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CONTINUOUS TIME CONTESTS

Christian Seel and Philipp Strack∗

This paper introduces a contest model in continuous time in which each player
decides when to stop a privately observed Brownian motion with drift and incurs
costs depending on his stopping time. The player who stops his process at the highest
value wins a prize.
Under mild assumptions on the cost function, we prove existence and uniqueness of
the Nash equilibrium outcome, even if players have to choose bounded time stopping
strategies. We derive a closed form of the equilibrium strategy and distribution. If
the noise parameter goes to zero, the equilibrium converges to, and thus selects
the symmetric equilibrium of an all-pay contest. For positive noise levels, results
differ from those of all-pay contests—for instance, participants make positive profits.
Moreover, for two players and constant costs, the profits of each participant increase
for higher costs of research or lower productivity of each player. Hence, participants
prefer a contest design, which impedes research progress.

Keywords: Contests, All-pay Contests, Discontinuous Games.

1. INTRODUCTION

Two types of models are predominant in the literature on contests, races, and
tournaments. In one of these, there is no feedback about the performance measure
or standings throughout the competition at all, while the other one considers
full feedback about the performance of each player at all points in time. The
former category includes all-pay contests with complete information (Hillman
and Samet, 1987; Siegel, 2009, 2010), Tullock contests (Tullock, 1980), silent
timing games (Karlin, 1953; Park and Smith, 2008), and models with additive
noise in the spirit of Lazear and Rosen (1981). The latter category contains wars
of attrition (Maynard Smith, 1974; Bulow and Klemperer, 1999), races (Aoki,
1991; Hörner, 2004; Anderson and Cabral, 2007), and contest models with full
observability such as Harris and Vickers (1987) and Moscarini and Smith (2007).

In this paper, we want to analyze an intermediate case in which there is partial
feedback about the performance measure. More precisely, a player learns about
his own stochastic research progress over time, but he does not observe the
progress of the other players or their effort decisions. A good example for this
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setting is an R&D contest. Each participant is well-informed about his own
progress, but often uninformed about the progress of his competitors.

Formally, our model is an n-player contest in which each player decides when
to stop a privately observed Brownian motion (Xt) with drift µ and diffusion
coefficient σ. As long as a player exerts effort, i.e., does not stop the process, he
incurs flow costs of c(Xt). The player who stops his process at the highest value
wins a prize.

Under mild assumptions on the cost function—it has to be continuous and
bounded away from zero—we show that the game has a unique Nash equilib-
rium outcome. This outcome is feasible in stopping strategies which stop almost
surely before a fixed time T < ∞. Hence, provided the contest length is above
a threshold, the equilibrium is independent of the contest length. In equilib-
rium, each player makes positive expected profits. For two players and constant
costs, these profits increase if the productivity (drift) of both players decreases
or the costs increase. Hence, participants prefer a contest design, which impedes
progress.

The formal analysis proceeds as follows. Proposition 1 and Theorem 1 estab-
lish existence and uniqueness of the equilibrium distribution. The existence proof
first characterizes the equilibrium distribution F (x) of values at the stopping
time Xτ = x uniquely up to its endpoints. We then use a Skorokhod embedding
approach to show that there exists a stopping strategy, which induces this dis-
tribution. This technique from probability theory (e.g., Skorokhod, 1961, 1965;
for a survey, see Oblój, 2004) was first introduced to game theory in Seel and
Strack (2009).

Moreover, we verify a condition from a recent paper in probability theory
(Ankirchner and Strack, 2011) to show that there exists a bounded time stopping
strategy—a strategy that stops almost surely before a fixed time T <∞—which
induces the equilibrium distribution. As most real-world contests have a fixed
deadline, this result fortifies the predictions of the model. It is also one of main
technical contributions of the paper, since this technique is also applicable to
other models without observability.

We then analyze the characteristics of the equilibrium distribution. As uncer-
tainty vanishes, it converges to the symmetric equilibrium of an all-pay contest—
see Siegel (2009, 2010)—by Theorem 2. In the special case of constant costs, the
equilibrium converges to the symmetric equilibrium of an all-pay auction. On the
one hand, the model offers a microfoundation for the use of all-pay auctions to
scrutinize environments in which uncertainty is not a crucial ingredient; on the
other hand, it gives an equilibrium selection result between the all-pay auction
equilibria in Baye, Kovenock, and de Vries (1996). Moreover, this result serves as
a benchmark to discuss how our predictions differ from all-pay models if σ > 0.

For any σ > 0, Proposition 2 shows that all players make positive expected
profits in equilibrium. Intuitively, agents use their private information about their
progress, which arrives continuously over time, to generate rents. The intuition
is similar to an all-pay contest, in which players have incomplete information
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about the valuation of their rivals—see, e.g., Hillman and Riley (1989), Amann
and Leininger (1996), or Moldovanu and Sela (2001).

Finally, we analyze the special case of two players and constant costs. We derive
a closed-form solution for the profits of each player, which depends only on the
fraction y = 2µ2

cσ2 (Proposition 4). In particular, profits increase as costs c increase,
infinitesimal variance σ2 increases, or productivity µ decreases (Theorem 3).
Hence, contestants prefer to have mutually worse technologies.

There are many possible applications for the model. For instance, most R&D
competitions would suit the modeling framework, since firms are not informed
about the research of their rivals; for concrete examples of such competitions,
see Taylor (1995).

1.1. Related Literature

In a companion paper (Seel and Strack, 2009), we analyze a model in which play-
ers do not have any costs of research, but have a (usually negative) drift and face
a bankruptcy constraint. The driving forces of both models differ substantially.
In particular, in the present paper, contestants trade-off higher costs versus a
higher winning probability, whereas in Seel and Strack (2009) the trade-off is
between winning probability and risk. Also, the applications of Seel and Strack
(2009) are related to finance, while the present paper is in spirit of the contest
literature.

The paper entails a direct extension of the literature on silent timing games—
see, e.g., Karlin (1953). This literature scrutinizes, among others, our setting for
the case without uncertainty. Intuitively, adding uncertainty allows us to have a
model with partial learning throughout the contest.

With a similar motivation, Taylor (1995) also analyzes a model in which play-
ers only learn about their own stochastic research success. In his T-period model,
however, the highest draw in a single period determines this success. The result-
ing equilibrium stopping rule is a threshold strategy, which stops whenever a
player has a draw above a deterministic, time-independent value.

We proceed as follows. Section 2 sets up the model. In Section 3, we prove that
an equilibrium exists and is unique. Section 4 discusses the relation to all-pay
contests and derives the main comparative statics results. Section 5 concludes.
Most proofs are relegated to the appendix.

2. THE MODEL

There are n <∞ agents indexed by i ∈ {1, 2, . . . , n} = N who face a stopping
problem in continuous time. At each point in time t ∈ R+, agent i privately
observes the realization of a stochastic process (Xi

t)t∈R+ with

Xi
t = x0 + µt+ σBit .
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The constant x0 denotes the starting value of all processes; without loss of gen-
erality, we assume x0 = 0. The drift µ ∈ R+ is the common expected change
of each process Xi

t per time, i.e., E(Xi
t+∆ − Xi

t) = µ∆. The noise term is an
n-dimensional Brownian motion (Bt) scaled by σ ∈ R+.

2.1. Strategies

A pure strategy of player i is a stopping time τ i. This stopping time depends
only on the realization of his process Xi

t , as the player only observes his own
process.1 Mathematically, the agents’ stopping decision until time t has to be
F it -measurable, where F it = σ({Xi

s : s < t}) is the sigma algebra induced by the
possible observations of the process Xi

s before time t. We require stopping times
to be bounded by a real number T <∞ such that τ i < T almost surely.

To incorporate mixed strategies, we allow for randomized stopping times—
progressively F it -measurable functions τ i(·) such that, for every ri ∈ [0, 1], the
value τ i(ri) is a stopping time. Intuitively, agents draw a random number ri from
the uniform distribution on [0, 1] before the game and play a stopping strategy
τ i(ri).2

2.2. Payoffs

The player who stops his process at the highest value wins a prize p > 0.
Ties are broken randomly. Each player incurs a flow cost c : R→ R++, which is
independent of the time t, until he stops. The payoff πi is thus

πi =
p

k
1{Xi

τi
=maxj∈N Xj

τj
} −

∫ τ i

0

ci(Xi
t)dt ,

where k = |{i ∈ N : Xi
τ i = maxj∈N X

j
τj}| is the number of agents who stop

with the highest value. All agents maximize their expected profit E(πi). We
henceforth normalize p to 1, since agents only care about the trade-off between
winning probability and cost-prize ratio. The cost function satisfies the following
mild assumption:

Assumption 1 For every x ∈ R, the cost function c : R → R++ is continuous
and bounded away from zero on [x,∞).

1The equilibrium of the model would be the same if the stopping decision was reversible
and stopped processes were constant.

2The unique equilibrium outcome of this paper can be obtained in pure strategies, but we
include mixing to make the results more general.
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2.3. A Brief Discussion of the Technology

The Brownian Motion specification entails the possibility that research success
might decrease over time. There are several possible interpretations of this fea-
ture. In an R&D setting, for instance, the value of the innovation (say prototype
of a fighter jet) may depend on the market prize of the components. Hence, one
might interpret the decrease in innovation value for one player as an increase
in the prize of a component of that players prototype. Another interpretation
is that a part of the innovation gets destroyed (for instance a car component).
Similarly, a worker might be hired by another firm or simply forget something.

3. EQUILIBRIUM CONSTRUCTION

In this section, we first establish some necessary conditions on the distribution
functions in equilibrium. In a second step, we prove existence and uniqueness
of the Nash equilibrium outcome, and calculate the equilibrium distributions
depending on the cost function.

Every strategy of agent i induces a (potentially non-smooth) cumulative distri-
bution function (cdf) F i : R→ [0, 1] of his stopped process F i(x) = P(Xi

τ i ≤ x).
We denote the winning probability of player i if he stops at Xi

τ i = x, given the
distributions of the other players, by

ui(x) = P(max
j 6=i

Xj
τj ≤ x) =

∏
j 6=i

F j(x) .

Denote the endpoints of the support of the cdf of player i by xi = sup{x :
F i(x) < 1} and xi = inf{x : F i(x) > 0}. Let x = maxi∈N xi and x = maxi∈N xi.
In the next step, we establish a series of auxiliary results that are crucial to prove
uniqueness of the equilibrium distribution.

Lemma 1 At least two players stop with positive probability on every interval
I = (a, b) ⊂ [x, x].

Lemma 2 No player places a mass point in the interior of the state space, i.e.,
for all i, for all x > x: P(Xi

τ i = x) = 0. At least one player has no mass at the
left endpoint, i.e., F i(x) = 0, for at least player i.

We omit the proof of Lemma 2, since it is just a specialization of the standard
logic in static game theory with a continuous state space; see, e.g., Burdett and
Judd (1983). Intuitively, in equilibrium, no player can place a mass point in the
interior of the state space, since no other player would then stop slightly below
the mass point. This contradicts Lemma 1.

Lemma 3 All players have the same right endpoint, xi = x, for all i.
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Lemma 4 All players have the same expected profit in equilibrium. Moreover,
each player loses for sure at x, i.e., ui(x) = 0, for all i.

Lemma 5 All players have the same equilibrium distribution function F i = F ,
for all i.

As players have symmetric distributions, we henceforth drop the superscript i.
The previous lemmata imply that each player is indifferent between any stopping
strategy on his support. By Itô’s lemma, it follows from the indifference inside
the support that, for every point x ∈ (x, x), the function u(·) must satisfy the
second order ordinary differential equation (ODE)

(1) c(x) = µu′(x) +
σ2

2
u′′(x) .

As (1) is a second order ODE, we need two boundary conditions to determine
u(·) uniquely. One boundary condition is u(x) = 0. We determine the other one
in the following lemma:

Lemma 6 In equilibrium, u′(x) = 0.

The idea of the proof in the appendix is simple. If the derivative was neg-
ative, u′(x) < 0, there would a profitable deviation at x, which stops in the
neighborhood of x rather than at the point itself.

Imposing the two boundary conditions, the solution to equation (1) is unique.
To calculate it, we define φ(x) = exp(−2µx

σ2 ) as a solution of the homogeneous
equation 0 = µu′(x) + σ2

2 u
′′(x). To solve the inhomogeneous equation (1), we

apply the variation of the constants formula. We then use the two boundary
conditions to calculate the unique solution candidate. Finally, we rearrange with
Fubini’s Theorem to get

u(x) =


0 for x < x
1
µ

∫ x
x
c(z)(1− φ(x− z))dz for x ∈ [x, x]

1 for x < x .

By symmetry of the equilibrium strategy, the function F : R → [0, 1] satisfies
F (x) = n−1

√
u(x). Consequently, the unique candidate for an equilibrium distri-

bution F is

F (x) =


0 for all x < x

n−1

√
1
µ

∫ x
x
c(z)(1− φ(x− z))dz for all x ∈ [x, x]

1 for all x < x .

In the next step, we verify that F is a cumulative distribution function, i.e., that
F is nondecreasing and that limx→∞ F (x) = 1.
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Lemma 7 F is a cumulative distribution function.

Proof: By construction of F , F (x) = 0. Clearly, F is increasing on (x, x), as
the derivative with respect to x,

F ′(x) =
F (x)2−n

(n− 1)
(

2
σ2

∫ x

x

c(z)φ(x− z)dz) ,

is greater than zero for all x > x. It remains to show that there exists an x > x
such that F (x) = 1.

F (x)n−1 =
1
µ

∫ x

x

c(z)(1− φ(x− z))dz

≥ 1
µ

inf
y∈[x,∞)

c(y)
(
x− x− σ2

2µ
(1− φ(x− x))

)
≥ 1

µ
inf

y∈[x,∞)
c(y)(x− x− σ2

2µ
)

Assumption 1 implies that the cost function c(·) is bounded away from zero.
Consequently, infy∈[x,∞) c(y) is strictly greater than zero. Continuity of F implies
that there exists a point x > x such that F (x) = 1. Q.E.D.

The next lemma derives a necessary condition for a distribution F to be the
outcome of a strategy τ .

Lemma 8 If τ ≤ T <∞ is a bounded stopping time that induces the continuous
distribution F (·), i.e., F (z) = P(Xτ ≤ z), then 1 =

∫ x
x
φ(x)F ′(x)dx.

Proof: Observe that (φ(Xt))t∈R+
is a martingale. Hence, by Doob’s optional

stopping theorem, for any bounded stopping time τ ,

1 = φ(X0) = E[φ(Xτ )] =
∫ x

x

φ(x)F ′(x)dx .

Q.E.D.

We use the necessary condition from Lemma 8 to prove that the equilibrium
distribution is unique.

Proposition 1 There exists a unique pair (x, x) ∈ R2 such that the distribution

F (x) =


0 for all x ≤ x
n−1

√
1
µ

∫ x
x
c(z)(1− φ(x− z))dz for all x ∈ (x, x)

1 for all x ≥ x

is the unique candidate for an equilibrium distribution.
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Proof: As F is continuous, the right endpoint x satisfies 1 =
∫ x
x
F ′(x;x, x)dx.

Since F ′(x;x, x) is independent of x, we drop the dependency in our notation.
By the implicit function theorem,

(2)
∂x

∂x
= −
−

=0︷ ︸︸ ︷
F ′(x;x) +

∫ x
x

∂
∂xF

′(x;x)dx

F ′(x;x)
= −

∫ x
x

∂
∂xF

′(x;x)dx

F ′(x;x)
.

Lemma 8 states that any feasible distribution satisfies 1 =
∫ x
x
F ′(x;x)φ(x)dx.

Applying the implicit function theorem to this equation gives us

∂x

∂x
= −

−

=0︷ ︸︸ ︷
F ′(x;x) +

∫ x
x

∂
∂xF

′(x;x)φ(x)dx

F ′(x;x)φ(x)
(3)

= −

∫ x
x

∂
∂xF

′(x;x)

<1︷ ︸︸ ︷
φ(x− x) dx

F ′(x;x)

< −

∫ x
x

∂
∂xF

′(x;x)dx

F ′(x;x)
.

The last step follows, because ∂
∂xF

′(x;x) ≥ 0. Hence, conditions 2 and 3 cross
exactly once. Thus, in equilibrium, the left and right endpoint are unique. Q.E.D.

Henceforth, we write F (·) to refer to the unique equilibrium distribution.

Lemma 9 Every strategy that induces the unique distribution F from Proposi-
tion 1 is an equilibrium strategy.

Proof: Define Ψ(·) as the unique solution to (1) with the boundary conditions
Ψ(x) = 0 and Ψ′(x) = 0. By construction, the process Ψ(Xi

t) −
∫ t

0
c(Xi

s)ds is
a martingale and Ψ(x) = u(x) for all x ∈ [x, x]. As Ψ′(x) < 0 for x < x and
Ψ′(x) > 0 for x > x, Ψ(x) > u(x) for all x /∈ [x, x]. For every stopping time S,
we use Itô’s Lemma to calculate the expected value

E[u(XS)−
∫ S

0

c(Xt)dt] ≤ E[Ψ(XS)−
∫ S

0

c(Xt)dt]

= Ψ(X0) = u(X0) = E(u(Xτ )) .

The last equality results from the indifference of every agent to stop immediately
with the expected payoff u(X0) or to play the equilibrium strategy with the
expected payoff E(u(Xτ )). Q.E.D.
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So far, we have verified that a bounded stopping time τ ≤ T < ∞ is an
equilibrium strategy if and only if it induces the distribution F (·), i.e., F (z) =
P(Xτ ≤ z). To show that the game has a Nash equilibrium, it remains to establish
the existence a bounded stopping time inducing F (·). The problem of finding a
stopping time τ such that a Brownian motion stopped at τ has a given centered
probability distribution F , i.e., F ∼ Bτ , is known in the probability literature
as the Skorokhod embedding problem (SEP). Since its initial formulation in
Skorokhod (1961, 1965), many solutions have been derived; for a survey article,
see Oblój (2004). Ankirchner and Strack (2011) find conditions guaranteeing the
existence of stopping times τ that are bounded by some real number T <∞, and
embed a given distribution in Brownian motion, possibly with drift.3 They define
g(x) = F−1(Φ(x)), where Φ(x) = 1√

2π

∫ x
−∞ exp( z

2

2 )dz is the density function of
the normal distribution.

Lemma 10 (Ankirchner and Strack, 2011, Theorem 2) Suppose that g is Lipschitz-
continuous with Lipschitz constant

√
T . Then F can be embedded in Xt = µt+Bt.

This auxiliary result enables us to prove the main result of this section:

Theorem 1 The game has a Nash equilibrium.

To prove existence of a Nash equilibrium, it remains to show the existence of
a bounded stopping time τ that induces F . The proof in the appendix verifies
Lipschitz continuity of the function g, which makes Lemma 10 applicable. Thus, a
Nash equilibrium in bounded time stopping strategies exists, and, by Proposition
1, the equilibrium distribution F is unique.

4. EQUILIBRIUM ANALYSIS

4.1. Convergence to the All-pay Contest

This subsection considers the relationship between our model and the litera-
ture on all-pay contests. In a first step, we show that for vanishing noise the left
endpoint of the equilibrium distribution converges to the starting point.

Lemma 11 If the noise vanishes σ → 0, the left endpoint x of the equilibrium
distribution converges to zero, i.e., lim

σ→0
x = 0.

Proof: For any bounded stopping time, for any σ > 0, feasibility implies that
x ≤ 0. By contradiction, assume there exists a constant ε such that x ≤ ε < 0

3Ankirchner and Strack (2011) use a construction of the stopping time introduced for Brow-
nian motion without drift in Bass (1983) and for the case with drift in Ankirchner, Heyne, and
Imkeller (2008).
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Figure 1.— The density function F ′(·) for the parameters n = 2, µ = 3, σ = 1
and the cost-functions c(x) = exp(x) solid line and c(x) = 1

2 exp(x) dashed line.
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for all σ > 0. Then F ′ is bounded away from zero by

F ′(x) =
F (x)2−n

n− 1
2
σ2

(
∫ x

x

c(z)φ(x− z)dz)

≥ 1
n− 1

2
σ2

∫ x

ε

c(z)φ(x− z)dz

=
1

µ(n− 1)

(
inf

y∈[ε,∞)
c(y)

)
(1− φ(x− ε)) .

For every point x < 0, limσ→0 φ(x) = ∞. Thus, limσ→0

∫ 0

x
F ′(x)φ(x)dx > 1,

which contradicts feasibility, because
∫ 0

x
F ′(x)φ(x)dx ≤

∫ x
x
F ′(x)φ(x)dx = 1.

Q.E.D.

Taking the limit σ → 0, the equilibrium distribution converges to

lim
σ→0

F (x) = n−1

√
1
µ

∫ x

0

c(z)dz.

This condition is well-known in the literature on static all-pay contests, which
yields us the following theorem.

Theorem 2 For vanishing noise, the equilibrium distribution converges to the
symmetric equilibrium distribution of an all-pay contest. In the case of constant
costs, it converges to the symmetric equilibrium distribution of an all-pay auction.

Thus, our model supports the use of all-pay auctions to analyze contests in
which the variance is negligible. Figure 4.1 illustrates the similarity to the all-pay
auction equilibrium if variance σ and costs c(·) are small in comparison to the
drift µ.

Moreover, the symmetric all-pay auction has multiple equilibria—for a full
characterization see Baye, Kovenock, and de Vries (1996). This paper offers a
selection criterion in favor of the symmetric equilibrium, in which no participant
places a mass point at zero. Intuitively, all other equilibria of the symmetric all-
pay auction include mass points at zero for some players, which is not possible
in our model for any positive σ by Lemma 2.

4.2. Comparative Statics and Rent Dispersion

Proposition 2 has linked all-pay contests with complete information to our
model for the case of vanishing noise. In the following, we scrutinize how the
predictions differ if there is a positive noise. In a symmetric all-pay contests with
complete information, agents make zero profits in equilibrium. This does not
hold true in our model for any positive level of variance σ:
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Figure 2.— This picture shows the density function F ′(·) with support
[−0.71, 5.45] for the parameters n = 2, µ = 3, σ = 1 and the cost-functions
c(x) = 1

2 (solid line) and for the same parameters the equilibrium density of the
all-pay auction with support [0, 6] (dashed line).
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Proposition 2 In equilibrium, all agents make strictly positive expected profits.

Proof: In equilibrium, agents are indifferent between stopping immediately
and the equilibrium strategy. Their expected profit is thus u(0), which is strictly
positive as x < 0. Q.E.D.

Intuitively, private information about their research progress enables the agents
to generate informational rents. A similar result is known in the literature on
all-pay contests with incomplete information, see, e.g., Hillman and Riley (1989),
Amann and Leininger (1996), and Moldovanu and Sela (2001). In their models,
participants take a draw from a distribution prior to the contest, which deter-
mines their valuation. The valuation is private information. In contrast to this,
private information about one’s progress arrives continuously over time in our
model.

From now on, we restrict attention to the special case of constant costs c(x) = c
for tractability. We define the support length as ∆ = x− x.

Lemma 12 If the number of players n increases, then the support length ∆
remains constant and both endpoints increase.

Proof: If c(x) = c, F (x)−F (x) clearly depends only on ∆. Hence, for F (x)−
F (x) = 1, ∆ has to be constant. As F gets more concave if n increases, by
feasibility x↗ and x↗. (Both functions intersect twice on (x, x).) Q.E.D.

Proposition 3 If the number of agents n increases, the expected profit of each
agent decreases.

Proof: The function u(x) depends only on x − x. As n increases x increases
by Lemma 12. Thus, the expected value of stopping immediately, u(0), which is
an optimal strategy in both cases, decreases as n increases. Q.E.D.

We now restrict attention to the two-player case n = 2. The next proposition
derives a closed-form solution for the profits of each player.

Proposition 4 The equilibrium profit of each player depends only on the ratio
y = 2µ2

cσ2 . It is given by

(1− h(y))2

2y2
− 2 ln(1− h(y))− ln(2y)− 1

y
,

with h(y) = exp(−y − 1 −W0(exp(−1− y))), where W0 is the principal branch
of the Lambert W-function.

Given the previous proposition, it is simple to establish the main comparative
statics result of this paper.
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Figure 3.— This picture shows the equilibrium profit F (0) of the agents on
the y-Axes for n = 2 constant cost-functions c(x) = c ∈ R+ with y = 2µ2

cσ2 on the
x-Axes.

Theorem 3 The equilibrium profit increases if costs c increase, variance σ2

increases, or drift µ decreases.

We can decompose the term 2µ2

cσ2 , which determines the equilibrium profit of
the players into two parts

2µ2

cσ2
=

µ

c︸︷︷︸
Productivity

× 2µ
σ2︸︷︷︸

Signal to noise ratio

.

The first term is the productivity µ
c of the agents. As firms get more productive,

the competition gets more fierce and each firm makes less profits. The second
term 2µ

σ2 is the signal to noise ratio which measures the informativeness of Xi
τ i .

Intuitively, if the signal to noise ratio decreases, the outcome Xi
τ i becomes less

correlated with agent i’s effort choice τ i. In turn, this reduces his incentives to
exert effort and thereby the cost of his expected stopping time. As his winning
probability in equilibrium remains constant, his profits are decreasing in the
signal to noise ratio. Summarizing, participants prefer to have mutually worse—
more costly, more random, or less productive—technologies.
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Proposition 5 The equilibrium profit of each agent is bounded from above by
4/9.

Proof: The agents profit is decreasing in y = 2µ2

cσ2 ≥ 0 by Theorem 3. Hence,
profits are bounded from above by limy→0 u(0). By l’Hôpital’s rule,

lim
y→0

(1− h(y))2

2y2
− 2 ln(1− h(y))− ln(2y)− 1

y
=

4
9
.

Q.E.D.

Even for a perfectly uninformative signal, agents cannot extract the full prize
of one from the principal without exerting any effort. Their expected equilibrium
effort E(τ i) is bounded from below by

4
9
≥ E(F (Xi

τ i)− cτ
i) =

1
2
− cE(τ i)

⇔ E(τ i) ≥ 1
18c

.

5. CONCLUSION AND DISCUSSION

In this paper, we have analyzed a new model of contests in continuous time
in which each player learns only about his own research progress. Under mild
assumptions on the cost function, the Nash equilibrium outcome in this model
exists and is unique. If the research progress contains little uncertainty, the equi-
librium is close to the symmetric equilibrium of a static all-pay auction. If the
research outcome is uncertain, players prefer mutually higher costs of research,
worse technologies and higher uncertainty. Intuitively, these factors make com-
petition less fierce, since for a worse technology, the randomness has a higher
influence on the equilibrium outcome. Hence, there is an additional way of col-
lusion between the firms, which the principal should account for when designing
the contest.

From a technical perspective, we have introduced a method to construct equi-
libria in continuous time games that are independent of the time horizon. Fur-
thermore, we have introduced a constructive method to calculate a minimal
time horizon that ensures the existence of such equilibria. These methodolog-
ical contributions may prove fruitful in other models, and add to the general
understanding of continuous time models.

6. APPENDIX

Proof of Lemma 1: As players have to use bounded time stopping strate-
gies, each player i stops with positive probability on every subinterval of [xi, xi].
Hence, it suffices to show that at least two players have x as their right end-
point. Assume, by contradiction, only player i has x as his right endpoint. De-
note x−i = maxj 6=i xj . Then, for any ε > 0, at x−i + ε, player i strictly prefers
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to stop, which yields him the maximal possible winning probability of 1 without
any additional costs. This contradicts the optimality of a strategy, which stops
at xi > x−i + ε. Q.E.D.

Remark 1 We write τ i(a,b)(x) shorthand for inf{t : Xi
t /∈ (a, b)|Xi

s = x} in the
next two proofs. Clearly, τ i(a,b)(x) is not a bounded time strategy, but we use it
to bound the payoffs. Moreover, for sufficiently large time horizon T , the payoff
from stopping at min{τ i(a,b)(x), T} is arbitrarily close to that of τ i(a,b)(x).

Proof of Lemma 3: Assume xj > xi. For at least two players j, j′, the payoff
from τ j

(xj ,xj)
(xi) is weakly higher than from stopping at Xj

t = xi by Lemma 1.
By Lemma 2, at least one of these players—denote it j—wins with probability
zero at xj . Note that ui(xi) =

∏
h6=i F

h(xi) <
∏
h6=j F

h(xi) = uj(xi), because
F i(xi) = 1 > F j(xi).

Optimality of τ j
(xj ,xj)

(xi) implies

uj(xi) ≤ P(Xj
τj = xj |τ j

(xj ,xj)
(xi))uj(xj)− E(c(τ j

(xj ,xj)
(xi))) .

On the other hand,

ui(xi) < uj(xi) ≤ P(Xi
τ i = xj |τ i(xj ,xj)(x

i))ui(xj)− E(c(τ i(xj ,xj)(x
i))) .

Hence, atXi
t = xi, player i can profitably deviate by stopping at min{τ i(a,b)(x), T}

if he chooses a sufficiently large time horizon T . This contradicts the equilibrium
assumption. Q.E.D.

Proof of Lemma 4: To prove the first statement, we distinguish two cases.
(i) If at least two players have F i(x) = 0, then ui(x) = 0 ∀i. Assume there exists a
player j who makes less profit than a player i, where πi ≤ P(Xi

τ i = x|τ i(xi,x)(0))−
E(c(τ i(xi,x)(0))). If player j deviates to the strategy min{τ j(xj ,x)(0), T}, player
j gets a profit arbitrarily close to πi; this contradicts optimality of player j’s
strategy.
(ii) If only one player has F i(x) = 0, then ui(x) > 0. We now consider the case
in which this player i makes a weakly higher payoff than the remaining players,
who make the same payoff each—otherwise the argument in the first part of the
proof leads to a contradiction.
For any interval I ∈ [x, x] in which player i stops with positive probability,
by Lemma 1, there exists another player j who also stops in the interval. In
particular, for x ∈ I, for any ε > 0, we get

P(Xi
τ i = x|τ i(x,x)(x))+P(Xi

τ i = x|τ i(x,x)(x))ui(x)−E(c(τ i(x,x)(x))) < ui(x)+ε

and P(Xj
τj = x|τ j(x,x)(x))− E(c(τ j(x,x)(x))) ≥ uj(x) ∀j 6= i.



CONTINUOUS TIME CONTESTS 17

For ε→ 0, the two equations imply that ui(x) > uj(x), for all j 6= i, for all x
in the support of player i. Hence, F i(x) ≤ F j(x) ∀j, for all x on the support of
player i, and, by monotonicity of F j , on [x, x]. Thus, the distribution of player
i stochastically dominates that of all other players. This contradicts feasibility,
since all players start at the same value and stopping times have to be bounded.
The second statement of the lemma follows immediately from the proof of (ii).
Q.E.D.

Proof of Lemma 5: Recall that all players have the same profit, and ui(x) =
0 ∀i. Hence, if players i and j stop in each interval I ′ ⊂ I = (a, b), then ui(x) =
uj(x) for all x ∈ (a, b), since at 0, it is optimal for both to play until Xt reaches
x or one endpoint. By the same argument, for any player h who does not stop on
I and any player k who stops on I, we get uh(x) =

∏
l 6=h F

l(x) ≤
∏
l 6=k F

l(x) =
uk(x). This implies Fh(x) ≥ F k(x).
Now take the supremum of all points x ≤ x at which there exists an ε such that a
player k does not stop in (x− ε, x). Clearly, at x, F i(x) = F j(x) for all i, j. Take
the highest point x̃ in (x, x − ε) at which player k stops. Thus, F k(x̃) > F i(x̃).
This contradicts F k(x̃) ≤ F i(x̃) from the first part of the proof. Q.E.D.

Proof of Lemma 6: By definition, u(x) = 0, for all x ≤ x. Hence, the left
derivative ∂−u(x) is zero. It remains to prove that the right derivative ∂+u(x)
is also zero. For a given u : R→ R+, let Ψ : R→ R be the unique function that
satisfies the second order ordinary differential equation c(x) = µΨ′(x)+ σ2

2 Ψ′′(x)
with the boundary conditions Ψ(x) = ∂+u(x) and Ψ′(x) = ∂+u(x). As Ψ′(x) > 0,
there exists a point x̂ < x such that Ψ(x̂) < 0 = u(x̂). Consider the strategy S
that stops when either the point x̂ or x is reached or at 1,

S = min{1, inf{t ∈ R+ : Xi
t /∈ [x̂, x]}}.

As u(x̂) > Ψ(x̂), it follows that E(u(XS)) > E(Ψ(XS)). Thus,

E(u(XS)−
∫ S

0

c(Xi
t)dt) > E(Ψ(XS)−

∫ S

0

c(Xi
t)dt) .

Note that, by Itô’s lemma, the process Ψ(Xi
t)−

∫ t
0
c(Xi

s)ds is a martingale. By
Doob’s optional sampling theorem, agent i is indifferent between the equilibrium
strategy τ and the bounded time strategy S, i.e.,

E(Ψ(XS)−
∫ S

0

c(Xi
t)dt) = E(Ψ(Xτ )−

∫ τ

0

c(Xi
t)dt)

= E(u(Xτ )−
∫ τ

0

c(Xi
t)dt) .

The last step follows because u(x) and Ψ(x) coincide for all x ∈ (x, x). Conse-
quently, the strategy S is a profitable deviation, which contradicts the equilib-
rium assumption. Q.E.D.
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Proof of Theorem 1: The function Φ is Lipschitz continuous with constant
1√
2π

. Consequently, it suffices to prove the Lipschitz continuity of F−1 to get the
Lipschitz continuity of F−1 ◦ Φ. The density f(·) is

f(x) =
F (x)−n+2

n− 1
2
σ2

∫ x

x

c(z)φ(x− z)dz

=
F (x)−n+2

n− 1
2
σ2

(∫ x

x

c(z)dz − µF (x)n−1

)

As f(x) > 0 for all x > x, it suffices to show Lipschitz continuity of F−1 at 0.
We substitute x = F−1(y) to get

(f ◦F−1)(y) ≥ 1
n− 1

2
σ2

y2−n ( min
z∈[x,x]

c(z))︸ ︷︷ ︸
=c

(F−1(y)− F−1(0))− µy

 .

Rearranging with respect to F−1(y)− F−1(0) gives

F−1(y)− F−1(0) ≤
(

(n− 1)σ2

2
(f ◦ F−1)(y) + µy

)
yn−2

c

≤
(

(n− 1)σ2

2
f(x) + µ

)
yn−2

c
.

This proves the Lipschitz continuity of F−1(·) for n > 2. Note that for two agents
n = 2 the function F−1(·) is not Lipschitz continuous as f(x) = 0. However, we
show in the following paragraph that F−1 ◦Φ is Lipschitz continuous for n = 2.

F (x) =
∫ x

x

c(z)
µ

(1− φ(x− z)dz

≤

(
sup
z∈[x,x]

c(z)
µ

)
︸ ︷︷ ︸

=c

(
x− x− σ2

2µ
(1− φ(x− x))

)

A second order Taylor expansion around x shows that, for an open ball around
x and x < x, we have the following upper bound

x− x− σ2

2µ
(1− φ(x− x)) ≤ 2µ

σ2
(1− φ(x− x))2 .

For an open ball around x, we get an upper bound on F (x) ≤ 2c
σ2 (1−φ(x− x))2

and hence the following estimate

1− φ(x− x) ≥
√
σ2

2c
F (x) .
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We use this estimate to obtain a lower bound on f(·) depending only on F (·)

f(x) =
2
σ2

(∫ x

x

c(z)φ(x− z)dz
)
≥ 2c
σ2

(
σ2

2µ
(1− φ(x− x))

)
≥ c

µ

√
σ2

2c
F (x) .

Consequently, there exists an ε > x such that, for all x ∈ [x, ε), we have an upper
bound on (φ◦Φ−1◦F )(x)

f(x) . Taking the limit x→ x yields

lim
x→x

(φ ◦ Φ−1 ◦ F )(x)
f(x)

≤ lim
x→x

(φ ◦ Φ−1 ◦ F )(x)
c
µ

√
σ2

2cF (x)
≤

√
2cµ2

c2σ2
lim
y→0

(φ ◦ Φ−1)(y)
√
y

= 0 .

Q.E.D.

Proof of Proposition 4: Rearranging the density condition 1 = F (x) =
c
µ [∆− σ2

2µ (1− φ(∆))] yields

exp(
−2µ∆
σ2

) = −2µ
σ2

[∆− (
µ

c
+
σ2

2µ
)].

The solution to the transcendental algebraic equation e−a∆ = b(∆ − d) is ∆ =
d + 1

aW0(ae
−ad

b ), where W0 : [− 1
e ,∞) → R+ is the principal branch of the

Lambert W -function. This branch is implicitly defined on [− 1
e ,∞) as the unique

solution of x = W (x) exp(W (x)), W ≥ −1. Hence,

∆ =
µ

c
+
σ2

2µ
[1 +W0(− exp(−1− 2µ2

cσ2
))] ,

and

φ(∆) = exp(
−2µ2

cσ2
− 1−W0(− exp(−1− 2µ2

cσ2
)))

= exp(−1− y −W0(− exp(−1− y)))
= h(y) .

Note that φ(∆) only depends on y = 2µ2

cσ2 . Moreover, h(y) = φ(∆), h : R+ → [0, 1]
is strictly decreasing in y as W0(·) and exp(·) are strictly increasing functions.
For constant costs, the feasibility condition from Lemma 8 reduces to

1 =
∫ x

x

F ′(x)φ(x)dx

=
cσ2

2µ2
[
1
2
φ(x) +

1
2
φ(2x− x)− φ(x)] .



20 CHRISTIAN SEEL AND PHILIPP STRACK

Dividing by φ(x) gives

φ(−x) =
cσ2

2µ2
[
1
2

+
1
2
φ(∆)2 − φ(∆)]

=
1
y

[
1
2

+
1
2
h(y)2 − h(y)]

=
1
2y

(1− h(y))2

= g(y)

Note that g : R+ → [0, 1] is strictly decreasing in y. We calculate x as

x = −φ−1(φ(−x)) = −σ
2

2µ
ln(

2µ2

cσ2[ 1
2 + 1

2φ(∆)2 − φ(∆)]
) .

Plugging in F (0) yields

F (0) =
c

µ
[−x− σ2

2µ
(1− φ(−x))]

=
cσ2

2µ2
[ln(

2µ2

cσ2

1
2 + 1

2φ(∆)2 − φ(∆)
) +

1
2 + 1

2φ(∆)2 − φ(∆)
2µ2

cσ2

− 1]

=
1
y

[ln(
y

1
2 + 1

2h(y)2 − h(y)
) +

1
2 + 1

2h(y)2 − h(y)
y

− 1]

=
1
y

[g(y)− ln(g(y))− 1]

Hence, the value of F (0) depends only on the value of the fraction y = 2µ2

cσ2 in
the above way, which completes the proof. Q.E.D.

Proof of Theorem 3: By Proposition 4, it suffices to show that the profit
F (0) is increasing in y. First observe that x− ln(x) is increasing in x and hence
g(y) − ln(g(y)) − 1 is decreasing in y as g(y) is decreasing in y. Because 1

y is
decreasing in y the product 1

y [g(y)− ln(g(y))− 1] is also decreasing in y. Q.E.D.
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