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Abstract

We revisit the complete information all-pay auction with bid-caps intro-

duced by Che and Gale (1998), dropping their assumption that tie-breaking

must be symmetric. Any choice of tie-breaking rule leads to a different set of

Nash equilibria. Compared to the optimal bid-cap of Che and Gale we obtain

that in order to maximize the sum of bids, the designer prefers to set a less

restrictive bid-cap combined with a tie-breaking rule which slightly favors the

weaker bidder. Moreover, the designer is better off breaking ties determinis-

tically in favor of the weak bidder than symmetrically except when bidding

costs are strongly convex.
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1 Introduction

At the Olympic Games of 1896, the first Olympic Games of the Modern Era, two

weightlifters impressed the Athenian audience particularly: the Scotsman Launce-

ston Elliot and the Dane Viggo Jensen. Both lifted the same highest weight. The

jury decided to solve the tie in favor of Jensen for he was considered to have the

better style. Unfamiliar with this tie-breaking rule, the British delegates protested

against the decision. This finally led to Elliot and Jensen obtaining the permission

to try again for lifting higher weights. Yet both failed. In the end, Jensen was

declared the champion.

Nowadays, it is neither style nor the energy of the own country’s delegates that

helps to win a tie in a weightlifting-contest. Instead, when a tie occurs, it is the own

bodyweight that decides whether one wins or loses: Tie-breaking is solved in favor

of the lighter athlete. Behind this is the idea that a lighter athlete, though in the

same weight-class, probably has to exert more effort to lift the same weight than a

heavier competitor.

Clearly, sport contests are more interesting the more intensely the athletes compete.

For the designer, it his hence a natural objective to maximize the sum of efforts

exerted by the contestants or equivalently the average effort per contestant. Che and

Gale (1998) show that handicaps can be a very effective tool to raise the effort levels

in all-pay contests like sport contests. Yet they restrict their analysis to symmetric

tie-breaking. We are going to allow the designer not only to set handicaps optimally,

but also to choose the optimal tie-breaking rule.

It turns out that any choice of tie-breaking rule leads to a different set of Nash

equilibria. We provide a complete characterization of the rich equilibrium struc-

ture. Depending on the combination of tie-breaking rule and bid-cap, the designer

can enforce pure equilibria as well as mixed equilibria where either of the bidders

earns zero payoff. Compared to Che and Gale’s optimal bid-cap under symmetric

tie-breaking, we obtain that the designer optimally sets a less restrictive bid-cap

combined with a tie-breaking rule which slightly favors the ex ante weaker bidder.

Whereas the unique Nash equilibrium of the unrestricted all-pay auction is in mixed

strategies, both of these policies have the effect that they force bidders to play a

pure strategy equilibrium where both bidders bid the bid-cap. The optimal policy

exploits the fact that the weaker bidder is willing to bid more if tie-breaking is biased
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in his favor. If this bias is not too large this does not deter the stronger bidder from

competition.

In real contests, the toss of an unfair coin may seem rather unintuitive for lay people

(and more difficult to realize – solving a tie 60 : 40 requires some preparation, while

a fair coin is always at hands). Indeed, in many applications ties are broken either

in favor of one bidder or 50 : 50. Starting with this observation we consider the de-

signer’s problem if he is restricted to choosing between symmetric and deterministic

tie-breaking rules. Even under this restriction, the designer can do better than in

the optimal policy of Che and Gale (1998) by setting a bid-cap which is just small

enough to influence equilibrium behavior and choosing to break ties in favor of the

weak bidder. Concretely, this means that he excludes bids which are larger than the

weak bidder’s valuation. Superficially, this policy seems like a minimal intervention

into the game but it has important consequences. Recall that in an unrestricted

all-pay auction there is a mixed equilibrium in which the weak bidder lays out with

a positive probability. The designer’s policy gives rise to an equilibrium which dif-

fers from the equilibrium of the unrestricted all-pay auction in only one respect:

The weak bidder makes a preemptive bid (by bidding at the bid-cap) with the same

probability with which he would lay out in the unrestricted auction.

Finally, we show that if σ is the designer’s payoff from the unrestricted all-pay

auction, then the policy of Che and Gale yields at most 2σ. The policy of favoring

the weak bidder and setting a minimal bid-cap yields at most 3σ and the globally

optimal policy yields at most 4σ. The advantage of all three bid-cap/tie-breaking

policies over the unrestricted all-pay auction gets larger when bidders get more

asymmetric.

From these results, it follows that there appear to be two promising policies for the

designer: 1) He can enforce a pure equilibrium by setting a rigid bid-cap and use a

tie-breaking rule that is symmetric or slightly favors the weaker bidder. 2) He can

break ties deterministically in favor of the weak bidder and set a bid-cap that is just

rigid enough to matter. We study the robustness of these policies in more general

settings, trying to understand under which circumstances each of these policies is

preferable.

Relying on and extending recent results of Siegel (2010), we compare the perfor-

mance of our policies in a setting with considerably more general cost functions.
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The second policy is remarkably robust against details of the cost function. Notably,

it always yields an improvement over the unrestricted all-pay auction. In contrast,

the first strategy is better for sufficiently convex cost functions while for sufficiently

concave cost functions it performs even worse than the unrestricted all-pay auction.

Moreover, the requirements on the designer’s knowledge are considerably stronger

for the first policy than for the second. Finally unlike the first one, the second policy

leads to an improvement over the unrestricted all-pay auction regardless of whether

the designer maximizes the winning bid, the sum of bids, or a mixture of the two.

Together, we believe that these results demonstrate clearly that tie-breaking rules

matter in all-pay auctions with bid-caps, and explain why we often observe deter-

ministic tie-breaking rules in favor of the weaker bidder in practice.

1.1 Related Literature

In the vast literature on all-pay auctions1, tie-breaking rules have received compar-

atively little attention so far. Indeed, in many all-pay auction games, tie-breaking

occurs with probability zero in any equilibrium and thus the set of Nash equilibria

is invariant to the choice of tie-breaking rule. The simplest example is a complete

information all-pay auction where at least two bidders have positive valuations for

the object for sale.2 In other related games, the choice of tie-breaking rule is a

necessity since a Nash equilibrium exists only for certain tie-breaking rules. For

the possibly simplest example consider a two-player complete information all-pay

auctions where bidders have valuations v1 > 0 and v2 = 0. Then a Nash equilibrium

(which is constituted by both bidders bidding zero) exists only if tie-breaking always

favors bidder 1.

In contrast, in all-pay auctions with (binding) bid-caps the choice of tie-breaking

rule is decisive since in equilibrium both bidders play the bid-cap with positive

probability. Yet in the literature so far only the case of symmetric tie-breaking has

been considered. This concerns both, the complete information case studied by Che

1See Konrad (2009) for an overview.
2This has been shown, among others and in increasing generality, by Hillman and Samet (1987),

Hillman and Riley (1989), Baye, Kovenock and de Vries (1996), and Siegel (2009). A parallel result
holds for the incomplete information case studied first by Weber (1985) and Hillman and Riley
(1989).
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and Gale (1998) and Persico and Sahuguet (2006)3 and the incomplete information

case studied by Gavious, Moldovanu and Sela (2003) and Sahuguet (2006).4

Kaplan and Wettstein (2006) initiated a discussion of “soft” bid-caps which do take

the form of an artificial stronger increase in the cost function from some effort-level

on (as opposed to a binding upper bound on bids). The relation to this literature

is discussed in Section 6.7.

See Che and Gale (1998) for a discussion of the relation to policies other than bid-

caps such as minimum-bid requirements.

1.2 Outline

The paper is structured as follows: Section 2 introduces the model. Section 3

characterizes the bidders’ equilibrium behavior for all combinations of bid-caps and

tie-breaking rules. Section 4 analyzes the designer’s optimization problem, first for

the case of arbitrary tie-breaking rules and then for the case of tie-breaking rules that

are either deterministic or symmetric. Section 5 generalizes the previous analysis to

general cost functions. Section 6 discusses robustness, and various extensions and

implications of our analysis. Among the issues addressed are knowledge requirements

of our various policies, the number of bidders, legal prescriptions of treating bidders

symmetrically, different objectives of the designer, the incomplete information case,

and “soft” bid-caps. We delegate all proofs to the Appendix.

2 The Model

We consider a complete information all-pay auction with two bidders 1 and 2 with

valuations v1 and v2 for winning. Unless otherwise noted v1 > v2. Each bidder

is restricted to choose his bid b from the interval [0,m] at costs of b. If a bidder

submits the strictly highest bid, he wins. If both bidders submit the same bid,

bidder 1 wins with probability α ∈ [0, 1], otherwise bidder 2 wins. We assume that

the designer chooses α and the handicap-level m in order to maximize the sum of

bids or, equivalently, the average bid. This is the setting of Che and Gale (1998)

3Persico and Sahuguet (2006) embed the model of Che and Gale (1998) into a model of electoral
competition where parties try to attract heterogeneous voters. In their setting, the assumption of
symmetric tie-breaking takes the form of an assumption that undecided voters toss a fair coin.

4See Section 6.6 for further discussion of the incomplete information case.
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with the only difference that they restrict their analysis to the case of α = 1
2
, and

hence symmetric tie-breaking.

Note that it is without loss of generality to focus on tie-breaking rules that do not

change depending on the bids exerted:

Lemma 1 Under any, possibly bid-dependent tie-breaking rule, in any equilibrium

and for all m, no bidder sets an atom inside (0,m). Moreover, at most one bidder

places an atom on 0.

Hence, in equilibrium, tie-breaking may occur with positive probability only if both

bidders bid the handicap-level m. Thus it is without loss of generality to analyze

tie-breaking rules which are not bid-dependent.

If the designer does not impose a handicap, i.e. m = ∞, the game is simply the

complete information all-pay auction. It is well-known that then, in the unique

equilibrium, both bidders mix uniformly over [0, v2).
5 Moreover, bidder 2 places an

atom of size 1− v1
v2

on 0. Clearly, for m ≥ v2, this equilibrium survives. Yet we will

see below that depending on the tie-breaking rule uniqueness of equilibrium may

break down for m = v2. The case m = 0 is trivial. Thus we assume in the following

that the designer chooses (α,m) from the set

C = [0, 1]× (0, v2].

3 All Equilibria

We now characterize all equilibria for all pairs (α,m) ∈ C.

3.1 Overview

Let us start with a general overview and an exemplary picture of how the structure

of equilibria looks like in all (non-generic) cases. For this, we partition C into three

sets, CI , CII , and CIII , corresponding to three qualitatively different cases I, II,

and III. Figure 1 depicts these three sets for v1 = 2 and v2 = 1.6 The boundaries

have to be analyzed separately. Thus we denote the segment separating CI and CII

by S, the upper boundary of CIII by T , and the upper boundary of CII by U . For

5See, e.g., Hillman and Riley (1989).
6For different values v1 > v2, the picture is rescaled, but it does not change qualitatively.
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future reference, we denote the line where α is fixed at value 1
2

by CG, which is the

set studied by Che and Gale (1998).

Figure 1: Partition of the designer’s choice set C

The three Cases I, II, and III correspond to three types of equilibria. The equi-

librium supports of the two bidders in these three cases are given schematically in

Figure 2:

Figure 2: Equilibrium supports in the three cases

Cases CI and CII:

(α,m) ∈ CI ∪ CII leads to a mixed equilibrium where both bidders mix over an

interval [0, b] with b < m. In addition both bidders place atoms on m and one

bidder puts an atom on 0. Obviously, the bidder who sets the atom in 0 earns 0 in
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equilibrium. In Case I, this is the strong bidder, bidder 1, while in Case II, it is the

weak bidder, bidder 2, who obtains zero payoff. On the boundary segment S, there

is no atom in 0 and consequently, both bidders earn a payoff of 0. This observation

alone reveals the power of the tie-breaking rule: For any m ∈ (0, v2), the designer

can induce a positive payoff for either bidder by his choice of tie-breaking.

Since CI ∩ CG = ∅, mixed equilibria where the weak bidder earns a positive payoff

do not occur in Che and Gale’s analysis. Yet such equilibria exist in our extended

setting: Consider the tie-breaking rule α = 0 which always favors bidder 2 and some

m ∈ (0, v2). Bidder 2 can guarantee himself a positive payoff by submitting a bid of

m regardless of his opponent’s strategy. By the following lemma (which also proves

useful for the later analysis), this implies that bidder 1 must obtain zero payoff.

Lemma 2 Fix (α,m) ∈ C and fix an equilibrium. Denote by S1 and S2 the supports

of the bidders’ equilibrium strategies. Then

inf S1 ∪ S2 ∈ {0,m}.

The lemma shows that one bidder must obtain zero payoff in equilibrium, unless

we are in an equilibrium where both bidders play m. Yet for α = 0, it is not an

equilibrium that both bidders play m. (Bidder 1 would rather deviate to zero than

play m in this case.) Hence it follows that bidder 1 obtains zero payoff. The set CI

is the region in C on which an extension of this reasoning goes through.

Case CIII:

The set CIII ∪T corresponds to cases in which it is an equilibrium that both bidders

choose m. Obviously, in such an equilibrium, the designer’s payoff is given by 2m.

Thus it is easy to see that the designer can improve upon the configuration
(

1
2
, 1

2
v2

)
which is optimal within CG as shown by Che and Gale by choosing a smaller α and

a larger m within the set CIII ∪ T . Moreover, (α∗,m∗) which is the upper corner of

the triangle CIII , explicitly

(α∗,m∗) =

(
v2

v1 + v2

,
v1v2

v1 + v2

)
∈ T,

is the optimal configuration within CIII ∪ T since it is the configuration in CIII ∪ T
associated with the largest m.
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3.2 Explicit Characterization

Starting with the following definition which characterizes explicitly the regions of

the state space depicted in Figure 1, we now turn to a rigorous characterization of

equilibrium.

Definition 1 Define critical levels of m by

m1(α) = min(αv1, (1− α)v2) for α ∈ [0, 1]

and

m2(α) = v2 −
α2

1− 2α
(v1 − v2) for α ∈

[
0,

v2

v1 + v2

]
.

m1(α) separates Case III from Cases I and II, while m2(α) separates Cases I and

II. Furthermore, define

CI =

{
(α,m) ∈ C

∣∣∣∣α ∈ [0, v2

v1 + v2

)
and m2(α) > m > m1(α)

}
,

as well as

CII =

{
(α,m) ∈ C

∣∣∣∣α ∈ [0, v2

v1 + v2

)
and v2 > m > m2(α)

}
∪
{

(α,m) ∈ C
∣∣∣∣α ∈ [ v2

v1 + v2

, 1

]
and v2 > m > m1(α)

}
,

and

CIII = {(α,m) ∈ C |m < m1(α)} .

Denote by S the segment of C separating CI and CII ,

S =

{
(α,m) ∈ C

∣∣∣∣α ∈ [0, v2

v1 + v2

)
and m = m2(α)

}
,

by T the segment of C separating CI and CII from CIII ,

T = {(α,m) ∈ C |α ∈ [0, 1] and m = m1(α), }

and by U the upper boundary,

U = [0, 1]× {v2}.
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Clearly, C = CI ∪ CI ∪ CII ∪ CIII ∪ S ∪ T ∪ U and this conjunction is disjoint.

Finally, denote by CG the region in C analyzed by Che and Gale (1998),

CG =

{
1

2

}
× (0, v2].

The following proposition provides a detailed characterization of equilibrium in the

non-generic cases CI ∪ CII ∪ CIII .

Proposition 1 Denote by πi the equilibrium payoff of bidder i, by ci the atom in 0

played by bidder i and by di the atom bidder i places on m. Recall that v1 > v2. For

each (α,m) ∈ C \ (S ∪ T ∪ U) the unique equilibrium is characterized as follows:

(i) For (α,m) ∈ CI , we have π1 = 0 and

π2 = v2 −
(

α2

(1− α)2
v1 +

(
1− α2

(1− α)2

)
m

)
.

Bidder 1 puts atoms of sizes

c1 =
π2

v2

and d1 =
v1 −m
v2

α

(1− α)2

on 0 and m and mixes uniformly over [0, b] with his remaining probability mass,

where

b =
m− αv1

1− α
.

Bidder 2 puts an atom of size

d2 =
v1 −m
v2

1

1− α

on m and mixes uniformly over [0, b] with his remaining mass.

(ii) For (α,m) ∈ CII , we have π2 = 0 and

π1 = v1 −
(

(1− α)2

α2
v2 +

(
1− (1− α)2

α2

)
m

)
.

Bidder 2 puts atoms of sizes

c2 =
π1

v1

and d2 =
v2 −m
v2

1− α
α2
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on 0 and m and mixes uniformly over [0, b] with his remaining mass, where

b =
m− (1− α)v2

α
.

Bidder 1 sets an atom of size

d1 =
v2 −m
v2

1

α

on m and mixes uniformly over [0, b] with his remaining mass.

(iii) For (α,m) ∈ CIII , both bidders play m with probability 1. Accordingly,

π1 = αv1 −m and π2 = (1− α)v2 −m.

We now discuss the boundary cases S, T , and U .7 For (α,m) ∈ S, the equilibria

of Cases (i) and (ii) of the proposition coincide and accordingly the atoms in zero

vanish. The resulting vector of strategies is a Nash equilibrium.

Observe that CIII is exactly the set where the payoffs π1 and π2 from Case (iii) of

the proposition are positive: Then, no bidder has an incentive to deviate to a lower

bid. At the upper boundary, i.e., for (α,m) ∈ T , there is typically a continuum of

equilibria where the bidder who earns zero payoff mixes over {0,m} with sufficiently

large but otherwise arbitrary mass on m. The only exception is the case

(α∗,m∗) =

(
v2

v1 + v2

,
v1v2

v1 + v2

)
∈ T

where both bidders earn zero payoff. In this case, it is the unique equilibrium that

both bid v1v2
v1+v2

. It can be shown that for t = (α,m) ∈ T the set of Nash equilibria

is the set of convex combinations of Et and Et where Et and Et are the limits as

ε ↓ 0 of the unique equilibria obtained, respectively, for (α,m− ε) and (α,m+ ε).8

For (α,m) ∈ U , with α > 0 the unique Nash equilibrium is just the unique equi-

librium of the complete information all-pay auction without bid-cap. For (α,m) =

(0, v2) there is a continuum of Nash equilibria, where both bidders mix uniformly

over [0, v2). Additionally, bidder 2 places atoms c2 and d2 on 0 and on m = v2 with

7While one may find the arising non-uniquenesses of equilibrium theoretically interesting, we
feel that the following informal discussion is sufficient since only generic cases are concerned.

8Erroneously (and in conflict with their own uniqueness result), Che and Gale claim that a
similar non-uniqueness of equilibrium applies to the case (1

2 ,
v1
2 ).
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c2 +d2 = 1− v2
v1

. Clearly, the case d2 = 0 corresponds to the well-known equilibrium

of the complete information all-pay auction. This equilibrium is obviously the limit

as ε goes to zero of the unique equilibrium obtained for (ε, v2) ∈ C. At the other ex-

treme lies the equilibrium with c2 = 0. It can easily be shown that this equilibrium

is the limit of the unique equilibria obtained for (0, v2 − ε).

Thus – as we will discuss in more detail below – the combination of an m slightly

below v2 and α = 0, a restriction which on the surface minimally perturbs the game,

induces an equilibrium which differs from the usual equilibrium of the complete-

information all-pay auction in one important respect: The ex ante weaker bidder

makes preemptive bids of m with the probability with which he lays out in the

unrestricted all-pay auction. Obviously, this is highly interesting for a designer

wishing to maximize bids.

We close our characterization of equilibrium by discussing one surprising finding

of Che and Gale’s analysis in light of the broader picture of equilibrium we have

derived: Che and Gale show that in their mixed strategy case, CG ∩ CII , the bid-

cap does not affect the bidders’ equilibrium payoffs. Indeed, if α is fixed at 1
2
, the

expressions for π1 and π2 from Case (ii) of Proposition 1 become

π1 = v1 − v2 and π2 = 0.

These are the well-known equilibrium payoffs from the all-pay auction without bid-

caps, which are of course independent of m. A similar independence of m does not

arise for any other tie-breaking α 6= 1
2
. In fact, it is easy to see that within CII , π1

is increasing in m for α > 1
2

and decreasing for α < 1
2
.

4 The Design Problem

We now analyze the designer’s problem of setting α and m in a way that maximizes

the sum of the bidder’s bids or, equivalently, the average bid. We refer to the

expected sum of bids as the designer’s payoff in the following. First we analyze the

designer’s optimization problem. Then we ask what the designer’s optimal policy is

if he is restricted to choosing α from {0, 1
2
, 1}. The latter analysis is motivated by

the fact that in practice – possibly due to the fact that biased coins mainly exist
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in text books of probability theory – we often observe symmetric tie-breaking or

tie-breaking completely in favor of the weaker bidder.

We find that in both optimization problems, the designer prefers to favor the ex

ante weaker bidder in tie-breaking, though to a different extent. Moving away from

symmetric tie-breaking can increase payoffs by at most 100% if the designer can

choose any α and by at most 50% if the designer is restricted to α ∈ {0, 1
2
, 1}. The

larger the asymmetry between the bidders, the larger is the gain from asymmetric

tie-breaking.

Following Che and Gale (1998), we circumvent the problem of constantly referring

to equilibrium non-uniqueness by assuming that in each case the equilibrium which

is most favorable to the designer is played. As shown in the previous section, this

concerns (α,m) ∈ T with the exception of the tip of the triangle and the upper

left corner (α,m) = (0, v2), compare Figure 1. In these cases we thus assume that

those equilibria which do not involve atoms in zero are played. This choice of

focus is justified by the fact that by choosing m marginally smaller the designer

obtains a situation where the desired equilibrium is the unique equilibrium. As will

become clear below, this choice of equilibrium selection is without effect in the case

of a globally optimizing designer, but it is crucial if the designer is restricted to

α ∈ {0, 1
2
, 1}.

4.1 Global Optimization

The global optimization problem is complicated by the fact that – mainly due to the

transition between pure and mixed equilibrium – the sum of bids which we denote

by σ in the following is discontinuous on T and non-differentiable on S. Thus a

rather piece-wise approach to optimization is in order.

Observe first that for (α,m) ∈ CIII ∪ T we have

σ(α,m) = 2m.

Thus the optimal (α,m) in this region is given by the tip (α∗,m∗) of this triangle

since this is associated with the largest value of m:

(α∗,m∗) =

(
v2

v1 + v2

,
v1v2

v1 + v2

)
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The notation (α∗,m∗) is chosen in anticipation of the fact that this will turn out

to be the global optimum. Now we analyze σ(α,m) in the set CI ∪ CII ∪ S ∪ U .

Following the notation of Proposition 1, σ(α,m) is easily seen to be given by

σ(α,m) =
2∑
i=1

(1− ci − di)
b

2
+ dim (1)

Our first result shows that the monotonicity behavior of σ(α,m) is surprisingly

complex:

Lemma 3 For (α,m) ∈ CI we have dσ(α,m)
dm

> 0, for (α,m) ∈ CII with α < 1
2

we

have dσ(α,m)
dm

< 0, and for (α,m) ∈ CII with α > 1
2

we have dσ(α,m)
dm

> 0.

Thus increasing the bid-cap is beneficial for the designer in the region CI and in

the part of CII which lies to the right of CG. Between these regions, increasing the

bid-cap has an adverse effect on the sum of bids. This result together with a few

additional observations allows us to substantially restrict the region in which we

have to search for a global optimum:

Corollary 1 If (α,m) is a global maximizer of σ(α,m) then (α,m) ∈ S.

Here, S, the closure of S, is nothing other than S together with its two end points,

(0, v2) and (α∗,m∗). From here it is a straightforward calculation to the main result

of this section:

Proposition 2 For all m ≥ 0 and α ∈ [0, 1] where (α,m) 6= (α∗,m∗) we have

σ(α∗,m∗) > σ(α,m).

4.2 Simple Tie-Breaking Rules

We now examine the restricted setting where the designer can only choose between

symmetric and deterministic tie-breaking rules: α ∈ {0, 1
2
, 1}. Naively, one might

think that the optimality of bid-caps discovered by Che and Gale (1998) is driven by

the fact that they give the designer a chance to establish a pure strategy equilibrium,

making coordination easier and thus increasing the bidders’ efforts. In this logic, one

would assume that the designer always picks (α,m) from the set of pure equilibria

with maximal bid-caps, T . Thus when α ∈ [α∗, 1
2
) is ruled out, one might expect
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that the optimal tie-breaking rule for the designer is given by Che and Gale’s (1
2
, v2

2
).

As we will see now, these heuristic arguments are not correct: The designer is always

better off by breaking ties deterministically in favor of the weaker bidder and setting

the largest bid-cap that has any bite.

We start with a discussion of the options the designer has under this restriction:

The case α = 1
2

has been studied by Che and Gale: In this case, setting m = v2
2

is optimal and it leads to a payoff of v2 for the designer. Allowing the designer to

choose α = 1 is actually irrelevant: As shown in Lemma 3, the expected sum of bids

is increasing in m for α = 1. For m = v2, the designer obtains the payoff from the

unrestricted all-pay auction which is given by

v2

2
+
v2

v1

v2

2
< v2.

Now consider the case α = 0. Again by Lemma 3, the expected sum of bids is

increasing in m then. However setting m = v2 does not yield the payoff of the

unrestricted all-pay auction in this case: Instead of putting an atom on zero, bidder

2 makes a preemptive bid of v2 with the probability. This leads to a payoff of

v2

2
+
v2

v1

v2

2
+ (1− v2

v1

)v2 > v2.

Therefore we conclude:9

Corollary 2 If the designer can choose α ∈ {0, 1
2
, 1} and m ≥ 0 then his optimal

choice is given by (α,m) = (0, v2).

To summarize, Figure 3 depicts the expected sum of bids for α ∈ {0, 1
2
, 1} and

α = α∗ as a function of m:

4.3 Quantitative Comparison of Policies

To close our analysis of the designer’s optimization problem under linear bidding

costs, we compare the maximal differences between four policies which have turned

out to be important in the previous discussion: Let P ∗ be the globally optimal policy

of setting (α∗,m∗). Let PR be the policy (0, v2) which was optimal in the restricted

decision problem of the previous section: breaking ties in favor of the weaker bidder

9Recall that the optimal policies for α = 0 and α = 1
2 rely on equilibria which are not unique. To

make the desired equilibria unique, the designer has to choose m marginally smaller than indicated.
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Figure 3: Expected sum of bids for v1 = 2, v2 = 1 and α ∈ {0, α∗, 1
2
, 1} as a function

of m where α∗ = v2
v1+v2

= 1
3
.

and setting the minimal bid-cap which has an effect. let PCG be the policy (1
2
, v2

2
)

which is optimal in the setting of Che and Gale. Finally let P 0 be the policy of doing

nothing and letting bidders play a complete information all-pay auction. Denote the

designer’s payoffs under those for policies by σ∗, σR, σCG and σ0. As shown above,

we have

σ∗ =
2v1v2

v1 + v2

, σR =
v2

2
+
v2

v1

v2

2
+ (1− v2

v1

)v2,

and

σCG = v2, and σ0 =
v2

2
+
v2

v1

v2

2
.

Considering the limits v1 ↑ ∞ and v1 ↓ v2 leads to especially clean results:

Lemma 4 We have

lim
v1↑∞


σ∗

σR

σCG

σ0

 =


2
3
2

1
1
2

 v2.

and

lim
v1↓v2

σ∗ = lim
v1↓v2

σR = lim
v1↓v2

σCG = lim
v1↓v2

σ0 = v2

A straightforward calculation reveals that the cases treated in the Lemma correspond

to the extreme cases, showing that the optimal policy is at most twice as good as

the policy of Che and Gale and at most four times as good as the unrestricted all-
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pay auction. The policy PR gives a substantial advantage over PCG. Moreover, we

see that policies P ∗ and PR manage to exploit large values of v1: σ
∗ and σR are

increasing in v1. In contrast, σCG is independent of v1 and σ0 is decreasing in v1. The

fact that the difference in the strengths of the two bidders increases overshadows the

fact that - in the sum - bidders are willing to bid more. The observation about P 0 is

well-known: It is the basis of the result of Baye, Kovenock and de Vries (1993) that

excluding high-valuation bidders from a complete information all-pay auction may

be beneficial to the designer’s payoff if it reduces asymmetries. In this perspective,

Che and Gale have shown that setting a bid-cap with symmetric tie-breaking is just

as valuable to the designer as being able to replace the stronger bidder with a new

bidder who is just as good as the weaker bidder. Our policies with asymmetric

tie-breaking P ∗ and PR actually exploit the fact that bidder 1 is willing to bid more

than bidder 2. So to say, in the limit v1 ↑ ∞, P ∗ leads to the same payoffs as a

symmetric all-pay auction where both bidders have valuations 2v2.

Finally, note that while the payoffs of the four policies coincide as v1 ↓ v2, the policies

themselves do not coincide: As v1 ↓ v2, policies P ∗ and PCG converge to an auction

where both bidders bid v2
2

for sure and tie-breaking is symmetric. PR and P 0 both

converge to a symmetric complete-information all-pay auction where tie-breaking is

irrelevant since there are no atoms in the symmetric case. In this light, it is especially

interesting to note that the payoff ranking is always P ∗ � PR � PCG � P 0.

5 General Cost Functions

The analysis of the previous section identified two types of strategies by which

the designer could use bid-caps and tie-breaking rules to boost his payoff: Under

the policy PR, the designer broke ties in favor of the weak bidder and made a

bid-cap that was just small enough to matter. This forced the weak bidder to

make preemptive bids with some probability instead of laying out with the same

probability. Under policies P ∗ and PCG, the designer made a more rigid bid-cap,

forcing bidders to play a pure equilibrium. In this section, we study how well these

strategies perform in a more general setting where we dispense with the assumption

of linear bidding costs.

We find that PR is considerably more robust than policies that enforce a pure

strategy equilibrium. Unlike those policies, PR always yields an improvement over
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the unrestricted all-pay auction. It depends remarkably little on the details of

the cost function in the sense that the payoff difference to the unrestricted all-pay

auction only depends on the value of the cost functions at the upper boundary of the

equilibrium support. For strongly concave cost functions, the relative improvement

over the unrestricted all-pay auction and over the other class policies gets arbitrarily

large. In contrast, for sufficiently convex cost-functions, the policies that enforce

pure equilibria are better than PR.10

In Section 6.1 below, we observe that under general cost-functions the knowledge

requirements on a designer enforcing PR are considerably smaller than those on

a designer who wishes to enforce the optimal pure equilibrium. Together, these

observations suggest that from practical point of view policy PR is highly attractive.

For the purpose of the following discussion, we slightly redefine the policies we

consider: We denote by P ∗ the policy which induces the designer-optimal pure

strategy equilibrium. Analogously, we denote by PCG the policy associated with

designer-optimal pure strategy equilibrium available under symmetric tie-breaking.11

PR now denotes the policy of setting the minimal bid-cap which has an impact and

always breaking ties in favor of the weaker bidder. P 0 denotes again the policy of

playing an unrestricted all-pay auction.

5.1 The Model with General Cost Functions

Consider the following generalized model: Bidder i has costs ci(b) from making a

bid of b where ci is a continuous, strictly increasing function with ci(0) = 0 and with

ci(b) > vi for some b <∞. We drop our assumption that v1 > v2 but we still assume

that bidder 1 is the stronger bidder: We assume there exists a t > 0 such that

v1 − c1(t) = p1 > 0 and v2 − c2(t) = 0.

10See the discussion below: In this context, by “convexity” we mean that cost functions take
most of their increase in the bidding interval at high bids. It does not refer to a local property.
The same is the case for “concavity”.

11Note that - as we will see below - these two policies may be dominated by the unrestricted
all-pay auction for some cost functions. Thus, P ∗ is not necessarily a global optimum anymore.
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Clearly, t is the largest bid bidder 2 might be willing to make.12 Siegel (2010,

Theorem 3) has shown that in this case the unique equilibrium of the all-pay auction

without bid-cap is given by bidders 1 and 2 mixing with the distribution function

F1(b) =
c2(b)

v2

and F2(b) =
p1 + c1(b)

v1

(2)

on [0, t]. Note that bidder 2 places an atom of size p1
v1

= v1−c1(t)
v1

on 0. Thus, bidder

2 makes a payoff of zero.

5.2 Policy P 0

We consider first P 0, the policy of letting bidders play a complete information all-

pay auction without bid-cap. We denote by σ0 the associated payoff to the designer.

An easy calculation gives us a formula for the designer’s equilibrium payoffs, i.e.,

the sum of bids in this case:

Corollary 3 The designer’s payoff in the unrestricted all-pay auction is given by13

σ0 =
2∑
i=1

t

vi
(ci(t)− ci(t))

where for b ∈ [0, t], ci(t) denotes the average costs on [0, b],

ci(b) =
1

b

∫ b

0

ci(x)dx.

5.3 Policies P ∗ and PCG

It is clear that there is still a region CIII of the state space C where a pure strategy

equilibrium arises in which both bidders play m. Define the functions h1 and h2 by

h1(α) = c−1
1 (αv1) and h2(α) = c−1

2 ((1− α)v2)

12In the terminology of Siegel (2010), t is the so-called threshold, defined as the reach of the
bidder with the smaller reach. The reach is the highest bid a bidder can make without earning a
negative payoff regardless of his opponents strategy. p1 is the so-called power of bidder 1.

13To our knowledge, this compact expression for equilibrium efforts is not common in the litera-
ture and may be of minor independent interest: The designers’ payoff depends on the cost functions
only through the differences between costs at the threshold and average costs.
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where c−1
i denotes the inverse of ci which is well-defined since ci is strictly increasing.

Then it is easy to see that CIII is given by

CIII = {(α,m) ∈ C|min(h1(α), h2(α)) < m}.

Define again T to be the upper boundary of CIII , i.e.

T = {(α,m) ∈ C|min(h1(α), h2(α)) = m}.

To sum up, a pure equilibrium arises, if m is such that αv1 is greater than c1(m)

and if (1− α)v2 is greater than c2(m).

With general cost-functions, CIII does typically not have the triangular shape we

saw with linear costs. However, since its boundary is the minimum of the increas-

ing function h1(α) and the decreasing function h2(α), the boundary will increase

up to some point and decrease from there on. Accordingly, we define (α∗,m∗) to

be the unique pure strategy equilibrium associated with the maximal bid-cap m∗

that is associated with a pure equilibrium. Accordingly, P ∗ defined above is the

policy of implementing (α∗,m∗). Denote by σ∗ the resulting payoff of the designer.

Analogously, there is a unique maximal bid-cap mCG which leads to a pure strategy

equilibrium for α = 1
2
. PCG and σCG are the associated policy and designer’s payoff.

Clearly, we have σ∗ = 2m∗ and σCG = 2mCG.

Trivially, except in generic cases where α∗ = 1
2
, P ∗ will be strictly superior to PCG.

In the case where c1 ≡ c2, it is easy to see that just as in the linear case

α∗ =
v2

v1 + v2

.

Generally however, α∗ may lie anywhere in the interval [0, 1]. More importantly, the

values of m∗ and mCG may lie anywhere in the interval [0, t]: If both cost functions

decrease slowly at low bids and increase up to c1(t) and c2(t) only on a short interval

below t, then m∗ and mCG can lie arbitrarily close to t. Conversely, if at least one

of the cost functions increases strongly already for small bids, m∗ and mCG can be

arbitrarily close to zero.14

14See the example of Section 5.5.
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5.4 Policy PR

Next we turn to C \ (CIII ∪ T ), the cases where no pure equilibria exist. It is

easy to check that the arguments which gave us the structural properties of the

equilibrium in the linear case still go through in the present setting: There are no

atoms in (0,m) and both bidders mix over the same interval which goes down to

zero. Additionally, at most one bidder places an atom on zero and for α ∈ (0, 1)

both place an atom on m. Also for α ∈ (0, 1), there is an interval below m on which

bidders are inactive. Furthermore, by choosing α ∈ {0, 1}, the designer can force

either of the two bidders to earn zero payoff, implying that there should again be

a boundary segment S connecting the points (0, t) and (α∗,m∗) such that - in the

logic of Figure 1 - bidder 2 yields a positive payoff to the left of S and bidder 1

yields a positive payoff to the right of S.15

Does the designer still have a policy PR which forces the weaker bidder 2 to exchange

his atom on zero (which by (2) he plays in the unrestricted auction) against an atom

on t? The following lemma shows that this is indeed the case:

Lemma 5 For α = 0 and m ∈ (0, t), the unique equilibrium is given by

F1(b) =
v2 − c2(m)

v2

+
c2(b)

v2

and F2(b) =
c1(b)

v1

for b ∈ [0,m) and F1(m) = F2(m) = 1. Accordingly, bidder 2’s strategy has an atom

of size v1−c1(m)
v1

in m while bidder 1’s strategy has an atom of size v2−c2(m)
v2

in 0.

Considering the equilibrium from Lemma 5 in the limit m ↑ t, gives the vector of

strategies

F1(b) =
c2(b)

v2

and F2(b) =
c1(b)

v1

for b ∈ [0, t) and an atom of size v1−c1(t)
v1

by bidder 2 in t. It is easy to see that

this is indeed an equilibrium, and that it differs from the one in (2) only in one

respect: Bidder 2 has moved his atom from zero to t. Thus there is again a non-

uniqueness of equilibrium in (0, t). Moreover, we see that - just as in the case of

linear costs - by setting α = 0 and m marginally below t, the designer generates

a unique equilibrium where bidder 2 uses his former drop-out probability to make

15A more detailed study of mixed equilibria in this general case goes beyond the scope of this
paper. We conjecture that Corollary 1 still holds in this setting, i.e., the designer’s globally optimal
policy must lie somewhere in the segment S such that both bidders earn zero payoffs.
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preemptive bids. Consequently, we call this policy of the designer PR and denote

its payoff to the designer by σR. It follows easily from Corollary 3 that

σR = σ0 + (v1 − c1(t))
t

v1

=
t

v1

(v1 − c1(t)) +
t

v2

(v2 − c2(t)).

Unlike P ∗ and PCG, PR is always an improvement over the all-pay auction without

bid-cap P 0. Moreover, PR exhibits a similar robustness towards the details of the

cost function as P 0: It depends only on average costs and on costs at the top. The

difference between σR and σ0 even depends only on the costs in t.

5.5 An Example

To illustrate the observations of this section, we consider the case c1(b) = c2(b) = bγ

for some γ > 0, v1 > v2 = 1.16 Then for all γ, we have t = 1. One easily finds,

m∗ =

(
v1

v1 + 1

) 1
γ

and mCG =

(
1

2

) 1
γ

.

Clearly, for γ ↓ 0, i.e., if costs become more and more concave, we have σ∗ = 2m∗ ↓ 0

and σCG = 2mCG ↓ 0. Conversely, for γ ↑ ∞ when costs become more and more

convex, we have σ∗ = 2m∗ ↑ 2 and σCG = 2mCG ↑ 2. Note that 2 is the maximal

payoff the designer can hope for in this setting: With a bid-cap m he can never earn

more than 2m and a bid-cap m > t = 1 is without effect.

How does this compare to the unrestricted all-pay auction? We obtain from Lemma

3 that in this example

σ0 =

(
1 +

1

v1

)
γ

γ + 1

which converges to zero considerably slower than σ∗ and σCG as γ ↓ 0. In con-

sequence, for small values of γ and thus a strongly concave cost function, the un-

restricted all-pay auction policy P 0 outperforms P ∗ and PCG.17 For γ ↑ ∞, σ0

converges to 1 + 1/v1 < 2. Clearly, the intuition behind the example does not rely

16The choice v2 = 1 is crucial to make this example well-behaved: It ensures that t remains fixed
when we vary γ, making a comparison across different values of γ reasonable.

17These observations may be seen as distant cousins of the results of Gavious, Moldovanu and
Sela (2002), who show that bid-caps are profitable only with sufficiently convex cost functions in
the symmetric incomplete-information case with symmetric tie-breaking.
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on the specific choice of cost function. As expected, we thus see that the benefits

from policies P ∗ and PCG are rather sensitive to the details of the cost function.

Figure 4: Expected sum of bids under the different policies for v1 = 2, v2 = 1 and
c1(b) = c2(b) = bγ as a function of γ.

It is interesting to see, how PR compares to P ∗ and PCG. By (3)

σR = σ0 + 1− 1

v1

= 2− v1 + 1

v1

1

1 + γ
.

For γ ↑ ∞, σR converges to 2 just like σ∗ and σCG. For γ ↓ 0, we have σR ↓ 1− 1
v1

.

Thus, PR is the only of the policies in question which yields a strictly positive payoff

even as costs become arbitrarily concave: The size of the atom in t played by bidder

2 only depends on t, on v1 and on c1(t) - it is independent of the shape of the cost

function within (0, t). It is not difficult to find examples where both P ∗ and PCG

outperform PR.18 Nevertheless, we see that PR is a surprisingly robust policy. The

results of this example are summarized in the Figure 4.

6 Discussion

In the following we discuss robustness, extensions and implications of our analysis.

Specifically, we address the following questions: In Section 6.1 we discuss the knowl-

edge requirements of the different policies, showing that PR has generally less rigid

18Take for instance the present example with v1 = 2 and γ = 10.
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knowledge requirements than the other policies we discussed. Sections 6.2 and 6.3

briefly address the symmetric case v1 = v2 and the case of more than two bidders.

Section 6.4 discusses legal requirements of treating bidders symmetrically that might

limit the designer’s possibilities in some applications. In Section 6.5 we discuss the

problem of a designer who wants to maximize the winning bid instead of the sum of

bids. We show that (unlike P ∗ and PCG) policy PR leads to an improvement over

the unrestricted all-pay auction also under this objective. Finally, Sections 6.6 and

6.7 relate our results to the literature on the incomplete information case and to the

literature on “soft” bid-caps.

6.1 Knowledge Requirements

How much does the designer need to know in order to apply the policies P ∗, PR

and PCG introduced above? In the case of linear costs, there is a clear ranking in

the knowledge requirements: For PCG the designer needs to know only the smaller

valuation, for PR the designer also needs to know whose valuation this is, for P ∗ he

needs to know both valuations. Yet these are only small differences in knowledge

requirements. Moreover, the smaller requirements of PCG are offset by the fact

that PR and P ∗ lead to higher payoffs: Both PR and PCG lead to the payoffs of

the complete information all-pay auction if the designer chooses m too large. It is

easy to show that for any estimate v̂2 of v2, implementing PR with m = v̂2 weakly

dominates implementing PCG. Likewise, one can show that perturbing PCG into the

direction of P ∗ by biasing tie-breaking in favor of the weaker bidder and increasing

the bid-cap works well if the bid-cap is not increased by too much.

Comparing knowledge requirements in the case of non-linear costs leads to a markedly

different picture: For PR the designer needs to know only the highest possible equi-

librium bid t of the weaker bidder and the weaker bidder’s identity. Note that

observing a number of unrestricted all-pay auctions between bidders 1 and 2 (who

do not know they are observed) should give the designer a good proxy for t (which

is simply the upper bound of the equilibrium support in this case). In contrast,

for implementing PCG and P ∗, the designer has to determine, respectively, c−1
i (1

2
vi)

and c−1
i (αivi) for both bidders. Thus the designer needs to know the bidders’ cost

functions at certain intermediate values which is a rather strong requirement.
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6.2 The Symmetric Case

One small gap left by our above analysis may deserve a few words: We only con-

sidered the case v1 > v2 but left our the symmetric case v1 = v2 = v. Clearly, in

this boundary case, bid-caps and asymmetric tie-breaking rules are at best with-

out harm: There are no ex ante differences which could be alleviated in order to

strengthen competition. It is easy to see that the general structure of the equilib-

rium is not changed under symmetry: there are still three regions, one with a pure

equilibrium and two with mixed equilibria in which either of the bidders makes a

positive payoff. Denote again by (α∗,m∗) the combination of tie-breaking rule and

bid-cap which leads to the most profitable pure equilibrium. It is easy to see that

(α∗,m∗) = (1
2
, v

2
). The main difference to the asymmetric case is that the boundary

S between the two mixed cases has a different shape: It no longer connects (α∗,m∗)

with one of the corners. Instead, it is symmetric and connects (α∗,m∗) = (1
2
, v

2
)

with (1
2
, v).

6.3 More Than Two Bidders

An obvious question is how our analysis changes in the n-bidder case. We believe

that the focus on two bidders is justified for two reasons: In many situations of

competition two bidders are the most typical case. More importantly, at least under

linear (or ordered19) costs, only the two strongest bidders actively bid in a complete

information all-pay auction. While very rigid bid-caps may encourage participation

of further bidders, it seems rather intuitive that the designer obtains the best results

by focusing on the two strongest bidders. See also the discussion in Che and Gale

(1998).

6.4 Symmetry Requirements

Besides its simplicity, another appeal of Che and Gale’s policy PCG is that it imposes

a bidding process which treats bidders symmetrically. Trivially, this symmetry is

lost whenever the designer varies the tie-breaking probability. One might wonder

whether this translates into a concrete advantage of policy PCG over the other

policies we considered. Clearly, a designer who can freely choose the optimal way

to conduct his all-pay auction benefits from using P ∗ or PR instead of PCG. But

one might argue that a designer who is forced to treat bidders symmetrically due to

19See Siegel (2009).
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some legal requirements may not have the possibility to implement an asymmetric

tie-breaking rule and might thus resort to PCG.

While some situations may be conceivable in which this reasoning applies, there

is one more thing to take into account: A designer whose possibilities are closely

restricted by legal authorities will often be forced to make transparent how he came

up with his choice of bid-cap. Obviously however, in PCG the bid-cap is derived

from the bidders’ valuations in an asymmetric way. In a sense, setting a bid-cap

of min(v1, v2) is not any more symmetric than setting a tie-breaking probability of

αi = 1{vi<v−i}.

Thus, it seems that only in rather special cases where the designer is not closely

monitored but is forced to treat bidders symmetrically, PCG can be implemented

but P ∗ and PR cannot. If we look at rules that treat competitors asymmetrically in

games and sports, e.g. handicaps in golf or in the game of go or the away-goals-rule

in soccer, we see that the exogenous advantages of one of the bidders are typically

derived in clearly prescribed ways from “hard facts” such as home-advantages or the

contestants’ previous performance.

On a related note, one might wonder what happens if the designer utilizes not only

asymmetric tie-breaking but also asymmetric bid-caps m1 and m2. Intuitively, it

is clear that such asymmetric bid-caps cannot have a huge effect: The bidder with

the less restrictive bid-cap does not have an incentive to really use his possibility to

submit bids in ranges where the other bidder cannot compete anyway. Technically,

it should be noted that unless tie-breaking always favors the bidder with the less

restrictive bid-cap, an equilibrium typically does not exist: The bidder who has the

possibility will always out-bid the opponent’s bid-cap by an arbitrarily small amount

to bias tie-breaking in his favor. One interesting observation to make in this context

is that the designer can enforce policy PR with an arbitrary tie-breaking rule α by

forcing the stronger bidder 1 to make bids strictly smaller than v2 while leaving

bidder 2’s bidding unrestricted.

6.5 Maximizing the Winning Bid

In some applications, the designer may be interested in maximizing the expected

winning bid instead of the expected sum of bids. In such a situation, the designer

can clearly improve upon the unrestricted all-pay auction policy P 0 by setting a
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bid-cap and a suitable tie-breaking rule: It is easy to see that for all cost-functions

we considered, policy PR induces higher bids from the weaker bidder without having

an impact on the stronger bidder’s behavior. Thus the designer can always improve

upon the unrestricted all-pay auction. Therefore, PR is also well-suited for a designer

whose goals are a (possibly not clearly defined) mixture of maximizing the sum of

bids and the winning bid. In contrast, it is not surprising that forcing bidders to

play a pure equilibrium is typically detrimental to the size of the winning bid. Under

linear costs of bidding, policy PCG always leads to smaller winning bids than P 0.

Unless v1 is much greater than v2, the same holds true for P ∗.

6.6 Incomplete Information

A natural question left open by our analysis is whether the results carry over to the

case of incomplete information. Bid-caps with symmetric tie-breaking have been

studied by Gavious, Moldovanu and Sela (2003) and by Sahuguet (2006): Gavious,

Moldovanu and Sela (2003) study the ex ante symmetric n-bidder case under concave

or convex cost-functions while Sahuguet considers the two-bidder case under linear

costs when bidders valuations are drawn from uniform distributions with different

supports. In both cases, it turns out that (due to a bunching of types at the bid-

cap) all bidders play the bid-cap with positive probability. Therefore it is clear

that different tie-breaking rules must lead to different equilibria. In the ex ante

symmetric setting of Gavious, Moldovanu and Sela, there is little reason to expect

that varying the tie-breaking rule and thus creating an ex ante asymmetry will be

beneficial to the designer. But it seems very plausible that asymmetric tie-breaking

may be beneficial to the designer when ex ante asymmetries are present like in the

setting of Sahuguet (2006). A further analysis is a challenging task which we leave

to further research.

6.7 Soft Bid-Caps

Kaplan and Wettstein (2006) point out that in many applications the designer will

not have the power to enforce a rigid bid-cap: It seems likely that - for example in

political lobbying or in competition for high-profile employees - bid-caps will mainly

have the consequence of forcing the contestants into less direct or semi-legal ways

of exerting effort. Consequently, Kaplan and Wettstein propose that the designer’s

possibility of setting bid-caps should rather be modeled as a possibility to sharply
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increase costs of bidding from some point on. Che and Gale (2006) show that setting

such “soft” bid-caps may still be beneficial to the designer.

If such a cost increase is modeled as a kink in the cost function but leaves it contin-

uous and monotone, Theorem 3 of Siegel (2010) (given in formula (2) above) covers

the equilibrium analysis of Kaplan and Wettstein (2006) and Che and Gale (2006)

(both before and after the soft bid-cap is introduced) as special cases. After the in-

troduction of such a soft bid-cap, ties still occur with probability zero in equilibrium.

Hence the tie-breaking rule has no bite.

We believe that a closer look at tie-breaking is nevertheless important, even in light

of the critique of Kaplan and Wettstein. For one thing, there are applications where

setting a binding cap is certainly possible: In Gavious, Moldovanu and Sela’s (2003)

example of speed limits in motor sports, there is little reason to doubt that binding

rules can be enforced. The same should be true for many applications in sports and

games.

Moreover, there is little reason to assume that a bid-cap which may be circumvented

e.g. by semi-legal activities corresponds to a continuous kink in the costs of exerting

effort. For instance, consider the example of raising money for electoral competition

given by Kaplan and Wettstein. There are obviously fixed costs involved in raising

funds in illegal ways: For example, there is a risk of image-loss and legal complica-

tions and there is a need for specialized additional knowledge. These costs cannot

be thought of as merely proportional to the amount raised illegally. Therefore it

seems more realistic to assume that the costs of exerting effort make an upwards

jump even at a bid-cap that may be circumvented. If this jump is strong enough,

i.e., if the stakes are not high enough to make an illegal solution attractive, we are

essentially back in the situation of a binding bid-cap. The case of a smaller jump

in bid-costs needs a separate analysis, but there are good reasons to expect that

tie-breaking still plays a role then.

Finally, note that the analysis of Section 5 provides an easy starting point for dis-

cussing soft bid-caps under considerably weaker assumptions on the cost functions

than in Kaplan and Wettstein (2006) and in Che and Gale (2006): Consider bidders

with valuations vi, strictly increasing, continuous cost functions ci. Like in Section

5, denote by t the highest bid at which both bidders can yield a non-negative payoff.

Denote by ci(b) bidder i’s average costs on the interval [0, b]. In Corollary 3 we
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showed that then the expected sum of bids is given by∑
i

t

vi
(ci(t)− ci(t)).

If the designer implements a soft bid-cap which leads to a kink in the bidder’s cost

functions at some m < t (leaving it continuous), this has two effects on the sum of

bids: There is a negative effect as t is decreased but there is also a positive effect as

the difference between costs at the cap and average costs is increased through the

kink. We do not pursue this analysis further here, but clearly the designer’s task is

to choose the bid-cap in a way that the latter effect dominates the former.
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A Proofs

Proof of Lemma 1

The proof is by contradiction: Assume bidder i placed an atom in e ∈ (0,m). If the

other bidder j was active right below e, then j would prefer to bid slightly more than

e thus substantially raising his probability of winning through a marginal increase

in bidding costs. If bidder j was inactive right below e, then i would prefer to shift

his atom downwards a little. Thus there are no atoms in (0,m). Now assume both

bidders played zero with positive probability. Then any bidder who is not always

favored by the tie-breaking rule prefers to shift his atom slightly upwards. �

Proof of Lemma 2

The proof is by contradiction: Assume that e ∈ (0,m) is the smallest bid in one of

the bidders’ equilibrium supports. Since there are no atoms in (0,m), any bidder

who plays e in equilibrium must make a strictly negative equilibrium payoff there

since he has positive costs of bidding and a winning probability of zero at e. Since

bidders can always secure a payoff of zero from bidding zero this is a contradiction.

�

Proof of Proposition 1

The basic message about the structure of equilibrium in our game is contained

already in Lemma 2: The lower bound of bidders’ supports is either zero or m.

Since both bidders bidding zero is not a Nash equilibrium, this implies that there is

either a mixed equilibrium where at least one bidder mixes down to zero (and where

accordingly at least one bidder earns zero payoff by Lemma 1), or a pure equilibrium

where both bidders bid m.

We start with case (iii), i.e., (α,m) ∈ CIII . In this case, both bidders can secure

themselves a strictly positive payoff by bidding m regardless of the opponents strat-

egy. Thus there cannot by a mixed equilibrium (where one bidder would earn zero)

and the unique equilibrium is given by both bidders bidding m.

We now consider the remaining cases, i.e., (α,m) ∈ CI ∪ CII . Write αi and αj for

the tie-breaking proportions of the two bidders, i.e. α1 = α and α2 = 1 − α. We

assume until further notice that α ∈ (0, 1). The case α ∈ {0,m} is treated at the

end.

For (α,m) ∈ CI ∪ CII , both bidders bidding m is not a Nash equilibrium. Ac-

cordingly, there must be a mixed equilibrium where at least one bidder’s support
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goes down to zero. From Lemma 1 we know that there may be at most three

atoms, two in m and one in 0. Furthermore, we can easily show the following:

Si ∩ (0,m) = Sj ∩ (0,m) and there is a b ∈ [0,m) such that Si ∩ (0,m) = (0, b): In

words, this means that the non-atomic parts of the bidders strategies’ must have the

same support which is an interval. To see this, note that when a bidder mixes alone

over an interval where the opponent is inactive, the bidder prefers to concentrate

mass at the lower end of the interval. If both bidders are inactive over an interval

but (at least) one of them is active on higher values in (0,m), then he prefers to

deviate from right above the empty interval into the interval.20

Moreover note that - just like in a complete information all-pay auction - since

bidder i’s mixing must make bidder j indifferent between all bids in (0, b), bidder i

must mix in a way that j’s changes in bidding costs must be offset by the changes

in the probability of winning. Thus i must mix with a uniform density proportional

to 1/vj when playing bids in (0,m).

Thus we can restrict our search for equilibria in the case (α,m) ∈ CI∪CII , α ∈ (0, 1),

to strategy pairs which can be described as follows: Bidder i sets atoms ci and di in 0

and m. Moreover, he mixes uniformly over (0, b) with the remaining mass. We now

have to find out which combinations (c1, c2, d1, d2, b) correspond to Nash equilibria.

Observe that from that fact that each bidder must earn the same payoff in 0, b and

m we get the following set of linear equations: For i 6= j,

(αidj + (1− dj))vi −m = vi(1− dj)− b and vi(1− dj)− b = cjvi. (3)

This gives us four constraints, however we have five parameters. Now recall that at

most one bidder sets an atom in zero, i.e., c1 = 0 or c2 = 0. Assuming either of

these two constraints, we can thus easily solve the system of equations for unique

vectors (c1, c2, d1, d2, b). This leaves us with two equilibrium candidates (which are

stated explicitly in cases (i) and (ii) of the proposition). It remains to be explored

for which values (α,m) each of these is an equilibrium. For this purpose we study,

which values (α,m) lead to non-negative payoffs for both bidders in each of the two

equilibrium candidates. As we will see, this will give us the distinction between

cases CI and CII : There are disjoint regions on which one of the two candidates

yields non-negative payoffs while the other does not and vice-versa.

20Observe that this does not preclude that there is an interval below m where both bidders are
inactive. This is because both bidders may play an atom in m.
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We begin with some preliminary calculations: Solving the two conditions in (3) for,

respectively, m and b and then equating them for {i, j} and {j, i} gives

vi(1− cj − (1− αi)dj) = vj(1− ci− (1− αj)di) and vi(1− cj − dj) = vj(1− ci− di).

Subtracting these two equations from each other we obtain the following result on

the relation of di and dj:

di = dj
αi
αj

vi
vj

(4)

Now assume cj = 0. Then the two conditions in (3) imply that

dj =
vi −m

vi(1− αi)
and b = vi −

vi −m
1− αi

. (5)

Clearly, cj = 0 implies πi = 0 so we have to study under which conditions πj ≥ 0.

Using (4), (5) and the fact that αi = 1− αj, one easily calculates that

πj = vj(1− di)− b = vj − vi +

(
1

αj
− αi
α2
j

)
(vi −m).

Further rewriting the right hand side, we can thus conclude that πj ≥ 0 is equivalent

to

πj = vj − vi +
1

αj

(
2− 1

αj

)
(vi −m) ≥ 0.

Viewed as a function of z = 1/αj this is a second-degree polynomial with nega-

tive leading coefficient which is non-negative between its two zeros (if those exist).

Solving this quadratic equation we thus have that πj ≥ 0 is equivalent to

1−
√

1 +
vj − vi
vi −m

≤ 1

αj
≤ 1 +

√
1 +

vj − vi
vi −m

(6)

which can be written as

−
√
vj −m
vi −m

≤ 1− αj
αj

≤
√
vj −m
vi −m

.

This expression shows clearly that the term under the square-root in (6) is always

non-negative. Since αj ∈ (0, 1) we have thus shown that the equilibrium candidate
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we found under the condition cj = 0 is reasonable only if

αi
αj
≤
√
vj −m
vi −m

. (7)

Yet now note that if we exchange the roles of i and j and rearrange terms, we obtain

that the equilibrium candidate we find in the other case ci = 0 is reasonable only if

αi
αj
≥
√
vj −m
vi −m

.

Hence, except in the boundary case where (7) holds with equality, we have identified

a unique equilibrium candidate for all (α,m) ∈ CI ∪ CII . It is straightforward to

check that the two candidates coincide in this boundary case and that they indeed

constitute equilibria. We still have to write the condition that separates CI and CII

in the (more revealing) form given in the proposition. Set i = 1, j = 2, αi = α and

recall that v1 ≥ v2. Consider the boundary case which we have to solve for m:

α

1− α
=

√
v2 −m
v1 −m

Since the left hand side is positive, this is equivalent to

m

(
1−

(
α

1− α

)2
)

= v2 −
(

α

1− α

)2

v1.

Since the equation cannot be fulfilled for α = 1
2
, we can exclude that case in the

following and write

m = v2 −
α2

1− 2α
(v1 − v2). (8)

Clearly, at the boundary for α ↓ 0, (8) is solved by m = v2, showing that bidder 1

earns zero payoff in the upper left corner of C. For α∗ = v2/(v1 + v2), (8) is solved

by m∗ = v1v2/(v1 + v2). The resulting point (α∗,m∗) lies on the boundary of CIII .

It is easy to see that larger values of α are irrelevant here since they do not lead to

solutions in CI ∪ CII .

To conclude the proof we have to discuss the case αi = 1 for i ∈ {1, 2}. In this

case, bidder i can secure himself a positive payoff by bidding m. Since one bidder

must earn zero payoff in equilibrium, it must hence be bidder j, j 6= i. Thus we

obtain cj = 0 and can solve the system of equations (3) for unique values of c1, c2,
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d1, d2 and b. The resulting equilibrium has some qualitative differences to the case

αi ∈ (0, 1) since b = m and dj = 0: There is no gap between the interval where

bidders mix and m. Moreover, each bidder places only one atom, the strong one at

the top, the weak one at the bottom. Nevertheless, not surprisingly, this solution is

easily seen to be a boundary case of the solution for αi ∈ (0, 1). �

Proof of Lemma 3

Recall that it holds that

σ(α,m) =
2∑
i=1

(1− ci − di)
b

2
+ dim.

Using the explicit expressions for ci, di and b given in Cases (i) and (ii) of Proposition

1 it is tedious but straightforward to calculate that for (α,m) ∈ CI we have

dσ(α,m)

dm
=

(1− 2α)(m(v1 − v2) + v1v2)

(1− α)2v1v2

.

This expression is positive since α < 1
2

for (α,m) ∈ CI and v1 > v2. For (α,m) ∈ CII
we obtain

dσ(α,m)

dm
=

(2α− 1)(v1(v2 −m) +mv2)

α2v1v2

.

Since v2 > m, this expression is positive for α > 1
2

and negative for α < 1
2
. �

Proof of Corollary 1

Recall that (α∗,m∗) is optimal for the designer within T ∪ CIII . Furthermore,

(α∗,m∗) is better than the expected payoff from the unrestricted all-pay auction

and thus σ(α∗,m∗) > σ(α,m) for all (α,m) ∈ U with α > 0. Finally recall that

the equilibrium non-uniqueness at (α,m) ∈ T \ (α∗,m∗) is such that the equilibria

in (α,m) are convex combinations of the limits as ε ↓ 0 of the unique equilibria

obtained for (α,m+ ε) and (α,m− ε). As ε ↓ 0 the unique equilibria for (α,m+ ε)

and (α,m− ε) differ in that for (α,m+ ε) one of the bidder has an atom in 0 which

he shifts to m for (α,m− ε). Thus when keeping α ∈ (0, 1) fixed and increasing m,

the function σ(α,m) makes a downwards jump when passing the line T except in

the case α = α∗.

Now keep α fixed and increase m from 0 to v2. We have to distinguish three cases:

α > 1
2
, α ∈ [α∗ 1

2
] and α < α∗. Consider first the case α > 1

2
. Then by Lemma 3,

σ(α,m) is increasing until the boundary of T is reached. Then it makes a downwards
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jump and then it increases again until m = v2. In the light of these considerations,

there are two local maxima and thus two potential candidates for optimal values of

σ(α, ·): The unique (α,m) with (α,m) ∈ T and (α, v2) ∈ U . However, as discussed

above, both points are dominated by (α∗,m∗).

Now consider a fixed α ∈ [α∗, 1
2
]. In this case σ(α,m) is increasing in m until

the boundary of T is reached. Then there is a downwards jump and then σ(α,m)

decreases until U is reached. In this case, there is a unique maximizer m of σ(α, ·)
and this m must be such that (α,m) ∈ T . But this implies that (α∗,m∗) must be

better.

Finally consider the case of α < α∗. Similar to the first case, there are two local

maximizer of σ(α, ·), on with (α,m) ∈ T and one with (α,m) ∈ S. For the first one

it is clear that it is dominated by (α∗,m∗). Thus global maximizers must lie in S.

�

Proof of Proposition 2

All we have to do is maximize σ(α,m2(α)) in α ∈ [0, α∗] since m2(α) as defined in

Definition 1 is the function for which (α,m) = (α,m2(α)) is equivalent to (α,m) ∈ S.

A straightforward calculation reveals that

dσ(α,m2(α))

dα
=
α(1− α)(v1 − v2)

3

(1− 2α)v1v2

> 0.

Thus it is optimal to choose α as large as possible: (α∗,m2(α
∗)) = (α∗,m∗) is a

global optimizer. �

Proof of Corollary 3

Denote by σ0
1 and σ0

2 the contributions to σ0 of bidders 1 and 2, i.e., the expected

equilibrium bids of these bidders. Since bidder 1’s strategy F1 is atomless, we obtain

by (2)

σ0
1 =

∫ t

0

1− F1(b)db =

∫ t

0

1− c2(b)

v2

db =
t

v2

(c2(t)− c2(t)),

where in the last step we use that c2(t) = v2. In the case of bidder 2, we must take

into account the atom he places in zero. It is easy to verify that we can write σ0
2 as

σ0
2 = (1− F2(0))

∫ t

0

1− F2(b)− F2(0)

1− F2(0)
db.
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Inserting F2(0) = 1− c1(t)
v1

and simplifying analogously to the case of σ0
1 yields

σ0
2 =

t

v1

(c1(t)− c1(t)),

Calculating σ0 = σ0
1 + σ0

2 completes the proof. �

Proof of Lemma 5

Clearly, bidder 2 makes a positive payoff and thus if there is an atom in zero, it

is played by bidder 1. Bidder 1 earns zero payoff. Moreover, bidder 2 can secure

himself a payoff of v2 − c2(m). He cannot earn more than this because a higher

payoff would only be possible if supports ended at some b < m. But then, bidder 1

could overbid bidder 2 and earn a positive payoff himself. This implies that bidder 1

must play an atom of size (v2−c2(m))/v2 in zero. Thus to make bidder 2 indifferent,

bidder 1 has to mix with

F1(b) =
v2 − c2(m)

v2

+
c2(b)

v2

on some interval [0, b] and then put the remaining mass in an atom in m. However,

since tie-breaking favors bidder 2, bidder 1 would move such an atom down to b if

b < m. This implies b = m and accordingly, bidder 1 does not have mass left for an

atom in m. Thus bidder 2 must mix over [0,m) as well and put the remaining mass

into an atom in m. Since he has to make bidder 1 indifferent, the function F2 given

in the lemma is his only choice. �
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