
Two-Dimensional Values and Information Sharing in

Auctions∗

Xu Tan†

March, 2011

Abstract

Incentives to share private information ahead of auctions are explored in a setting

with two-dimensional valuations: there are both common and private components to

bidders valuations and private information is held on both dimensions. This setting fits

a lot of applications where bidders care about both their private preference and some

common future value, such as the housing market. We show that full revelation of the

common-value signals is the (unique) sequential equilibrium, and such revelation is also

consistent with the seller’s interest. Thus, the argument that sharing information is

strictly dominated in pure common-value auctions is not robust to a slight perturbation.

Moreover, the auctions only involve pure private values after the revelation of common-

value signals, such that the doubts on nonexistence of equilibrium and efficiency loss

by previous studies on auctions with such two-dimensional valuations disappear.
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1 Introduction

In many market settings, there is both a private and a common component to valuations.

For example, in the housing market: potential buyers have private values for living in the

house, and also care about the future price (common value) of the house. Generally, in

markets with clear private values such as wine and gallery auctions, the common component

appears as long as the item will be resold in the future with the same price for all agents;

also in markets with clear common values such as oil drilling and sale of timber-harvesting

contracts, the private component appears as long as agents have different technologies and

costs. Thus, the combination of common and private components fits in many applications,

like treasury auctions as well.

In these auctions, agents observe two private signals of the valuation: one is their pri-

vate component and the other is correlated to the common component. In this paper, we

explore the incentives to share these private information prior to the auction. The com-

munication of information is a critical part even in a competitive world. Competing firms

can often commit to share relevant information with their competitors. Moreover, in hous-

ing market agents share and discuss their predictions about the future with each other. In

the literature, Kovenock, Morath and Munster (2010) considered the information sharing in

all-pay auctions, and they showed that in pure common-value auctions, sharing information

is strictly dominated. The reason is: when agents have complete information about the

common value, the expected return from auctions is reduced to zero. In other words, agents

lose their information rent by revealing signals.

However, we show that the result on no information sharing is not robust to a slight

perturbation of valuations. In fact, full revelation of the common-value signal is the unique

sequential equilibrium in auctions with both private and common components in valuations.

Intuitively, revealing the smallest common-value signal publicly reduces other agents’ bids.

With the private component, agents now are strictly better off if all others reduce their bids.

Following the standard argument in information revelations literature, given the smallest

common-value signal is revealed, revelation of the second smallest common-value signal also

reduces the bids by the same logic. Eventually, it leads to a full revelation of the common-

value signals.

Despite the bidders’ incentives to share information, the seller also prefers to have the

information shared among bidders. Since complete information reduces bidders’ information

rent and increases the expected winning price. For instance, without complete information

about the common value, bidders would bid less aggressively due to the winner’s curse.
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1.1 Related Literature

This paper is related to two strings of literature: the study on valuations with both common

and private components, and the study on information sharing in auctions.

When moving away from pure valuations, we lose efficiency as discussed by Pesendorfer

and Swinkels (2000) and existence of equilibrium as shown in Jackson (2009). Pesendorfer

and Swinkels (2000) showed the asymptotic efficiency could be achieved in a large society

while without knowing whether the equilibrium exists. Goeree and Offerman (2003) solved

the equilibrium given a specific (linear) form of the common component, while further con-

firmed the inefficiency in the two-dimensional valuation setting. Jackson (2009) showed with

a simple example that equilibria can fail to exist in second-price auction with two-dimensional

valuations. In our model, agents fully reveal the common-value signals prior to the auction

such that the auction become a pure private-value auction. Thus, here the equilibrium can

be easily solved by the standard auction theory and there is no inefficiency since the winner

is always the agent with the highest private component.

Milgrom and Weber (1982) considered the incentive of the seller to share information

about the private information of the values. Kovenock, Morath and Munster (2010) consid-

ered the information sharing in all-pay auctions, and they showed that in pure common-value

auctions, sharing information is strictly dominated.

2 Model

A group of agents, N = {1, ..., n}, bid over a single indivisible item in an auction.

2.1 Preference

Agent i has a utility for the item which is described by

ui(vi, q) = λvi + (1− λ)q

where vi ∈ [vL, vH ] is a private component, q ∈ [qL, qH ] is a common component and λ ∈ (0, 1)

is a weighting factor such that the valuations have both common and private components.

When λ = 0, the setting is a standard common-value auction, and when λ = 1, the setting is

a standard private-value auction. Moreover, we could have heterogenous weighting factors,

and the remark following the main theorem shows it won’t affect the results.

Agents’ private components, {vi}, are drawn independently from the interval [vL, vH ]

according to the same probability distribution F . We assume that F has a continuous and

strictly positive density f . Given the world is discrete, we also show that our main result is

easily generalized to discrete valuations. See the discussion after the main theorem.
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Agent i doesn’t observe the true common component, q, instead observes an realization

of the random signal si ∈ [sL, sH ]. All signals, {si}, are drawn independently from the

interval [sL, sH ] according to the same probability distribution G. We assume that G has a

continuous and strictly positive density g. Then the common component is fully determined

by all signals1

q = q(s1, ..., sn)

where q is strictly increasing and continuous in each si. For instance, the true common

component is the average of the signal q = (s1 + ...+ sn)/n2. The common-value signals are

independent of the private values.

All of the setting are common knowledge expect for the private information (vi, si). All

agents are risk neutral.

We remark that this two-dimensional valuation is different from the affiliated signals

discussed in Milgrom and Weber (1982). The affiliation among signals is general, however

each bidder observes only one private signal such that the bidding strategy is a one-to-one

mapping. When there are two private signals for each bidder, the bidding strategy could be

more complicated: for instance it is hard to define the monotonicity of a bidding strategy.

2.2 The Game and Equilibrium

Prior to the auction, agents could meet and communicate signals in the form of verifiable

revelation of signals3. In particular, agents can choose to reveal the common-value signal

or not, but they cannot “lie”. This matches a variety of applications where the signal of

the future value (common component) is in the form of verifiable facts. For instance in the

housing market, there are several reports and summary from government and some experts

which could indicate the future market. Moreover, in many applications it is hard to reveal

the private component with evidence since it is more about individual taste and personal

preference. We consider the revelation of both signals in Section ??, and before that the

revelation is only about common component.

More formally, a revelation strategy for an agent i ∈ N is a function:

ri(si) ∈ 4{si, ∅}

We use r(s) = (r1(s1), ..., rn(sn)) to represent the full revelation strategy.

1The remarks after the main theorem shows the result holds even if we only know the distribution of the

common component after observing all signals.
2Goeree and Offerman (2003) studied auctions where the common component has this specific relationship

with all signals.
3We discuss the robustness of this verifiable revelation assumption and cheap-talk communication in

Section ??.
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In a first stage, agents with observed private signals simultaneously choose their revealing

strategies. Any revealed signals are then public, and so observed by all agents. In a second

stage, agents bid, bi(vi, si, r(s)), conditional on all available information in an auction with

specific rules to be define later. For instance, the following section we consider standard

sealed-bid second-price auction such that the agent with the highest bid wins and pays the

price equaling the second highest bid. Ties are broken randomly. All auctions with Vickrey

payoffs and English auctions have the same results.

An equilibrium is a list of strategies, ri in the first stage and bi(vi, si, r(s)) in the second

stage for each i ∈ N , that form a sequential equilibrium, where both the revealing and bidding

strategies could be mixed. Moreover, we require the bidding strategy is undominated which

is explained below.

There are some refinements we consider to rule out some sorts of degenerate equilibrium.

It is well-known that for the second-price auction there always exists an asymmetric equi-

librium. For example, let bidder 1 unconditionally bid X, where X = vH + qH , and have

all other bidders bid 0. This is an equilibrium regardless of the weighting factor λ. In order

to eliminate this, let us consider two different refinements: (i) symmetric equilibrium and

(ii) equilibrium that only uses strategies that are in the closure of the set of undominated

strategies. Here, the refinement to undominated strategies is more general than a refine-

ment to symmetric equilibrium, while symmetric equilibria are the main ones studied in the

literature. Thus we include results concerning both.

In some cases, we also consider the ex-ante stable notion of equilibrium: in the equilib-

rium, agents decide whether to reveal the signals or not before observing them, and when they

observe the signals they don’t have incentives to deviate from the predetermined strategy.

While without this notion, there would more types of equilibria, for instance if a common-

component signal is not revealed, other agents believe that the actual signal is the highest

one which in turn gives agents with lower signals incentives to reveal the signal. This notion

refine the sequential equilibria, such that now when a signal is not revealed, agents’ belief is

the same as the ex ante one.

3 Second-Price Auctions

Let’s start with two bidders (n = 2) in a standard second-price auction , which highlights

the incentives and effects of sharing information.
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3.1 Pure Common-Value Auctions

As a benchmark, we first state the results on information sharing in auctions with pure

common values where λ = 0.

There are two bidders: if agent 1 reveal the signal, agent 2’s undominated strategy is

bidding the true common value in second-price auction which gives agent 1 an expected

payoff of zero regardless of agent 2’s revealing strategy. Thus, agents revealing the signals

have a zero expected payoff since they lose the information rent.

Lemma 1 In second-price auction with two bidders and pure common values, sharing common-

value signals are weakly dominated.

The proof is obvious and thus is omitted.

Intuitively, revealing signals would reduce the information rents such that the expected

return from the auction is reduced to zero. Kovenock, Florian and Munster (2010) provided

similar results in all-pay auctions. However, we will show shortly that this argument is not

robust to a slight perturbation in agents’ valuations.

3.2 Equilibrium

Let us say that an equilibrium is fully-revealing equivalent if the outcome is the same as in

an equilibrium in a game where all agents reveal their common-value signals.

Consider a equilibrium σ which is not fully-revealing equivalent. For each agent i, we

define Di ⊂ [sL, sH ] to be the set of common-value signals that agent i is hiding. In σ, we

can find some i such that Di contains more than one signals. Let si denoted the the infimum

of the signals in Di, si = inf Di. The following lemma describes the characters of such σ.

Lemma 2 Consider a equilibrium σ which is not fully-revealing equivalent:

• Di is an interval which is either (si, sH ] or [si, sH ];

• In other words, ri(s) = ∅ for all s > si such that agent i hides all signals above si;

• The bidding strategy is bi(vi, si, r−i(s−i)) = λvi + (1 − λ)q(si, s
r
−i) where the inferred

signal srj = sj if rj(sj) = ∅, otherwise srj = rj(sj).

Proof of Lemma 2: In second-price auction, agents bid the true value if they observe it.

Given agent i’s information, bi(vi, si, r−i(s−i)) = λvi + (1− λ)q(si, s
r
−i) is the lowest possible

value for agent i. Thus, agent i would not want to lower the bid. On the other hand, if there

is some agent i with a bid higher than the lowest possible value, revealing signals very close
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to the bottom signal s reduces agent i’s bid and increases other agents’ expected payoff. In

all, bidding the lowest possible value is the only reasonable strategy in a equilibrium σ.

Given all agents bid the lowest possible value given their information, agent i prefers not

to reveal signals above si. Since if not revealing the signal si > si, other agents bid as if

they knew the signal for agent i is si; if revealing the signal, other agents bid as the signal

for agent i is si which increases other agents’ bid and reduces agent i’s expected payoff.

Before formally prove the main theorem, let consider the discrete case to gain some

intuition. If some agent i observes the smallest common-value signal, revealing it publicly

reduces other agents’ expectations of the common component and thus reduces bids. So

agent i now has strict incentives to reveal the signal. Given the smallest signal is revealed

for sure, agents observing the second smallest signal now have incentives to reveal it by the

same logic. So on and so forth, we have full revelation of the common-value signals.

In the continuous case, the lemma tells us when some agent i hides more than one signal,

other agents need to bid as if they knew the signal for agent i is the smallest signal getting

hidden in order to make sure agent i doesn’t have the incentive to reveal the smallest hidden

signal. However, bidding the lowest possible value given the information is too conservative

to be an equilibrium such that the equilibrium σ which is not fully-revealing equivalent

doesn’t exist.

Theorem 1 All symmetric sequential equilibria or equilibria in undominated strategies are

fully-revealing equivalent.

Proof of Theorem 1: Suppose there exists a equilibrium σ which is not fully-revealing

equivalent such that we can find some i such that Di contains more than one signals. We

need to show that the bidding strategy in Lemma 2 is not an equilibrium strategy.

Given some revelation of signals in the first stage where agent i reveals no signal, we

consider agent j’s problem where j 6= i. All other agents’ bidding strategy is described in

the lemma such that bl(vl, sl, r−l(s−l)) = λvl + (1−λ)q(sl, s
r
−l) where l 6= j. Let βj represent

the highest bid among all other agents, βj = maxl 6=j bl(vl, sl, r−l(s−l)). The expected payoff

for agent j with a bid bj is∫
s−j

∫ bj

β

(λvj + (1− λ)q(sj, s−j)− βj)h(βj)g(s−j)dβjds−j

where h(βj) is the density of h(βj). The first order condition implies∫
s−j

(λvj + (1− λ)q(sj, s−j)− bj)h(bj)g(s−j)ds−j = 0
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However, the first order condition is strictly positive if agent j uses the bidding strategy in

the lemma. Because if bj = λvj + (1− λ)q(sj, s
r
−j), the condition becomes∫

s−j

(1− λ)(q(sj, s−j)− q(sj, sr−j))h(bj)g(s−j)ds−j > 0

which is positive since at least for agent i, Di contains some higher signals while sri = si
always.

Thus, such equilibrium σ doesn’t exist and all sequential equilibria are fully-revealing

equivalent.

We remark that the results hold in a more general and broader setting:

• Heterogeneous preference: if agents put different weight factors, λi ∈ (0, 1), on the

private and common components, the results of the theorem still hold. Since as long as

other bidders care the common-value component, revealing the smallest common-value

signal could reduce their bids and thus increase the expected payoff of oneself.

• Noisy signals: another case is the common-value component is not fully determined by

all signals, then we consider the expected common-value component since all agents

are risk-neutral. Revealing small common-value signals reduces the expectation of

the common component such that it reduces the bids from other bidders. Thus, full

revelation is still the only possible equilibrium.

• Multiple signals: it is possible that agents get more than one signal of the common-

value component, (s
(1)
i , ..., s

(m)
i ). Such as in the housing market, there are reports from

the government and from different experts and researchers. The intuition still works

such as in the discrete case, agents have incentives to reveal the smallest common-value

signals, then the second smallest, and so on and so forth until the full revelation.

• General preference: the utility of agents could depend on the private and common

components in a more complex way than the linear case: u(vi, q). As long as it is

strictly increasing in both components, agents’ incentive of revealing small common-

value signal is still there.

Results in the pure common-value setting are not robust to a slight perturbation in

agents’ valuations. Since with pure common value, agents observing the smallest common-

value signal is indifferent between revealing the signal or not since the expected payoff is zero

anyway. With a (tiny) private component, agents now are strictly better off by revealing

the smallest common-value signal since this reduces all other agents’ bids. And given the

smallest common-value signal is revealed, revelation of the second smallest common-value
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signal also reduces the bids by the same logic. Eventually, it leads to a full revelation of the

common-value signals.

It is efficient to give the item to the agent with the highest private component since the

common component is the same for all agents. However in auctions without information

sharing, there is a positive expected efficiency loss4. Because it is quite possible that the

winner of the auction observing a high enough common-value signal but not having the

highest private component. While if we allow information sharing, agents fully reveal their

common-value signal in the first stage such that in the second stage, the auction only involves

private information of the private values and thus winner is the agent with the highest private

component in equilibrium. Then there is no efficiency loss with information sharing.

Corollary 1 There is no efficiency loss in auctions with information sharing.

Not only the social planner support the sharing of information, the seller also prefer

agents to share their information. In order to compare the seller’s payoff, we need to know

the equilibrium in both cases such that we consider the following setting in the example

where we learn the equilibrium from Goeree and Offerman (2003). The next example shows

that the expected payoffs of agents decrease with information sharing because they lose their

information rent and thus the expected payoff of the seller increases.

Example 1 The expected payoff of seller is higher if agents share their information.

Suppose there are two agents in the society (n = 2), the densities f and g are logconcave5,

and the common value is the average of the two signals: q = (s1+s2)/2. Let ci = vi+si/2 be

the surplus of each agent. From Goeree and Offerman (2003), without information sharing

the symmetric bidding strategy (for agent 1) is a increasing function of the surplus

b(c1) = c1 + E(s2/2|c2 = c1)

With information sharing, the auction is a standard private-value second-price auction such

that the bid equals the true value.

Given the private components (v1, v2). With information sharing, the expected payoff of

agent 1 is

π∗(v1, v2) = max(v1 − v2, 0)

Without information sharing, the expected payoff of agent 1 is

π∗∗(v1, v2) = E[(v1 − v2) + (s1 − s2)/2|(v1 − v2) + (s1 − s2)/2 > 0)]

4See Pesendorfer and Swinkels (2000) and Goeree and Offerman (2003).
5This is enough to ensure the conditional expectations of the private-value and common-value are non-

decreasing with the surplus. See Goeree and Offerman (2003) for details.
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When v1 ≤ v2, π
∗∗ ≥ π∗ = 0. When v1 < v2, π

∗∗ = π∗+E[(s1−s2)/2|(v1−v2)+(s1−s2)/2 >
0)]. Since s1 and s2 are identically distributed, the density of s1− s2 is symmetric with zero

mean such that E[(s1 − s2)/2|(v1 − v2) + (s1 − s2)/2 > 0)] ≥ 0. So π∗∗ ≥ π∗.

The expected payoffs of agents decrease with information sharing, and then the expected

payoff of the seller must increase.

Intuitively, we consider the pure common-value auctions: if all signals are common knowl-

edge, all agents submit the same bid which is the true common value in the equilibrium.

Thus, the expected payoff is zero for all agents. However, if the signals are private informa-

tion, all agents have a positive expected payoff expect the agents with the smallest signal.

So with full information sharing agents’ expected payoff reduces and the seller’s expected

payoff increases.

4 Revelation of Common-Value Signals

In this section, we consider two situations that generalize the previous simple case: (i)

multiple bidders in second-price auctions; and (ii) other types of auctions such as all-pay

auctions. We show that the same intuition still roughly works in these general settings.

4.1 Multiple Bidders

Again, we start with the benchmark case where there are only pure common values.

When there are more than two bidders, if agent i reveals the signal while all other agents

don’t, the bidding strategy is not clear since no strategy is dominated at this time. Thus we

cannot use the same refinement as the two-bidder case to claim no one prefers to revealing

signals. However, we will show shortly that it is still true that agents revealing signals have

a zero expected return such that revealing signals is not a wise choice. Thus, agents prefer

not to reveal the signal if it is done ex-ante, such that before observing the signals.

Lemma 3 In every symmetric equilibrium with pure common values and second-price auc-

tion, agents revealing signals have zero expected payoff. Thus agents prefer not to reveal

signals ex-ante.

Proof of Lemma 3: We start with the equilibrium in the second stage: if all common-

value signals are revealed, in equilibrium all agents bid the true common value q and their

expected payoffs are zero; if all but one common-value signal (i.e. s1) are revealed, in

equilibrium agent 1 bids the true common value and the rest agents bid x where x is at

most the smallest possible common value, and agent 1 has a positive expected payoff while

all others’ expected payoff is zero.
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If m ≥ 2 signals are not revealed, without loss of generality, assume agent i (1 ≤ i ≤ m)

hides signals and the rest agents reveal signals. Let yi be the highest signal observed by

agent j, such that 1 ≤ j ≤ m and j 6= i. In equilibrium, agents revealing signals bid x (x

is at most the smallest possible common value) and other agents bid as if there is only the

first m agents such that for agent i with 1 ≤ i ≤ m

bi(si, sm+1, ..., sn) = E(q|si, yi = si, sm+1, ..., sn)

which follows from the standard auction theory. We need to check bidding zero is indeed the

best response for agents revealing signals. Otherwise, if agent j (m + 1 ≤ j ≤ n) submits a

positive bid, the payoff changes only when this is the highest bid and agent j needs to pay

a price

p = E(q|s(1), s(2) = s(1), sm+1, ..., sn)

where s(1) is the highest hidden signal and s(2) = s(1) means the second highest signal equals

the highest signal. However, the expect common value should be conditional on s(2) < s(1)

such that the common value is lower than the price. Agent j loses money by winning such

that bidding zero is the best choice.

Then we need to show agents revealing signals cannot have positive expected payoff in

all equilibria. Suppose there is one equilibrium where agent j (m+ 1 ≤ j ≤ n) uses a mixed

strategy and has a positive expected payoff. Still agent j needs to pay a price

p′ > E(q|s(1), s(2) < s(1), sm+1, ..., sn)

Agent j loses money by winning such that bidding zero is the best choice.

Thus, in the second stage, all agents revealing signals always have zero expected payoffs

while agents hiding signals sometimes have positive payoffs. So in equilibrium, agents hides

the common-value signals.

Then we move on to the case where the valuations have both common-value and private-

value components. Let say agents have independent belief if the belief on each agent doesn’t

depend on the behaviors of the rest agents.

If we loose the independent belief assumption such that one deviation leads to changes

in believes for more agents, none-revealing is possible to appear in sequential equilibrium.

Example 2 Sequential equilibrium with none-revealing of common-value signals.

Suppose there are four agents in the society (n = 4), the densities f and g are uniform

on [0,1]6, and the common value is the average of the four signals: q = (s1 + s2)/4. Let

6Again, this is enough to ensure the conditional expectations of the private-value and common-value are

non-decreasing with the surplus. See Goeree and Offerman (2003) for details.
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ci = vi + si/2 be the surplus of each agent and yi be the highest surplus among all agents

except i. From Goeree and Offerman (2003), without information sharing the symmetric

bidding strategy (for agent i) is a increasing function of the surplus

b(ci) = ci + E(s/4|c = ci) + 2 ∗ E(s/4|c < ci)

Thus b(ci) < ci + 1/4 + 2 ∗ 1/8.

Suppose in the equilibrium, all 4 agents won’t reveal the common-value signals. If some

agent (say agent 1) observes a signal of 0 and reveal this signal, all other agents believes that

they are in fact in a fully revealing equilibrium such that agents only hides the highest signal.

Then all other agents bid the common value under their believes b′(ci) = ci + 0 + 2 ∗ 1/4

which is higher than the original bid. Thus, revealing the lowest signal can increase other

agents’ such that no one wants to deviate. None-revealing is indeed a sequential equilibrium.

Let’s say the bidding strategy in equilibrium is monotone7 if b(v, s) (or b(v) if s is revealed)

is strictly increasing in v, continuous in v, and differentiable in v at all but finitely many

points.

Theorem 2 All symmetric monotone sequential equilibria with independent belief are fully-

revealing equivalent.

Proof of Theorem 2: We show that fully-hiding is not a equilibrium and it is easy to

generate the proof to show that partially-hiding is also not a equilibrium.

If in the equilibrium σ all agents hide the common-value signal, the bidding strategy

(following Proposition 1 in Pesendorfer and Swinkels (2000)) has the form

b(vi, si) = E(vi + q|d = b(vi, si), si)

where d is the highest bid among all other agents except i.

If agent 1 observes a lowest common-value signal and reveals the signal, this deviation

won’t affect the believes on behaviors of all other agents by the independence. Now the

bidding strategy of agents i (i ≥ 2) is

b′(vi, si) = E(vi + q|d = b(vi, si), si, sL)

where d is the highest bid among all other agents except i. Since b′(vi, si) < b(vi, si), agent

i has strict incentive to reveal the signal.

Thus, such equilibrium σ doesn’t exist and all sequential equilibria are fully-revealing

equivalent.

With multiple bidders, it is still true that agent observing a low common-value signal

wants to reveal the signal and reduce the bids from other agents. Thus, the only reasonable

equilibrium is fully-revealing equivalent.

7This corresponds to assumption 2 in Pesendorfer and Swinkels (2000).
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4.2 Other Auction Mechanisms

There are many other forms of auctions and mechanisms where we are interested in knowing

the incentives of sharing information, such as first-price auctions and all-pay auctions. For

instance, competing firms can sometimes commit to share information with their competitors.

All-pay auctions are often used as a benchmark to represent such competitions among firms,

such as their investments in R&D. We proceed in this section by showing that all the intuition

of sharing information of common-value signals could be generalized to most auctions.

Let n = 2. For any auction mechanism (p, x) such that pi(b1, b2) is the probability that

agent i is the winner and xi(b1, b2) is the money agent i needs to pay to the seller. Moreover,

we assume this auction is:

• Symmetric: p1(b1, b2) = p2(b2, b1) and x1(b1, b2) = x2(b2, b1);

• Monotonic: p1(b1 > b2) > p2(b1 > b2) = 0 such that agent with a lower bid has zero

chance of winning;

• Continuous: xi(b1, b2) is continuous in b.

Lemma 4 In every sequential equilibrium in any symmetric, monotonic and continuous auc-

tion with pure common value, revealing common-value signal is dominated.

Proof of Lemma 4: Consider the agent who reveals the common-value signal, we claim

that such agent must use mixed strategy and claim that the expect payoff of such agent must

be zero.

However, with private component, agents now have incentives to reveal the low common-

value signals in order to lower the other agent’s bid.

Formally, we consider the auction mechanism with monotone equilibrium such that

(A1) b(v, q) < b(v, q′) when q < q′, such that the bidding strategies are higher when both

private values are higher;

(A2) b(v, ξ) < b(v, ζ) where ξ and ζ are distribution of the common value and ξ is first-order

stochastic dominated by ζ.

Theorem 3 Fully revelation of common-value signals is a sequential equilibrium under con-

dition (A1); it is the unique sequential equilibrium if condition (A2) is true.

Proof of Theorem 3:

Then we show that Assumption 2 is satisfied by other auctions beside second-price auc-

tion.
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Example 3 (A2) is satisfied in all-pay auctions.

In all pay auctions (contests of R&D), there is no seller, thus we only need to discuss the

social welfare.

Example 4 The social welfare might decrease with information sharing.

Suppose there are two firms in the industry (n = 2) and they compete in an all-pay

auction. The densities f and g are logconcave, and the common value is the average of the

two signals: q = (s1 + s2)/2. Let ci = vi + si/2 be the surplus of each agent. Without

information sharing the symmetric bidding strategy (for agent 1) is a increasing function of

the surplus

b(c1) =

∫ c1

cL

(x+ E(s2/2|c2 = x)dFc(x)

With information sharing, the auction is a standard private-value all-pay auction such that

the bidding strategy in equilibrium is

β(v1) =

∫ v1

vL

ydF (y)

The expected payoff of firm 1 is the same as in Example 1 such that

π∗∗(c1) ≥ π∗(v1)

Since in contests, the social welfare is the sum of the payoff of both firms, which is higher

without information sharing.

Thus, information sharing sometimes benefits the society such as in first-price and second-

price auctions, but not always the case such as in all-pay auctions.

5 Extensions

[[Extensions to be added]]

Now we consider three extensions and applications we can use the model to explore: (i)

revelation of both common-value and private-value signals; (ii) agents’ and seller’s incentive

of inquiring information (signals s); (iii) cheap-talk communication and noise in revealing

signals.

5.1 Revelation of Both Private and Common Components

Without the restriction of independent revelation, agents now might find it not worth reveal-

ing the lowest common-value signal if other agents believe that such revelation is correlated

with certain type of private value and bid even more aggressive.

Example 5 None signal is revealed in a correlated equilibrium

14



5.2 Incentive of Inquiring Information

5.3 Cheap talk and Noise in Revealing Signals
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