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Abstract
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1 Introduction

Suppose that an analyst plans to model some strategic situation with a com-
plete information game g and has a Nash equilibrium a∗ of g in hand as his
prediction of the situation. While he believes that the complete information
game g correctly describes the situation with high probability, he is also
aware that there is some uncertainty about the payoffs, so that the players
may play some incomplete information game close to g. Is his prediction
a∗ still valid even in the presence of a small amount of incomplete infor-
mation? Kajii and Morris (1997, KM henceforth) formalize this robustness
question as follows: Nash equilibrium a∗ of complete information game g
is robust to incomplete information if every incomplete information game
in which the payoffs are given by g with high probability has a Bayesian
Nash equilibrium such that a∗ is played with high probability. This notion
allows for a quite rich structure of correlated types in incomplete informa-
tion perturbations, making the robustness test quite stringent. Indeed, even
strict Nash equilibria may fail to be robust1 and there are games that have
no robust equilibrium,2 whereas KM and subsequent studies have obtained
several sufficient conditions for robustness.3

In this note, we demonstrate that there is a non-empty open set of sym-
metric 3×3 supermodular games that have no robust equilibrium. For each
game in this set, we construct a sequence of dominance-solvable incomplete
information perturbations in which one action profile is played everywhere
and another sequence of dominance-solvable perturbations in which another
action profile is played everywhere.4 This has an important implication re-
garding the relationship between robust equilibrium and noise-independent
selection in global games.

Global games, first studied by Carlsson and van Damme (1993) for 2×2
games, offer a natural way of introducing incomplete information perturba-
tions that gives rise to equilibrium uniqueness through a “contagion” effect,
where correlation in beliefs is generated by noisy signals of the true state
which determines the payoffs. For general supermodular games, Frankel et
al. (2003, FMP henceforth) show, with a setting with one-dimensional sig-
nals, that as the signal noise vanishes, the game has a unique equilibrium

1See the earlier 2× 2 example by Rubinstein (1989).
2KM construct a 3 × 3 × 3 (non-supermodular) game with a unique (strict) Nash

equilibrium that has no robust equilibrium. Morris (1999) demonstrates non-existence of
robust equilibrium in a symmetric 4× 4 supermodular game.

3KM show that a p-dominant equilibrium with p sufficiently small is robust, while
Ui (2001) shows that in potential games, a potential maximizer is robust. Morris and
Ui (2005) introduce a generalized notion of potential that unifies and generalizes the
p-dominance and the potential maximization conditions and show that a generalized po-
tential maximizer is robust. See Oyama and Tercieux (2009) for further developments.

4The conditions that define this set of games have been found by Honda (2010) to
show that these games have no monotone potential maximizer.
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that survives iterative dominance, while the surviving equilibrium may de-
pend on the noise distribution.5 While the global game approach only con-
siders a particular class of perturbations as opposed to the robustness to all
elaborations,6 in classes of games considered in the literature so far the equi-
librium that is played in global games independently of the noise structure
has turned out to be also a robust equilibrium.7 This might lead one to con-
jecture that the global game perturbations would represent a critical class
of perturbations that determines whether or not an equilibrium is robust to
incomplete information.

Our result in the this note falsifies this conjecture, that noise-independent
selection implies robustness, at least for global games with one-dimensional
signals as FMP consider. For, Basteck and Daniëls (2010) show in the
setting of FMP that generic symmetric 3 × 3 supermodular games have
a noise-independent selection in (one-dimensional) global games,8 and the
present note shows that some of these games have no robust equilibrium.
Hence, the set of incomplete information perturbations that KM’s concept
of robustness allows is strictly larger than the set that global games with
one-dimensional signals generate. For our 3 × 3 games and for the equilib-
rium other than the noise-independent selection in one-dimensional global
games, the constructed incomplete information perturbation in which this
equilibrium is the unique rationalizable outcome cannot be generated by a
one-dimensional global game and may in effect be considered as a “two-
dimensional” perturbation (although we do not work directly with a noisy
signal formulation).

2 Preliminaries

2.1 Complete Information Games

We focus on two-player games. The set of players is denoted by I = {1, 2},
and for i ∈ I we write −i for player j 6= i. Each player i ∈ I has a linearly
ordered, finite set of actions Ai = {0, 1, . . . , ni}. These action sets are fixed
throughout the analysis. A complete information game is thus represented
by a profile of payoff functions g = (g1, g2), where gi : A =

∏
i∈I Ai → R,

i ∈ I. Let ∆(S) denote the set of probability distributions over a set S. We
5FMP provide a symmetric 4 × 4 example in which different equilibria survive under

different noise distributions.
6In fact, Oury and Tercieux (2007) and Basteck et al. (2010) show that in super-

modular games, a robust equilibrium is a noise-independent selection in global games.
7For example, the sufficient condition for noise-independent selection provided by FMP

in terms of a generalized notion of potential is also sufficient for robustness (Morris and
Ui (2005)).

8See also FMP (Section 5) for a heuristic argument with symmetric noise distributions.
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denote by br i(πi) the set of player i’s pure best responses to πi ∈ ∆(A−i):

br i(πi) = arg max
ai∈Ai

gi(ai, πi),

where gi(ai, πi) =
∑

a−i∈A−i
πi(a−i)gi(ai, a−i).

Complete information game g is supermodular if for each i ∈ I,

gi(a′i, a−i)− gi(ai, a−i) ≤ gi(a′i, a
′
−i)− gi(ai, a

′
−i)

whenever ai < a′i and a−i < a′−i. It is well known that the best response
correspondence of a supermodular game is nondecreasing in the stochastic
dominance order. For πi, π

′
i ∈ ∆(A−i), we write πi - π′i (and π′i % πi) if π′i

stochastically dominates πi, i.e., if
∑

a′−i≥a−i
πi(a′−i) ≤

∑
a′−i≥a−i

π′i(a
′
−i) for

all a−i ∈ A−i. If g is supermodular, then for each i ∈ I,

min br i(πi) ≤ min br i(π′i)
max br i(πi) ≤ max br i(π′i)

whenever πi - π′i.

2.2 ε-Elaborations and Robust Equilibria

Given the game g, we consider the following class of incomplete information
games. Each player i ∈ I has a countable set of types, denoted by Ti, and
we write T =

∏
i∈I Ti. The (common) prior probability distribution on T is

given by P . We assume that P satisfies that
∑

t−i∈T−i
P (ti, t−i) > 0 for all

i ∈ I and ti ∈ Ti. Under this assumption, the conditional probability of t−i

given ti, P (t−i|ti), is well defined by P (t−i|ti) = P (ti, t−i)/
∑

t′−i∈T−i
P (ti, t′−i).

The payoff function for player i ∈ I is a bounded function ui : A× T → R.
Denote u = (ui)i∈I . The tuple (T, P,u) defines an incomplete information
game.

A (behavioral) strategy for player i is a function σi : Ti → ∆(Ai). Denote
by Σi the set of strategies for player i, and write Σ =

∏
i∈I Σi. For a strategy

σi ∈ Σi, we denote by σi(ai|ti) the probability that ai ∈ Ai is chosen at
ti ∈ Ti. For σ ∈ Σ, we write σP ∈ ∆(A) for the probability distribution over
A generated by σ, i.e., σP (a) =

∑
t∈T P (t)

∏
i∈I σi(ai|ti) for a ∈ A.

The expected payoff to player i of type ti ∈ Ti playing ai ∈ Ai against
the opponent’s strategy σ−i ∈ Σ−i is given by

Ui(ai, σ−i|ti) =
∑

t−i∈T−i

P (t−i|ti) ui

(
(ai, σ−i(t−i)), (ti, t−i)

)
,

where ui((ai, σ−i(t−i)), t) =
∑

a−i∈A−i
σ−i(a−i|t−i)ui((ai, a−i), t). Let

BRi(σ−i|ti) denote the set of pure best responses of player i of type ti ∈ Ti

against σ−i ∈ Σ−i:

BRi(σ−i|ti) = arg max
ai∈Ai

Ui(ai, σ−i|ti).
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A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (T, P,u) if for
all i ∈ I, all ai ∈ Ai, and all ti ∈ Ti,

σi(ai|ti) > 0 ⇒ ai ∈ BRi(σ−i|ti).

Given g, let T gi
i be the set of types ti such that payoffs of player i of

type ti are given by gi and he knows his payoffs:

T gi
i = {ti ∈ Ti |ui(a, (ti, t−i)) = gi(a)

for all a ∈ A and all t−i ∈ T−i with P (ti, t−i) > 0}.

Denote T g =
∏

i∈I T gi
i .

Definition 1. Let ε ∈ [0, 1]. An incomplete information game (T, P,u) is
an ε-elaboration of g if P (T g) = 1− ε.

Following KM, we say that an action distribution µ ∈ ∆(A) is robust if,
for small ε > 0, every ε-elaboration of g has a Bayesian Nash equilibrium σ
such that the action distribution it generates, σP , is close to µ.

Definition 2. Action distribution µ ∈ ∆(A) is robust to incomplete infor-
mation in g if for every δ > 0, there exists ε̄ > 0 such that for all ε ≤ ε̄,
any ε-elaboration (T, P,u) of g has a Bayesian Nash equilibrium σ such that
maxa∈A |µ(a)− σP (a)| ≤ δ.

If µ ∈ ∆(A) is robust in g, then it must be a correlated equilibrium of g
(KM, Corollary 3.5). We say that an action profile a ∈ A is robust in g if
the degenerate action distribution on a (i.e., µ ∈ ∆(A) such that µ(a) = 1)
is robust in g.

Given σ−i ∈ Σ−i, let πi(σ−i|ti) ∈ ∆(A−i) be the belief of player i of type
ti over the opponent’s actions, i.e.,

πi(σ−i|ti)(a−i) =
∑

t−i∈T−i

P (t−i|ti)σ−i(a−i|t−i)

for a−i ∈ A−i. Observe that

BRi(σ−i|ti) = br i(πi(σ−i|ti))

for all ti ∈ T gi
i .

Several sufficient conditions for robustness to incomplete information
have been obtained. In particular, Morris and Ui (2005) introduce general-
ized notions of potential and show, among others, that a monotone potential
maximizer (MP-maximizer), a special form of their generalized potential
maximizer concept, is robust in supermodular games (and in games that
admit a monotone potential function that is supermodular). Their result
unifies and generalizes the previous results by KM in terms of p-dominance
and by Ui (2001) in terms of potential maximization. On the other hand,
Morris (1999) presents an example of a symmetric 4×4 supermodular game
that has no robust equilibrium.
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3 Result

We now restrict to 3 × 3 games, so that A1 = A2 = {0, 1, 2}, and assume
that g is supermodular. The game g is symmetric if g1(h, k) = g2(k, h) for
all h, k ∈ {0, 1, 2}. We prove the following:

Proposition 1. There is a non-empty open set of symmetric 3 × 3 super-
modular games that have no robust equilibrium.

The proof proceeds as follows. In Lemma 1, we present a condition
under which there is a sequence of ε-elaborations with a unique Bayesian
Nash equilibrium where action 2 is played everywhere. It implies that if
the game satisfies this condition, no action distribution other than (the
degenerate distribution on) (2, 2) is robust. In Lemma 2, we then present a
condition under which there is a sequence of ε-elaborations with a unique
Bayesian Nash equilibrium where action 0 is played everywhere. Thus, if
the game satisfies this condition, no action distribution other than (0, 0) is
robust. Proposition 1 follows from the fact that there is a non-empty open
set of symmetric 3 × 3 supermodular games that satisfy the conditions in
Lemmata 1 and 2 simultaneously.9

In fact, these conditions have been found (and shown to be satisfied by
some games) by Honda (2010) as a sufficient condition for a 3 × 3 game
to have no MP-maximizer. He shows by direct computation that these
conditions imply non-existence of an MP-maximizer. Since, as shown by
Morris and Ui (2005), an MP-maximizer is robust, our non-existence result
of robust equilibrium gives an indirect, alternative proof of the non-existence
of MP-maximizer.

4 Proof

For p ∈ (0, 1/2), let

πa =
(

1
2 , p, 1

2 − p
)
, πb =

(
1
2 − p, p, 1

2

)
, πc =

(
1
2 , 0, 1

2

)
.

The condition for contagion of action 2 is stated in terms of best responses
to these beliefs.

Lemma 1. If there exists p ∈ (0, 1/2) such that

min br i(πa) ≥ 1, min br i(πb) = 2, min br i(πc) ≥ 1, (1)

then for all ε > 0, there exists an ε-elaboration where the strategy profile σ∗

such that σ∗i (2|ti) = 1 for all ti ∈ Ti is the unique Bayesian Nash equilibrium.
9In these games, action profiles (0, 0) and (2, 2) are the only pure Nash equilibria.

Oyama and Takahashi (2009) show that symmetric 3×3 supermodular coordination games,
where the three symmetric action profiles are all Nash equilibria, generically have an MP-
maximizer and hence a robust equilibrium by Morris and Ui (2005).
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Proof. Let p ∈ (0, 1/2) be such that condition (1) is satisfied. We construct
a sequence of elaborations (T, P ε,u)ε>0, where P ε(T g) → 0 as ε → 0, as
follows. Let Ti = Z+ for each i ∈ I. Define P ε ∈ ∆(T ) by

P ε(1, 0) = P ε(0, 1) =
1
2
ε,

P ε(τ + 1, τ) = P ε(τ, τ + 1) = pε(1− ε)τ , τ ≥ 1,

P ε(τ + 2, τ) = P ε(τ, τ + 2) =
(

1
2
− p

)
ε(1− ε)τ+1, τ ≥ 0,

and P ε(t1, t2) = 0 otherwise; see Table 1. Define ui : A × T → R for each
i ∈ I by

ui(a, t) =


gi(a) if ti 6= 0,

1 if ti = 0 and ai = 2,

0 if ti = 0 and ai 6= 2.

That is, type 0 is a “crazy type” for which action 2 is a dominant action, and
T gi

i = Z+ \ {0}. (The constructed elaboration is an ε{1 + (1− 2p)(1− ε)}-
elaboration.)

We want to show that (T, P ε,u) has a unique Bayesian Nash equilibrium,
which plays action 2 everywhere. Consider any Bayesian Nash equilibrium
σ∗ of (T, P ε,u). We show by induction that

σ∗i (2|τ − 1) = 1 and σ∗i (0|τ) = 0, i = 1, 2, (∗τ )

for all τ ≥ 1. We note that by the assumption (1) and the supermodularity
of gi, for any ti ∈ T gi

i ,

minBRi(σ∗−i|ti) ≥ 1 if πi(σ∗−i|ti) % πa =
(

1
2 , p, 1

2 − p
)
, (2)

minBRi(σ∗−i|ti) = 2 if πi(σ∗−i|ti) % πb =
(

1
2 − p, p, 1

2

)
, (3)

minBRi(σ∗−i|ti) ≥ 1 if πi(σ∗−i|ti) % πc =
(

1
2 , 0, 1

2

)
. (4)

We first show (∗1). Indeed, σ∗i (2|0) = 1 by construction, and therefore,
for type ti = 1, πi(σ∗−i|1) % πc, so that σ∗i (0|1) = 0 by (4).

Assume (∗τ ). Then, for type ti = τ + 1, πi(σ∗−i|τ + 1) % πa, so that
σ∗i (0|τ + 1) = 0 by (2). Therefore, for type ti = τ , we have πi(σ∗−i|τ) % πb

(which applies also to τ = 1), so that σ∗i (2|τ) = 1 by (3). Thus, (∗τ+1)
holds.

For q, r ∈ (0, 1), r ≤ q, let

πd =
(

1+q
2 , 0, 1−q

2

)
, πe =

(
1−r
2 , 0, 1+r

2

)
, πf =

(
0, q+r

2q , q−r
2q

)
.

The condition for contagion of action 0 is stated in terms of best responses
to these beliefs.
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Lemma 2. If there exist q, r ∈ (0, 1) with 0 < r ≤ q < 1 such that

max br i(πd) = 0, max br i(πe) ≤ 1, max br i(πf ) = 0, (5)

then for all ε > 0, there exists an ε-elaboration where the strategy profile σ∗

such that σ∗i (0|ti) = 1 for all ti ∈ Ti is the unique Bayesian Nash equilibrium.

Proof. Let q, r ∈ (0, 1), r ≤ q, be such that condition (5) is satisfied. We
construct a sequence of elaborations (T, P ε,u)ε>0, where P ε(T g) → 0 as
ε → 0, as follows. Let Ti = {α, β} × Z+ for each i ∈ I. Define P ε ∈ ∆(T )
by

P ε((α, τ + 1), (α, τ)) = P ε((α, τ), (α, τ + 1)) =
1− q

2(1 + q)
ε(1− ε)τ ,

P ε((α, τ), (β, τ)) = P ε((β, τ), (α, τ)) =
q + r

2(1 + q)
ε(1− ε)τ ,

P ε((α, τ + 1), (β, τ)) = P ε((β, τ), (α, τ + 1)) =
q − r

2(1 + q)
ε(1− ε)τ ,

and P ε(t1, t2) = 0 otherwise; see Table 2. Define ui : A × T → R for each
i ∈ I by

ui(a, t) =


gi(a) if ti 6= (α, 0),
1 if ti = (α, 0) and ai = 0,

0 if ti = (α, 0) and ai 6= 0.

That is, type (α, 0) is a “crazy type”for which action 0 is a dominant action,
and T gi

i = ({α, β} × Z+) \ {(α, 0)}. (The constructed elaboration is an
ε(1 + r)/(1 + q)-elaboration.)

We want to show that (T, P ε,u) has a unique Bayesian Nash equilibrium,
which plays action 0 everywhere. Consider any Bayesian Nash equilibrium
σ∗ of (T, P ε,u). We show by induction that

σ∗i (0|(α, τ)) = σ∗i (0|(β, τ)) = 1, i = 1, 2, (?τ )

for all τ ≥ 0. We note that by the assumption (5) and the supermodularity
of gi, for any ti ∈ T gi

i ,

maxBRi(σ∗−i|ti) = 0 if πi(σ∗−i|ti) - πd =
(1+q

2 , 0, 1−q
2

)
, (6)

maxBRi(σ∗−i|ti) ≤ 1 if πi(σ∗−i|ti) - πe =
(

1−r
2 , 0, 1+r

2

)
, (7)

maxBRi(σ∗−i|ti) = 0 if πi(σ∗−i|ti) - πf =
(
0, q+r

2q , q−r
2q

)
. (8)

We first show (?0). Indeed, σ∗i (0|(α, 0)) = 1 by construction, and there-
fore, for type ti = (β, 0), πi(σ∗−i|(β, 0)) - πf , so that σ∗i (0|(β, 0)) = 1 by (8).

Assume (?τ ). Then, for type ti = (α, τ + 1), πi(σ∗−i|(α, τ + 1)) - πe, so
that σ∗i (2|(α, τ + 1)) = 0 by (7). Then, for type ti = (β, τ + 1), we have
πi(σ∗−i|(β, τ +1)) - πf , so that σ∗i (0|(β, τ +1)) = 1 by (8). Therefore, going
back to type ti = (α, τ + 1), we now have πi(σ∗−i|(α, τ + 1)) - πd, so that
σ∗i (0|(α, τ + 1)) = 1 by (6). Thus, (?τ+1) holds.
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We present two examples that satisfy the hypotheses of Lemmata 1 and 2
simultaneously. Example 1 is taken from Honda (2010). Example 2 presents
a game involving some economic context, the so-called “Bilingual Game”
studied by Galesloot and Goyal (1997), Goyal and Janssen (1997), and
Oyama and Takahashi (2010), among others. Clearly, the conditions will
continue to be satisfied with small perturbations of the payoffs.

Example 1 (Honda (2010)). Let the game g be given by

0 1 2

0 13, 13 3, 5 0, 0

1 5, 3 0, 0 13, 2

2 0, 0 2, 13 16, 16

where (0, 0) and (2, 2) are the only pure Nash equilibria. One can verify
that conditions 1 and 5 in Lemmata 1 and 2 are satisfied (with equalities)
for p ∈ (1/7, 5/32) and for q and r such that q > 5/21, r < 1/4, and
(15/17)q < r ≤ q, respectively (Honda (2010, Example 1)). This game thus
have no robust equilibrium.

Example 2 (Bilingual Game). Two players are to choose between two com-
puter programing languages, or two types of technologies in general, A and
B. Assume that A is more efficient while B is less risky: if both play-
ers choose A, then they each receive a payoff 11, while both choose B, then
they receive 10; if they choose different options, then the A-player receives 0,
while the B-player receives 3. Thus, (A,A) Pareto-dominates (B,B), while
(B,B) pairwise risk-dominates (A,A). In this 2 × 2 coordination game,
the risk-dominant, and Pareto-dominated, equilibrium (B,B) is robust to
incomplete information.

Now suppose that a “bilingual option”, or a compatible technology, AB
is available with some cost e > 0. An AB -player adopts A against an A-
player to receive a (gross) payoff 11 and adopts B against a B-player to
receive 10. If both players choose AB , then they use the efficient option A
and receive 11. This situation is described by

0 1 2

0 11, 11 11, 11− e 0, 3

1 11− e, 11 11−e, 11−e 10− e, 10

2 3, 0 10, 10− e 10, 10

8



where the actions A, AB , and B are denoted 0, 1, and 2, respectively, and
with the order 0 < 1 < 2 the game is supermodular. The profiles (A,A) and
(B,B) are the only pure Nash equilibria of this game.

For this game, it is conceivable that if the cost e is large so that AB is
too costly, then the game is strategically similar to the original 2× 2 game,
and thus the pairwise risk-dominant equilibrium (B,B) will be robust, while
if e is small enough, then B will tend to be abandoned in the presence of
the even less risky option AB , and thus the efficient option A will be robust.
In fact, by Oyama and Takahashi (2010), it turns out that if e > 40/19,
then (B,B) is an MP-maximizer and hence a robust equilibrium, while if
e < 5/3, then (A,A) is an MP-maximizer and hence a robust equilibrium;
in the middle case when 5/3 < e < 40/19, the conditions in Lemmata 1
and 2 are simultaneously satisfied and therefore the game has no robust
equilibrium.

5 Discussion

Let us discuss the relation to global-game noise-independent selection.
Global games, first introduced by Carlsson and van Damme (1993) for bi-
nary games, represent an important class of incomplete information games in
which equilibrium uniqueness arises through contagion effects along higher
order beliefs, and which are simple and tractable enough to be used in various
economic applications.10 General supermodular games (with many players
and many actions) are studied by FMP in the following setting. A state of
the world θ is drawn from the one-dimensional real line and determines the
payoffs of the players, and each player observes a noisy signal about θ. It is
assumed that the payoff differences are monotone in opponents’ actions (su-
permodularity) and in the state θ (state monotonicity), and the players have
a dominant action when θ is sufficiently small or large (dominance regions).
In this setting, FMP show that as the signal noise vanishes, the game has
a unique equilibrium that survives iterative dominance, while the selected
equilibrium may depend on the noise distribution. FMP provide a sym-
metric 4× 4 example in which difference equilibria survive under difference
noise distributions. They also provide sufficient conditions for the selec-
tion to be noise-independent. In particular, they give a heuristic argument
that generic symmetric 3×3 supermodular games have a noise-independent
selection, which is formally proved by Basteck and Daniëls (2010).

The crucial difference between the global game and the robustness ap-
proaches (besides the technical difference whether the type space is discrete
or continuous) is that the former considers a certain critical class of payoff
perturbations, while the latter allows for all perturbations. In particular,
FMP employ a one-dimensional type space. In fact, as proved by Oury and

10See the survey by Morris and Shin (2003).
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Tercieux (2007) and Basteck et al. (2010), if a∗ is a robust equilibrium, then
it is a noise-independent selection in global games.11

Our result shows that the converse of this result does not hold: we
demonstrated non-existence of robust equilibrium in symmetric 3×3 super-
modular games, a class of games that admit noise independence in global
games, thus implying that a global-game noise-independent selection may
not be a robust equilibrium. That is, the global game perturbation is in
general not the only possible perturbation that yields a unique equilibrium
outcome.

Corollary 2. A global-game noise-independent selection may not be a robust
equilibrium.

More precisely, the result by Basteck and Daniëls (2010) in fact shows
that if the game g satisfies the condition (1) in Lemma 1, then (2, 2) is
the global game selection of g. The incomplete information elaboration we
constructed in the proof of Lemma 1 can thus be seen as a type space repre-
sentation of a global game with some noise structure with a one-dimensional
state space as in FMP. On the other hand, their noise-independence result
implies that the elaboration we constructed in the proof of Lemma 2 for
contagion of (0, 0) cannot be generated by a one-dimensional global game
perturbation and may be seen as a “two-dimensional” perturbation. This
fact underlines the gap between robustness to incomplete information and
noise independence in (one-dimensional) global games. The gap could be
filled by allowing global games to have more complex noise structures, but
for more general games than 3× 3 games, we conjecture that the degree of
required complexity would increase as the numbers of players and actions in-
crease and would reduce the tractability and applicability of resulting global
games.
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Basteck, C. and T. R. Daniëls (2010). “Every Symmetric 3× 3 Global
Game of Strategic Complementarities is Noise Independent,” SFB 649 Dis-
cussion Paper 2010-061, Humboldt University.
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