e‘“g”)% + P p%)

gl = e g (1= o) (Vi) - ).

which simplifies to

a A a

“ vy Ve -2 = s,
the utility to player ¢ of forcing j to experiment until he produces a success and then
playing as in the single-player game. The intuition is simple: when in state (p, By 1(p))
player ¢ switches back to his risky option, he is indifferent between doing so and keeping
the safe option, so his continuation utility at that date is equal to S(p, By 1(p)).

The subscripts M and V respectively denote the single-player myopic threshold and
optimal threshold. Let Bi(.) denote the function that satisfies, for all (z,y) € [0,1] x

[y, Bo(zar)],
(7) xSBl(?J) g Rl(xayaJ;JC) SS(Z’,y)

The set of states {(p,q) : p = B1(q)} is illustrated for ¢y < ¢ < By(py) in Figure 5.

Notice that for x \, xs, where x); = % denotes the myopic threshold of the player being
forced to experiment, the duration for which he is forced to experiment ¢¥ — oo and
Ry(war,y,0Y, ) — Ro(xar,y) so that the function

Ro(z,v), if v <,
R1<x,y,0'g> lf X Z TNy

is continuous in x. Finally we note that
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We are now ready to define, for y < By(zy),

By if 0 <z <y,
(8) Bly) = { BlEZ; if zpr < @ < Bo(yy).

The role B(.) plays in the proof of theorem 2 is analogous to the one the myopic thresh-
old belief plays when exit is revocable: in equilibrium, one player switches to the safe
option in a state where his opponent is indifferent between also switching and pursuing his
experimentation.

Figure 5: Illustration of the boundary B(q):

For g < qpr, player i is better-off on the safe option than being forced to experiment
until he produces a success whenever: S(p,q) > Ro(p,q) < p < Bo(q).

For qup < q < Bo(pv), player i is better-off on the safe option than being forced to
experiment temporarily whenever: S(p,q) > Ri(p,q) < p < B1(q).

4.2.2 Equilibrium and Dynamics

We now derive the Markov Perfect Equilibrium of the two-player game with revocable exit
(Theorem 2). Disregarding equilibria in weakly dominated strategies, this equilibrium is
unique. All proofs are relegated to the appendix and we concentrate on describing the
mechanics of the equilibrium, drawing parallels with the equilibrium in Section 4.1 when
pertinent.

As a first step, (cf. Appendix G.1) we show that for the set of states (p,q) such that
p < B(q) and g < B(p) both players have incentives to preempt one another’s exit (B(.) is
defined in equation 8). This is relatively straightforward: for states in the above set, each
player prefers occupying the safe option to being forced by his opponent to experiment,
temporarily or permanently. Moreover, when his belief reaches the single-player threshold
a player attempts to capture the safe option, at which point his opponent is better-off
preempting his switch and the process unravels.
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Theorem 2 describes the equilibrium strategies, illustrated below. The proof is relegated
to the appendix, though we will illustrate it in this section by presenting typical equilib-
rium trajectories of the beliefs.

10 p 10
TR F 0B
= Ty = el —
o4+ \ o4+
o [V - o [T
0.0 b Pp Py 0.0 b Py M
o0 02 04 06 OB 1.0 o0 02 04 086 0B 1.0
£ £

Figure 6: FEquilibrium strategies of player © and player j when exit is revocable. If
a state (p,q) is in the green (dark) area, the player plays the safe option, if it is in
the orange (light) area, the player plays his risky option.

Theorem 2. Consider the strategy profile illustrated above:

(

pgpv:
Fpg =4 0 Fyr>pv p < B(q), ¢ < B(p),
’ P=Dpu,q=qu
\1 else.
( QSQV7
4 0 if ¢ ¢>qv, ¢q<B(p), p< Blq),
W p,q) = ! q=q3p=pu(> &
1 else.

\

where qu = py satisfy B1(py) = Bi(qu) This constitutes the unique MPE of the game (up to
variations in weakly dominated strategies for histories in which the safe option has already
been allocated, so that they do not affect the allocation of the objects, given an initial state).

Proof: Cf. Appendix G.[J

We now illustrate the resulting equilibrium dynamics. The duration for which one player
can force the other to experiment in equilibrium increases as competition intensifies (as
priors get closer). In cases where priors are very different so that one player’s risky option
is much more likely to be of good quality, competition for the safe option is so low that
the pessimistic player can play as in the single-player game. In all equilibria, if the player
whose risky option is initially (at ¢ = 0) least likely to be of good quality does not experi-
ment successfully, he eventually gains access to the safe option.
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Figure 7: In Case 1, the prior is pg = qo > %. In Case 2, the priors py > qg are
such that at date ¢ > 0 satisfying ¢: = Bi(p:) we have ¢ > qy. In Case 3, the
priors pg > qo are such that at date ¢ > 0 satisfying ¢; = gy we have ¢, > Bi(p:).

Case 1: py = qp > %. In equilibrium both players switch to the safe option when beliefs
reach the state py = qu satisfying B;(py) = Bi(qu). At that point, both players are indif-
ferent between being forced temporarily to activate their risky option and switching to the
safe option, as long as their opponent switches to the safe option. Notice that py > pas,
and that the player who is not allocated the safe option in the tie-break will be forced to
experiment unsuccessfully for longer than in any equilibrium with asymmetric priors.

Case 2: py > qo are such that at ¢t > 0 satisfying ¢, = B1(p;) we have ¢, > qy. Here
in equilibrium, player j uses the right-continuous (in p) strategy whereby he continues
activating his risky option for all ¢ > B;(p) and player i switches to the safe option with
certainty when ¢ = Bj(p). As long as player i switches with positive probability when
q = B1(p), player j is indifferent between playing R and S in that state.

Notice that it is player i, the player most likely to experiment successfully, who is the
first to capture the safe option, thus forcing player j to experiment. This is feasible because
player 7 finds it optimal to eventually let player j occupy the safe option if his experimen-
tation does not result in a success: If ¢; falls too low, the prospect for player i of being able
to achieve the single-player value vanishes, and he prefers resuming his own experimenting
as his belief p is above the myopic threshold p;;. Notice also that in this equilibrium the
player with the lowest prior is forced to experiment until his belief falls below the single-
player optimal threshold.

Case 3: py > qo are such that at ¢ > 0 satisfying ¢; = ¢y we have ¢; > Bi(p;).
Here player ¢ is so optimistic relative to player j that even when the belief about player
j’s risky option reaches the single-player threshold ¢y, the belief about player i’s risky
option is still above the boundary B(qy) and player ¢ strictly prefers activating his risky
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option to switching to the safe option. Player j then effectively plays a single-player game
and switches to the safe option when ¢ = ¢y. In this equilibrium, because of insufficient
competition for the safe option, there is no alternating and it is the initially pessimistic
player who captures the safe option once and for all.

5 Conclusion

Motivated by the question of how an agent optimally designs his strategic experimentation
when other agents in the market constrain the set of available alternatives, we propose a
simple model in which two agents will come to compete over the use of a common option.
We have normalised this option to be safe, although we expect the main finding of this
paper to hold even if it were risky: When competition for the common option is strong,
a player will interrupt his own experimenting and, with the aim of easing the opponent’s
pressure on the common option, force him to experiment more intensely. Even if this
does not succeed, the first player will eventually resume his own experimenting and leave
the common option for the opponent to take. This behaviour would be inefficient in the
absence of congestion.

The model we propose is simple enough to envisage various extensions. In this paper we
study the cases of extreme congestion in that the safe option can only go to one player at
a time, and no congestion at all (single-player game). We could extend it to allow for all
intermediate levels of congestion by adding a second common option delivering a certain
flow payoff b € [0, a] and varying its expected quality. Moreover, in this paper, we assume
that players observe one another’s actions and payoffs. Agents then always share their
beliefs about the likely success of each player’s experimenting. In future research it would
be interesting to investigate how agents behave if only actions are observed. Another
extension would be to allow the quality of the risky objects to be correlated across players.
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6 Appendix
A Single Player - Value Function

Consider states in which playing the risky option is optimal, so that V(p) = LEV (p) >
LSV (p). Using V(p') = V(p+dp) = V(p) +V'(p)dp = V (p) — p(1 — p)AV'(p)dt, we obtain
the following ordinary differential equation for the value function:

pA1—p) V'(p) + (pA+p) V(p) = pA —.

Solving, we obtain the solutions:

Velp) =p % +Cy(1—p) (%) §

where Cy is the constant of integration. For all Cy, Vio(p) is continuous and differentiable
at p € [0,1].

At p = 0, the risky option is known to be bad, so the expected payoff from activating it
is 0. Playing the safe option is therefore optimal at p = 0. At p = 1, the risky option is
known to be good, and plying the risky option is optimal.

Assume there exists some belief py, € (0,1) at which the player switches from the risky to

the safe option. By continuity of the value function we then have Vo (py) = LV (py) = .

(value-matching). This regime change is optimal if and only if Vi (py) = L5V'(py) = 0
(smooth-pasting). At py, LV (py) then constitutes a particular solution to the differential

equation above. We obtain:
pa

AMp+A—a)

which is indeed below p,, the myopic stopping belief. Finally, the constant of integration
P

pv =

is then Cy = “;11)';“//’\ (%) * | for which Ve (p) is increasing and convex on [py, 1].

We conclude that for p > py, playing the risky option is optimal and

p+A

A 1—p\*~ 5a— A
V(p)=p—+(1—p)( p) ( o ) oA
p D 1 —pv p Pv

a

while for p < py, playing the safe option is optimal and V(p) = 2.

Notice finally that the regime switch is indeed optimal, as for p € [0,1), V(p) > p %, the
payoff from never switching tot he safe option.
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B Irrevocable Exit - Planner Solution

Let W,(p,q) denote the partial derivative of W(p, q) with respect to p. Similarly for g.
Consider the states (p, ¢) € [0,1]? in which having both players activate their risky option
is optimal, so that W(p, q¢) = LEEW(p, q) > L¥W(p, q¢). We obtain the following partial
differential equation for the value function:

0 (PA + g\ + p) W(p,q) + pA(L — p) Wy(p, @) + g1 — q) Wy(p, q)
) =pA [% + V(q)} +gA [% + V(p)} .

As A

Letting W(s) = W(p(s), q(s)), where p(s) = % ,q(s) = #;o;*s and noticing

that %V = % W, + % W,, we obtain the following ordinary differential equations in for

W(s):
(10)
W) = (A + a9 -+) W) =~ | 2L 4 Via(o)) | = a9 |22 4 Voo

Notice that when integrating terms including V'(.) on the right-hand-side, the single-
player game threshold values py = q = % will come to matter. Solving, we obtain
the family of solutions for the value function:

We(s) = Hipls).als) + Hlals).p(s)) + - LA

where C};, is a constant of integration, and

A 1— a—M\
exrey(B) TR (25) T sy
Hiz,y) =4 @2 (y 55250+ (1 - y) ) v 2.
1-y a\ p
+a (1-y) ( y ) (A +p)(2A+p) (1*‘Igv) ’

For all Cs;,, We(s) is continuous and differentiable in s.

Let LESW(s) = L™W(p(s), q(s)) = max(p(s), q(s))% + 2. Consider the priors py > qo
both tending to 1. Then the payoff from letting both players activate their risky option
tends to % > %, and allocating both players to their risky option is optimal. Consider
the case in which both risky options are bad so that as long as both players experiment,
Vs >0, 1> p(s) > q(s) and as s — 0o, both p(s) > ¢(s) tend to zero. At that point, the
expected payoff from letting both players activate their risky option tends to 0 < % and

allocating one player to the safe option is optimal.
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Assume that there exists some date s,;, > 0 at which the planner finds it optimal to
irrevocably allocate the player with the lowest belief to the safe option. By the continuity
of W we then have We(sy;) = L™W(s);,) (value-matching), and the regime change is
optimal if and only if W (s);) = LW (sy;) (smooth-pasting). Then, at s, L#5W(s,;)
constitutes a particular solution to the differential equation above. The optimal switching
date s,3, solves, for p(s,;,) > q(sy;):

ap—p(sy) A (p Vigsy)) —a)
At p+p V() —p(sp) A —a)

q(sw) = 5 (

For all p(sy;,) € [0, 1] this equation admits solutions ¢(s3) € [gw, qv] so that V(q(sy;)) = §
and we obtain the expression in Lemma 3. The set of solutions is depicted in section 3.2
in the belief space (p,q) .

C Social Planner, Revocable Exit: Payoff from im-
plementing policy RS forever when p = q.

RS denotes the policy whereby the planner always allocates the player with the lowest
belief to the safe option, while the player with the highest belief experiments on the risky
option. In the states (p, ¢) where the beliefs of the two players are equal (p = ¢), the payoff
to the policy RS satisfies:

Alp) = adt + pAdt [%’ +(1- pdt)wq)}
(1 — pAdt)(1 — pdt) [adt + gAdt {% r(1- pdt)x/(p')}
(1= gAdt)(1 = pdt) A(p) |

where V (p) is the value function in the single-player game. Using p = ¢, p’ = p—pA(1—p)dt,
A(p') = A(p) — pA(1 — p)A'(p)dt and eliminating terms € O(dt?), we obtain the following
ordinary differential equation for A(p) :

2(pA 9 2 A
A(p) + (pA +p) B a [ +p

p) = + +Vi(p } .
pA(1 = p) ®) pAd—=p) (A=p) | p )

Notice that when integrating the right-hand side, because it includes the function V' (p),
the single-player threshold py will come to matter. Assuming that, if neither risky option

ever produces a success, the policy RS is played forever, i.e. until p — 0, at which point
A(0) = 2, we obtain the solution:

A(p) = e [ T(®)dp /p e I(@)dz g(z) da
0

T pA(1-p)’ A(l-p) * (1-p)

where f(p).fZ(p/\er) g(p) == 24—+ 2 [% + V(p)} and noticing that el 1] dw‘m 0 =0
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Solving, we obtain the following expression for A:

(o A (204+2p—Ap)
e e
Alp) = a (1 PARA20-Ap) ) | pA ((A2p—Ap) 4 pA | 2(a—dpv) Q( M) <
p (Fo) (A 2p) p U (2p) Odp) T ) PPV Y pv=Pp
a Pv A(2A—py A+2p) X pvA—2a Apy) 2
+ (Epvm—p)(]ivup)p + B ) (e pv, 555))

where Q(p, ¢, ) = 75 <%%q> and py is the optimal stopping belief in the single-player

game. []

D Social Planner, Revocable Exit

In this section we describe the steps to derive the set of threshold beliefs in the planner
problem with revocable exit, as illustrated in Figure 2The method resembles the one used
in Appendix B to derive the set of threshold beliefs in the planner problem with irrevocable
exit. For all (p, ¢), the Bellman equation (3) for the planner’s problem becomes

U(p, p) = max{ L™ U(p, p), L' U(p,p)}

where LESU (p, p) = <1 — (ﬂi) ﬁ) <% +p %) + <ﬂL) * A(q), and L™EU(p, p) solves

q 1-p q 1-p
the ordinary differential equation (10), which is the ODE for W in the social planner prob-
lem with irrevocable exit. In Appendix B we have derived the family of solutions W to
that ODE. We obtain the boundary in Figure 2by assuming that there exists some date
sy after which the planner finds it optimal to follow the policy RS forever, so that we can
consider LU (p(sy), q(sy)) as a particular solution to ODE (10). Solving for s;; we then
obtain the boundary in (p,q) space depicted in Figure 2.

As is clear from that figure, for A > 0 (where A is the time interval over which the plan-
ner allocated the options in our discrete-time approximation) the planner will alternate
between policies RS and RR, for instance for priors 1 > py > qo > 0. But as A — 0,
the planner will play so as to stay indifferent between RS and RR, and the state moves
“along” the boundary in Figure 2.0ur value-matching and smooth-pasting conditions are
then in fact identifying an interval of dates over which the planner “alternates” so as to
be indifferent between allocating the pessimistic player to the safe option or to his risky
option over any time interval dt.

Finally, when p = ¢, the threshold belief p;; = ¢y, satisfies

(11)

2(A+p)
2,2 (1= PO
a(A+p)(A+20) — (@ = N, (GRepss) © =
(tp)
puA (20\ +p—a)(A+p) +puda+p)+ (A +2p)2(a — Apy) 2t (—1"’” e ) ’ ) .

pu l—pv
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E Lemma 6

Assume by way of contradiction that there exists and interval of time [t,¢ + dt), dt > 0,
on which player ;7 plays S and R both with positive probability, and player i is indifferent
between S and R. Then

L™W(p, q, K (p,q)) = pAdt (1 + e—pdt%)

+(1 — pAdt) ((1 — K (p,q)) P2

+k (p,q) e [qAdtV (p') + (1 — gAdt) LW (', ¢ (', ¢))] ).

For dt — 0 this condition becomes
A , A ‘ ,
L™W(p,q, K (p,q)) = (1 — K (p.q)) p o K (p,q) L"W(p,q, K (p,q))

For k%(p, q) # 1 this holds if and only if L*W(p, q,k’(p,q)) = p %. Then

: , a
L'W(p, ¢, K (p, ) = LW(p, ¢, K’ (p,)) < p = 7
The player is then only indifferent between his two actions when his belief is equal to he
myopic belief, i.e. at one particular date, but not over an interval of time dt > 0. [

F Proof of Theorem 1

In what follows, fix an arbitrary initial state (po,qo) such that py > qo, pyr < po < 1,
gu < qo < 1. We will now derive an expression for the expected discounted utility of
player ¢ when both player ¢ and j play their risky options from date t = 0 to date t = 7
and player j exits at 7.

When both players play their risky options (ki = k! = 1), let w(p, q) denote L*™W(p, ¢, 1),
player ¢’s utility from playing R, and w,(p, ¢), wy(p, q) its partial derivatives with respect
to p and ¢ respectively. V(.) denotes the single-player value function. Simplifying Equation
4, w(p, q) satisfies:

(PA+ A+ p) wip, @) +pA(L = p) wp(p 4) + A1 = 9) wy(p. 9)
= pA % + g\ V(p).
Letting @(s) := w(p(s), ¢(s)), and noticing that 42 = %y, + %y, we obtain the following
ODE for w(s):
/(s) + f(s)ils) = g(s),
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with
1 F5) = — (A + ar + p),
g(s) == —pA )‘—;\FB —qA V(p).

Solving this ODE using definite integration, for 7 > 0, we obtain the solutions:
w(0;7) = w(r) el /T —/ el 18 () ds.
0

Solving explicitly, we obtain:

Ap
W(0;7) = e P (poe™ + 1 —po)(goe " + 1 — qo) [@(7) —p5 = K prgs (1;’*) ’ }
Ap

— A
+ po% + K poqo (ﬂ) )

po

with K = % (%) % and py denoting the single-player optimal exit belief.
Because we assumed that pyy < po < 1, qu < qo < 1, w(0) is a strictly increasing
function of w(r). If player j exits at date 7, then for some arbitrary A > 0,

e if player 7 exits at 7 + A, then @(7) = pT%,

+(1_L) pT)\

e if player 7 exits at 7, then w(7) = 25

a
p
e if player i exits at 7 — A, then w(r — A) = % and in the limit, as A — 0, w(7) — %

For € (0,1), the order of magnitude of these terms depends solely on the position of
p- relative to the myopic exit belief, py;. Player ¢ is only indifferent between these three
options when p, = py,.

When p, > py, player ¢ strictly prefers letting player j occupy the safe option and being
stuck on his risky option forever, to occupying the safe option himself. So there can be
no equilibrium in which player ¢ switches to the safe option with certainty at 7/ such that

D > DM-

When p, < py, player i is strictly better-off anticipating player j’s move to the safe
option, and letting the other player switch to the safe option is never a best response for
player i on that support. There can therefore be no equilibrium? in which a player switches
to the safe option with certainty in state (p, q) such that p < pas, ¢ < qur, since the other
player would respond by “undercutting” him.

"Unless the other player exits at a date such that player 4 is indifferent, or strictly prefers staying on his
risky option. In that case, regardless by the exit date prescribed by his strategy, he never gains access to
the safe option, so the allocation is not sensitive to his exit date. Having noticed this kind of multiplicity
of equilibria, we henceforth only consider equilibria in strategies that are not weakly dominated.

34



Notice furthermore that the term

+p
—pT —AT —\T a A 1_p7' kS
e " (poe " 4+ 1 —po)(qoe™ + 1 — qo) [;—pT;—KquT( ) ]

and therefore w(0), are strictly increasing in 7 for p, > py (they are maximised when
br = pV)

One implication is that, conditional on exiting before player j, player ¢ then maximises
his utility with respect to his exit date. If p, < py, player ¢ optimally switches to the safe
option at date 7" < 7 such that p,» = py. If on the other hand py; > p, > py, then player
1 would like to exit at the latest possible date preceding player j’s exit. In discrete time,
this strategy would be unambiguous: player ¢ would exit at date 7 — 1. In continuous time
however, it only exists if player j’s strategy is right-continuous® in p (left-continuous in
time) so that an optimal exit date for player i does exist: max{t e R: 0 <t <71} = 7.
If player j’s strategy is left-continuous® in p (right-continuous in time), then player i al-
ways benefits from postponing his exit by some infinitesimal dt, and his optimal exit date,
max{t € R:0 <t < 7}, does not exist.

For the remainder of the argument we consider the three generic cases illustrated in the
figures in section 4.1.

Case 1: py = qp. Following the arguments above, the only equilibrium is for both players
to play their risky option when p > pj; and to switch to the safe option in state p = pay;.

) 1 ifp> . 1 ifg>
k(p7Q)CASE1:{O if§<gg ,k](p,q)cASE1={0 ifg<€qu\1\j

They then face a tie-break in which either player is allocated the safe option with positive
probability. If player ¢ gains access to the safe option, the belief about his risky option
remains pys forever, while the belief about player j’s risky option gradually decreases (all
the way to zero, if the option is bad.)

Case 2: py > qo and such that when p, = py, ¢ > qy. Following the arguments
above, player ¢ will only optimally move to the safe option if his belief is p,s, and he is
indifferent between being allocated either option forever. As noted above, for player j to
have a best response, player i’s strategy must be right-continuous in p.

Assume this were not the case and player i played S, then anticipating player i’s switch
by some positive time-interval A > 0 would be a profitable deviation for player j. There

7 1 iprpr
K= { gy gD
i 1 ifp>p7'

9k(p,q)={0 i p < p.
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would, however, be no best response (in continuous time), as player j would prefer antici-
pating player ¢’s exit by % rather than A. In equilibrium, player ¢ plays R when p = py,
and player 7 is best-responding by switching to the safe option at p = py,.

We therefore have that

i 1 ifp> - 1 ifp >
k<p’Q)CASE2:{0 if£<§]\]\j 7k](p,q)cASE2={0 if§<%

In that case, player j, who is more pessimistic than player 7, is allocated the safe option
with certainty, and the belief about his risky option remains constant forever, while the

belief about player ¢’s risky option gradually decreases (all the way to zero, if the option
is bad.)

Case 3: pg > qo and such that when p, = pys, ¢ < qy. As in Case 2, and excluding
strategies that are weakly dominated, player ¢ will only optimally move to the safe option
if his belief is py;. This means that in states (p,q) such that p > py, ¢ > gy, player j
essentially plays a single-player game, and he optimally switches to the safe option when
q = qv. Because the belief about player i’s risky option is above the myopic player’s exit
belief, player 7 finds it optimal to let player j occupy the safe option, and the equilibrium

1S
i 1 ifp> . 1 ifg>
k (p7Q)CASE3: { 0 1f£<£g ) kj(p7Q)CASE3: { 0 1fZ<ZZ

Arguing similarly for states py > qo, we complete the equilibrium strategies of both play-
ers, and establish the result of Theorem 1. [J

G Proof of Theorem 2

We derive the MPE of the game with revocable exit. The proof will proceed as follows:
we first derive an expression for the utility to player ¢ from playing his risky option until
some date 7 at which player j exits. It is increasing in the continuation utility at date 7.
We then show as a first step that to maximise this continuation utility agents will have
incentives to preempt one another’s exit for a set of states which we define in Section G.1
below. As a second step we then fully characterise the agents’ equilibrium best-response
correspondences.

We will first derive an expression for the expected discounted utility of player ¢ when
both player ¢ and j play their risky options from date t = 0 to date ¢ = 7 and player j exits
at 7. Fix an arbitrary initial state (po, qo) such that py > qo, Py K po < 1, qu < qo < 1.
Notice that for k7 = 1, LEU(p, ¢; 1) solves the same differential equation as LEW(p, ¢; 1)
in the previous appendix. We let u(p,q) denote LU(p,q;1) and a(s) := u(p(s),q(s)).
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Replicating the solution from Appendix F we obtain:

pr

Atp
u(0;7) = e (poe™ + 1 —po)(qoe™ + 1 — qo) [ﬁ(r) —pr2 — K prge (1‘p7> ’ ]
Atp

+po%+KPOQO (171)0) ’ ;

Po

with K = % <%> X% and py denoting the single-player optimal exit belief.

Because we assumed that pys < po < 1, qur < qo < 1, the utility to player ¢ of staying on
his risky option until player j switches to the safe option, u(0,7), is a strictly increasing
function of u(7), the continuation utility at date 7.

G.1 Unraveling

As a first step, we compare continuation utilities to show that in states (p,q) such that
p < B(q) and ¢ < B(p) where B is defined in equation 8. Players will have incentives to
preempt one another’s exit and there will be unraveling of the exit decision.

1: [T L=
0LEF .
s [
=1
A Blg)
0.2 AV
0.0 b By JFu
0.0 0.2 0.4 0.5 0.2 1.0
£

We now compare continuation utilities to show that in states (p, q) such that p < B(q)
and ¢ < B(p) players will have incentives to preempt one another’s exit, and there will be
unraveling of the exit decision. If player j exits at date 7, then for some arbitrary A > 0,

e if player 7 exits at date 7 + A, then @(7) = R, (p(7), q(7)) where z takes the value 0
or 1 when ¢(7) < qp or > qpr respectively.

e if player i exits at date 7 — A, then a(r — A) = S(p(7 — A),q(7 — A)) and in the
limit, as A — 0, (1) — S(p(7),q(7)),
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e if player ¢ exits a 7 he faces a tie-break.

Similarly for player j when 7 is player i’s exit date. So a player is better-off anticipating
his opponent’s exit whenever S(p(7),q(7)) > R.(p(7),q(7)). In the following, we drop the
exit date 7 and just concentrate on the states (p,q) to show that there will be unraveling
of the exit decision.

In states {(p,q)|p < py} switching to the safe option is (weakly) dominant for player
1. This trivially follows from the single-player game. Similarly for player j in states

{(p,d)lqg < av}

Consider the states {(p,q)|q¢ < qv,p > pv}. If player i occupies his risky option, player
7 will occupy the safe option and stay on it forever, so the payoff to player i of occupying
his risky option is Ry(p, q) := p%. If player ¢ occupies the safe option until player j’s option
produces a success, player i’s payoff is S(p, q) := % +q ﬁp [V(p) — %} :

Player i’s continuation utility is then maximised by also switching to the safe option
as long as S(p,q) > Ro(p,q) < p < By(q). Otherwise player i prefers being forced to

experiment forever.

Consider the states {(p,q)|lpv < p < pam,qv < ¢ < qu}. Here the unraveling of the
exit decision will start as players have incentives to preempt one another’s exit: If player
i switches to the safe option in state (p,q) with p \, py, player j’s continuation payoff
from staying on his risky option is Ry(g, p) while his payoff from preempting player i’s exit
by some A > 0 tends to S(q,p) as A — 0 so that player j prefers preempting as long as
S(q,p) > Ro(q,p) < q < By(p). The converse argument holds for player i, establishing
the unraveling in that set of states.

Consider the states {(p,q)|pv < p < pa,qu < q < Bo(pv)}. Player j has an incentive
to preempt player i’s exit as long as S(¢,p) > Ro(q,p) < ¢ < By(p) even though,
since ¢ > qur, player 7 will eventually return to his risky option if player i’s belief falls
too low. In that case player ¢ has an incentive to preempt player j’s exit as long as
S(p.q) > Ri(p,q) < p < Bi(q).

Similarly for player j in states {(p, ¢)|py < p < Bo(qv),qv < q < qur}-

Finally consider the states {(p, ¢)|pp < p < Bo(qv),qu < q¢ < By(pv)}. Here any player
who occupies the safe option eventually leaves it if his opponent only produces unsuccessful
trials. There is unraveling of the exit decision as long as S(p,q) > Ri(p,q) < p < Bi(q)
and S(q,p) > Ri(q,p) < q < Bi(p).
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G.2 Equilibrium

This series of steps in Section G.1 establishes that there can be no equilibrium in which
a player exits with certainty at date 7 such that (p(7),q(7)) satisfy p(7) < B(q(7)) and
q(1) < B(p(1)). We now argue that in equilibrium, there can be no exit at date 7 such
that p(7) > max(py, Bo(q(7))) and ¢(7) > max(qy, Bo(p(7))): if player i exits at date 7
satisfying the conditions above, then player j prefers letting j occupy the safe option than
facing him in a tie-break or preempting him.

Notice furthermore that the term

Ap
—pT —AT — AT )\ 1 — P By
e (poe + 1= po)(goe " + 1= qo) | S(prar) = -~ = K prgs ( T) ] :
p br
and therefore @ (0 : 7), are strictly increasing in 7 for p, > py (they are maximised when
pr = pv). Then because if player j were not preempting player i at date 7, player ¢ would
have an incentive to postpone his exit by some dt.

In fact, conditional on exiting before player j, player ¢ aims to maximise his utility with
respect to his exit date. If p, < py, player ¢ optimally switches to the safe option at date
7' < 7 such that p,, = py. If on the other hand p, > py, player i tries to exit as shortly
as possible before player j. This maximisation only has a solution if player j’s strategy is
right-continuous in p, as explained in the previous appendix.

For the remainder of the argument we consider the three generic cases illustrated in the
figures in section 4.2.

In all cases, following the argument in Section G.1,

. L ifp<py N 1 ifg<qy
Kpq) =< 1 ifq<qy, p<Bolqg) , F(p,q)=< 1 ifp<pv, ¢ < By(p)
0 if ¢ <gqv, p> Bolq) 0 if p<pv, ¢> By(p)

Case 1: py = qo. Following the arguments above, the only equilibrium is for both players
to play their risky option when p > py and to switch to the safe option in state p = py.

7.3 1 ifp> — . 1 ifg>
k (p7Q)CASE1 :{ O 1f£<23 5 kj(pvq)CASEl :{ O 1f3<33

They then face a tie-break in which either player is allocated the safe option with positive
probability. If player 7 gains access to the safe option, the belief about his risky option
remains py. If player j’s experimenting produces a success, player ¢ immediately reverts to
the single-player optimal strategy and achieves utility V' (py). If player j’s experimenting
remains unsuccessful after oV periods player i prefers returning to his risky option, thus
freeing the safe option of player j who then occupies it forever.
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Case 2: py > qp are such that at ¢ > 0 satisfying ¢, = B;(p;) we have ¢, > qy.
Following the arguments above, player i moves to the safe option in a state such that player
7 is indifferent between facing him in a tie-break or staying on his risky option and being
forced to experiment temporarily. As noted above, for player ¢ to have a best response,
player j’s strategy must be right-continuous in p. We therefore have that

7 1 ifp>RB _ 1 ifp>RB
o[ 2300 w3 1280

In that case, player ¢, who is more optimistic than player j, is allocated the safe option
with certainty. Then the game proceeds as in Case 1.

Case 3: py > qo are such that at ¢t > 0 satisfying ¢, = q we have ¢, > By(p;). Here
as long as ¢; > qy, pr > B(q) and player ¢ has no incentive to occupy the safe option.
Player j then essentially plays a single-player game and he optimally switches to the safe
option when ¢ = gy and player ¢ finds it optimal to let player 5 occupy the safe option.
The equilibrium, excluding weakly dominated strategies, requires

i 1 iftp > B = 1 ifg>
k(p’q)CASE:%:{ 0 ifi<BgEg; 7k](p7Q)CASE3:{ 0 if3<i]]\‘i

Then player j occupies the safe option with certainty and never switches back to his
risky option. Arguing similarly for states py > qo, we complete the equilibrium strategies
of both players, and establish the result of Theorem 2. [
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