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Abstract

This paper studies supermodular mechanism design in environments with finite

type spaces and interdependent valuations. In such environments, it is difficult to im-

plement social choice functions in ex-post equilibrium, hence Bayesian Nash equilibrium

becomes the appropriate equilibrium concept. The requirements for agents to play a

Bayesian equilibrium are strong, so we propose mechanisms that are robust to bounded

rationality and help guide agents towards an equilibrium. In quasi-linear environments

that allow for informational and allocative externalities we show that any mechanism

that implements a social choice function can be converted into a supermodular mecha-

nism that implements the original social choice function’s decision rule. We show that

the supermodular mechanism can be chosen in a way that minimizes the size of the

equilibrium set and provide two sets of sufficient conditions: for general decision rules

and for decision rules that satisfy a certain requirement. This is followed by conditions

for supermodular implementation with a unique equilibrium.
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1 Introduction

For the mechanism designer that wants to create contracts, taxes, or other institutions

with a certain objective in mind there is a trade off between the simplicity of the

mechanism and ensuring that all possible equilibria yield a desired outcome. Why would

agents immediately play the right equilibrium or how could they play an equilibrium of

a game they do not fully understand? The question of equilibrium play in mechanism

design combines the multiple equilibrium problem and the concern about bounded

rationality of players. While there are mechanisms that solve the first issue, there are

hardly any that address departures from full rationality.

Supermodular mechanism design is a tool that is equipped to handle both the mul-

tiple equilibrium problem and departures from full rationality. In these mechanisms,

agents’ strategies are complements, meaning that an agent wants to take a higher

strategy when others do the same. In view of Milgrom and Roberts (12), supermodular

mechanisms have extremal equilibria, and the interval in between gives the amplitude of

the multiple equilibrium problem. Using this interval, it becomes possible to minimize

the multiplicity problem, to measure it, and sometimes to solve it. This paper describes

how to build supermodular mechanisms where this interval, and so the multiplicity

problem, are minimized in an environment with finite type spaces and interdependent

valuations.

Supermodular mechanisms are robust to boundedly rational behaviors. The interval

between the extremal equilibria contains all the iteratively undominated strategy pro-

files, and all the limit points of adaptive and sophisticated learning dynamics (Milgrom

and Roberts (12) and (13)).1 These theoretical properties are corroborated by strong

experimental evidence, showing how convergence to the equilibrium is significantly bet-

ter for supermodular games (Chen and Gazzale (3), Healy (7), Chen and Plott (1) and

Chen and Tang (2)). As such, supermodular mechanisms have very desirable proper-

ties in terms of convergence and learning when agents are not at equilibrium. There

are many examples where supermodular mechanisms could be used to approach an ob-

jective through iterations: A principal designing supermodular contracts to approach

revenue maximization, a government applying a supermodular tax system to approach

the efficient public goods level, the traffic authorities setting up toll-systems (Sandholm

(14) and (15)) to minimize congestion, etc.

Supermodular games are also attractive in an implementation framework, because

their mixed strategy equilibria are locally unstable under monotone adaptive dynamics,

such as Cournot dynamics and fictitious play (Echenique and Edlin (6)). Ruling out

mixed strategy equilibria is common in implementation theory and often arbitrary; but

1Vives (16) reports a related result for learning à la Cournot.
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it is sensible in supermodular implementation. To the contrary, many pure-strategy

equilibria are stable. In a parameterized supermodular game, all equilibria that are

increasing in the parameter are stable, such as the extremal equilibria (Echenique (5)).

In environments with finite type spaces and interdependent valuations it is diffi-

cult to implement social choice functions in ex-post equilibrium, hence Bayesian Nash

equilibrium becomes the appropriate equilibrium concept. The requirements for agents

to play a Bayesian equilibrium are strong. Thus, the good learning and convergence

properties of supermodular mechanisms are especially valuable in this context, as they

ensure robustness to bounded rationality and help guide agents towards an equilibrium.

A mechanism for which truthful revelation is ex post incentive compatible is robust

to relaxations of the assumption that agents’ information is exogenous. Agents have

incentives to try to learn about the opponents’ private information only if there are

some profiles of opponents’ types for which it is optimal to misreport one’s own type, i.e.

when truthtelling is not an ex post Nash equilibrium. While being a desirable property,

ex post incentive compatibility is rarely a feasible one. In particular, in the case of

interdependent valuations, when each agent’s valuation depends not only on his private

information but also on the private information of his opponents, truthful revelation

is ex post incentive compatible only under very restrictive assumptions (Cremer and

McLean (4)).

Most of the literature on mechanisms for which truthtelling is ex post incentive com-

patible focuses on the case of single dimensional private information (see McLean and

Postlewaite (9) for a good summary of the literature). Jehiel et al. (8) indeed show that

this assumption is necessary for truthful revelation to be an ex post equilibrium. Mul-

tidimensional private information in the context of interdependent valuations makes ex

post incentive compatibility attainable only for trivial outcome functions.Therefore, in

interdependent value environments, there is hope for truthtelling ex post equilibria only

in the case of one-dimensional private signals, which is a substantial restriction in many

settings. Since only trivial allocation rules that choose the same alternative irrespec-

tive of agents’ signals (announcements) are ex post implementable in generic mechanism

design settings with multidimensional signals and interdependent valuations, Bayesian

implementation plays a very important role in these environments.

In quasi-linear environments we apply the theory of supermodular mechanism design

to the case of finite type spaces and interdependent valuations. In this setting many

social choice functions can be implemented with a supermodular mechanism without

any additional assumptions on the valuation functions. The result is established by

turning an existing mechanism into one that induces a supermodular game by adding

a function to each agent’s transfer, as proposed by Mathevet (11). We show that

the supermodular mechanism can be chosen in a way that minimizes the size of the
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equilibrium set and provide two sets of sufficient conditions: for general decision rules

and for decision rules that satisfy a certain requirement. This is followed by conditions

for supermodular implementation with a unique equilibrium.

2 Finite Supermodular Design: The Framework

Consider n agents, each endowed with quasilinear preferences over a set of alterna-

tives. The set of players will be denoted by N . An alternative is a vector (x, t) =

(x1, . . . , xn, t1, . . . , tn), where xi is an element of a compact set Xi ⊂ R and ti ∈ R for

all i ∈ N . In this environment, xi is interpreted as agent i’s allocation and ti is the

money transfer i receives. Each agent i has a finite type space Θi and information is

incomplete. There is a common prior with density φ on Θ known to the mechanism

designer. Types are assumed to be independently distributed, and φ has full support.

Each agent i’s preferences over alternatives are represented by a bounded utility func-

tion ui(x, ti, θ) = Vi(x, θ) + ti, where Vi : Xi × Θi → R is referred to as i’s valuation.

This formulation allows for allocational externalities, as Vi depends on all dimensions

of the allocation x, rather than just on xi. It also captures the case of informational

externalities (interdependent valuations) since the valuation function of agent i depends

not only on his own type θi, but also on the true types of his opponents, which are not

observed by i.

A mechanism designer wishes to implement an allocation for each realization of

types. This objective is represented by a decision rule x : Θ 7→ (xi(θ))i. To this end,

the designer sets up a transfer scheme ti : Θ → R for each i. A mechanism is denoted

by Γ = ({Θi}, (x, t)) and it describes the strategic situation into which agents are put.

Agents are asked to announce a type, and from the vector of announced types, an

allocation and a transfer accrue to each agent.2 The pair f = (x, t) is called a social

choice function. We adopt the conventional notation where θ̂i is i’s announced type,

θ̂−i is the announced types of i’s opponents, and θ̂ denotes the announced types of all

players. The (ex-post) utility function of player i in Γ is uΓ
i (θ̂, θ) = Vi(x(θ̂), !a) + ti(θ̂).

A pure strategy for agent i under incomplete information is a function θ̂i : Θi → Θi

that maps true types into announced types. Strategy θ̂i(·) is called a deception. Agent

i’s (ex-ante) utility function in Γ is UΓ
i (θ̂i(.), θ̂−i(.)) = Eθ[u

Γ(θ̂(θ), θ)].

This paper is concerned with supermodular mechanisms. To define these mecha-

nisms, several definitions are in order. Given two partially ordered sets Y and Z, a

function g : Y ×Z → R such that g : (y, z) 7→ g(y, z) has increasing (decreasing) differ-

ences in (y, z) if, whenever y ≥ y′ and z ≥ z′, g(y, z)−g(y′, z) ≥ (≤)g(y, z′)−g(y′, z′); g

satisfies the single-crossing property in (y, z) if, whenever y ≥ y′ and z ≥ z′, g(y, z′) ≥
2Most of the paper is concerned with direct mechanisms.

4



g(y′, z′) implies g(y, z) ≥ g(y′, z) and g(y, z′) > g(y′, z′) implies g(y, z) > g(y′, z). If g

has decreasing differences in (y, z), then variables y and z are said to be substitutes. If

g has increasing differences or satisfies the single-crossing property in (y, z), then y and

z are said to be complements.

A game is a tuple (N, {Si, ui}) where N is the finite set of players; each i ∈ N has

a strategy space Si, and a payoff function ui :
∏

i∈N Si → R. Generic element of Si are

denoted si, and s−i = (s1, . . . , si−1, si+1, . . . , sn). Subsets of the real line are endowed

with the Euclidean topology.

Definition 1 A game G = (N, {Si, ui}) is supermodular if for all i ∈ N ,

1. Si is compact;

2. ui is bounded, and has increasing differences in (si, s−i);

3. ui is upper-semicontinuous in si for each s−i, and continuous in s−i for each si.

There are three stages at which it is relevant to formulate the game induced by

mechanism Γ: Ex-ante, interim and ex-post (complete information). Let G(θ) =

(N, {Θi, u
Γ
i (·, θ)}) be the game induced by mechanism Γ ex-post. Let G = (N,{ΘΘi

i , U
Γ
i })

be the ex-ante Bayesian game induced by Γ. Among these three formulations of the

game, the paper considers supermodularity at the ex-post level, because this is the

strongest requirement. If the ex-post game is always supermodular, then the game will

be supermodular in its ex-ante and interim formulations.

Definition 2 A social choice function f = (x, t) is (truthfully) supermodular imple-

mentable if truthtelling, i.e. θ̂i(θi) = θi for all i, is a Bayesian equilibrium of G and if

G(θ) is supermodular for each θ.

For all i ∈ N let >i= (>1
i , >

2
i ) be a pair of ordering relations such that >1

i generates

a complete order on Θi and >2
i completely orders Θ−i = ×j 6=iΘj. The product order

on Θ−i, obtained from the orders >1
j , j 6= i, is denoted by >−i. Notice that complete

orders exist for all sets Θi, because types are finite.

Definition 3 An order >2
i is said to be consistent with the product order >−i on Θ−i

if whenever θ′−i and θ′′−i are ordered under the product order >−i, they are ordered in

the same way under >2
i .

Note that while >2
i is completely consistent with the product order, it also orders

elements that are unordered under the product order.

Definition 4 A profile of orders (>1, >2) = (>1
i , >

2
i )i∈N is consistent if for all i, >2

i is

consistent with the product order >−i on Θ−i.
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3 Minimal Supermodular Implementation

3.1 A General Result

The starting point of the analysis is the class of supermodular implementable social

choice functions. Corollary 1 in Mathevet (2010) states that when type spaces are finite,

for any valuation functions, if the social choice function f = (x, t) is implementable,

then there exist transfers tSM such that (x, tSM) is also supermodular implementable.

Therefore, the class of supermodular implementable social choice functions is the

same as the class of implementable social choice functions. Transfers are pivotal to this

result: It is always possible to add complementarities through the transfers without

affecting the interim expected utility in equilibrium. It is also worthwhile pointing

out that if the initial social choice function satisfies ex ante or interim participation

constraints, then so does (x, tSM).

Definition 5 Define the ordering relation �ID on the space of transfer functions such

that t̃ �ID t if for all i ∈ N and for all θ′′i >
1
i θ
′
i and θ′′−i >−i θ

′
−i, t̃i(θ

′′
i , θ
′′
−i)− t̃i(θ′′i , θ′−i)−

t̃i(θ
′
i, θ
′′
−i) + t̃i(θ

′
i, θ
′
−i) ≥ ti(θ

′′
i , θ
′′
−i)− ti(θ′′i , θ′−i)− ti(θ′i, θ′′−i) + ti(θ

′
i, θ
′
−i).

Note that while the relation �ID is transitive and reflexive, it is not antisymmetric.

Denote the set of �ID equivalence classes of transfers by T .

The next proposition is equivalent to Proposition 2 in Mathevet (2010). It provides

the basis for the definition of minimal implementation. It shows that if a transfer func-

tion t′′ generates more complementarities than a transfer function t′, and both induce a

supermodular game, then the game induced by t′′ has a larger interval prediction than

the interval prediction of the game induced my t′. This implies that the objective of

minimizing the equilibrium set coincides with the objective of minimizing the comple-

mentarities introduced by the transfers, while maintaining the supermodularity of the

game.

For any t ∈ T and supermodular implementable social choice function f = (x, t),

let θ̄t(·) and θt(·) denote the extremal Bayesian equilibria of the game induced by the

mechanism.

Proposition 1 For any supermodular implementable social choice functions (x, t′′) and

(x, t′), if t′′ �ID t
′, then [θt

′
(·), θ̄t′(·)] ⊂ [θt

′′
(·), θ̄t′′(·)].

Since the equilibrium interval grows with the complementarities of the transfers, a

social choice function f = (x, t∗) will be minimally supermodular implementable if the

transfers t∗ generate the weakest possible complementarities while ensuring supermod-

ular implementation. This gives the tightest equilibrium prediction around the truthful

equilibrium.
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3.2 Minimal Implementation under a Given Order

Supermodularity is defined on the product order >−i for every i ∈ N . However, in

order to define minimal implementation, we have to define families of transfers within

T that are comparable on a more refined level than supermodular implementation on

>−i. In particular, we look at families of t ∈ T that ensure supermodularity on the

complete order >2
i for every i ∈ N .

Definition 6 Let F(x,>2) be the family of transfer functions t such that t ∈ F(x,>2)

if (x, t) is supermodular implementable and (>1, >2) is consistent.

For ease of exposition we will suppress the dependence of F on x and will instead

write F(>2) in subsequent uses of the notation.

Definition 7 A social choice function f = (x, t∗) is minimally supermodular imple-

mentable over a family F(>2) if it is supermodular implementable and t �ID t
∗ for all

transfers t ∈ F(>2).

The following theorem establishes the minimal supermodular implementability re-

sult under a specific profile of complete orders.

Theorem 1 Assume a consistent profile of orders (>1, >2). If f = (x, t) is imple-

mentable, then there exist t∗ such that (x, t∗) is minimally supermodular implementable

over a family F(>2).

The conclusion of the theorem is quite powerful. It says that any implementable

social choice function can be minimally supermodular implemented. Notice that there

are no further restrictions on the decision rule x. There are many possible transfers that

can transform an implementable mechanism into a supermodular implementable mech-

anism for a given profile of orders. Among these, the transfers t∗ are the best possible

transfers in terms of minimizing the equilibrium set such that (x, t∗) is supermodular

implementable.

Since there are finitely many types, there are also finitely many (consistent) profiles

of orders (>1, >2). The following corollary states that there exist transfers that give

the smallest equilibrium set among the class of transfers that minimally supermodular

implement a decision rule x. Therefore, those are the transfers that give the smallest

equilibrium set over all transfers that supermodular implement a social choice function

f = (x, t).

Corollary 1 If f = (x, t) is implementable, then there exist t∗∗ and an order profile

>∗ such that (x, t∗∗) is minimally supermodular implementable under >∗ and gives the

smallest equilibrium set among all minimally supermodular implementable (x, t∗).
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3.3 Minimal Implementation with Order Reducibility

So far no restrictions have been imposed on the decision rule x of the implementable

social choice function f = (x, t), which constitutes the starting point of most of the

results in this paper. In the previous section we required that supermodularity be

satisfied over a complete order of the opponents’ type space. Finding the overall best

transfers called for the consideration of many different consistent orders and many

“smallest boxes”, so that the t that ensures the overall smallest box could be chosen.

This section looks at which decision rules can be minimally supermodular imple-

mented without imposing any particular complete order on the opponents’ type space

Θ−i, except for the usual product order. In environments with finite type spaces, all

implementable social choice functions whose decision rule satisfies a certain condition

on the are minimally supermodular implementable. This condition, which we refer to

as “order reducibility” is defined as follows.

Definition 8 A decision rule x : Θ → (xi(θ)) is order reducible if, for each i ∈ N

there are increasing functions ri : Θ−i → Ri such that Ri is completely ordered, xi(θ) =

xi(θi, ri(θ−i)), and if r′′i is the successor of r′i in Ri, then r′′i = ri(θ
′′
i ) and r′i = ri(θ

′
i)

where θ′′−i is a successor of θ′−i in Θ−i.

This condition is trivially satisfied when there are only two players. In the case of

more than two players, order reducibility requires that elements of Θ−i that are not

comparable between each other according to the product order >−i get grouped with

elements that are comparable to each other according to the product order or in a group

of their own that is consistent with the product order. This ensures that we have a

mapping between the product order >−i on Θ−i and the complete order on Ri that is

consistent with the product order. However, rather than completely ordering all the

elements of Θ−i, the complete order on Ri puts them into groups that are consistent

with the product order, but allow for more elements to be compared.

At this point we need a definition of minimal supermodular implementability that

does not rely on a complete order on Θ−i.

Definition 9 A social choice function f = (x, t∗) is minimally supermodular imple-

mentable if it is supermodular implementable and t �ID t
∗ for all transfers t ∈ T such

that (x, t) is supermodular implementable.

Theorem 2 Let f = (x, t) be a social choice function where x is order reducible. If

f is implementable, then there exist t∗ such that (x, t∗) is minimally supermodular

implementable.
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4 Uniqueness

In this section we provide sufficient conditions for unique supermodular implementa-

tion, which implies that truthtelling is the only possible equilibrium. This is a natural

extension of the preceding discussion on minimizing the interval prediction. In the

case of a unique equilibrium, the induced game is dominance solvable and all learning

dynamics converge to the equilibrium.

Before providing the results, some definitions and notational simplifications are in

order. Player i’s interim utility at type θi against θ−i is denoted as

ui(θ̂i, θ̂−i, θi) = Eθ−i
[Vi(x(θ̂i, θ̂−i), θ) + ti(θ̂i, θ̂−i)].

Define for any θ̂′′i >
1
i θ̂
′
i

∆ui(θ̂−i, θi) = ui(θ̂
′′
i , θ̂−i, θi)− ui(θ̂′i, θ̂−i, θi)

and

∆Vi(θ̂−i, θ) = Vi(x(θ̂′′i , θ̂−i, θ)− Vi(x(θ̂′i, θ̂−i, θ).

Since there are finitely many types, there are numbers Kj
i (θi) and γi(θ−i) such that for

all θ̂′′−i >
1 θ̂′−i

∆ui(θ̂
′′
−i, θi)−∆ui(θ̂

′
−i, θi) ≤ di(θ̂

′′
i , θ̂
′
i)
∑
j 6=i

Kj
i (θi)Eθj [dj(θ̂

′′
j , θ̂
′
j)]

and for all θ′′i >
1
i θ
′
i

∆Vi(θ̂−i, θ
′′
i , θ−i)−∆Vi(θ̂−i, θ

′
i, θ−i) ≥ γi(θ−i)di(θ̂

′′
i , θ̂
′
i)di(θ

′′
i , θ
′
i).

Denote the truthful strategy by θ̂Ti (·). Assume the prior is full support. Let

εi = min
{θ̂i(·):θ̂i(·)6=θ̂Ti (·)}

Eθi [di(θ̂i(θi), θi)]

be an indicator of the gap between i’s types. As we get closer to the continuous case,

εi → 0. Let

Ψ(θ̂i(·)) =
{
gi : Θi → Θi

∣∣gi(·) 6= θ̂i(·) and θ̂i(θi) >
1
i gi(θi) whenever θ̂i(θi) 6= gi(θi)

}
be the set of deceptions that are “smaller” than deception θ̂i(·). Define the predecessor

of any deception θ̂i(·) as the function ψθ̂i ∈ Ψ(θ̂i(·)) such that

Eθi [di(θ̂i(θi), ψθ̂i(θi))] ≤ Eθi [di(θ̂i(θi), gi(θi))]

whenever gi(·) ∈ Ψ(θ̂i(·)).
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Theorem 3 Let f = (x, t) be a supermodular implementable social choice function. If

for θ̂∗(·) > (or <) θ̂T (·), there exist i and θi such that∑
j 6=i

Kj
i (θi)Eθj [dj(θ

∗
j (θj), θj)]− Eθ−i

[γi(θ−i)]di(ψθ̂i(θi), θi) < 0,

then θ̂∗(·) is not a Bayesian equilibrium.

Proposition 2 If (n− 1) maxj 6=iEθi [K
i
j(θi)] < Eθ−i

[γi(θ−i)] for all player i, then there

exists δ such that for all δ < δ all Bayesian equilibria are at most δ-away from the

truthful equilibrium.

5 Conclusion (to be added)
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6 Proofs

Proof of Proposition 1. (Following the proof to Proposition 2 in Mathevet (11)) Let

(x, t′′) and (x, t′) be any supermodular implementable social choice functions such that

t′′, t′ ∈ T and t′′ �ID t
′. Since we are in the case of supermodular implementation, the

induced game G has a smallest and a greatest equilibrium and a truthful equilibrium in

between them. Denote the truthtelling strategy by θTi (·), that is θTi (θi) = θi. With slight

abuse of notation, let us use θi and θ̄i to denote the constant strategies where agent i

always announces his lowest and highest type, respectively. Define G` to be the same

game as G except that the strategy spaces are restricted to [θi, θ
T
i (·)] for each player i.

Likewise, let Gu be the game G where the strategy spaces are restricted to [θTi (·), θ̄i] for

every i. Since G is supermodular, so are the modified games G` and Gu, by definition.

As such, G` and Gu each have a smallest and a largest equilibrium. In particular, G` has

truthtelling as its largest equilibrium and the same smallest equilibrium as G. Similarly,

Gu has truthtelling as its smallest equilibrium and the same largest equilibrium as G.

Define the ex-ante expected utility function of player i as Ui(θ̂(·), t) = Eθ[Vi(x(θ̂(θ)), θ)+

ti(θ̂(θ))]. Below we show that (i) Ui(θ̂(·), t) has decreasing differences in (θ̂i(·), t) in game

G`; (ii) Ui(θ̂(·), t) has increasing differences in (θ̂i(·), t) in game Gu. Using Theorem

6 in Milgrom and Roberts (1990) this allows us to make inference about how the

extremal equilibria in each modified game vary in response to change in the transfers

t as compared according to �ID. However, since one extremal equilibrium in each

modified game is always truthtelling, this analysis will show how the other extremal

equilibrium, i.e. the untruthful one, varies with changes in t evaluated on �ID.

Before proceeding with the proofs of (i) and (ii), note that all transfers ti such that

(x, t) is implementable have the same expected value Eθ−i
[ti(θ̂i, θ−i)] up to a constant.3

Therefore, if (x, t′′) and (x, t′) are both implementable social choice functions, it must

be that Eθ−i
[t′′i (θ̂i, θ−i)] = Eθ−i

[t′i(θ̂i, θ−i)].

Consider the game G`. Choose any deceptions θ′′i (·) > θ′i(·), both smaller than θi,

and any θ̂−i(·) such that θ̂j(θj) ≤ θj for all θj and j 6= i, so that we are in G`. First, we

want to show that Ui(θ̂(·), t) has decreasing differences in (θ̂i(·), t) in game G`. Since

t′′ �ID t
′, we have

t′′i (θ
′′
i (θi), θ−i)− t′′i (θ′′i (θi), θ̂−i(θ−i))− t′′i (θ′i(θi), θ−i) + t′′i (θ

′
i(θi), θ̂−i(θ−i))

− t′i(θ′′i (θi), θ−i) + t′i(θ
′′
i (θi), θ̂−i(θ−i)) + t′i(θ

′
i(θi), θ−i)− t′i(θ′i(θi), θ̂−i(θ−i)) ≥ 0. (6.1)

Taking expectations over θ−i and using that Eθ−i
[t′′i (θ̂i(θi), θ−i)] = Eθ−i

[t′i(θ̂i(θi), θ−i)]

3See Proposition 23.D.2 in (10).
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we get

Eθ−i
[t′i(θ

′′
i (θi), θ̂−i(θ−i))]− Eθ−i

[t′i(θ
′
i(θi), θ̂−i(θ−i))]

− Eθ−i
[t′′i (θ

′′
i (θi), θ̂−i(θ−i))] + Eθ−i

[t′′i (θ
′
i(θi), θ̂−i(θ−i))] ≥ 0. (6.2)

Let us define the interim utility function of player i type θi against deception θ̂−i(·) as

ui(θ̂i(θi), θ̂−i(·), θi, t) = Eθ−i
[Vi(x(θ̂i(θi), θ̂−i(θ−i)), θ) + ti(θ̂i(θi), θ̂−i(θ−i))]. (6.3)

Adding and subtracting Eθ−i
[Vi(x(θ′i(θi), θ̂−i(θ−i)), θ)] + Eθ−i

[Vi(x(θ′′i (θi), θ̂−i(θ−i)), θ)]

from the above inequality does not change anything and allows us to regroup terms

and arrive at

ui(θ̂
′′
i (θi), θ̂−i(·), θi, t′′)− ui(θ̂′′i (θi), θ̂−i(·), θi, t′)

− ui(θ̂′i(θi), θ̂−i(·), θi, t′′) + ui(θ̂
′
i(θi), θ̂−i(·), θi, t′) ≤ 0. (6.4)

Thus, the interim utility function ui(θ̂i(θi), θ̂−i(·), θi, t) has decreasing differences in

(θ̂i(·), t). Taking expectations over θi of the last inequality we obtain

Ui(θ̂
′′
i (·), θ̂−i(·), t′′)− Ui(θ̂′′i (·), θ̂−i(·), t′)− Ui(θ̂′i(·), θ̂−i(·), t′′) + Ui(θ̂

′
i(·), θ̂−i(·), t′) ≤ 0.

(6.5)

That is, Ui(θ̂(·), t) has decreasing differences in (θ̂i(·), t) for all θ̂−i(·) and i. It follows

from Theorem 6 in Milgrom and Roberts (1990) that the smallest equilibrium in G` is

decreasing in t. An analogous argument applies for the largest equilibrium in Gu. To

prove that we look at deceptions θ′′i (·) > θ′i(·) > θi, and any θ̂−i(·) such that θ̂j(θj) ≥ θj

for all θj and j 6= i, so that we are in Gu.As a result the sign in 6.1 and, ultimately, in

6.5 is reversed, which implies that Ui(θ̂(·), t) has increasing differences in (θ̂i(·), t) for

all θ̂−i(·) and i. Therefore, the greatest equilibrium in Gu is increasing in t. Q.E.D

Proof of Theorem 1 Take a consistent profile of orders (>1, >2). Under this profile

of orders,for every i ∈ N , each element θi ∈ Θi is assigned an index k according to the

complete order >1
i and each element τ ∈ Θ−i is assigned an index q according to the

complete order order >2
i . Suppose that f = (x, t) is implementable. Letting

δi(θ̂k, τ̂q) = −
k−1∑
l=1

q−1∑
z=1

min
θ∈Θ

[Vi(x(θ̂l+1, τ̂z+1), θ)− Vi(x(θ̂l, τ̂z+1), θ)

− Vi(x(θ̂l+1, τ̂z), θ) + Vi(x(θ̂l, τ̂z), θ)]. (6.6)

for all θ̂k ∈ Θi and τ̂q ∈ ×j 6=iΘj, we define

t∗i (θ̂k, τ̂q) = δi(θ̂k, τ̂q)− Eθ−i
[δi(θ̂k, θ−i)] + Eθ−i

[ti(θ̂k, θ−i)] (6.7)

and show that (x, t∗) is minimally supermodular implementable.
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Step 1. We show that t∗i has smaller one-step supermodularity than any ti such that

(x, t) is supermodular implementable.

Let us define the one-step supermodularity of Vi(x(·), θ) at any given announcement

(θ̂k, τ̂q) as

gi(k, q; θ) = Vi(x(θ̂k+1, τ̂q+1), θ)− Vi(x(θ̂k, τ̂q+1), θ)

− Vi(x(θ̂k+1, τ̂q), θ) + Vi(x(θ̂k, τ̂q), θ). (6.8)

For notational simplicity, we define

di(l, z) = min
θ∈Θ

[Vi(x(θ̂l+1, τ̂z+1), θ)− Vi(x(θ̂l, τ̂z+1), θ)

− Vi(x(θ̂l+1, τ̂z), θ) + Vi(x(θ̂l, τ̂z), θ)]

= min
θ∈Θ

gi(l, z; θ). (6.9)

Since the one-step supermodularity of t∗i is equivalent to the one-step supermodularity

of δi we have

si(k, q) = δi(θ̂k+1, τ̂q+1)− δi(θ̂k, τ̂q+1)− δi(θ̂k+1, τ̂q) + δi(θ̂k, τ̂q)

= −
k∑
l=1

q∑
z=1

di(l, z) +
k−1∑
l=1

q∑
z=1

di(l, z) +
k∑
l=1

q−1∑
z=1

di(l, z)−
k−1∑
l=1

q−1∑
z=1

di(l, z)

= −di(k, q) (6.10)

as the one-step supermodularity of t∗i (and δi).

Therefore, the one-step supermodularity of (Vi + t∗i ) is given by

gi(k, q; θ) + si(k, q) = Vi(x(θ̂k+1, τ̂q+1), θ)− Vi(x(θ̂k, τ̂q+1), θ)− Vi(x(θ̂k+1, τ̂q), θ)

+Vi(x(θ̂k, τ̂q), θ)−min
θ∈Θ

[Vi(x(θ̂k+1, τ̂q+1), θ)− Vi(x(θ̂k, τ̂q+1), θ)

−Vi(x(θ̂k+1, τ̂q), θ) + Vi(x(θ̂k, τ̂q), θ)] ≥ 0 (6.11)

for all θ̂k, τ̂q, θi, k, q, and i.

Denote the one-step supermodularity of transfer ti as sm1(ti; k, q), that is:

sm1(ti; k, q) = ti(θ̂k+1, τ̂q+1)− ti(θ̂k, τ̂q+1)− ti(θ̂k+1, τ̂q) + ti(θ̂k, τ̂q).

For all transfers t such that (x, t) is supermodular implementable, it must hold that

gi(k, q; θ) + sm1(ti; k, q) ≥ 0 for all θ ∈ Θ, which is equivalent to:

sm1(ti; k, q) ≥ −min
θ∈Θ

[Vi(x(θ̂k+1, τ̂q+1), θ)− Vi(x(θ̂k, τ̂q+1), θ)

− Vi(x(θ̂k+1, τ̂q), θ) + Vi(x(θ̂k, τ̂q), θ)] = si(k, q). (6.12)
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The above shows that if (x, t) is supermodular implementable then the one-step super-

modularity of transfers t is necessarily greater than the one-step supermodularity of

transfers t∗, which establishes Step 1.

Step 2. We show that the (multiple-step) supermodularity of any function of two

variables is a sum of one-step supermodularities. Let us define the “(η, γ)-step super-

modularity” of any function ti(θ̂k, τ̂q) of as

SM(η,γ)(ti; k, q) = ti(θ̂k+η, τ̂q+γ) − ti(θ̂k, τ̂q+γ) − ti(θ̂k+η, τ̂q) + ti(θ̂k, τ̂q). (6.13)

Note that

ti(θ̂k+η, τ̂q+γ) = sm1(ti; k + η − 1, q + γ − 1) + ti(θ̂k+η−1, τ̂q+γ)

+ ti(θ̂k+η, τ̂q+γ−1)− ti(θ̂k+η−1, τ̂q+γ−1), (6.14)

and so it follows from (6.13) that

SM(η,γ)(ti; k, q; ) =
[
sm1(ti; k + η − 1, q + γ − 1) + ti(θ̂k+η−1, τ̂q+γ) + ti(θ̂k+η, τ̂q+γ−1)

− ti(θ̂k+η−1, τ̂q+γ−1)
]
− ti(θ̂k, τ̂q+γ)− ti(θ̂k+η, τ̂q) + ti(θ̂k, τ̂q)). (6.15)

Note that

ti(θ̂k+η−1, τ̂q+γ) = sm1(ti; k + η − 2, q + γ − 1) + ti(θ̂k+η−2, τ̂q+γ)

+ ti(θ̂k+η−1, τ̂q+γ−1)− ti(θ̂k+η−2, τ̂q+γ−1), (6.16)

and therefore it follows from (6.15) that

SM(η,γ)(ti; k, q) = sm1(ti; k + η − 1, q + γ − 1)

+
[
sm1(ti; k + η − 2, g + γ − 1) + ti(θ̂k+η−2, τ̂q+γ) + ti(θ̂k+η−1, τ̂q+γ−1)− ti(θ̂k+η−2, τ̂q+γ−1)

]
+ ti(θ̂k+η, τ̂q+γ−1)− ti(θ̂k+η−1, τ̂q+γ−1)− ti(θ̂k, τ̂q+γ)− ti(θ̂k+η, τ̂q) + ti(θ̂k, τ̂q)

=
2∑

n=1

sm1(ti; k + η − n, q + γ − 1) + ti(θ̂k+η−2, τ̂q+γ)− ti(θ̂k+η−2, τ̂q+γ−1)

+ ti(θ̂k+η, τ̂q+γ−1)− ti(θ̂k, τ̂q+γ)− ti(θ̂k+η, τ̂q) + ti(θ̂k, τ̂q). (6.17)

Proceeding iteratively with this process of substitution and regrouping of terms for

14



n = (1, . . . , η) we obtain

SM(η,γ)(ti; k, q) =

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) + ti(θ̂k, τ̂q+γ)− ti(θ̂k, τ̂q+γ−1)

+ ti(θ̂k+η, τ̂q+γ−1)− ti(θ̂k, τ̂q+γ)− ti(θ̂k+η, τ̂q) + ti(θ̂k, τ̂q)

=

η∑
n=1

sm1(ti; k + η − n, q + γ − 1)

+ ti(θ̂k+η, τ̂q+γ−1)− ti(θ̂k, τ̂q+γ−1)− ti(θ̂k+η, τ̂q) + ti(θ̂k, τ̂q)

=

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) + SM(η,γ−1)(ti; k, q). (6.18)

Iterrating on Equation (6.18) for m = 1, . . . , γ − 1 we obtain:

SM(η,γ)(k, q; θi) =

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) + SM(η,γ−1)(ti; k, q)

=

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) +

η∑
n=1

sm1(ti; k + η − n, q + γ − 2) + SM(η,γ−2)(ti; k, q)

=

η∑
n=1

γ−1∑
m=1

sm1(ti; k + η − n, q + γ −m) + SM(η,1)(ti; k, q). (6.19)

Now, using the fact that

SM(η,1)(k, q) = ti(θ̂k+η, τ̂q+1)− ti(θ̂k, τ̂q+1)− ti(θ̂k+η, τ̂q) + ti(θ̂k, τ̂q)

= sm1(ti; k + η − 1, q) + SM(η−1,1)(ti; k, q)

=

η∑
n=1

sm1(ti; k + η − n, q) (6.20)

and plugging this into Equation (6.19) we obtain

SM(η,γ)(ti; k, q) =

η∑
n=1

γ−1∑
m=1

sm1(ti; k + η − n, q + γ −m) +

η∑
n=1

sm1(ti; k + η − n, q)

=

η∑
n=1

γ∑
m=1

sm1(ti; k + η − n, q + γ −m)

=

k+η−1∑
l=k

q+γ−1∑
z=q

sm1(ti; l, z). (6.21)

Thus, the multiple-step supermodularity of any function of two ordered variables is

equal to the sum of one-step supermodularities, which establishes Step 2.
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Step 3. Conclusion. Note that

Eθ−i
[t∗i (θ̂k, θ−i)] = Eθ−i

[δi(θ̂k, θ−i)]−Eθ−i
[δi(θ̂k, θ−i)]+Eθ−i

[ti(θ̂k, θ−i)] = Eθ−i
[ti(θ̂k, θ−i)]

(6.22)

and therefore transfers ti and t∗i have the same expected value given that all other

agents report their types truthfully. That is, assuming truthful reporting, the expected

utility of an agent is the same under ti and t∗i . Since (x, t) is truthfully implementable,

the above discussion implies that (x, t∗) is also truthfully implementable.

Using the result eshablished in Step 2, the (η, γ)-step supermodularity of Vi(x(·), θ)
at any given announcement (θ̂k, τ̂q) can now be written as:

G
(η,γ)
i (k, q; θ) = Vi(x(θ̂k+η, τ̂q+γ), θ)− Vi(x(θ̂k, τ̂q+γ), θ)

− Vi(x(θ̂k+η, τ̂q), θ) + Vi(x(θ̂k, τ̂q), θ)

=

k+η−1∑
l=k

q+γ−1∑
z=q

gi(l, z; θ). (6.23)

and the (η, γ)-step supermodularity of t∗i is analogously given by

S
(η,γ)
i (k, q) = δi(θ̂k+η, τ̂q+γ)− δi(θ̂k, τ̂q+γ)− δi(θ̂k+η, τ̂q) + δi(θ̂k, τ̂q)

= −
k+η−1∑
l=1

q+γ−1∑
z=1

di(l, z) +
k−1∑
l=1

q+γ−1∑
z=1

di(l, z) +

k+η−1∑
l=1

q−1∑
z=1

di(l, z)−
k−1∑
l=1

q−1∑
z=1

di(l, z)

= −
k+η−1∑
l=k

q+γ−1∑
z=q

di(l, z). (6.24)

It is straightforward to check that G
(η,γ)
i (k, q; θ)+S

(η,γ)
i (k, q) ≥ 0 for all θ̂k, τ̂q, θ, k, q, η, γ

and i and, therefore, t∗ is supermodular implementable.

Moreover, Step 1 says that t∗ has the smallest one-step supermodularity among all

supermodular transfers t. Combined with Step 2, this establishes that (x, t∗) is mini-

mally supermodular implementable under the chosen order profile >= (>i)i∈N . Q.E.D

Proof of Corollary 1 In the proof of Theorem 1, we constructed transfers that min-

imally supermodular implemented the decision rule x under some order >= (>i)i∈N .

For each such order >, we can compute the distance between the largest and the small-

est equilibrium in the ex-ante induced game, using some metric. Each >i is a pair of

complete orders on finite sets, hence for each i there are finitely many >i. Since there

are finitely many agents, there exist finitely many >. As a result, there is an order >

which gives the smallest distance between extremal equilibria. Q.E.D
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Proof of Theorem 2 Define z+ to be the immediate successor of z and z− to be the

immediate predecessor of z, where z is an element of a completely ordered set. Let k

be the index assigned to each θi ∈ Θi according to the complete order >1
i . Suppose

that f = (x, t) is implementable and x is order reducible. Letting

δi(θ̂ik, θ̂−i) = −
k−1∑
l=1

r−i (θ̂−i)∑
z=ri(θ−i)

min
θ∈Θ

[Vi(x(θ̂l+1, z
+), θ)− Vi(x(θ̂l, z

+), θ)

− Vi(x(θ̂l+1, z), θ) + Vi(x(θ̂l, z), θ)] (6.25)

for all θ̂ik ∈ Θi and θ̂−i ∈ ×j 6=iΘj, we define

t∗i (θ̂ik, θ̂−i) = δi(θ̂k, θ̂−i)− Eθ−i
[δi(θ̂k, θ−i)] + Eθ−i

[ti(θ̂k, θ−i)] (6.26)

and show that (x, t∗) is minimally supermodular implementable.

The intuition for the proof is the following. The transfers t∗ ensure minimal super-

modular implementation when one-steps on Θi and Ri are considered. There are steps

in Θ−i that correspond to zero, one, or multiple steps in Ri. The zero and one step cases

are minimally supermodular implemented since t∗ have the smallest possible one-step

supermodularity while still ensuring supermodularity. When a one-step in Θ−i corre-

sponds to multiple steps in Ri, there could be transfers t̃ that have a smaller multi-step

supermodularity than t∗. Suppose this is the case. By the result established in Step 2

of Theorem 1, these transfers will necessarily have a smaller one-step supermodularity

than t∗ on at least one of the intermediate steps. Thus, they will not be ensuring that

the game is supermodular and are therefore not in the class of transfers T . A more

formal proof to follow here.

Proof of Theorem 3 By way of contradiction, suppose that strategy profile θ∗(·) >
θT (·) is an equilibrium so that player i’s best-response to θ∗−i(·) is θ∗i (·). Consider player

i’s interim utility at type θi when announcing θ̂i(·) against θ∗−i(·):

ui(θ̂i(θi), θ
∗
−i(·), θi) = Eθ−i

[Vi(x(θ̂i(θi), θ
∗
−i(θ−i)), θ) + ti(θ̂i(θi), θ

∗
−i(θ−i))].

Therefore, for all deceptions θ̂i(·) ∈ [θTi (·), θ∗i (·)],

∆ui(θ
∗
−i(θ−i), θi) = ui(θ

∗
i (θi), θ

∗
−i(θ−i), θi)− ui(θ̂i(θi), θ∗−i(θ−i), θi) ≥ 0 (6.27)

for all type θi. We will show that this condition is not satisfied if the inequality in

the theorem holds, i.e. there must be a player for which a smaller deception is strictly

better than θ∗i (·).
We know that there exist numbers {Kj

i (θi)} such that

Eθ−i
[∆ui(θ

∗
−i(θ−i), θi)] ≤

Eθ−i
[∆ui(θ−i, θi)] + di(θ

∗
i (θi), θ̂i(θi))

∑
j 6=i

Kj
i (θi)Eθj [dj(θ

∗
j (θj), θj)]. (6.28)
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Since the social choice function (x, t) is implementable, the transfers {ti} induce truth-

ful revelation. Therefore, it must be that for all θi and i the incentive compatibility

constraint is satisfied, that is:

Eθ−i
[Vi(x(θ̂i(θi), θ−i), θ̂i(θi), θ−i)]− Eθ−i

[Vi(x(θ∗i (θi), θ−i), θ̂i(θi), θ−i)] ≥
Eθ−i

[ti(θ
∗
i (θi), θ−i)]− Eθ−i

[ti(θ̂i(θi), θ−i)]. (6.29)

This implies that

∆ui(θ−i, θi) = Eθ−i
[Vi(x(θ∗i (θi), θ−i), θi, θ−i)]− Eθ−i

[Vi(x(θ̂i(θi), θ−i), θi, θ−i)]

+Eθ−i
[ti(θ

∗
i (θi), θ−i)]− Eθ−i

[ti(θ̂i(θi), θ−i)]

≤ Eθ−i
[Vi(x(θ∗i (θi), θ−i), θi, θ−i)]− Eθ−i

[Vi(x(θ̂i(θi), θ−i), θi, θ−i)]

+Eθ−i
[Vi(x(θ̂i(θi), θ−i), θ̂i(θi), θ−i)]− Eθ−i

[Vi(x(θ∗i (θi), θ−i), θ̂i(θi), θ−i)]

= Eθ−i
[∆Vi(θ−i, θi, θ−i)]− Eθ−i

[∆Vi(θ−i, θ̂i(θi), θ−i)]

≤ −Eθ−i
[γi(θ−i)]di(θ

∗
i (θi), θ̂i(θi))di(θ̂i(θi), θi). (6.30)

It follows from (6.28) and (6.30) that

[∆ui(θ
∗
−i(θ−i), θi)]

di(θ∗i (θi), θ̂i(θi))
≤
∑
j 6=i

Kj
i (θi)Eθj [dj(θ

∗
j (θj), θj]− Eθ−i

[γi(θ−i)]di(θ̂i(θi), θi). (6.31)

Recall that θ̂i(·) < θ∗i (·). Therefore, the closer we are to θ∗i (θi) the further we

are from θi, and thus if the rhs of (6.31) is to be strictly negative it has to be at

θ̂i(θi) = p(θ∗i (θi)). If this is the case, then (6.31) implies that [∆ui(θ
∗
−i(θ−i), θi)] < 0,

a contradiction with (6.27). Note that there is a profile θ∗(·) within a δ-neighborhood

of the truthful equilibrium such that p(θ∗i (·)) = θTi (·) for all i. For such profile, the

theorem is not of any use and so the smallest size of the equilibrium set predicted by

the theorem cannot be below δ. Q.E.D

Proof of Proposition 2 Consider any strategy profile θ∗(·) > θT (·). Choose i such

that Eθi [d(θ∗i (θi), θi)] ≥ Eθj [d(θ∗j (θj), θj)] for all j. If the inequality in Theorem 3 were

violated for all θi, then it would be that∑
j 6=i

Eθi [K
j
i (θi)]Eθj [dj(θ

∗
j (θj), θj)]− Eθ−i

[γi(θ−i)]Eθi [di(pi(θ
∗
i (θi)), θi)] < 0. (6.32)

Since ∑
j 6=iEθj [dj(θ

∗
j (θj), θj)]

Eθi [di(pi(θ
∗
i (θi)), θi)]

max
j 6=i

Eθi [K
i
j(θi)] ≤ (n− 1) max

j 6=i
Eθi [K

i
j(θi)],

the assumption of the theorem implies∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)] max

j 6=i
Eθi [K

i
j(θi)] < Eθ−i

[γi(θ−i)]Eθi [di(θ
∗
i (θi), θi)].
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There must be δ small enough such that for all smaller δ, pi(θ
∗
i (·)) is so close to θ∗i (·)

that ∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)] max

j 6=i
Eθi [K

i
j(θi)] < Eθ−i

[γi(θ−i)]Eθi [di(pi(θ
∗
i (θi)), θi)],

thereby violating our original assumption (6.32). Q.E.D
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