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1 Introduction

One of the key results in the literature on in�nitely repeated games is the folk theorem: any

feasible and individually rational payo¤ can be sustained in equilibrium when players are

su¢ ciently patient. Fudenberg and Maskin (1986) establish the folk theorem under perfect

monitoring, that is, when players can directly observe the action pro�le. Fudenberg, Levine

and Maskin (1994) extend the folk theorem to imperfect public monitoring, where players

can observe only public noisy signals about the action pro�le.

The driving force of the folk theorem in perfect or public monitoring is the coordination

of the future play based on common knowledge of the relevant histories. Speci�cally, the

public component of the histories such as action pro�les in perfect monitoring or public

signals in public monitoring (at least statistically) reveals past action pro�les. Since this

public information is common knowledge, players can coordinate the punishment contingent

on the public information to provide dynamic incentives to choose actions that are not static

best responses.

With private monitoring, where players can observe only private noisy signals about the

action pro�le, however, common knowledge no longer exists and the coordination is di¢ cult

(we call this problem �coordination failure�).1 Hence, the robustness of the folk theorem

to a general private monitoring has been an open question. Kandori (2002), for example,

mentions that �[t]his is probably one of the best known long-standing open questions in

economic theory.�

Moreover, many economic situations should be analyzed as repeated games with private

monitoring. For example, Stigler (1964) proposes a repeated price-setting oligopoly, where

�rms set their own price in a face-to-face negotiation. Hence, they cannot observe their

opponents�prices. Instead, a �rm obtains some information about the opponents�prices

through its own sales. Since the sales level depends on both the opponents� prices and

unobservable shocks due to business cycles, it is an imperfect signal. In addition, the sales

1Mailath and Morris (2002 and 2006) and Sugaya and Takahashi (2010) o¤er the formal model of this
argument.
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of each �rm are often private information. Thus, monitoring is imperfect and private. In

addition, Fuchs (2007) applies a repeated game with private monitoring to a contract between

a principal and an agent and Harrington and Skrzypacz (2007) analyze cartel behaviors using

the frame work of a repeated game with private monitoring.

This paper is, to the best of our knowledge, the �rst to show that the folk theorem

holds in repeated games with a generic private monitoring. We unify and improve the three

approaches in the literature on private monitoring that are used to show partial results so

far: belief-free, belief-based and communication approaches.

The belief-free approach (and its generalization) has been successful to show the folk the-

orem in prisoners�dilemma.2 A strategy pro�le is belief-free if, for any history pro�le and for

any player, the continuation strategy of that player after that history is optimal conditional

on the opponent�s history. With almost perfect monitoring, Piccione (2002) and Ely and

Välimäki (2002) show the folk theorem for the two-player prisoners�dilemma. Without any

assumption on the precision of monitoring but with conditionally independent monitoring,

Matsushima (2004) obtains the folk theorem in the two-player prisoners�dilemma.

Unfortunately, however, without almost perfect or conditionally independent monitoring,

only limited results have been shown: Fong, Gossner, Hörner and Sannikov (2010) show the

e¢ ciency and Sugaya (2010a) shows the folk theorem in the two-player prisoners�dilemma

with some restricted classes of the distributions of the private signals.

Several papers construct belief-based equilibria, where players�strategies involve statisti-

cal inference about the opponents�past histories. With almost perfect monitoring, Sekiguchi

(1997) shows the e¢ ciency and Bhaskar and Obara (2002) show the folk theorem in the two-

player prisoners�dilemma. Mailath and Morris (2002 and 2006) consider the robustness of

the equilibrium in public monitoring to almost public monitoring. Based on their insights,

Hörner and Olszewski (2009) establish the folk theorem for almost public monitoring. Phelan

2Kandori and Obara (2006) use a similar concept to analyze a private strategy in public monitoring.
Kandori (2010) considers �weakly belief-free equilibria,�which is a generalization of the belief-free equilibria.
Apart from a typical repeated-game setting, Takahashi (2010) considers the community enforcement and
Miyagawa, Miyahara and Sekiguchi consider the situation where a player can improve the monitoring by
paying cost.
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and Skrzypacz (2009) characterize the set of possible beliefs and Kandori and Obara (2010)

o¤er an easy way to verify if a �nite-state automaton strategy is an equilibrium.

Another approach to analyze repeated games with private monitoring is to introduce

communication, whose results are publicly known. The folk theorems have been proven

by Compte (1998), Kandori and Matsushima (1998), Aoyagi (2002), Fudenberg and Levine

(2002) and Obara (2007). Introducing a public element and letting a strategy depend only on

the public element allow these papers to sidestep the di¢ culty of the coordination through

private signals. However, the analyses do not apply to settings where communication is

not allowed; for example, in Stigler (1964)�s oligopoly example, anti-trust laws rule that

communication is illegal. Furthermore, it is uncertain whether their equilibria are robust to

the perturbation that the message transmission has small private noises, which is one of the

main motivations in private monitoring.

This paper incorporates all the three approaches. First, the equilibrium strategy to show

the folk theorem is occasionally belief-free. That is, we see the repeated game as the repetition

of long review phases and at the beginning of each review phase, for any player, any strategy

that can be taken on the equilibrium path with a positive probability is optimal conditional

on the histories of the opponents. Second, however, since the belief-free property does not

hold except for the beginning of the phase, we consider each player�s statistical inference

about the opponents�past histories seriously as in belief-based approach within each phase.

Finally, in our equilibrium, the message exchange via taking actions plays an important role.

Hence, one of our methodological contributions is to o¤er a systematic way to dispense the

cheap talk message protocol with the message exchange via taking actions.

The rest of the paper is organized as follows. Section 2 introduces the model and Section

3 states the assumptions and result. The remaining parts of the paper are devoted to prove

the result. In the proof, we focus on a two-player prisoners�dilemma. Section 4 relates

the in�nitely repeated game with the �nitely repeated game with the auxiliary scenario

and derives the su¢ cient condition on the �nitely repeated game to show the folk theorem.

Section 5 introduces the preliminary results important for the equilibrium construction.
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Especially, in Section 5.2, we de�ne the message protocol via taking actions to coordinate the

future play based on the message exchange. Based on Section 5, we construct an equilibrium

to attain the folk theorem in the two-player prisoners�dilemma in Section 6.

Throughout the main text of the paper, we use perfect and public cheap talk and public

randomization devices for some of the message exchanges although we use the message

protocol via taking action de�ned in Section 5.2 for the other to simplify the equilibrium

construction.3 In the Online Appendix, we show that cheap talk and public randomization

are completely dispensable and all the messages can be sent via taking actions without public

randomization. We comment on the dispensability of these devices in Section 7.

Let us �nally comment on our focus on the prisoners�dilemma. It is well known that

the prisoners�dilemma is exceptional: except for prisoners�dilemma, the belief-free equilib-

rium cannot obtain the folk theorem.4 Hörner and Olszewski (2006) extends the belief-free

equilibrium to attain the folk theorem for a general game if monitoring is almost perfect.

However, as Hörner and Olszewski (2006) mention in their paper, it is not known how to

generalize their result to not-almost-perfect monitoring. For our equilibrium construction

in prisoners� dilemma, to deal with the fact that we have belief-free period occasionally,

we establish the way to let the players coordinate their future play through private signals.

Given this method, together with the insight of Hörner and Olszewski (2006), it is possible

to attain the folk theorem for a general game. We come back to this point in Section 8.

3Even with cheap talk, however, the general folk theorem is new to the two-player case.
4Ely, Hörner and Olszewski (2005) characterize the set of belief-free equilibrium payo¤s in a two-player

game. Yamamoto (2009b), based on Yamamoto (2007 and 2009a), characterizes the set of belief-free review-
strategy equilibrium payo¤s in a general N -player game with conditionally independent monitoring. Sugaya
(2010b) characterizes the set of belief-free review-strategy equilibrium payo¤s with a generic monitoring in
a general N -player game with N � 4. The characterized set is not large enough to show the folk theorem in
a general game.
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2 Model

2.1 Stage Game

The stage game is given by
�
I; (Ai; Yi; ~ui)i2I ; q

	
. I = f1; : : : ; Ng is the set of players, Ai

with jAij � 2 is the �nite set of player i�s pure actions, Yi is the �nite set of player i�s private

signals and ~ui : Ai � Yi ! R is player i�s ex-post utility function. Let A �
Q

i2I Ai and

Y �
Q

i2I Yi be the set of action pro�les and signal pro�les, respectively.

In every stage game, player i chooses an action ai 2 Ai, which induces the action pro�le

a � (a1; : : : ; aN) 2 A. Then, a signal pro�le y = (y1; : : : ; yN) 2 Y is jointly distributed

according to the conditional probability function q (� j a). Given an action ai 2 Ai and a

private signal yi 2 Yi, player i receives the ex-post utility ~ui (ai; yi). Thus, her expected

payo¤ conditional on an action pro�le a 2 A is given by ui (a) �
P

y2Y q (y j a) ~ui (ai; yi).

For each a 2 A, let u (a) represent the payo¤ vector (ui (a))i2I .

2.2 Repeated Game

Consider the in�nitely repeated game of the above stage game in which the discount factor

is � 2 (0; 1). Let ai;� and yi;� denote the performed action and the observed private signal

respectively in period � by player i. Player i�s private history up to period t � 1 is given

by hti � (ai;� ; yi;� )
t�1
�=1. Let h

1
i = ; and for each t � 1, let H t

i be the set of all h
t
i. Then, a

strategy for player i is de�ned to be a mapping �i :
1S
t=1

H t
i !4(Ai). Let �i be the set of all

strategies for player i. Finally, let E(�) be the set of sequential equilibrium payo¤s with a

common discount factor �.

3 Assumption and Result

First, we state the assumption on the payo¤ structure. Let F � co(fu(a)ga2A) be the set of

feasible payo¤s. The individually rational payo¤for player i is v�i � mina�i2A�i maxai2Ai ui(ai; a�i).

Note that we concentrate on the pure strategy minmax. Then, the set of feasible and indi-
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vidually rational payo¤s is given by

F � � fv 2 F : vi � v�i for all ig:

We assume the full dimensionality of F �.

Assumption 1 A stage game payo¤ structure satis�es the full dimensionality condition:

dim(F �) = N:

Second, we state the assumption on the signal structure.

Assumption 2 The number of each player�s signals is su¢ ciently large: for any i 2 I, we

have

jYij � max
(
max
j 6=i

jAjj+ 2
X
� 6=i;j

jA�j ;
X
j2I
jAjj ;max

j2I
2 jAjj

)
:

Under these assumptions, we can generically construct an equilibrium to attain any point

in int(F �).

Theorem 1 If Assumptions 1 and 2 are satis�ed, then the folk theorem generically holds:

for generic q (� j �), for any v 2 int(F �), there exists �� < 1 such that, for all � > ��, v 2 E (�).

For the proof, we focus on the two-player prisoners�dilemma: I = 2, Ai = fCi; Dig and

ui(Di; Cj) > ui(Ci; Cj) > ui(Di; Dj) > ui(Ci; Dj) (1)

for all i. In this case, Assumptions 1 and 2 are equivalent to having jYij � 4 for all i.

In addition, since we concentrate on two-player case, whenever we say player i and j,

unless otherwise mentioned, we assume i 6= j.

Further, since it is well known that, for the two-player prisoners�dilemma, if we can

sustain any v with

v 2 int([u1(D1; D2); u1(C1; C2)]� [u2(D2; D1); u2(C2; C1)]): (2)
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as an equilibrium payo¤, then it is easy to show that any v 2 int(F �) is sustainable.5

Moreover, as we will explain in Section 8, the equilibrium construction to support v with (2)

is useful to show the folk theorem in a general game. Therefore, in this paper, we focus on

the case with

We prove the theorem via following steps. We arbitrarily �x v so that (2) holds. We

implement v by a strategy pro�le that is recursive in every TP periods, where TP 2 N should

be determined later. In Section 4, we relate the in�nitely repeated game with a TP -period

�nitely repeated game with an auxiliary scenario. Speci�cally, we derive conditions on a

strategy and an auxiliary scenario in the TP -period �nitely repeated game from which we

can construct a strategy to implement v in the in�nitely repeated game. In Section 5.1, we

construct random variables to construct the strategy and the auxiliary scenario. In Section

5.2, we construct message protocols for the players to send a binary message fG;Bg. This

is the key of our equilibrium construction to overcome the coordination failure. In Section

5.3, we �nish de�ning all the necessary variables to specify the strategy and the auxiliary

scenario. Given these preparations, Section 6 proves the theorem with perfect cheap talk.

Section 7 o¤ers an intuitive explanation of how to dispense cheap talk. See the Online

Appendix for the formal proof without cheap talk. Finally, Section 8 explains how to extend

the proof to a general game.

4 Finitely Repeated Game

Let us consider a TP -period �nitely repeated game. Let �
TP
i : HTP

i ! �(Ai) be player i�s

strategy in the �nitely repeated game. Let �TPi be the set of all strategies in the �nitely

repeated game. Each player i has a state xi 2 fG;Bg. In state xi, player i plays �i (xi) 2

�TPi . In addition, player i with xi gives the �auxiliary scenario� (or �reward function�)

�j(xi; � : �) to player j. Here, �j(xi; � : �) : HTP+1
i ! R, that is, the auxiliary scenarios are

functions from the history in the �nitely repeated game to the real number.

5See Ely and Välimäki (2002) for the details.
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For v with (2), we can take � > 0, vi and �vi such that

ui (D1; D2) + � < vi < vi < �vi < ui (C1; C2)� �: (3)

Our task is to �nd f�i (xi)gi and f�j(xj; �)gi such that, for su¢ ciently large �, there exists

TP such that, for any i,

1. for any xj, �i (G) and �i (B) are optimal in the �nitely repeated game:

�i (G) ; �i (B) 2 arg max
�
TP
i 2�TPi

E

"
TPX
t=1

�t�1ui (at) + �i(xj; h
TP+1
j : �) j �TPi ; �j(xj)

#
; (4)

2. the discounted average of player i�s instantaneous utilities and player j�s auxiliary

scenario on player i is equal to �vi if player j�s state is good (xj = G) and equal to vi if

player j�s state is bad (xj = B):

1� �

1� �TP
E

"
TPX
t=1

�tui (at) + �i(xj; h
TP+1
j : �) j �(x)

#
=

8<: �vi if xj = G;

vi if xj = B:
(5)

Intuitively, for su¢ ciently large �, since lim�!1
1��
1��TP = 1

TP
, this requires the time

average of the expected sum of the instantaneous utilities and the reward is equal to

the targeted payo¤s vi and �vi.

3. �i(G; h
TP+1
j : �) and �i(B; h

TP+1
j : �) are uniformly bounded with respect to � and

�i(G; h
TP+1
j : �) � 0;

�i(B; h
TP+1
j : �) � 0: (6)
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This implies

p(G; hTP+1j : �) � 1 + 1� �

�TP
�i(G; h

TP+1
j : �)

�vi � vi
2 [0; 1];

p(B; hTP+1j : �) � 1� �

�TP
�i(B; h

TP+1
j : �)

�vi � vi
2 [0; 1] (7)

for su¢ ciently large �. The meaning of p(xj; h
TP+1
j : �) will be speci�ed later.

To see why this is enough for Theorem 1, de�ne the strategy in the in�nitely repeated

game as follows: we see the repeated game as the repetition of TP -period �review phases.�

In each phase, player i has a state xi 2 fG;Bg. Within the phase, player i with state xi
plays according to �i (xi). After observing h

TP+1
i in the current phase, the state in the next

phase is equal to G with probability p(xi; h
TP+1
i : �) and B with the remaining probability.

For this to be feasible, (7) is necessary, which is guaranteed by (6). Hence, we call (6) the

�feasibility constraint.�

Player i�s initial state is equal to G with probability piv and B with probability 1 � piv

with

piv�vj + (1� piv)vj = vj:

Then, since

(1� �)

TPX
t=1

�t�1ui (at) + �TP
�
p(G; hTP+1j )�vi + f1� p(G; hTP+1j )gvi

�
=

�
1� �TP

� " 1� �

1� �TP

(
TPX
t=1

�t�1ui (at) + �i(G; h
TP+1
j : �)

)#
+ �TP �vi

and

(1� �)

TPX
t=1

�t�1ui (at) + �TP
�
p(B; hTP+1j )�vi + f1� p(B; hTP+1j )gvi

�
=

�
1� �TP

� " 1� �

1� �TP

(
TPX
t=1

�t�1ui (at) + �i(B; h
TP+1
j : �)

)#
+ �TP vi;
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(4) and (5) imply

1. conditional on the opponent�s state, the above strategy in the in�nitely repeated game

is optimal for su¢ ciently large discount factor �,

2. if player j is in the state G, then player i�s payo¤ from the in�nitely repeated game

is �vi and if player j is in the state B, then player i�s payo¤ is vi for su¢ ciently large

discount factor �, and

3. the payo¤ in the initial period is pjv�vi + (1� pjv)vi = vi as desired.

Therefore, it su¢ ces to show that there exist ff�i (xi)gxi2fG;Bggi and ff�i(xj; � : �)gxj2fG;Bggi
satisfying (4) (5) and (6) with ff�i(xj; � : �)gxj2fG;Bggi being uniformly bounded with re-

spect to � in TP -period �nitely repeated game. Each review phase corresponds to the �-

nitely repeated game and we use the terms �review phase� and ��nitely repeated game�

interchangeably.

5 Preliminaries

5.1 Statistics

In this section, we construct the statistics to be used for the equilibrium construction. First,

we de�ne  aj (yj) that allows player j to statistically distinguish player i�s action. For our

equilibrium to work,  aj (yj) should satisfy the following properties:

1. given that the other player takes aj, the expected value of  
a
j (yj) is highest when player

i takes ai. Intuitively, we make the reward �i(xj; h
TP+1
j : �) linearly increasing in the

summation of  aj (yj;t) in the given review phase with a su¢ ciently high slope. Then,

this incentivizes player i to take ai.

2. suppose, on the equilibrium path, the action pro�le a is taken. In addition, player i

calculates the conditional expectation of  aj (yj) conditional on a; yi. The ex ante value
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of this conditional expectation is

X
yi

8<:X
yj

 aj (yj)q(yj j a; yi)

9=; q (yi j a) =
X
yj

(X
yi

q(yj j a; yi)q(yi j a)
)
 aj (yj):

On the other hand, if player j secretly deviates to ~aj while player i still believes a is

taken, then the ex ante value is

X
yi

8<:X
yj

 aj (yj)q(yj j a; yi)

9=; q (yi j ai; ~aj) =
X
yj

(X
yi

q(yj j a; yi)q (yi j ai; ~aj)
)
 aj (yj):

(8)

Note that player i�s signal is distributed according to the true distribution q(yi j ai; ~aj)

while player i calculates the conditional distribution q(yj j a; yi) believing a is taken. As

we will see, since player i�s equilibrium strategy depends on the conditional expectation

of  aj (yj), we want to exclude the possibility that player j can manipulate the ex ante

value of the conditional expectation via changing her own action. That is, (8) is

constant for all ~aj.

The �rst condition requires that the distribution of player j�s signal conditional on ~ai; aj,

Q1(~ai; aj) � (q (yj j ~ai; aj))yj , is linearly independent with respect to ~ai. The second condition

requires that the vector Q2(ai; ~aj) �
�P

yi
q(yj j a; yi)q(yi j ai; ~aj)

�
yj
is linearly independent

with respect to ~aj. Jointly, the vectors Q1(~ai; aj) and Q2(ai; ~aj) are linearly independent

except for ~ai = ai and ~aj = aj.

Formally,

Lemma 1 There exist q2 > q1 such that, for each i 2 I and a 2 A, there exists a function

 aj : Yj ! (0; 1) such that

1.  aj can distinguish whether ai 2 Ai is taken or not:

E
�
 aj (yj) j ~ai; aj

�
�
X
yj

q(yj j ~ai; aj) aj (yj) =

8<: q2 if ~ai = ai;

q1 if ~ai 6= ai;
(9)
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and

2. player j cannot change the ex ante expectation of player i�s conditional expectation of

 aj (yj): for any ~aj 2 Aj,

X
yj

(X
yi

q(yj j a; yi)q(yi j ai; ~aj)
)
 aj (yj) = constant. (10)

Proof. First, arbitrarily �x q2 > q1. The vectors Q(~ai; aj) and Q(ai; ~aj) are generically

linearly independent except for ~ai = ai and ~aj = aj since Assumption 2 guarantees that

jYjj � jAij+ jAjj � 1. Therefore, there generically exists a solution f ai (yj)gyj to satisfy (9)

and (10). Note that if f ai (yj)gyj solves the system for q2 and q1, then, for any m;m0 2 R++,n
 ai (yj)+m

m0

o
yj
solves the system for q2+m

m0 and q1+m
m0 . Therefore, we can make sure that  

a
j :

Yj ! (0; 1) by adding a large number and dividing by a large number.

Second, for the equilibrium construction, it is convenient to use a variable taking only 0

or 1 instead of f aj (yj)g. Suppose player j constructs a random variable 	aj 2 f0; 1g from

f aj (yj)g as follows: after observing yj, player j calculates  aj (yj). After that, player j draws

a random variable from the uniform distribution on [0; 1]. If the realization of this random

variable is less than  aj (yj), then 	
a
j = 1 and otherwise, 	

a
j = 0. Since Pr(f	aj = 1g j ~a; y) =

 aj (yj) for all ~a 2 A and y 2 Y , 	aj also satis�es

1. given that the other players take aj, the expected value of 	aj is highest when player i

takes ai, and

2. the ex ante value of the conditional expectation of 	aj is equal to (8) and is constant

for all ~aj.

Further, player i, after believing that a being taken and observing yi, constructs a random

variable Ei	aj 2 f0; 1g from
P

yj
 aj (yj)q(yj j a; yi) as player j constructs 	aj from  aj (yj).

(10) implies that

Pr(fEi	aj = 1g j ai; aj) = Pr(fEi	aj = 1g j ai; ~aj) (11)
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for all ~aj 2 Aj.

Finally, we construct f��i (aj; yj)g and f�+i (aj; yj)g such that, if player i�s payo¤ in the

stage game is equal to the summation of the instantaneous utility ui (a) and ��i (aj; yj) or

�+i (aj; yj), then any action pro�le is indi¤erent to player i.

Lemma 2 If Assumption 2 is satis�ed, then there exists �u > � such that, for each i, there

exist ��i : Aj � Yj ! [��u;��] and �+i : Aj � Yj ! [�; �u] such that

ui (a) + E
�
��i (aj; yj) j a

�
= constant for all a 2 A;

ui (a) + E
�
�+i (aj; yj) j a

�
= constant for all a 2 A:

Proof. This is generically satis�ed if jYjj � jAij as Yamamoto (2009b).

5.2 Message Protocol

As we will see, even with cheap talk, we need to let the players exchange messages via taking

actions. We explain the message protocol to send a binary message fG;Bg, which also gives

the idea of how to dispense cheap talk in the Online Appendix. See Section 7 for the detailed

discussion about the dispensability of cheap talk.

Let us introduce the following notations:

Notation 1 Take aGi ; a
B
i 2 Ai arbitrarily with aGi 6= aBi . For mi 2 fG;Bg, we de�ne

1. For � 2 I, let 1y� is a jY�j � 1 vector such that the element corresponding to y� is equal

to 1 and the other elements are 0.

2. a column vector of the signal distribution of player i conditional on a:

qi(a) = (q(yi j a))yi2Yi ;
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3. the matrix projecting player j�s signal on the conditional distribution of player i�s

signals given an action pro�le a:

Mi;j(a) =

26664
q(yi;1 j a; yj;1) � � � q(yi;1 j a; yj;jYj j)

...
...

q(yi;jYij j a; yj;1) � � � q(yi;jYij j a; yj;jYj j)

37775 ;

4. (jYij � jAjj+ 1)� jYij matrix Hi(mi) and (jYij � jAjj+ 1)� 1 vector pi(mi) such that

the a¢ ne hull of player i�s signal distribution with respect to player j�s action when

player i takes ami
i is represented by

a�(fqi(ami
i ; aj)gaj) \ R

jYij
+ =

n
x 2 RjYij+ : Hi(mi)x = pi(mi)

o
;

5. the set of hyperplanes that are generated by perturbing RHS of the characterization of

a�(qi(a
mi
i ; aj)gaj \ R

jYij
+ : for " � 0,6

Hi["](mi) �

8<:x 2 RjYij+ : 9" 2 RjYij�jAj j+1+ such that

8<: k"k � "

Hi(mi)x = pi(mi) + "

9=; ;

and

6. the set of frequencies of player j�s signal observations such that player j�s conditional

expectation of the frequency of player i�s signal observation is in Hi["](mi) when the

players take ami
i ; aGj :

Hi;j["](mi) =

8>>><>>>:
y 2 RjYj j+ : 9" 2 RjYij�jAj j+1+ such that8<: k"k � "

Hi(mi)Mi;j(a
mi
i ; aGj )y = pi(mi) + "

9>>>=>>>; :

Since a continuous linear transformation is Lipschitz continuous, we can take �K such

6We use the sup norm unless otherwise noti�ed: kxk = maxi jxij.
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that, for any i, mi and " 2 RjYj j+ , kHi(mi)"k � ( �K � 2) k"k.

The following lemma is useful:

Lemma 3 There generically exist
�
aGi ; a

B
i

	
i2I such that there exists �" > 0 such that for any

i; j 2 I and 0 � " � �",

Hj["](G) \Hi;j[( �K + 1)"](G) \Hi;j[( �K + 1)"](B) = ;:

Proof. It su¢ ces to show that, for su¢ ciently small ", for any k"k � ", there does not exist

x 2 RjYj j+ such that 26664
Hj(G)

Hi(G)Mi;j(a
G
i ; a

G
j )

Hi(B)Mi;j(a
B
i ; a

G
j )

37775x =
26664
pj(G)

pi(G)

pi(B)

37775+ ": (12)

For generic q, with " = 0, such x does not exist since we have jYjj degrees of freedom

and jYjj + 2 jYij � jAij � 2 jAjj + 1 constraints. Note that one row of each of Hj(G),

Hi(G)Mi;j(a
G
i ; a

G
j ) and Hi(B)Mi;j(a

B
i ; a

G
j ) is parallel to 1.

By Farkus Lemma, this is equivalent to the existence of x 2 RjYj j+2jYij�jAij�2jAj j+4+ with

26664
Hj(G)

Hi(G)Mi;j(a
G
i ; a

G
j )

Hi(B)Mi;j(a
B
i ; a

G
j )

37775
0

x � 0;

26664
pj(G)

pi(G)

pi(B)

37775 � x > 0:

Hence, for su¢ ciently small ", for any k"k � ",

26664
Hj(G)

Hi(G)Mi;j(a
G
i ; a

G
j )

Hi(B)Mi;j(a
B
i ; a

G
j )

37775
0

x � 0;

0BBB@
26664
pj(G)

pi(G)

pi(B)

37775+ "
1CCCA � x > 0:

Again, by Farkus Lemma, (12) does not have a solution for su¢ ciently small ".

Given above, the message protocol is determined as follows: �x
�
aGi ; a

B
i

	
i2I so that
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Lemma 3 holds. Consider the following message protocol (i!mi
j) where player i sends

mi 2 fG;Bg to player j.

Player i sends the message using T
1�"
2 + T 1�" periods as follows.7 As we will see, we use

� > 0 in the de�nition of the protocol. In this section, we treat � > 0 as some small �xed

number. In Section 5.3, we explain how to �x �.

1. player i decides the following two variables:

(a) mi, which is player i�s message,

(b) a new state variable that is equal tomi with high probability, zi(mi) 2 fG;B;Mg,

as follows:

zi(mi) =

8>>><>>>:
mi with probability 1� 2�;

fG;Bg n fmig with probability �;

M with probability �:

In addition, if zi(mi) 6= mi, then player i makes any action pro�le sequence indi¤erent

to player j for the rest of the phase.

2. player i sends mi by taking a
mi
i for T

1�"
2 periods. Player j takes aGj . Let S � N be the

set of T
1�"
2 periods when player i constantly plays ami

i .

3. player i constructs the random variable 
i(S) as follows: �rst, player i constructs a

random variable f
i;tgt2S as follows. After taking a
mi
i and observing yi;t, player i

calculates Hi(mi)1yi;t. Then, player i draws (jYij � jAjj+ 1) random variables inde-

pendently from the uniform distribution on [0; 1]. If the lth realization of these random

variables is less than the lth element of Hi(mi)1yi;t, then the lth element of 
i;t is equal

to 1. Otherwise, the lth element of 
i;t is equal to 0. Given f
i;tgt2S, let


Hi (S) =
1

jSj
X
t2S

i;t: (13)

7Throughout the paper, we neglect the integer problem since it is handled easily.
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By de�nition, the distribution of 
Hi (S) is independent of player j�s strategy and


Hi (S) is close to its mean pi(mi) with high probability for large jSj = T
1�"
2 . Further, if

jSj = T
1�"
2 is large, then, given x 2 RjYij, the frequency of player i�s signal observations

in S, Hi(mi)x and 
Hi (S) are su¢ ciently close with high probability. Hence, the

following procedure does not change player j�s incentive to take aGj while receiving the

message:

(a) if 


Hi (S)� pi(mi)


 � "

4
^



Hi (S)�Hi(mi)x



 � "

8
; (14)

then player i infers mi[1](i) = mi and player i requires player j to infer mi.

(b) otherwise, player i infers mi[1](i) = ; and player i makes any action pro�le se-

quence indi¤erent to player j.

Since (14) implies kHi(mi)x� pi(mi)k � "
2
x by triangle inequality, which implies

x 2Hi

�
"
2

�
(mi), for each mi, it su¢ ces for player j to infer the message is mi only if

y 2Hi;j[( �K � 1)"](m̂i), where y is the frequency of player j�s signal observations in S.

4. player j, on the other hand, constructs the random variable 
Gj (S) and M
mi
i;j (S) for

each mi 2 fG;Bg as follows. Player j constructs 
G
j;t and 


G
j (S) as player i constructs


i;t and 
Hj (S). Note that player j takes a
G
j to receive the message and so mj = G.

For Mmi
i;j (S), �rst, player j constructs a random variable fMmi

i;j;tgt2S as follows. After

taking aGj and observing yj;t, player j calculates Hi(mi)Mi;j(a
mi
i ; aGj )1yj;t . Then, player

j draws jYij � jAjj + 1 random variables independently from the uniform distribution

on [0; 1]. If the lth realization of these random variables is less than the lth element

of Mi;j(a
mi
i ; aGj )1yj;t, then the lth element of M

mi
i;j;t is equal to 1. Otherwise, the lth

element of Mmi
i;j;t is equal to 0. Given fMmi

i;j;tgt2S, let

Mmi
i;j (S) =

1

jSj
X
t2S
Mmi

i;j;t: (15)
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By de�nition, the distribution of 
Gj (S) is independent of player i�s strategy. Further,

if jSj is large, then, given y 2 RjYj j, the frequency of player j�s signal observations,

�Hj(G)y and 
Gj (S),� �Hi(G)Mi;j(a
G
i ; a

G
j )y and MG

i;j(S)� and �Hi(B)Mi;j(a
B
i ; a

G
j )y

andMB
i;j(S)�are su¢ ciently close with high probability. Hence, the following procedure

does not change player i�s incentive to take ami
i to send mi:

5. on the other hand, player j infers player i�s state as follows: with S being the above

T
1�"
2 periods and y being the frequency of the signal observation in S,

(a) if




Gj (S)� pj(G)

 � "

2
^


Hj(G)y � 
Gj (S)



 � "

8

^


Hi(G)Mi;j(a

G
i ; a

G
j )y �MG

i;j(S)


 � "

8
^


Hi(B)Mi;j(a

B
i ; a

G
j )y �MB

i;j(S)


 � "

8
;(16)

then

i. if there exists m̂i 2 fG;Bg with



M m̂i
i;j (S)� pi(m̂i)



 � �K"; (17)

then player j infers mi[2](j) = m̂i,

ii. otherwise, player j infers randomly: mi[2](j) = G with probability 1
2
and B

with 1
2
.

i. and ii. are well de�ned since



Gj (S)� pj(G)

 � "

2
and



Hj(G)y � 
Gj (S)


 �

"
8
imply kHj(G))y � pj(G)k � " and



Hi(m̂i)Mi;j(a
m̂i
i ; aGj )y �M m̂i

i;j (S)


 � "

8
and

M m̂i

i;j (S)� pi(m̂i)


 � �K" imply



Hi(m̂i)Mi;j(a
m̂i
i ; aGj )y � pi(m̂i)



 � ( �K+1)x by
triangle inequality, which implies y 2Hj ["] (G)(mi) \Hi;j[( �K + 1)"](m̂i). Hence,

by Lemma 3, there is at most one m̂i that satis�es ii.

(b) otherwise, player j infers mi[2](j) = ;. In addition, if mi[2](j) = ;, then player j

makes any action pro�le sequence indi¤erent to player i for the rest of the phase.
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Further, player j will use zi(mi)[2](j) below to infer mi.

Suppose player j knows the message is mi. Knowing mi, Mi;j(a
mi
i ; aGj )y is the condi-

tional expectation of x 2 RjYij+ , the frequency of player i�s signal observation. By the

central limit theorem, player j puts nonnegligible posterior for x close toMi;j(a
mi
i ; aGj )y.

Since Hi(mi) is Lipschitz continuous, it means player j puts nonnegligible posterior

for Hi(mi)x close to Hi(mi)Mi;j(a
mi
i ; aGj )y, that is, player j puts nonnegligible pos-

terior on the event that Hi(mi)x is close to p(mi) (that is, x 2Hi

�
"
2

�
(mi)) only

if Hi(mi)Mi;j(a
mi
i ; aGj )y is close to p(mi) (that is, y 2Hi;j[( �K � 1)"](mi)). Since

x 62Hi

�
"
2

�
(mi) implies any action pro�le indi¤erent from the previous paragraph, it

su¢ ces for player j to infer mi only if y 2Hi;j[( �K� 1)"](mi). Even if player j does not

know mi, if su¢ ces to infer mi only if y 2Hi;j[( �K � 1)"](mi).

Therefore, it su¢ ces player j to infer m̂i if there is m̂i 2 fG;Bg with y 2Hi;j[( �K �

1)"](m̂i). This is true if 1. is the case by the following reason: if there exists m̂i

with y 2Hi;j[( �K � 1)"](m̂i), then by de�nition,


Hi(m̂i)Mi;j(a

m̂i
i ; aGj )y � pi(m̂i)



 �
( �K � 1)". Together with



Hi(m̂i)Mi;j(a
m̂i
i ; aGj )y �M m̂i

i;j (S)


 � "

8
(coming from the

fact that 1. is not the case), player j has


M m̂i

i;j (S)� pi(m̂i)


 � �K" and infers mi.

If 2. is the case, then player j uses the result of the following message protocol. Note

that this is used only after the history without (16) and that player i is indi¤erent to

any action pro�le sequence. Therefore, we can let player i take any strategy.

6. player i takes either aGi , a
B
i , or

1
2
aGi +

1
2
aBi for T

1�" periods. Player j takes aGj . Let

�
zi(mi)
i =

8>>><>>>:
aGi if zi(mi) = G;

aBi if zi(mi) = B;

1
2
aGi +

1
2
aBi if zi(mi) =M

be player i�s possible strategy.

7. player j infers zi(mi) as follows: for all zi 2 fG;B;Mg, player j calculates, T 1�"L(hj; zi),
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the log likelihood of player j�s history under zi. With fj;k being a frequency of signal

yj;k while receiving zi(mi),

L(hj; zi) = fj;1 log q(yj;1jaGj ; �zii ) + � � �+ fj;jYj j log q(yj;jYj jjaGj ; �zii ):

Since L(hj; zi) is concave with the mixture of aGi and aBi and ffj;kg
jYj j
k=1 2 co(f0; 1gjYj j),

which is compact, there exists � > 0 such that one of the following three is true:

(a) the likelihood ratio of zi(mi) = G compared to zi(mi) = B is no less than exp(T �).

Then, player j infers zi(mi) = G.

(b) the likelihood ratio of zi(mi) = B compared to zi(mi) = G is no less than exp(T �).

Then, player j infers zi(mi) = B.

For (a) and (b), player j does not consider the case with zi(mi) = M since if

zi(mi) = M is the case, then player j has been indi¤erent to any action pro�le

sequence.

(c) the likelihood ratio of zi(mi) = M compared to zi(mi) = G;B is no less than

exp(T �). Then, player j infers zi(mi) = G. Since player i makes any action

pro�le sequence indi¤erent to player j if zi(mi) = M 6= mi 2 fG;Bg happens, if

player j thinks that zi(mi) =M is highly likely, then the loss from inferring G is

very small.

8. based on above, player j infers mi as follows:

mi(j) =

8<: mi[2](j) if mi[2](j) 6= ;;

zi(mi)[2](j) if mi[2](j) = ;:
(18)

Further, based on the result up to 5., the players construct the following variables:

1. ~� i(i!mi
j) and ~�j(i!mi

j) that classify whether the summation (and so the average)

of the variable constructed from a variable is close to the summation (and so the

average) of the original variable. Speci�cally,
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(a) ~� i(i !mi
j) = B if




Hi (S)�Hi(mi)x


 > "

8
happens. Otherwise, ~� i(i !mi

j) =

G.

(b) ~�j(i !mi
j) = B if



Hj(G)y � 
Gj (S)


 > "

8
,


Hi(G)Mi;j(a

G
i ; a

G
j )y �MG

i;j(S)


 �

"
8
or


Hi(B)Mi;j(a

B
i ; a

G
j )y �MB

i;j(S)


 � "

8
happens. Otherwise, ~�j(i!mi

j) = G.

As we have mentioned, conditional on fyi;tgt2S, ~� i(i !mi
j) = G with probability no

less than 1 � exp(�T 1�2"
2 ) and that, conditional on fyj;tgt2S, ~�j(i !mi

j) = G with

probability no less than 1� exp(�T 1�2"
2 ).

2. further, let ~#j(i !mi
j) = G denote the situation where




Gj (S)� pj(G)

 � "
2
and

~#j(i !mi
j) = B denote the situation where




Gj (S)� pj(G)

 > "
2
. Remember that

the distribution of 
Gj (S) is independent of player i with mean pj(G). Therefore,

~#j(i!mi
j) = G with high probability. In addition, Condition 5.(b). implies that

mi[2](j) = ; , ~�j(i!mi
j) = B _ ~#j(i!mi

j) = B (19)

3. remember that player i makes player j indi¤erent to any action pro�le sequence if

mi[1](i) = ; or zi(mi) 6= mi. We introduce ~�i(i!mi
j) = B to record these events. If

these events do not happen, we say ~�i(i!mi
j) = G.

4. on the other hand, player j makes player i indi¤erent to any action pro�le sequence if

mi[2](j) = ;. We introduce ~�j(i!mi
j) = B to record these events. If these events do

not happen, we say ~�j(i!mi
j) = G.

The following Lemma summarizes the property of the inferences discussed above. Only

the new result is 2, which follows from the fact that the length of the periods to send mi

(not zi(mi)) is T
1�"
2 .

Lemma 4 There exists �� such that, for any " > 0, for su¢ ciently large T ,

1. (18) is well de�ned.
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2. conditional on mi and ~� i(S) = G, player j believes that mi(j) = mi or ~�i(i!mi
j) = B

with probability no less than 1� exp(�T ��),

3. conditional on mi, any history of player i and ~�j(S) = ~#j(S) = G, any mi[2](j) 2

fG;Bg is possible with probability no less than exp(�T 1�"
2
+").

4. the distribution of ~�i(i!mi
j) is independent of player j�s strategy with probability no

less than 1� exp(�T 1�2"
2 ).

5. the distribution of ~�j(i!mi
j) is independent of player i�s strategy with probability no

less than 1� exp(�T 1�2"
2 ).

Proof. See Appendix.

There are two important features of this lemma. First, conditional onmi, player j believes

that mi(j) = mi or any action pro�le sequence indi¤erent with high probability. This con-

ditionality is important: player i�s continuation strategy also depends on mi. Hence, player

j, after observing player j�s future signals that statistically indicate player i�s continuation

strategy, can start to realize that mi(j) 6= mi. This lemma guarantees that even in this case,

player j thinks that any action pro�le sequence are indi¤erent with high probability, which

is the key to show that player j is willing to stick to the original inference.

Second, player i, after any history of player i, puts some positive probability on any

inference of her own message by player j. As we will see, on the equilibrium path, the

players play the game for T periods and then exchange the messages via protocol (i!mi
j).

After that, each player plays the continuation play based on the history in the �rst T periods

and the inferences in the message exchange. Player i infers player j�s past history in the

�st T periods from her own history. Player i expects player j�s continuation play from the

inference of the �rst T periods and player i�s message. Then, after player i observes player i�s

future signals that statistically indicate player j�s continuation strategy, player i can realize

that player j�s continuation strategy is di¤erent from what player i expected, that is, player

i�s inference of player j�s history in the �rst T periods was wrong or player j�s inference of

player i�s message in the message exchange was wrong. Since T
1�"
2 is su¢ ciently shorter than
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T , player i can believe that, with high probability, player i�s inference of player j�s history in

the �rst T periods was correct and player j�s inference in the message exchange was wrong.

5.3 Variables

In this section, we �nish de�ning the variables necessary for the equilibrium construction:

�L, L, �, " and ��.8

Given q1 and q2 in Lemma 1, we de�ne �L as follows: as we have mentioned, the reward

�i(xj; h
TP+1
j : �) is usually linear in the summation of 	aj . When the slope of the reward

is �L, the marginal increase of the expected reward by taking ai instead of taking ~ai 6= ai

is given by �L (q2 � q1) because of (9). We take �L su¢ ciently large so that this increase is

greater than the maximum gain in the instantaneous utility:

�L (q2 � q1) > max
a;~a;i

jui (a)� ui (~a)j : (20)

Given � and �L, we de�ne L su¢ ciently large so that

�L < L�: (21)

We are left to pin down �, " and ��. Take " > 0 and � > 0 su¢ ciently small such that

Lemmas 3 and 4 are satis�ed,

ui (D1; D2) + �+ 2"�L+ 2 �M �u� < vi < vi < ui (C1; C2)� �� 2"�L� 2 �M �u�; (22)

and

" <
1

2
; q2 � q1 (23)

with

M � 3 (L� 1) + 1: (24)

8For the other variables, � is determined in (3) and �u is determined in Lemma 2.
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As we will explain in Section 6.1, we see each phase as the collection of several �rounds.�

(24) is the number of the total rounds.

Finally, take �� such that

�� < ��;
2

3

1� "

2
: (25)

6 Equilibrium Construction

Given T , we show that, for su¢ ciently large T , for su¢ ciently large �, with

TP = (L� 1)
n
T + 2

�
T

1�"
2 + T 1�"

�o
+ T;

there exist ff�i (xi)gxi2fG;Bggi and ff�i(xj; � : �)gxi+12fG;Bggi satisfying (4) (5) and (6).

In this section, we consider the game with cheap talk: after each stage game, each player

i can send any message whose cardinality is equal to that of N. Let mi;t be player i�s message

after period t and mt = (mi;t)i be the message pro�le after period t. We assume that the

message is perfect and public. Then, the history at the beginning of period t � 1 is given by

m0; (ai;� ; yi;� ;m� )
t�1
�=1 :

Here, m0 is the message sent at the beginning of the game.

With abuse of notation, we also let HTP+1
i denote the set of all histories with cheap talk

TP+1[
t=1

�
m0; (ai;� ; yi;� ;m� )

t�1
�=1

	
:

See Section 7 for the dispensability of cheap talk.
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6.1 Structure of the Finitely Repeated Game

Let

ai(x) =

8<: Ci if xi = G;

Di if xi = B:
(26)

Intuitively, player j with xj = G who wants to make player i�s value high takes aj(G) = Cj

to reward player i and player j with xj = B who wants to make player i�s value low takes

aj(B) = Dj to punish player i.

Each phase has the following hierarchic structure: the phase is divided into L blocks and

each block is divided into 5 rounds. The �ow of the phase is as follows.

� at the beginning, each player i sends xi by cheap talk. Note that xi becomes public.

� the players play the lth normal block with l = 1; : : : ; L. For each l, the structure of

the lth block is as follows:

� the main round comes �rst. We use (l; �) to represent this round. Each player i

plays an equilibrium action ai(l; �) for T periods and constructs �i(l+1) 2 fG;Bg

at the end of the main round. The details will be explained in Section 6.3.2.

� for l � L� 1, the supplemental round 1 for �1(l+1) comes next. We use (l; �1; 1)

to represent this round. This is the �rst T
1�"
2 periods when player 1 sends �1(l+1)

via the protocol (1!�1(l+1) 2).

� for l � L�1, the supplemental round 2 for �1(l+1) comes next. We use (l; �1; 2) to

represent this round. This is the last T 1�" periods when player 1 sends z1(�1(l+1))

via the protocol (1!�1(l+1) 2).

� for l � L� 1, the supplemental rounds 1 and 2 for �2(l+1) comes next. (l; �2; 1)

and (l; �2; 2) are symmetrically de�ned.

� after the Lth block, the report block comes, where each player sends the message about

the history in all the normal blocks by cheap talk as we will explain in Section 6.4.
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Even though this �block� is instantaneous with cheap talk, when we dispense cheap

talk in the Online Appendix, this block becomes a collection of periods.

We attach a natural number m to each round such that m is a serial number counted

from the beginning of the phase. For example, the �rst main round has m = 1 and the

supplemental round 1 for �1(2) has m = 2. In addition, we identify the name of the round

with m. For example, we write m = (1; �) if m = 1 and m = (1; �1; 1) if m = 2. Moreover,

if we say (l; �) + 1, then it represents the round next to (l; �). If we say (l; �) � 1, then

it represents the round before (l; �). The similar notation is used for the other rounds. In

addition, let T (m) be the set of periods in the mth round.

6.2 With Conditionally Independent Signals

Following Matsushima�s (2004), we �rst consider the case with conditionally independent

monitoring:

q (yj j a; yi) = q (yj j a)

for all a and y. That is, conditional on an action pro�le a, player i�s signal has no information

about the opponent�s signal.

With conditional independence, �1(l + 1) and �2(l + 1) are irrelevant. Hence, we can

omit the supplemental rounds for �i(l + 1). Therefore, the review phase is L collections of

T -period main rounds.

Remember that we need to �nd ff�i (xi)gxi2fG;Bggi and ff�j(xj; � : �)ggxj2fG;Bggj to

satisfy (4), (5) and (6).

Let us specify the strategies: �i(xi) is to send the message xi at the beginning of the

phase and to always take ai(xi) in (26).

By symmetry, we concentrate on the case with xj = G. If player j receives the message

xi = B, then player i is supposed to take Di. Since Di is the dominant action, player i

does not need to be incentivized by the auxiliary scenario. Consider the following constant
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reward function:

�i(G; h
TP+1
j : �) � ��LT:

Since the reward is constant, player i plays Di. Therefore, �i(B) is optimal after the message

xi = B and

lim
T!1

lim
�!1

1� �

1� �TP
E

"
TPX
t=1

�tui;t (a) + �i(G; h
TP+1
j : �) j �i (B) ; �j (G)

#

= lim
T!1

1

TP
E

"
TPX
t=1

ui (Di; Cj)� �LT j �i (B) ; �j (G)
#

= u (Di; Cj)� � > �vi from (3). (27)

By subtracting a proper �xed (depending only on x) positive number from the reward func-

tion, it is possible to attain �vi exactly for su¢ ciently large � and T . Note that subtracting a

positive number does not violate (6). Further, it is readily shown that the reward is uniformly

bounded with respect to �.

On the other hand, if player j receives the message xi = G, then to incentivize player i

to take Ci, player j rewards on player i in the lth block is based on

Xj (l) �
X
t2Tl

	
Ci;Cj
j;t ;

the summation of 	Ci;Cjj;t (remember that player j takes Cj with xj = G) during the lth

block. Here, Tl is the set of periods in the main round of the lth block. Consider the

following reward:

�i(G; h
TP+1
j : �) �

LX
l=1

�i(G; h
TP+1
j ; l)

with

�i(G; h
TP+1
j ; l) � �LfXj (l)� (q2T + 2"T )g� � �T:

Intuitively, �i(G; h
TP+1
j ; l) is the reward for the lth block. Note that the reward is linearly

increasing in Xj (l) with slope �L until Xj (l) hits the upper bound q2T + 2"T .
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Since the monitoring is conditionally independent, regardless of player i�s signal obser-

vations,

Pr (fXj (l) > q2T + 2"Tg j xj = G; hi) � exp(� (q2 � q1)T ) � exp(�"T )

by Hoe¤ding�s inequality. The last inequality follows from (23). Intuitively, regardless of

player i�s signal observations, player i�s beliefXj (l) j xj = G; hi is approximately distributed

according to N (q2T;O(T
1
2 )) by the central limit theorem if the monitoring is conditionally

independent. Since q2T + 2"T is greater than the expectation of Xj(l) by 2"T
1
2 times T

1
2 ,

the order of the standard deviation, player i believes that the probability that Xj (l) hits

the upper bound is negligible and that the reward is linearly increasing in Xj(l) with slope

�L with probability almost equal to one. Therefore, since (20) implies that the marginal

increase of the expected reward by taking Ci instead of Di is greater than the loss of the

instantaneous utility, it is optimal for player i to take Ci always.

Therefore, �i(G) is optimal after the message xi = G and

lim
T!1

lim
�!1

1� �

1� �TP
E

"
TPX
t=1

�tui;t (a) + �i(G; h
TP+1
j : �) j �i (G) ; �j (G)

#

= lim
T!1

1

TP
E

"
TPX
t=1

ui;t (a) +
LX
l=1

�i(G; h
TP+1
j ; l) j �i (G) ; �j (G)

#
= u (Ci; Cj)� 2"�L� � > �vi from (3).

By subtracting a proper �xed number from the reward function, it is possible to attain �vi

exactly for su¢ ciently large � and T . Again, we can keep (6) and uniform boundedness.

Since both �i(G) and �i(B) yield the same expected value �vi and are subgame perfect

once message xi is sent, both �i(G) and �i(B) are optimal. Therefore, we are done.
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6.3 With Conditionally Dependent Signals

6.3.1 Intuitive Explanation

Now we consider the two-player prisoners�dilemma with conditionally dependent monitoring.

To illustrate the problem, consider the case with xj = G and suppose we use the same �i(G)

and �i(B) and the same reward as in the case with conditionally independent monitoring. A

problem occurs when xi = G and player j needs to incentivize player i to take Ci. Suppose

player i�s signal and player j�s signal are highly correlated and player i can infer Xj(l) from

her own history very precisely. (i) Equation (5) requires that the time average of the expected

sum of the instantaneous utility and the reward function should be close to ui(Ci; Cj). (ii)

Inequality (6) requires that the reward should be negative. Since (iii) the time average of

the instantaneous utilities is close to ui(Ci; Ci) if player i takes Ci, (i), (ii) and (iii) together

require that if Xj(l) is close to its ex ante value q2T , then the time average of the reward

should be close to 0, which means player i cannot be rewarded if Xj(l) is unusually high. If

player i infers from hi that Xj(l) is unusually high with high probability, then player i stops

cooperation.

Speci�cally, since the reward in each lth block after receiving xi = G is �i(G; h
TP+1
j ; l) =

�LfXj(l) � (q2T + 2"T )g� � �T , if player i believes that Xj(l) has hit q2T + 2"T with high

probability, then player i wants to stop cooperation. The problem is that the reward function

stops increasing in Xj(l) when Xj(l) > q2T + 2"T .

Symmetrically, when we de�ne the reward with xj = B after receiving xi = G as

�i(B; h
TP+1
j ; l) = �L fXj(l)� (q2T � 2"T )g+ + �T , the problem is that this does not start

to increase when Xj(l) < q2T � 2"T .

Intuitively, we consider the following modi�cation. For the intuitive explanation, we

concentrate on the case with xi = G.

Let us change the reward function to

�i(G; h
TP+1
j ; l) = �LfXj(l)� (q2T + 2"T )g � �T (28)

�i(B; h
TP+1
j ; l) = �LfXj(l)� (q2T � 2"T )g+ �T (29)
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for any l. Then, since the reward function is always increasing in Xj (l) with slope �L, it is

always optimal for player i to take cooperation.

Consider (6). For xj = G, if Xj(l) > q2T + 2"T occurs only for one block, then (6) is

still satis�ed by the following reasons. The maximum reward in one block is attained at

Xj(l) = T and �i(G; h
TP+1
j ; l) < �LT � �T . On the other hand, if Xj(l) � q2T + 2"T , then

�i(G; h
TP+1
j ; l) � ��T . Since we take �L < L� in (21), the total reward in the phase is still

negative if Xj(l) > q2T + 2"T occurs only for one block. Symmetrically, for xj = B, if

Xj(l) < q2T � 2"T occurs only for one block, then (6) is still satis�ed.

However, if Xj(l) > q2T + 2"T or Xj(l) < q2T � 2"T happens more than once, then the

condition (6) can be violated. Therefore, once

Xj (l) 62 [q2T � 2"T; q2T + 2"T ]

happens in the lth block, we make player j�s reward function for the following blocks will

be a negative constant for xj = G and a positive constant for xj = B. Speci�cally, for the

following blocks ~l with ~l 2 fl + 1; : : : ; Lg, suppose we modify the reward function to

�i(G; h
TP+1
j ; ~l) = ��T (30)

�i(B; h
TP+1
j ; ~l) = �T: (31)

Importantly, (6) is recovered since �i(G; h
TP+1
j ; l) � ��T and �i(B; h

TP+1
j ; l) � �T except

for one block.

Let �j(l) 2 fG;Bg denote which reward function player j is using in the lth block: if

player j is using (28) or (29), then �j (l) = G and if using (30) or (31), then �j (l) = B. Note

that ex ante, if the players play a(x), then Xj(l) is approximately distributed according to

the normal distribution with expectation q2T and standard deviation O(T
1
2 ). Since Xj(l) 62

[q2T � 2"T; q2T + 2"T ] implies Xj(l) is far way from its ex ante value by 2T
1
2 times the order

of standard deviation, �j (l) = B happens only with small probability less than exp(�"T ).

Hence, we call the observation is �erroneous�if Xj(l) 62 [q2T � 2"T; q2T + 2"T ].
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On the other hand, let �̂j (l) 2 fG;Bg be player i�s inference of �j (l). Forgetting the

question of how player i infers �j(l) for a while, assume �̂j (l) is always correct: �̂j (l) = �j (l)

for all l.

If �̂j(l) = B, then since the reward is constant for the rest of the phase, it is optimal to

take Di. If �̂j(l) = G, then the reward is linearly increasing in Xj(l) with slope �L. Hence, if

player i�s continuation payo¤ is not changed when �̂j(l+ 1) = B is induced, then player i is

willing to take Ci always in the lth block. To verify the incentive to take cooperation when

�̂j(l) = G, we do the backward induction. For l = L and �̂j(L) = G, player i wants to take

Ci since there is no e¤ect on �j(L+ 1).

Suppose that player i takes Ci when �̂j(l + 1) = G and let us verity player i takes Ci

when �̂j(l) = G. In the intuitive explanation here, we assume player j with xj always takes

aj(xj) although, symmetrically to player i, player j also changes her own action depending

on �̂i(l), that is, depending on whether player j believes player i has observed an erroneous

history.

For xj = G, when �̂j(l+1) = G, the limit of the discounted average payo¤ from the main

round of the (l + 1)th block satis�es

lim
T!1

lim
�!1

1� �

1� �TP
E

24 X
t2Tl+1

�t�1ui(Ci; Cj)� �LfXj (l + 1)� (q2T + 2"T )g � �T j Ci; Cj

35
=

1

L

�
u (Ci; Cj)� 2"�L� �

	
� 1

L
�vi (32)

since the expected value of Xj (l) is q2T . On the other hand, when �̂j(l+1) = B, it satis�es

lim
T!1

lim
�!1

1� �

1� �TP

24 X
t2Tl+1

�t�1ui(Di; Cj)� �T

35
=

1

L
fu (Di; Cj)� �g � 1

L
�vi: (33)

We can subtract proper positive numbers depending only on x and �j(l + 1) from (32) and

(33) such that both attain 1
L
�vi. Note that we can keep (6) and uniform boundedness.
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For xj = B, when �̂j(l + 1) = G, the limit of the discounted average payo¤ from the

main round of the (l + 1)th block satis�es

lim
T!1

lim
�!1

1� �

1� �TP
E

24 X
t2Tl+1

�t�1ui(Ci; Dj) + �LfXj (l + 1)� (q2T � 2"T )g+ �T j Ci; Dj

35
=

1

L

�
u (Ci; Dj) + 2"�L+ �

	
� 1

L
vi (34)

since the expected value of Xj (l) is q2T . On the other hand, when �̂j(l + 1) = B, the limit

of the discounted average payo¤ from the main round of the (l + 1)th block satis�es

lim
T!1

lim
�!1

1� �

1� �TP

24 X
t2Tl+1

�t�1ui(Di; Di) + �T

35
=

1

L
fu (Di; Dj) + �g � 1

L
vi: (35)

We can add proper positive numbers depending only on x and �j(l + 1) to (34) and (35)

such that both attain 1
L
vi. Note again that we can keep (6) and uniform boundedness.

Therefore, player i currently in block l with �̂j(l) = G is willing to take Ci always in

block l since (i) the reward is linearly increasing in Xj(l) with slope �L and (ii) player i�s

continuation payo¤ is the same between �j(l + 1) = G and �j(l + 1) = B.

In summary, �i(G) is such that player i with �̂j(l) = G plays Ci and with �̂j(l) = B

plays Di.

6.3.2 Formal Description of �i(xi)

The formal description of �i(xi) is more complicated since player i needs to infer �j(l) and

player j changes her action based on �̂i(l). For the structure of the phase, see Section 6.1.

Each player has the following state variables: the state of the phase xi 2 fG;Bg, the record

of erroneous histories �i(l) 2 fG;Bg and the inference of �j(l): �̂j(l) 2 fG;Bg.

The state of the phase xi is determined once and for all at the beginning of the phase.

In the main round of the lth block, each player i plays an equilibrium action ai(l; �) for T
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periods, where

ai(l; �) =

8<: ai(x) if �̂j(l) = G;

Di if �̂j(l) = B:

Note that, as in the intuitive explanation above, player i switches to Di if �̂j(l) = B.

After the main round of each lth block, player j updates �j(l) as follows: if xi = B, then

�j(l + 1) = G always. If xi = G, then the initial condition is �j(1) = G. For l � 1, given

Xj (l) =
P

t2Tl 	
Ci;aj(xj)
j;t , �j(l + 1) is determined as

�j(l + 1) =

8>>>>>><>>>>>>:
�j(l)

with probability 1� � if Xj (l) 2 [q2T � 2"T; q2T + 2"T ] ;

with probability � if Xj (l) 62 [q2T � 2"T; q2T + 2"T ] ;

B
with probability � if Xj (l) 2 [q2T � 2"T; q2T + 2"T ] ;

with probability 1� � if Xj (l) 62 [q2T � 2"T; q2T + 2"T ] :

(36)

Here, with abuse of notation, even if �j(l) = B, we see the event �j(l+1) = �j(l) is di¤erent

from �j(l + 1) = B.

The basic structure is as follows: with high probability 1� �, �j(l+1) = B is the record

of the events that player j observes an erroneous history as in the intuitive explanation.

However, there exists a positive probability � > 0 with which �j(l + 1) �transits to the

opposite state.�As we will see, if �j(l+1) transits to the opposite state, then player j makes

any action pro�le sequence indi¤erent to player i from the (l + 1)th block.

Then, in the supplemental rounds for �j(l+1), player j sends �j(l+1) to player i via the

protocol (i!�j(l+1) j) as explained in Section 5.2 withmi = �i(l+1). Remember �j(l+1)(i)

is player i�s inference, which is, from Lemma 4, conditional on �j(l+1), player i believes that

�j(l+1)(i) = �j(l+1) or any action pro�le sequence will be indi¤erent with high probability.

In particular, this means that after player i realizes that �j(l + 1)(i) 6= �j(l + 1), player i

believes that any action pro�le sequence is indi¤erent with high probability.

Each player i, then, constructs �̂j(l + 1), the inference of �j(l + 1), based on her own

history in the lth main round and �j(l + 1)(i). If xi = B, then �̂j(l + 1) = G always. Since

�j(l + 1) = G always for xi = B, this is the correct inference of �j(l + 1).
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If xi = G, then the initial condition is �̂j(1) = G = �j(1). For l � 1, player i calculates

the conditional expectation of Xj(l), on which �j(l + 1) depends:

E [Xj(l) j a(x); fyi;tgt2Tl ] =
X
t2Tl

X
yj;t

 
a(x)
j (yj;t)q(yj;t j a(x); yi;t): (37)

In addition, player i constructs the two variables related to (37):

EiXj(l) =
X
t2Tl

(Ei	
a(x)
j )t and

X
t2Tl

E
h
	
a(x)
j;t j a(x); yi;t

i
:

Remember that, player i constructs (Ei	
a(x)
j )t from

P
yj;t

 aj (yj;t)q(yj;t j a(x); yi;t). For large

T , with high probability, EiXj(l) and E [Xj(l) j a(x); fyi;tgt2Tl ] are close to each other by the

law of large numbers:

jEiXj(l)� E [Xj(l) j a(x); fyi;tgt2Tl ]j �
1

8
"T: (38)

Let ~� i(l; �) = G denote the case with (38) and ~� i(l; �) = B denote the case without (38).

Suppose the players play a(x) and player i has

EiXj(l) 2 [q2T �
1

2
"T; q2T +

1

2
"T ] (39)

and ~� i(S) = G. Then, player i�s posterior on

Xj(l) 2 [q2T � 2"T; q2T + 2"T ] (40)

is less than exp(�T 1�") by the following reason: by triangle inequality, we have

E [Xj(l) j a(x); fyi;tgt2Tl ] 2 [q2T � "T; q2T + "T ]:

Since the expectation of Xj(l) is inside of [q2T �2"T; q2T +2"T ] by "T
1
2 times T

1
2 , the order

of the standard variation of the conditional distribution Xj(l) j a(x); fyi;tgt2Tl, the result
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follows from Hoe¤ding�s inequality.

In summary, we have the following lemma:

Lemma 5 For any " > 0, for su¢ ciently large T , for all x 2 fG;Bg2,

1. if player j plays aj(x) in (l; �), then the distribution of EjXi(l) is independent of

fai;tgt2S by (11).

2. conditional on any faj;t; yj;tgt2T (l;�), ~�j(S) = G with probability no less than 1 �

exp(�T 1� "
2 ) by the central limit theorem.

3. if the players play a(x) and player i has (39) and ~� i(l; �) = G, then player i�s posterior

on (40) is less than exp(�T 1�").

Based on above, on the equilibrium path,

� if (39) and ~� i(l; �) = G, then player i is �ready to listen to �j(l+ 1)�with probability

�,

� otherwise, player i is �ready to listen to �j(l + 1)�with probability 1.

If player i has deviated from �i(xi), then player i is ready to listen always. In addition,

if player i is ready to listen, then player i makes any action pro�le sequence indi¤erent to

player j.

�̂j(l + 1) is determined as

�̂j(l + 1) =

8<: �j(l + 1)(i) when player i is ready to listen,

�̂j(l) otherwise.

That is, player i uses the inference of the message about �j(l+ 1) to infer �j(l+ 1) if player

i is ready to listen. Otherwise, player i neglects the message.

The basic structure of the above equilibrium construction is summarized as follows. Since

player i does not know about �j(l + 1), we let player j tell �j(l + 1). To incentivize player
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j to tell the truth, we make sure that whenever the message about �j(l + 1) has an impact

on player i�s equilibrium action (that is, whenever player i is ready to listen), player i makes

any action pro�le sequence indi¤erent to player j. This can be done without a¤ecting the

equilibrium payo¤ only if player i neglects player j�s message with high probability on the

equilibrium path. To incentivize player i to neglect the message, we let player j transit to

�the opposite state�with small probability � in (36). If player j transits to the opposite

state in the lth block, then player j makes any action pro�le sequence indi¤erent to player

i. Then, player i with ~� i(l; �) = G and (39) can believe that, even after player i knows

the message is �j(l + 1) = B, because of Condition 3 of Lemma 5, player j has transit

to the opposite state with high probability and player j makes any action pro�le sequence

indi¤erent to player i with high probability. Hence, with high probability, neglecting player

j�s message and taking ai(xi) is optimal. If player i does not have ~� i(l; �) = G and (39), on

the other hand, player i is ready to listen. From Lemma 4, the message protocol gives player

i almost correct inference of the message �j(l + 1), we are done.

We also introduce three state variables �j, #j and �j which change at the end of each

round. In Section 5 and this subsubsection, we de�ne ~� i and ~�j in the various ways. With

abuse of notation, we de�ne ~�j(m) = B if one of the following conditions is satis�ed:

1. m = (l; �) (main round) and ~�j(l; �) = B happens as we just described,

2. m = (l; �j; 1) (when player j is a message sender) and ~�j(j !�j(l+1) i), or

3. m = (l; �i; 1) (when player j is a message receiver) and ~�j(i!�i(l+1) j).

Otherwise, ~�j(m) = G. Given ~�j, let �j(m + 1) = G denote ~�j( ~m) = G for all ~m � m

and �j(m+ 1) = B denote all the other cases.

In addition, we de�ne ~#j(m) = B if m = (l; �i; 1) (when player j is a message receiver)

and ~#j(i!�i(l+1) j) = B. Otherwise, ~#j(m) = G. Similarly to �j, let #j(m+ 1) = G denote

~#j( ~m) = G for all ~m � m and #j(m+ 1) = B denote all the other cases.

The following lemma is useful. The intuition is that, for each m, since conditional

on fyj;tgt2T (m), ~�j(m) = B happens only with a small probability, not conditioning on
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~�j(m) = G does not change player i�s posterior so much.

Lemma 6 For any m, suppose the players take a for all t 2 T (m). Take A � Y
jT (m)j
j

that does not depend on ~�j(m). Player i calculates the belief of fyj;tgt2T (m) 2 A from

player i�s history in the mth round, fyi;tgt2T (m), conditional on at = a for all t 2 T (m):

Pr(ffyj;tgt2T (m) 2 Ag j a; fyi;tgt2T (m)). This is close to the the true posterior conditional on
~�j(m) = G:

���Pr(ffyj;tgt2T (m) 2 Ag j a; fyi;tgt2T (m))� Pr(ffyj;tgt2T (m) 2 Ag j ~�j(m) = G; a; fyi;tgt2T (m))
���

< 2 exp(� jT (m)j1�
"
2 ):

Proof. See Appendix.

As we have seen, the players make the opponent indi¤erent to any action pro�le sequence

after some histories. �i(m) 2 fG;Bg is used for encoding the events that player i makes

player j indi¤erent to any action pro�le from (and including) the mth round.

We now de�ne the transition of �j(m) 2 fG;Bg. We let player j make any action pro�le

sequence indi¤erent to player i from (and including) themth round if �j(m) = B. The initial

condition is that �j(1) = G. The transition is determined as follows. We have �j(m+1) = B

if one of the following conditions is satis�ed:

1. �j(m) = B. That is, once �j(m) = B is induced, it lasts until the end of the phase.

2. m = (l; �) (the main round of the lth block) and �j(m + 1) transits to the opposite

state as we have seen in (36). Note that this happens randomly with probability �

regardless of player j�s history.

3. m = (l; �) (the main round of the lth block) and player j is ready to listen.

4. m = (l; �j; 1) (the supplemental round 1 for �j(l + 1)) and ~�j(j !�j(l+1) i) = B

happens.
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5. ~�j(m) = B or ~#j(m) = G happens. Especially, (19) shows that, for m = (l; �i; 2) (the

supplemental round 1 for �i(l+1)), if player j has �i(l+1)[2](j) = ;, then �j(m) = B.

Note that if �̂i(l) = B or aj(l; �) 6= aj(xj), then there exists ~l � l�1 such that �̂i(~l+1) =

B is newly induced at the ~lth block (note that player j with �̂i(l) = G takes aj(xj)). Since

player j needs to be ready to listen to �i(~l + 1), Condition 3. of �j is satis�ed. Hence,

�j(l; �) = B: (41)

From Lemmas 8, 4 and 5, the distribution of f�j( ~m + 1)g ~m�m is independent of player

i�s strategy in the mth round with probability at least 1 � exp(�T 1�2"
2 ). To show this for

Condition 3. of �j, conditional on �j(l; �) = G (this is the only case when the distribution of

�j((l; �) + 1) is nontrivial), player j takes aj(x) and Lemma 5 guarantees that ~�j(l; �) = G

and (39) with probability no less than 1� exp(�T 1�").

Among all the events that induce �j(m) = B, we let player i exclude �j(m) = B or

#j(m) = B from the consideration and condition that �j(m) = #j(m) = G. This is rational

since if the current state is �j(m) = B, then any action pro�le sequence is indi¤erent. From

(19), �j(m) = #j(m) = G implies player j does not use zi(�i(~l+1))[2](j) to infer �i(~l+1)(j).

Let us formally show the almost optimality of the inference on the equilibrium path.9

With �i(B), �̂j(l) = �j(l) always. Hence, we concentrate on �i(G). Speci�cally, we show

that, if player i has not deviated in the supplemental rounds for �j, for each mth round

included in the lth block, conditional on �j(m) = #j(m) = G and player j�s action up to

(and including) the mth round but excluding the mixed strategy10 that player j has taken,

player i can believe that �̂j(l) = �j(l) or �j(m) = B with probability no less than

1�M exp(�T ��) (42)

with M being the total number of all the rounds by the end of the normal blocks.
9See (42) below for the formal de�nition of almost optimality of the inference.
10When we say the mixed strategy, it refers to the mixed strategy within a round and does not refer to

the randomization at the beginning of a round.
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From now on, we condition �j(m) = #j(m) = G and that player i has not deviated in

the supplemental rounds for �j.

Since once �j(~l) = B is induced, then �j(~l
0) = B for all the following blocks, there

exists a unique l� such that �j(~l) = B is initially induced in the (l� + 1)th block: �j (1) =

� � � = �j (l
�) = G and �j (l

� + 1) = � � � = �j (L) = B. Similarly, there exists l̂� with

�̂j (1) = � � � = �̂j(l̂
�) = G and �̂j(l̂� + 1) = � � � = �̂j (L) = B. If �j (L) = G (�̂j (L) = G,

respectively), then de�ne l� = L (l̂� = L, respectively).

Then, there are following three cases:

� l� = l̂�: this means �j (l) = �̂j (l) for all l as desired.

� l� > l̂�: this means �j (l) = �̂j (l) for all l � l̂�. Hence, it su¢ ces to show that player i

believes �j(m) = B for m � (l̂� + 1; �) with probability no less than 1� exp(�T ��).

Conditional on �j(m) = #j(m) = G, we have �j(l̂
�; �j; 1) = #j(l̂

�; �j; 1) = G. In

(l̂�; �j; 1) and (l̂�; �j; 2) (supplemental rounds for �j), for �̂j(l̂�+1) = B to be induced,

player i�s inference should be �j(l̂� + 1)(i) = B. Further, for m = (l̂�; �j; 1) and

(l̂�; �j; 2), �j(m+ 1) = B or #j(m+ 1) = B happens if and only if ~�j(m) = B. Hence,

from Lemma 4, conditional on �j(l̂�+1) and �j((l̂
�; �j; 2)+1) = #j((l̂

�; �j; 2)+1) = G,

player i believes �j(l̂�+1)(i) = �j(l̂
�+1) or �j((l̂�; �j; 1)+ 1) = B with probability no

less than 1� exp(�T ��). Since l� > l̂� implies �j(l̂�+1) = G, only the possible case is

�j((l̂
�; �j; 1)+ 1) = B as desired. Since we condition �j(l̂�+1) and �j((l̂

�; �j; 2)+ 1) =

#j((l̂
�; �j; 2) + 1) = G, learning and conditioning on ~�j(m) = ~#j(m) = G in the other

rounds do not a¤ect the posterior.

� l� < l̂�: this means �j (l) = �̂j (l) for all l � l�. Hence, it su¢ ces to show that player i

believes �j(m) = B for m � (l� + 1; �) with probability no less than 1� exp(�T ��).

We can condition that player j has �̂i(l�) = G and takes aj(x) in the l�th block

(otherwise, �j(l�; �) = B from (41) and we are done). In addition, since �̂j(l�) = G,

player i takes ai(x) in the l�th block. Hence, the players play a(x) in the l�th block.

There are following two subcases:
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� player i was ready to listen in the l�th block: by the same reason as above, we

are done.

� player i was not ready to listen in the l�th block (this means player i has not

deviated at the end of the main round of the l�th block).

We condition �j(l
�; �) = #j(l

�; �) = G. Consider m = (l�; �). Suppose, for a

while, forget about conditioning on ~�j(l
�; �) = G. ~#j(l�; �) = G for the main

round by de�nition.

For player i not to be ready to listen, E
h
Xj (l

�) j a(x); fyi;tgt2Tl�
i
needs to be

within [q2T � "T; q2T + "T ]. Note that E[Xj (l
�) j a(x); fyi;tgt2Tl� ] 2 [q2T �

"T; q2T+"T ] implies that the conditional expectation is inside of [q2T�2"T; q2T+

2"T ] by more than "T . Since the order of the standard deviation of the conditional

distribution of Xj(l
�) j a; hi is T

1
2 , this implies that player i�belief on Xj(l

�) 62

[q2T � 2"T; q2T + 2"T ] is no more than exp(�"T ).

Remember that player j sends the message �j (l� + 1) = B with a �xed probability

� > 0 even if Xj(l
�) 2 [q2T � 2"T; q2T + 2"T ]. Therefore, player i knowing

�j (l
� + 1) = B believes with probability no less than 1 � 1��

�
exp(�"T ), player

j transits to �j (l� + 1) = B although Xj(l
�) 2 [q2T � 2"T; q2T + 2"T ], which

means �j((l�; �) + 1) = B and any action pro�le sequence is indi¤erent. Hence,

having �̂j (l� + 1) = G and taking Ci is also optimal with probability no less than

1� 1��
�
exp(�"T ).

From Lemma 6, after conditioning on ~�j(l
�; �) = ~#j(l

�; �) = G, player i believes

�j((l
�; �) + 1) = B with probability no less than 1� 2 exp(�T 1�").

Player i can infer Xj (l
�) further from player j�s continuation strategy since player

j�s future action depends on �̂i(l�+1), which depends on player j�s history in the

main round of the l�th block, which, in turn, constructs Xj(l
�).

Suppose player i knows �̂i(l� + 1) = �̂i 2 fG;Bg. Conditional on ~�j(l�; �) =
~#j(l

�; �) = G, player j is ready to listen to player i�s message �i(l� + 1) with

probability � and Lemma 4 implies that any inference �i(l� + 1)[2](j) is possible
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with probability at least exp(�T 1�"
2
+") conditional on ~�j(l

�; �i; 1) = ~#j(l
�; �i; 1) =

G. Therefore, the minimum likelihood for �j(l�+1) = B with �j((l�; �) + 1) = B

against �j(l�+1) = B with �j((l�; �)+1) = G conditional on ~�j(l
�; �) = ~#j(l

�; �) =

G, ~�j(l
�; �i; 1) = ~#j(l

�; �i; 1) = G and �̂i(l� + 1) = �̂i is no less than

(1� 2 exp(�T 1�")) � exp(�T 1�"
2
+")

2 exp(�T 1�") >
1

2
� exp(T

1�3"
2 ) > exp(T �

�
) (43)

for su¢ ciently large T from (25) as desired.

After conditioning on �j(l�+1), �̂i(l�+1), ~�j(l
�; �) = ~#j(l

�; �) = G and ~�j(l
�; �j; 1) =

~#j(l
�; �j; 1) = G, learning and conditioning on ~�j(m) = ~#j(m) = G in the other

rounds do not a¤ect the posterior.

6.3.3 Reward Function

Now we formally show that there exists �i(xj; h
TP+1
j : �) that satis�es (4), (5) and (6) for

�(x) with x 2 fG;Bg2 with �i(xj; hTP+1j : �) being uniformly bounded with respect to �.

We see �i(xj; h
TP+1
j : �) as the summation of �i(xj; h

TP+1
j ;m : �), which is the reward on the

mth round.

For any m, if �j(m) = B, then player j uses

�i(xj; h
TP+1
j ; (l; �)) =

8<:
P

t2T (m) �
t�1��i (aj;t; yj;t) if xj = G;P

t2T (m) �
t�1�+i (aj;t; yj;t) if xj = B

to make player i indi¤erent to any action pro�le sequence. Below, we concentrate on �j(m) =

G. Since the distribution of f�j( ~m+1)g ~m�m is independent of player i�s strategy in the mth

round with probability at least 1� exp(�T 1�2"
2 ), player i neglects the e¤ect of her strategy

in the mth round on �j(m+ 1).

For m = (l; �) (the main round), if player j receives the message xi = B, then since Di

is a stage-game dominant strategy, no reward is necessary to incentivize player i. Therefore,

the same argument as in Section 6.2 works. If player j receives the message xi = G, then
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player j uses the reward function increasing inXj(l) while �j(l) = G and the constant reward

function while �j(l) = B. Speci�cally,

�i(xj; h
TP+1
j ; (l; �)) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

��i(x; l; G)� �T if xj = G and xi = B;

��i(x; l; G) + �T if xj = B and xi = B;

��i(x; l; G) + �LfXj(l)� (q2T + 2"T )g � �T if xj = G, xi = G and �j(l) = G;

��i(x; l; B)� �T if xj = G, xi = G and �j(l) = B;

��i(x; l; G) + �LfXj(l)� (q2T + 2"T )g � �T if xj = B, xi = G and �j(l) = G;

��i(x; l; B) + �T if xj = B, xi = G and �j(l) = B;

(44)

Here, ��i(x; l; �j(l)) < 0 is determined so that player i is almost indi¤erent between

�j(l) = G and �j(l) = B and that player i�s value at the beginning of the phase is to �vi (vi,

respectively) regardless of xi if xj = G (B, respectively) as we have done for (32) and (33).

The existence will be explained in Section 6.3.4.

For m = (l; �i; 1), (l; �i; 2), (l; �j; 1) and (l; �j; 2) (supplemental rounds), player j cancels

out the di¤erence of the instantaneous utility:8<:
P

t2T (m) �
t�1��i (aj;t; yj;t) if xj = G;P

t2T (m) �
t�1�+i (aj;t; yj;t) if xj = B:

(45)

On the top of that, ifm = (l; �j; 1) and (l; �j; 2) (when player i is the receiver of the message),

player j adds 8<: �
P

t2T (m) �
t�1(1�	a

G
i ;aj;t
j;t ) if xj = G;P

t2T (m) �
t�1	

aGi ;aj;t
j;t if xj = B

(46)

to make it strictly optimal to take aGi as prescribed in Section 5.2.

6.3.4 Almost Optimality of �i(xi)

We show �i(xi) is optimal by backward induction. The truthtelling incentive in the report

round will be veri�ed in 6.4.
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For each mth round in the normal blocks, we want to establish the following �almost

optimality�:

Proposition 1 �i(xi) is almost optimal, that is,

1. if �j(m) = B or #j(m) = B, then any strategy is exactly optimal.

2. if �j(m) = #j(m) = G, then

(a) for m = (l; �i; 2), where player i takes a mixed strategy to send �i(l + 1), then

any strategy is indi¤erent.

(b) for the other rounds, �i(xi) is optimal with loss up toM exp(�T ��)2maxi;a ui(a)TP .

1. is obvious since �j(m) = B or #j(m) = B implies �j(m) = B. 2.(a). is true since

�j(m) = #j(m) = G with m = (l; �i; 2) imply �i(l+1)[2](j) 6= ; from (19) and player j does

not use the inference in themth round. Therefore, we show 2.(b) by backward induction. For

this purpose, since the distribution of f�j( ~m + 1)g ~m�m does not react to player i�s strategy

in the mth round by more than M exp(�T 1�2"
2 ) < M exp(�T ��), we can neglect the e¤ect

of player i�s strategy in the mth round on f�j( ~m+ 1)g ~m�m.

In the Lth main round, consider the case with xi = B �rst. If �j(L; �) = G, then Di is

strictly optimal since it maximizes the summation of the instantaneous utility and (44). If

�j(L; �) = B, then any action is indi¤erent.

Consider the case with xi = G next. There are following four cases: (i) if �̂j(L) =

�j(L) = G and �j(L; �) = G, then Ci is strictly optimal since the reward (44) is increasing

in Xj(L). (ii) If �̂j(L) = �j(L) = B and �j(L; �) = G, then Di is strictly optimal since the

reward (44) is constant. (iii) If �j(L; �) = B, then any action is optimal. (iv) For the other

cases, if player i has not deviated in the supplemental rounds for �j, then player i does not

have a posterior on the other events more than M exp(�T ��). Therefore, in total, �i(xi) is

optimal up to the loss ofM exp(�T ��)2maxi;a ui(a)TP , where 2maxi;a ui(a) is the maximum

of the loss in the per-period utility due to miscoordination. Since player j�s continuation

play does not depend on the signal observations in the supplemental rounds for �j except
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for �j, no matter how we specify the strategy after the deviation in the supplemental rounds

for �j, the payo¤ does not increase by more than M exp(�T ��)2maxi;a ui(a)TP .

In the supplemental rounds for �j(L) when player i receives the message, it is optimal to

take aGi since (46) gives a high reward on a
G
i and �̂j(L)(i) is almost correct inference. Since

player j�s continuation strategy does not respond to her history in these rounds except for

�j(m+ 1), no matter how we specify �i(xi) after deviation, the deviation in this round will

not increase the payo¤ by more than M exp(�T ��)2maxi;a ui(a)TP .

In the supplemental round 2 for �i(L), as we have veri�ed, �i(xi) is exactly optimal.

In the supplemental round 1 for �i(L), any message is almost indi¤erent since (45) cancels

out the di¤erence in the instantaneous utilities and whenever player i�s message has the

impact on player j�s continuation strategy, player j needs to be ready to listen, which means

�j(m) = B. Recall that player i�s message �i(L) a¤ects player i�s posterior through (43).

However, regardless of player i�s strategy in this round, the bound (42) is valid. Hence, any

message is �almost indi¤erent,�that is, it does not a¤ect the equilibrium payo¤ more than

M exp(�T ��)2maxi;a ui(a)TP .

In the (L� 1)th main round, only the di¤erence from the main round of the Lth block is

that, if �j(L� 1) = �̂j(L� 1) = G and �j(L� 1; �) = G, then player i�s action in (L� 1; �)

can a¤ect the distribution of �j(L). As we have explained in the intuitive explanation,

we can make sure that player i�s continuation payo¤ is the same between �j(L) = G and

�j(L) = B if the coordination goes well. (42) implies that regardless of the deviation in this

round, coordination goes well with probability no less than 1�M exp(�T ��) and this e¤ect

is negligible. We can proceed toward the �rst round to establish Proposition 1.

Let us verify the existence of ��i (x; L; �j(l)) with

��i (x; l; �j(l))

8<: � 0 if xj = G;

� 0 if xj = B
(47)

for all x, l and �j(l) by backward induction. Note that this is enough for (6).

For the main round of the Lth block, if �j((L; �)+1) = G and �j (L) = �̂j (L) = G, then
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the players play a(x) and the ex ante average payo¤ in the main round of the Lth block for

player i is more than ui(Ci; Cj)���2"�L if xj = G and less than ui(Di; Dj)+�+2"�L if xj = B

except for ��i. Note that �j ((L; �) + 1) = B will not happen with probability more than 2�.

Therefore, in total, the ex ante value is more than ui(Ci; Cj)� �� 2"�L� 2�u� if xj = G and

less than ui(Di; Dj)+ �+2"�L+2�u� if xj = B. On the other hand, if �j((L; �)+ 1) = G and

�j (L) = �̂j (L) = B, then the average payo¤ is ui(Di; Cj)� � � ui(Ci; Cj)� � if xj = G and

ui(Di; Di) + � if xj = B except for ��i.

Therefore, there exists ��i (x; L; �j(L)) such that (i) (47) is satis�ed, that (ii) ��i (x; L; �j(L))

is uniformly bounded with respect to �, and that (iii) at the beginning of the main Lth

block, conditional on �j (L; �) = G and �j (L) = �̂j (L), player i is indi¤erent between

�j (L) = G and �j (L) = B and the value is ui(Ci; Cj) � � � 2"�L � 2�u� if xj = G and

ui(Di; Dj) + � + 2"�L + 2�u� if xj = B. Since player i believes that �j (L; �) = G and

�j (L) 6= �̂j (L) cannot happen with probability more than M exp(�T ��), player i is almost

indi¤erent between �j (L) = G and �j (L) = B.

Recursively, for l = 1, the average ex ante payo¤ of player i is more than ui(Ci; Cj)� ��

2"�L � 2M �u� (� �vi from (22)) if xj = G and less than ui(Di; Dj) + � + 2"�L + 2M �u� (� vi

from (22)) if xj = B. Recall that the length of the supplemental rounds is of order O(T 1�"),

which is smaller than O(T ), the length of the main rounds, and that we can neglect the

e¤ect of the supplemental rounds on the average payo¤. Therefore, since �j (1) = �̂j (1) by

de�nition, there exists ��i (x; 1; �j(1)) such that �i(xi) gives �vi (vi, respectively) to player i

regardless of xi and �j(1) if xj = G (B, respectively).

6.4 Exact Optimality

We are left to show the truthtelling incentive for hTP+1i and to establish the exact optimality

of �i (xi). To verify the truthtelling incentive, we distinguish the true history h
TP+1
i and

the message ~hTP+1i . In general, when we write a variable that player i owns with �tilde�, it

means player j�s inference of player i�s message about that variable.

Let Aj(m) be the set of information up to and including the mth round consisting of
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� what state xj player j is in,

� what action aj(l; �) player j took in the main rounds with (l; �) � m,

� what message �j(l) player j had with (l; �j; 1) � m, and

� what state #j(m) and �j(m) player j had.

We want to show that �i(xi) is exactly optimal in the mth round conditional on Aj(m).

Note that Aj(m) contains xj and so the equilibrium is belief-free at the beginning of the

phase. Note also that Aj(m) does not include player j�s messages in the supplemental round

2 for �j(l) since, for these messages, player i needs to infer by the likelihood ratio and we

cannot condition them.

We introduce the following variables. Let Ri(m) be the set of rounds ~m � m that is

not a supplemental round 2 for �i(l + 1), tm be the initial period of the mth round, #m
i

be the summary of the history in the mth round, where #m
i is a jAij jYij � 1 vector whose

element corresponding to (ai; yi) represents how many times player i observed (ai; yi) in the

mth round, and hmi � f# ~m
i g ~m2Ri(m) be the summary of player i�s history at the beginning

of the (m+ 1)th round.

We construct the message protocol for ĥTP+1i as follows.

� by public randomization device, the players coordinate on who will report hTP+1i . Only

one player reports the history. Player 1 reports hTP1 with probability 1
2
and player 2

reports hTP2 with probability 1
2
.

� for each m 2 Ri(M), player i who is supposed to send h
TP+1
i according to the public

randomization device sends the history in the mth round fai;t; yi;tgt2T (m).

� based on f~ai;t; ~yi;tgt2T (m), player j calculates ~#m
i .

With abuse of notation, we assume the players can send cheap talk messages several times

and the public randomization is available every time when the players send the messages.
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How to dispense the public randomization device without cheap talk is explained in the

Online Appendix.

Player j gives a reward on player i as follows. Here, we do not consider the feasibility

constraint (6). As we will see, the total reward in the report block is bounded by T�1 and

we can satisfy (6) by adding or subtracting a small constant without a¤ecting the incentive

if necessary.

As a preparation, we state the following lemma, whose proof is o¤ered in the Appendix:

Lemma 7 Let hmj be player j�s history in the mth round. There generically exist �" > 0 and

gi(h
m
j ; ai; yi) such that, for su¢ ciently large T , for any mth round and period t in the mth

round, conditional on �j(m) = �j(m + 1) = G, player i�s history at the end of the normal

block hi, it is better for player i to report ai;t; yi;t truthfully: for any hi and t,

E
�
gi(h

m
j ; ~ai;t; ~yi;t) j �j(m) = �j(m+ 1) = G; hi; (âi;t; ŷi;t) = (ai;t; yi;t)

�
> E

�
gi(h

m
j ; ~ai;t; ~yi;t) j �j(m) = �j(m+ 1) = G; hi; (âi;t; ŷi;t) 6= (aj;t; yj;t)

�
+ �"T�1;

where (âi;t; ŷi;t) is player i�s message.

Intuitively, kyj;t � E[yj;t j ~ai;t; ~yi;t; aj;t]k2 works for gi(hmj ; ~ai;t; ~yi;t), where yj;t is a jYjj � 1

vector whose element corresponding to yj;t is equal to 1 and that not corresponding to yj;t

is equal to 0.11 ;12 However, player i can learn about yj;t by player i�s signals in the rounds

~m � m, which contains the information about player j�s strategy in the rounds ~m � m,

which depends on fyj;tg in the mth round. See the Appendix for the formal adjustment.

By backward induction, for each m, we will construct the following rewards based on

player i�s messages:

� based on the past messages ~hm�1i = f ~# ~m
i g ~m�Ri(m�1), player j calculates Ai(~hm�1i ), the

set of player i�s action that is taken with positive probability in the mth round after

history ~hm�1i .
11Here, we use Euclidean norm.
12Kandori and Matsushima (1994) uses the similar reward to give a player the incentive to tell the truth

abouth the history.
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� if the mth round is a supplemental round 2 for �i(l + 1), player i does not report the

history. Hence, the reward below for the mth round is 0.

� otherwise, player j gives the following reward: �rst, based on ~hm�1i , player j gives

X
ai

f(ai j ~hm�1i ;Aj(m))	
ai;aj;tm
j;tm

(48)

with

f(ai j ~hm�1i ;A1(m)) 2 [�T�10m+6; T�10m+6] for all ai 2 Ai

such that, after hm�1i , it is optimal to take ai 2 Ai(hm�1i ). The existence will be veri�ed

below.

Second, player j punishes player i based on

T�10m+5gi(h
m
j ; ~ai;tm ; ~yi;tm): (49)

Further, player j makes it optimal to constantly take ai(m) within the mth round by

adding

T�10m+3
X

t2T (m)

	
~ai;tm ;aj;t
j;t (50)

for t included in the mth round.

Finally, player j punishes player i by

X
t2T (m)

T�10mTgi(h
m
j ; ~ai;t; ~yi;t): (51)

In addition, if we come to the mth round with �j(m) = B or #j(m) = B, then we cancel

out all the rewards about the following rounds ~m � m. Then, since we have established the

exact optimality of �i(xi) without adjustment after �j(m) = B or #j(m) = B, any action

pro�le sequence is exactly optimal after (and including) the mth round.

Further, if we come to the (m� 1)th round with �j(m) = B, then we cancel out all the
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rewards about the following rounds ~m � m� 1. We will verity this does not a¤ect player i�s

incentive below.

We show the truthtelling incentive about fai;t; yi;tgt2T (m) by backward induction. We

start from M , the last round. Regardless of the speci�cation of f , (51) incentivizes player i

to tell the truth about ai;t; yi;t for t 6= tm. Since (49) dominates (50), it is optimal to tell the

truth about ai;tm ; yi;tm. Since Lemma 7 conditions that �j(M + 1) = G, all the discussion

above holds after conditioning on �j(M + 1) = G. Hence, conditioning on �j(M + 1) = G

does not a¤ect player i�s incentive.

For the (M � 1)th round, (50) and (51) for m = M are independent of the messages

about the (M � 1)th round. (48) with m = M is dominated by the smallest loss in (49)

and (51) for m = M � 1. Therefore, the same argument for the Mth round works. We can

proceed until the �rst round.

Recursively, therefore, regardless of the speci�cation of f , we have established the opti-

mality of the truthtelling incentive in the report block. Now, we construct f(ai j ~hm�1i ;Aj(m))

by backward induction.

At the beginning of the Mth round, player i�s value of taking a constant action ai 2 Ai
conditional onAj(M) only depends on hM�1

i . This is true even after player i�s deviation since

this is enough to infer player j�s strategy that is i.i.d. within all the rounds. Note that (49),

(50) and (51) with m �M � 1 are already sank given the truthtelling strategy in the report

block. Hence, we can write the value as vi(ai j hM�1
i ;A1(M)). Let f(ai j ~hM�1

i ;A1(M)) be

such that

Pr(player i reports the history)
X
~ai

f
�
~ai j ~hM�1

i ;Aj(M)
�
Pr
�n
	
~ai;aj;t
j;t = 1

o
j ai;t = ai

�

=

8<: max~ai2Ai vi(~ai j hM�1
i ;Aj(M))� vi(ai j hM�1

i ;Aj(M)) if ai 2 Ai(hM�1
i )

0 otherwise

for all hM�1
i . Since Pr(�j(M + 1) = G j �j(M) = G;#M

j ) � 1 � exp(�T 1�2"
2 ) for all #M

j ,

all the messages about hM�1
i transmit correctly, �i(xi) is almost optimal except for the
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adjustment of the reward in the report block, and the variance of the reward in the report

block based on the histories in the Mth round is bounded by T�10M+5, we can make sure

that

f(ai j ~hM�1
i ;Aj(M)) 2 [�T�10M+6; T�10M+6]:

This makes it strictly optimal to take ai 2 Ai(h
M�1
i ). After that, (50) and truthtelling

incentive imply that it is optimal to constantly take aai(M)
i since Pr(�j(M+1) = G j �j(M) =

G;#M
j ) � 1�exp(�T

1�2"
2 ) for all #M

j and the the rewards that the following messages about

the history in the Mth round a¤ect is dominated by (50).

We can proceed until the �rst round and show the optimality of �i(xi). Note that if the

mth round is a supplemental round 2 for �i(l + 1) and this round does not have an impact

(�j(m) = #j(m) = G guarantees this), then the expected rewards in the report block are not

a¤ected by the strategy in the mth round.

7 Equilibrium Construction without Cheap Talk

Note that we use the cheap talk messages for xi and h
TP+1
i . The basic idea to send xi is the

same as in the supplemental rounds for �i(l + 1). As Lemma 4 shows, conditional on the

opponent message, the receiver can believe that her inference is correct or any action pro�le

sequence is indi¤erent to her. Therefore, even after observing the continuation strategy

that is not corresponding to her inference, the receiver can believe that any action pro�le

sequence is indi¤erent with high probability and that following the equilibrium strategy is

almost optimal. As we have seen in 6.4, we can attain the exact optimality afterwards.

For xi, however, there is one problem: the receiver j constructs the reward function on

the sender i based on xi (remember that for �i(l+1), whenever player j changes her strategy

based on the inference of �i(l + 1), player j makes any action pro�le sequence indi¤erent to

player i and the sender�s inference of the receiver�s inference is irrelevant). Therefore, the

sender need to have the inference of the receiver�s inference. Further, even after observing

the receiver�s continuation play, the sender needs to think it is almost optimal to follow the
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equilibrium strategy. This complicates the problem.

As for hTP+1i in the report block, there are three problems. First, the cardinality of the

messages for our equilibrium construction is of order (jAij jYij)T . If we replace cheap talk

with the message exchange via taking actions straightforwardly, it takes too long to send

all the messages and a¤ects the equilibrium payo¤. The second problem is that we need

to dispense the public randomization device. It is important to have only one player who

reports hTP+1i since otherwise, while the opponent is reporting hTPj , player i can update

the belief over player j�s signal observations and the incentive to tell the truth will be

destroyed. On the other hand, to have the exact optimality, there needs to be a positive

probability during the main blocks for each player to report hTP+1i and the reward function

on her will be adjusted. Third, there exists a positive probability that the messages do

not transmit correctly. While player i sends the message about hTP+1i , if player i�s signal

observations contain the information about the receiver�s inference of the message, player i

may start to think that the probability that her message transmits correctly will be small

if player i�s signal observation suggests that player j�s signal observation is �erroneous.�To

deal with this problem, we need to ensure that conditional on player i�s action, player i�s

signal observations and player j�s inference is independent. That is, we need to attain the

�conditionally independent inference�without further assumptions on the monitoring. See

the Online Appendix for the solutions to these problems.

8 General Game

8.1 General Two-Player Game

The prisoners�dilemma is special in that, when player j�state is B, the equilibrium action

Dj can attain the targeted payo¤ �vj or vj depending on player i�s state at the same time

minmaxing player i. The second point is important. Player j with xj = B and �j (l) = B

needs to give a positive constant reward to sustain (6). On the other hand, player j needs to

ensure that player i�s payo¤ is below vi regardless of player i�s strategy. Therefore, player j
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with xj = B and �j (l) = B needs to minmax player i if player i does not take a prescribed

action.

For this purpose, we let player i construct the statistics depending on whose realization

player i allows player j to minmax player i. Player i sends the message about whether she

allows player j to minmax. Player j, on the other hand, calculates the conditional expectation

of that statistics which decreases if player i deviates. Modifying the coordination protocol

about �i(l), we can make the protocol such that the players can coordinate on the punishment

properly and that player j punishes player j with high probability if the realization of the

conditional expectation is su¢ ciently low regardless of the message to keep player i�s payo¤

below vi regardless of player i�s strategy. See Sugaya (2010c) for the formal description.

8.2 General More-Than-Two-Player Game

If there are more than two players, as Hörner and Olszewski (2006), we let player (i � 1)�s

state determine whether player i�s value is �vi or vi independently of players �(i� 1)�s state.

With cheap talk, there is no conceptual di¢ culty to extend our result. Without cheap talk,

however, there is a new problem to coordinate on xi. Since each player takes an action based

on the her own inference about xi, if there exists a player who induces the di¤erent inferences

for the di¤erent players for the same xi, then it may be of that player�s interest to induce

the miscoordination. See Sugaya (2010c) for how to deal with this problem.

9 Appendix

9.1 Proof of Lemma 4

As a preparation, we prove the following three lemmas. In this subsection, let S � N be the

set of periods when the players are supposed to constantly take (ami
i ; aGj ).

The �rst lemma is about the relationship between the history of the message sender i

and 
Hi (S):
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Lemma 8 1. for any t and faj;� ; yj;�g�2S;� 6=t, the distribution of 
Hi (S) is independent of

aj;t.

2. for any fai;t; yi;tgt2S, the probability that





Hi (S)� 1

jSj
X
t2S

Hi(mi)1yi;t






 � "

8

with probability no less than 1� exp(jSj1�
"
2 ).

3. conditional on 





Hi (S)� 1

jSj
X
t2S

Hi(mi)1yi;t






 � "

8
;

if the frequency of player i�s signal observations in S, 1
jSj
P

t2S 1yi;t, is not included in

Hi
�
"
2

�
(mi), then 


Hi (S)� pi(mi)



 > 1

4
":

Proof.

1. Follows from the de�nition.

2. Follows from Hoe¤ding�s inequality.

3. Under the condition 





Hi (S)� 1

jSj
X
t2S

Hi(mi)1yi;t






 � "

8
;




Hi (S)� pi(mi)


 � 1

4
"

implies, by the triangle inequality,




 1jSjX
t2S

Hi(mi)1yi;t � pi(mi)






 � 1

2
"

and so 1
jSj
P

t2S 1yi;t 2Hi
�
"
2

�
(mi), which is the contradiction.
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The second lemma is, on the other hand, about the relationship between the history of

the message receiver j and 
Gj (S), M
G
i;j(S) and M

B
i;j(S):

Lemma 9 1. for any t and fai;� ; yi;�g�2S;� 6=t, the distribution of 
Gj (S) is independent of

ai;t.

2. if player j takes aj, then 


Gj (S)� pj(G)

 � "

2

with probability no less than 1� 1
2
exp(jSj1�

"
2 ).

Further, for any faj;t; yj;tgt2S,





Gj (S)� 1

jSj
X
t2S

Hj(G)1yj;t






 � "

8
;






MG
i;j(S)�Hi(G)Mi;j(a

G
i ; a

G
j )
1

jSj
X
t2S
1yj;t






 � "

8

and 




MB
i;j(S)�Hi(B)Mi;j(a

B
i ; a

G
j )
1

jSj
X
t2S
1yj;t






 � "

8

with probability no less than 1� exp(jSj1�
"
2 ).

3. if, for some m̂i 2 fG;Bg, 


Gj (S)� pj(G)

 � "

2
;





Gj (S)� 1

jSj
X
t2S

Hj(G)1yj;t






 � "

8
;






MG
i;j(S)�Hi(G)Mi;j(a

G
i ; a

G
j )
1

jSj
X
t2S
1yj;t






 � "

8
;






MB
i;j(S)�Hi(B)Mi;j(a

B
i ; a

G
j )
1

jSj
X
t2S
1yj;t






 � "

8
;
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and 

M m̂i
i;j (S)� pi(m̂i)



 � �K"

then, for ~mi 2 fG;Bg n fm̂ig, we have



M ~mi
i;j (S)� pi( ~mi)



 > �K":

4. for any mi 2 fG;Bg, if




Mmi
i;j (S)�Hi(mi)Mi;j(a

mi
i ; aGj )

1

jSj
X
t2S
1yj;t






 � "

8
and



Mmi
i;j (S)� pi(mi)



 > �K";

then there do not exist x 2 RjYij+ and " 2 RjYij+ with k"k � " such that

x = Mi;j(a
mi
i ; aGj )

1

jSj
X
t2S
1yj;t + "

x 2 Hi

�
1

2
"

�
(mi):

5. conditional on 





Gj (S)� 1

jSj
X
t2S

Hj(G)1yj;t






 � "

8
;






MG
i;j(S)�Hi(G)Mi;j(a

G
i ; a

G
j )
1

jSj
X
t2S
1yj;t






 � "

8
;






MB
i;j(S)�Hi(B)Mi;j(a

B
i ; a

G
j )
1

jSj
X
t2S
1yj;t






 � "

8
;

if the frequency of player i�s signal observations in S, 1
jSj
P

t2S 1yi;t, is included in

Hj
�
"
4

�
(G)\Hi;j

�
( �K � 1)"

�
(m̂i), then




Gj (S)� pj(G)

 � "

2

Mmi
i;j (S)� pi(mi)



 � �K":
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Proof.

1. Follows from Hoe¤ding�s inequality.

2. Follows from Hoe¤ding�s inequality.

3. From the triangle inequality, the �rst two conditions imply

1

jSj
X
t2S
1yj;t 2 Hj["](G):

On the other hand, the last three conditions imply

1

jSj
X
t2S
1yj;t 2 Hi;j[( �K + 1)"](m̂i):

If


M ~mi

i;j (S)� pi( ~mi)


 � �K" is the case, then we also have

1

jSj
X
t2S
1yj;t 2 Hi;j[( �K + 1)"]( ~mi);

which contradicts to Lemma 3.

4. Suppose there exists such x 2 RjYij+ and " 2 RjYij+ . Then, for y =
�P

t2S 1yj;t
�
yj
,

Hi(mi)x = Hi(mi)
�
Mi;j(a

mi
i ; aGj )y + "

�
= Hi(mi)Mi;j(a

mi
i ; aGj )y +Hi(mi)"

= Hi(mi)Mi;j(a
mi
i ; aGj )y + ~"

with k~"k = kH(mi)"k � ( �K � 2)". Since x 2 Hi

�
1
2
"
�
(mi), there exists "i with

k"ik � "
2
with

Hi(mi)x� "i = pi(mi);

which implies

Hi(mi)Mi;j(a
mi
i ; aGj )y + ~"� "i = pi(mi)
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and

k~"� "ik � ( �K � 1)";

which implies 




Hi(mi)Mi;j(a
mi
i ; aGj )

1

jSj
X
t2S
1yj;t � pi(mi)






 � ( �K � 1)":

By the triangle inequality,



Mmi
i;j (S)� pi(mi)



 � �K";

which is the contradiction.

5. Follows from the triangle inequality.

The third one is about the inference zi(mi)[2](j):

Lemma 10 For generic q, there exists � > 0 such that for any j and fj 2 �
�
f0; 1gjYj j

�
,

one of the following is true:

1. the likelihood ratio of zi(mi) = G compared to zi(mi) = B is no less than exp(T �) for

any mi,

2. the likelihood ratio of zi(mi) = B compared to zi(mi) = G is no less than exp(T �) for

any mi, or

3. the likelihood ratio of zi(mi) = M compared to zi(mi) = G;B is no less than exp(T �)

for any mi.

Proof. It su¢ ces to show that there exists ~� such that one of the following is true:

1. zi(mi) = G is more likely than zi(mi) = B: L(fj; G;B) � ~�;
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2. zi(mi) = B is more likely than zi(mi) = G: L(fj; B;G) � ~�;

3. zi(mi) =M is more likely than zi(mi) = G;B: L(fj;M;G) � ~� and L(fj;M;B) � ~�.

Generically, we can assume that for each k 2 f1; : : : ; jYjjg,

q(yj;kjaGj ; �Gi ) 6= q(yj;kjaGj ; �Bi ): (52)

Let ��i = �aGi + (1� �) aBi for � 2 [0; 1] and consider

g(fj; �) = fj;1 log q(yj;1jaGj ; ��i ) + � � �+ fj;jYj j log q(yj;jYj jjaGj ; ��i ):

Then,

d2g(fj; �)

d�2
= �

jYj jX
k=1

fj;k

(
q(yj;kjaGj ; �Gi )� q(yj;kjaGj ; �Bi )

q(yj;kjaGj ; ��i )

)2
< 0

for any fj;k because of (52). Hence, g(fj; �) is strictly concave. Therefore, since L(fj;k; zi; ~zi)

is the di¤erence in g(fj; �), one of the following is true:

1. zi(mi) = G is more likely than zi(mi) = B: L(fj; G;B) > 0;

2. zi(mi) = B is more likely than zi(mi) = G: L(fj; B;G) > 0;

3. zi(mi) =M is more likely than zi(mi) = G;B: L(fj;M;G) > 0 and L(fj;M;B) > 0.

Hence,

max fL(fj; G;B);L(fj; B;G);min fL(fj;M;G);L(fj;M;B)gg > 0:

Since LHS is continuous in fj and �
�
f0; 1gjYj j

�
is compact, there exists ~� > 0 such that

max fL(fj; G;B);L(fj; B;G);min fL(fj;M;G);L(fj;M;B)gg > ~�

for all fj 2 �
�
f0; 1gjYj j

�
as desired.

Given the above three lemmas, we can prove Lemma 4:
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1. Follows from Condition 3 of Lemma 9.

2. If mi[2](j) = ;, then it follows from Lemma 10. The conditioning on ~� i(S) for S being

not the periods when player i sends zi(mi) is irrelevant.

Let us concentrate on mi[2](j) = fG;Bg n fmig. Player i has mi[1](i) = mi only if

x 2 Hi

�
"
2

�
(mi) from Condition 3 of Lemma 8.

Forget about the condition on ~� i(S) = G for a while. If mi[2](j) = fG;Bg n fmig,

then from Condition 4 of Lemma 9, player j�s conditional expectationMi;j(a
mi
i ; aGj )y is

away from Hi

�
"
2

�
(mi) by at least ", by Hoe¤ding�s inequality, player i puts probability

no more than exp(�T 1�2"
2 ) on x 2 Hi

�
"
2

�
(mi).

Since

Pr(fyi;tgt2S j ~� i(S) = G; fyj;tgt2S)

=
Pr(~� i(S) = G j fyi;tgt2S; fyj;tgt2S) Pr(fyi;tgt2S j fyj;tgt2S)

Pr(~� i(S) = G j fyj;tgt2S)

=
Pr(~� i(S) = G j fyj;tgt2S) Pr(fyi;tgt2S j fyj;tgt2S)P

fyi;tgt2S Pr(
~� i(S) = G j fyi;tgt2S) Pr(fyi;tgt2S j fyj;tgt2S)

2

24 (1� 2 exp(�T 1�2"
2 )) Pr(fyi;tgt2S j fyj;tgt2S);

(1 + 2 exp(�T 1�2"
2 )) Pr(fyi;tgt2S j fyj;tgt2S)

35 ;
after conditioning ~� i(S) = G, we can say player j puts probability no more than

4 exp(�T 1�2"
2 ) on x 2 Hi

�
"
2

�
(mi).

3. For a while, suppose ~�j(S) = B never happens. Conditional on any mi and x, any y

can occur with probability at least

�
min
yi;yj ;a

q(yj j a; yi)
�T 1�"

2

:

Hence, for

e <
1

� log
�
minyi;yj ;a q(yj j a; yi)

	 ;
60



conditional on mi and x, for any m̂i 2 fG;Bg,

y 2 Hi;j

�
( �K � 1)"

�
(m̂i) \Hj

h"
4

i
(G)

can happen with probability no less than exp(�1
e
T

1�"
2 ). If y 2 Hi;j

�
( �K � 1)"

�
(m̂i) \

Hj

�
"
4

�
(G), then player j has mi[2](j) = m̂i from Condition 5. of Lemma 9. Hence,

player j believes any m̂i is possible with probability no less than exp(�1
e
T

1�"
2 ). Con-

ditioning on ~#j(S) = G only increases the probability.

Since

Pr(fyj;tgt2S j ~�j(S) = G; fyi;tgt2S)

=
Pr(~�j(S) = G j fyj;tgt2S; fyi;tgt2S) Pr(fyj;tgt2S j fyi;tgt2S)

Pr(~�j(S) = G j fyi;tgt2S)

=
Pr(~�j(S) = G j fyi;tgt2S) Pr(fyj;tgt2S j fyi;tgt2S)P

fyi;tgt2S Pr(
~�j(S) = G j fyi;tgt2S) Pr(fyj;tgt2S j fyi;tgt2S)

2

24 (1� 2 exp(�T 1�2"
2 )) Pr(fyj;tgt2S j fyi;tgt2S);

(1 + 2 exp(�T 1�2"
2 )) Pr(fyj;tgt2S j fyi;tgt2S)

35 ;
player i believes player j has mi[2](j) = m̂i with probability at least 12 exp(�

1
e
T

1�"
2 ).

4. Follows from Lemma 8.

5. Follows from Lemma 9.

9.2 Proof of Lemma 6

We have

Pr(ffyj;tgt2T (m) 2 Ag j ~�j(m) = G; a; fyi;tgt2T (m))

=
Pr(~�j(m) = G j a; fyj;tgt2T (m) 2 A; fyi;tgt2T (m))

Pr(~�j(m) = G j a; fyi;tgt2T (m))
�Pr(ffyj;tgt2T (m) 2 Ag j a; fyi;tgt2T (m)):
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Since

Pr(~�j(m) = G j a; fyj;tgt2T (m); fyi;tgt2T (m)) � 1� exp(� jT (m)j1�
"
2 )

Pr(~�j(m) = G j a; fyi;tgt2T (m)) � 1

for all fyj;tg, we have�����
(
Pr(~�j(m) = G j a; fyj;tgt2T (m) 2 A; fyi;tgt2T (m))

Pr(~�j(m) = G j a; fyi;tgt2T (m))
� 1
)
Pr(ffyj;tgt2T (m) 2 Ag j a; fyi;tgt2T (m))

�����
� exp(� jT (m)j1�

"
2 ;

which derives the result.

9.3 Proof of Lemma 7

Let 'j;t be

� for m where player j is the sender of the message, 
j;t,

� for m where player j is the receiver of the message, 
G
j;t, M

G
i;j;t andM

B
i;j;t, and

� for m = (l; k; �), 'j;t = (	
a(x)
j;t ; Ej	

a(x)
i;t ;�

a(x)
j ; Ej�

a(x)
i ).

Conditional on �j(m+1) = G, player j�s history in the ~mth round with ~m � m+1 does

not reveal fyj;tgt2T (m) conditional on f'j;tgt2T (m).

We want to show that

gi(h
m
j ; ~ai;t; ~yi;t) = �



yj;t � E �yj;t j �j(m) = �j(m+ 1) = G; faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; ~ai;t; ~yi;t
�

2

works.13 Let Yj;t be the set of yj;t that is feasible under f'j;�g�2T (m); fyj;�g�2T (m)nftg; �j(m) =

�j(m+ 1) = G. If Yj;t = ;, then we set gi(hj; ~ai;t; ~yi;t) = 0.
13Here, we use Euclidean norm.
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For notational simplicity, let 
t = faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; ai;t; yi;t; �j(m) =

�j(m + 1) = G, ~
t = faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; ~ai;t; ~yi;t; �j(m) = �j(m + 1) = G,

and 
̂t = faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; âi;t; ŷi;t; �j(m) = �j(m + 1) = G. Further, let

hGi = (�j(m) = �j(m+ 1) = G; hi).

Since

E
�
gi(hj; ~ai;t; ~yi;t) j hGi ; (âi;t; ŷi;t)

�
= E

�
�



yj;t � E hyj;t j ~
ti


2 j hGi ; hi; (âi;t; ŷi;t)�

= E
�
�



yj;t � E hyj;t j 
̂ti


2 j hGi ; hi�

= �
�
E
�
kyj;tk2 j hGi ; hi

�
� 2E

h
yj;t j 
̂t

i
� E
�
yj;t j hGi ; hi

�
+



E hyj;t j 
̂ti


2� ;

we have

E
�
gi(hj; ~ai;t; ~yi;t) j hGi ; (âi;t; ŷi;t) = (ai;t; yi;t)

�
� E

�
gi(hj; ~ai;t; ~yi;t) j hGi ; hi; (âi;t; ŷi;t)

�
= 2E [yj;t j 
i] � E

�
yj;t j hGi

�
� kE [yj;t j 
i]k2

�2E
h
yj;t j 
̂i

i
� E
�
yj;t j hGi

�
�



E hyj;t j 
̂ii


2

=
n
E [yj;t j 
i]� E

h
yj;t j 
̂i

io
� 2E

�
yj;t j hGi

�
�
n
E [yj;t j 
i]� E

h
yj;t j 
̂i

io
�
n
E [yj;t j 
i] + E

h
yj;t j 
̂i

io
=

n
E [yj;t j 
i]� E

h
yj;t j 
̂i

io
�
n
2E
�
yj;t j hGi

�
� E [yj;t j 
i]� E

h
yj;t j 
̂i

io
and

E [yj;t j 
i] =
 

q(yj j aj;t; 'j;t; ai;t; yi;t)P
ŷj2Yj;t q(ŷj j aj;t; 'j;t; ai;t; yi;t)

!
yj

;

E
h
yj;t j 
̂i

i
=

 
q(yj j aj;t; 'j;t; âi;t; ŷi;t)P

ŷj2Yj;t q(ŷj j aj;t; 'j;t; âi;t; ŷi;t)

!
yj
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for Yj;t with jYj;tj � 1.

Generically, there exists �" such that, for any Yj with jYjj � 2 and 'j,����� q(yj j aj; 'j; ai; yi)P
ŷj2Yj q(ŷj j aj; 'j; ai; yi)

�
q(yj j aj; 'j; âi; ŷi)P

ŷj2Yj q(ŷj j aj; 'j; âi; ŷi)

����� > �" (53)

for all (ai; yi) and (âi; ŷi) with (âi; ŷi) 6= (ai; yi).

For a moment, let us condition that Yj;t is not empty or a singleton. Then, (53) implies

that 


E [yj;t j 
i]� E hyj;t j 
̂ii


 > �"
for all (ai; yi) and (âi; ŷi) with (âi; ŷi) 6= (ai; yi). Therefore, it su¢ ces to show that, for all

hGi ,

E
�
yj;t j hGi

�
� E [yj;t j 
i] = 0:

Since faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; fai;� ; yi;�g�2T (m); �j(m) = �j(m + 1) = G contain all

the information in hGi to infer yj;t, it su¢ ces to show that





 E
�
yj;t j faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; fai;� ; yi;�g�2T (m); �j(m) = �j(m+ 1) = G

�
�E [yj;t j 
i]







 = 0
for all faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; fai;� ; yi;�g�2T (m), which follows from

E
�
yj;t j faj;� ; 'j;�g�2T (m); fyj;�g�2T (m)nftg; fai;� ; yi;�g�2T (m); �j(m) = �j(m+ 1) = G

�
=

q(yj j aj;t; 'j;t; ai;t; yi;t)P
ŷj2Yj;t q(ŷj j aj;t; 'j;t; ai;t; yi;t)

:

Therefore, the above discussion implies that, even after knowing faj;� ; 'j;�g�2T (m), fyj;�g�2T (m)nftg,

fai;� ; yi;�g�2T (m) and �j(m) = �j(m+ 1) = G,

� if jYj;tj � 2, then the truthtelling is strictly optimal with incentive �", and

� if jYj;tj � 1, then the truthtelling is weakly optimal.
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After any history, conditional on �j(m) = �j(m + 1) = G, player i puts probability at

least
mina;y;'j q(yj ja;yi;'j)

T
on jYj;tj � 2. Therefore, after retaking �" = mina;y;'j q(yj j a; yi; 'j)�",

we are done.
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