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Abstract

A recent literature in evolutionary game theory is devoted to the question of robust equilibrium
selection under noisy best-response dynamics. In this paper we present a complete picture of
equilibrium selection for asymmetric binary choice coordination games in the small noise limit.
We achieve this by transforming the stochastic stability analysis into an optimal control problem,
which can be solved analytically. This approach allows us to obtain precise and clean equilibrium
selection results for all canonical noisy best-response dynamics which have been proposed so far in
the literature, among which we find the best-response with mutations dynamics, the logit dynamics
and the probit dynamics. Thereby we provide a complete answer to the equilibrium selection
problem in general binary choice coordination games.
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1. Introduction

The notion of Nash equilibrium is the most prominent solution concept in the theory of non-
cooperative games. However, most games of interest in economic theory have multiple Nash equi-
libria, leaving open the question of which equilibrium we should regard as the most “relevant” one.
Up to now there is no generally accepted theory of equilibrium selection, which is a large prob-
lem in many contexts where non-cooperative game theory is applied and empirically tested (see
e.g. Bajari et al., 2010). To examine whether some outcomes in games are more likely than oth-
ers, Foster and Young (1990), Kandori et al. (1993) and Young (1993) proposed dynamic models
of play with persistent randomness. With the introduction of noise any outcome is obtainable in
these models, but one can study the long-run likelihood that a certain outcome is obtained in a
game when the noise term is tending to zero. An outcome is said to be stochastically stable if the
long-run probability with which it is observed does not go to zero in the limit of vanishing noise.
The central result of the aforementioned papers is that this intuitive concept not only rules out
unstable mixed equilibra, but also allows us to select among strict Nash equilibria. These powerful
results indicate that stochastic “evolutionary” models may serve as a building block for a theory of
equilibrium selection.1 Fascinated by this powerful machinery, many researchers have subsequently
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1For alternative (deterministic) evolutionary dynamics which are able to select among strict Nash equilibria, see
Matsui (1995), Hofbauer and Sorger (1999) and Oechssler and Riedel (2001).
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extended and refined the predictions made by these models. However, the sober outcome of these
studies is that we will not be able to build a robust theory of equilibrium selection with these
methods. Two sources of non-robustness have mainly been identified by the literature. First, there
is non-robustness to the specification of noise in the system (Bergin and Lipman, 1996). Second,
the relative speed of adjustment of the players may influence equilibrium selection (Kandori et al.,
1993, Alós-Ferrer and Netzer, 2010). Faced with these negative results we need to develop quanti-
tative methods which directly examine the stochastic potentials of equilibria in order to foster our
understanding of these models. The purpose of this paper is to present a promising approach to
obtain such quantitative measures.

1.1. Outline of the paper

This paper presents a general analysis of the equilibrium selection problem in asymmetric binary
choice coordination games under a general class of dynamic adjustment models, which have been
recently introduced as noisy best-response protocols (Sandholm, 2010b). In a binary choice coor-
dination game the two strict Nash equilibria are absorbing states under best-response processes
without noise. Hence, once the players agree to coordinate on one convention, there is no way out
of this convention. The introduction of noise, however, allows for small probability events in which
the pattern of play deviates from the conventions, and therefore may trigger a sequence of player
adjustments which may lead to the alternative convention. Let us label such paths escape paths.
In the presence of small positive noise, it becomes a meaningful exercise to ask for the probability
that the process follows an escape path. Finding the escape paths from both conventions with the
highest probability allows us to compare the relative likelihood that the process wanders from one
convention to the other. These paths can be interpreted as the maximum likelihood paths of escape.
It is then intuitive to call one Nash equilibrium point stochastically stable, if the probability of its
maximum likelihood escape path is lower than that identified for the competing equilibrium point.2

Thus, the exercise we face is to find these maximum likelihood escape paths. It is well-known that
these paths can be characterized by solving a dynamic program, i.e. a shortest path problem (see
e.g. (Kandori et al., 1993, Kandori and Rob, 1995) and Young (1993; 1998)). In this problem for-
mulation the states are identified as vertices in a weighted graph and the edge-weights are the costs
of transiting from one state to another. Solving such a dynamic program is feasible via standard
algorithmic methods. However, in order to obtain analytic results, this approach becomes rapidly
infeasible. This is particularly true once different dynamics to the classical “mutation counting” (or
best-response with mutations) dynamics are of interest. It seems that a different approach is needed
to obtain a general characterization of maximum likelihood escape paths. In this paper we propose
such an approach by deriving an optimal control problem whose solution will give us precisely a
maximum likelihood escape path in the limit of large player sets. This method is indeed very power-
ful. For the first time it allows us to obtain a complete picture of the pattern of equilibrium selection
in asymmetric binary choice coordination games under the three canonical perturbed best-response
models: the best-response with mutations model of Kandori et al. (1993) and Young (1993), the
logit choice model of Blume (1993), and the probit choice of Myatt and Wallace (2003). The clas-
sical results of Kandori et al. (1993) and Young (1993) tell us that the risk-dominant equilibrium
is selected in (symmetric or asymmetric) coordination games, if the populations are of equal size.3

2This is also the idea behind the Radius-Coradius Theorem of Ellison (2000).
3In the “Darwinian dynamics” of Kandori et al. (1993) one has to add the assumption that the relative adjustment

speed of the players is the same. In our model this would mean that the two player populations are of the same size.
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We recover this result with our optimal control approach. In the logit choice model we show that
the equilibrium which is risk-dominant in a suitably defined way, is uniquely stochastically stable.
The probit choice model shows a more intricate selection pattern, and we observe that, whenever
the coordination game has an exact potential, we obtain the selection of risk-dominant equilibria.
In more general games this no longer holds. The evolutionary equilibrium selection of non-risk
dominant equilibria in asymmetric games should be contrasted with results obtained by Blume
(2003) and Sandholm (2010b). These authors have shown that for symmetric coordination games
with linear incentives, e.g. population games with random matching of players, risk-dominant play
is stochastically stable for any noisy-best response process. We show that this is no longer true in
asymmetric games.

1.2. The optimal control approach

At this stage the reader may wonder what the above outlined optimal control approach buys us in
the problem of equilibrium selection. Since the optimal control approach, developed in this paper,
arises naturally from the problem formulation of evolutionary equilibrium selection, we would like
to give an informal overview on the nature of the problem.
Stochastic evolutionary models are mainly concerned with the asymptotic properties of the game
dynamics. Technically this means that we are interested in the structure of the invariant distribu-
tion of the Markov chain, which is (essentially) uniquely defined as rare events of experimentation
render the process ergodic. This invariant distribution captures the long-run behavior of the players
in two complementary ways. First it describes the long run behavior of almost all sample paths
of the game dynamics. Second it is the limit distribution of the process as the number of rounds
played goes to infinity. Thus, all the information about long-run play is stored in the invariant
distribution. The literature on stochastic evolution in games has developed different approaches
of equilibrium selection which can be paraphrased as the small noise limit, the large population
limit, and their logically possible double limits. In this paper we focus on the small noise limit.
For a state-of-the-art discussion of stochastic stability analysis the reader is referred to Sandholm
(2010a), where a more detailed discussion of stochastic stability techniques can be found.

The small noise limit emphasizes the role of small probability events of experimentation by the
players in a large population environment. Kandori et al. (1993) and Young (1993), building on the
work of Freidlin and Wentzell (1998), used trees defined on the finite set of population states, to
characterize those states that are played with non-negligible frequency as the noise level vanishes.
Kandori and Rob (1995) subsequently demonstrated that this problem can be reduced to a dynamic
program, which they solved for symmetric games of pure coordination and symmetric supermodular
games. These optimization problems are defined on a discrete state space, the set of finite strategy
distributions, and can be interpreted as shortest path problems by identifying the state space as a
weighted directed graph. A drawback of this approach is that, as the population of players gets large,
the shortest path problems become readily intractable. To overcome this “curse of dimensionality”
problem, we show that the solution of the dynamic program converges to the solution of a continuous
optimal control problem, which is solvable by standard methods. This convergence property is an
important result, as it assures us that we can “trust” the solution of the optimal control problem

For the truncated fictitious play process of Young (1993) the standard bounds on sample and memory size must,
of course, apply. Different population size can be interpreted as different sample sizes; See Hehenkamp (2003) for a
more detailed discussion.
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if the population of players is sufficiently large.4 In fact the optimal control problem in this paper
turns out to be fairly easy to solve, and it allows us to answer the central question we ask in this
paper:

How is equilibrium selection in general binary choice coordination games affected by the
players’ choice functions?

1.3. Related literature

This paper makes a contribution to a recent literature which is devoted to identifying the condi-
tions for “detail-free” equilibrium selection in stochastic evolutionary models. To the best of my
knowledge, this paper is the first attempt to investigate this question in asymmetric games. For
symmetric binary choice coordination games, Sandholm (2010b) provides a complete picture of
equilibrium selection under noisy-best response dynamics. He does not only investigate equilibrium
selection in the small noise limit, but also considers the behavior of the model under the small
noise and the large population limit. Moreover, he proves that these limits commute. We focus
here on asymmetric games with two distinct player populations and the small noise limit. We
obtain stochastic stability results by taking first the small noise limit and then the large population
limit.5 In this limiting scenario we capture the behavior of large populations of players who are
playing slightly perturbed best-responses, i.e. with a large probability a revising player chooses a
best-response, but there is a small chance of random experimentation. For economic analysis this
limit is therefore particular interesting, as it models the play of populations of players who are with
high probability expected utility maximizers, though in an essentially myopic way. The literature
on learning and evolution in games has proposed many ways to rationalize this way of modeling
game dynamics in economics.6 It is an open question how the order of limits affects equilibrium
selection in general, and we regard this as an important topic for future research.

The rest of the paper is organized as follows: In Section 2 we present the set of binary choice
coordination games for which we can give complete equilibrium selection results. Section 3 presents
the stochastic evolutionary model and defines noisy best-response functions. Section 4 is devoted
to the problem of equilibrium selection. We report our results for the case of small player sets and
large population sets, separately. Section 5 concludes.

2. Binary choice coordination games with large player sets

We consider population games in the spirit of Sandholm (2010a), specialized to two player pop-
ulations and linear payoff functions. There are two populations of players p ∈ P = {1, 2}. In
each player population there are Np = Nmp identical agents who are randomly matched with
agents of the opponent population 3 − p to play this game. The numbers N,Np, p ∈ P are in-
tegers, and M = m1 + m2 is the total mass of the society. We will call N , somewhat loosely,
the population size. Let X := X

1 × X
2 = [0,m1] × [0,m2]. Agents are assumed to use only

4Establishing precise error bounds is an interesting topic for future work.
5Hence, we prove equilibrium selection results in the small noise double limit in the sense of Sandholm (2010a).

Inspiration for this approach came from the work by Kifer (1988; 1990) who studied random perturbations of discrete-
time Markov chains satisfying a large-deviations principle.

6Fudenberg and Levine (1998) provides an intriguing discussion of learning models in economics.
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pure actions, contained in the set Sp = {sp1, s
p
2}, p ∈ P. The aggregate distribution of behavior

in population p is completely described by the frequency of players using action 1, denoted by
xp ∈ X

p,N := {0, 1
N , . . . ,

Np

N }. A population state is a pair x = (x1, x2), living in the discrete grid
X
N := {x = (x1, x2) ∈ X|Nx ∈ N

2
0} = X

1,N × X
2,N . The set X

N is an arbitrarily fine inner approx-
imation of the rectangle X by choosing N sufficiently large. From our uniform random matching
hypothesis it follows that the expected payoff of an agent in population p ∈ {1, 2}, when choosing
action spi , p ∈ {1, 2}, are linear, and given by the expressions

F p
1 (x

3−p) := apx
3−p + cp(m

3−p − x3−p),

F p
2 (x

3−p) := dpx
3−p + bp(m

3−p − x3−p),

for numbers (ap, bp, cp, dp) ∈ R
4. The essential information about the game is contained in the

incentive functions
d1(x2) := F 1

2 (x
2)− F 1

1 (x
2) = α1(x2∗ − x2),

d2(x1) := F 2
2 (x

1)− F 2
1 (x

1) = α2(x1∗ − x1),
(2.1)

where αp := (ap − dp) + (bp − cp) and xp∗ := mp b3−p−c3−p

α3−p for p ∈ {1, 2, }. The dynamic models
we consider in this paper only depend on the best-reply structure of the game. Therefore, we can
normalize payoffs so that α1 ≡ 1 and α2 ≡ α, and we can identify a population game with the
vector field

d = (d1, d2) : X → R
2, x = (x1, x2) 7→ d(x).

Generically, the population game (d1, d2) has one or three Nash equilibria. Since the main concern
in this paper is the question of evolutionary equilibrium selection, we will focus on the class of
coordination games, which is characterized by the conditions

d((0, 0)) > 0 and d((m1,m2)) < 0.

Following Harsanyi and Selten (1988), we call the stability set of strict Nash equilibrium A the
rectangle XA := [x1∗,m

1] × [x2∗,m
2]. Analogously, we call the stability set of equilibrium B the

rectangle XB := [0, x1∗]× [0, x2∗]. Figure 1 illustrates these concepts.

3. Stochastic evolution and stochastic stability

3.1. The stochastic evolutionary process

Our model of stochastic evolution builds on Hofbauer and Sandholm (2002; 2007) and Sandholm
(2010b), but we adopt a discrete-time formulation as in Benaïm and Weibull (2003). At discrete
points of time, contained in the set T := {0, 1

N ,
2
N , . . .}, a single randomly chosen player receives

a revision opportunity in which he considers changing his strategy. When a current i-player in
population p receives a revision opportunity he switches to strategy j 6= i with probability ση(π),
where π ∈ R represents the current payoff advantage of action j over i. The map ση : R → (0, 1)
is called a choice function and is parameterized by the noise level η > 0.7 The composition
Bp

η := ση ◦ dp is a noisy best-response function if

lim
η→0

Bp
η(x

−p) =

{

1 if dp(x−p) < 0,
0 if dp(x−p) > 0.

(3.1)

7Our stochastic stability analysis can be extended to allow for heterogeneous choice functions by simply changing
notation.
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Figure 1: Illustration of a typical coordination game. Dots mark the position of Nash equilibria. Here we illustrate
a continuum population game with two player populations with masses m1 = 1 and m2 = 2. Arrows indicate the
direction of the vector field d. At the mixed equilibrium point x∗ this vector field is trivial.

This dynamic process of play defines a finite state Markov chain XN,η = {XN,η
k/N}k∈N on the lattice

X
N with transition probabilities

P

(

XN,η
(k+1)/N = y|XN,η

k/N = x
)

= PN,η(x, y)

=
1

M

{

(mp − xp)Bp
η(x−p) if y = x+ 1

N ep, p ∈ {1, 2},
xp(1−Bp

η(x−p)) if y = x− 1
N ep, p ∈ {1, 2},

where e1 and e2 represent the canonical basis vectors of R2 and t ∈ T. The set of feasible transitions
of the Markov chain is denoted by V = {±e1,±e2}, and v ∈ V represents a feasible direction of
motion (i.e. a positively or negatively oriented unit vector). If y ∈ X

N but cannot be represented
in the form x+ 1

N v, v ∈ V , then we set PN,η(x, y) = 0.

3.2. Choice functions and their costs

The central concept of stochastic stability analysis is the notion of costs of a transition. Following
Sandholm (2010b) we measure costs as the exponential rate of decay of the choice probability
function in the small noise limit.

Hypothesis 1.

(1) There exists a function w : R → R+, to be called the waste function, such that for all π ∈ R

− lim
η→0

η log ση(π) = w(π) (3.2)

with convergence uniform on compact intervals.

(2) The waste function w : R → R+ is said to be admissible if

(2.i) w(π) > 0 if π > 0,

(2.ii) w(π) = 0 if π < 0,
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(2.iii) w is non-decreasing.

Note that we leave the waste function undefined at the point 0, i.e. we allow for w(0) = 0 and
w(0) > 0. As observed by Sandholm (2010b) this creates more modeling freedom to allow for
tie-breaking rules (see Example 1 below). Condition (1) says that the exponential rate of decay of
a choice function is governed by the waste function w. Unpacking the expression (3.2) shows that
for η → 0

ση(π) = exp

(

−1

η
(w(π) + o(1))

)

, (3.3)

where o(1) represents terms which are negligible as η → 0. Any choice function whose waste function
satisfies conditions (2.i) and (2.ii) generates a perturbed best response function Bp

η = ση ◦ dp. To
see this note that Eq. (3.3) implies that

Bp
η(x

−p) = exp

(

−1

η
(w[dp(x−p)] + o(1))

)

as η → 0. Thus, if strategy 1 is a best response for player p then dp(x−p) < 0 and by condition (2.ii)
we must have w(dp(x−p)) = 0. This implies that Bp

η(x−p) → 0 as η → 0 in this case. But if strategy
2 is a best-response, then dp(x−p) > 0, and by condition (2.i) we see that Bp

η(x−p) → 1, η → 0.
Condition (2.iii) is a weak monotonicity assumption. We now present the canonical examples of
noisy best-response functions, together with their waste functions.

Example 1 (Best-response with mutations). The most frequently applied model in stochastic evo-
lutionary game theory assumes that players select with probability 1 − ǫ a strategy that is strictly
better compared to their current strategy. With complementary probability ǫ a player makes a ran-
dom draw.8 Parameterizing the mutation probability by ǫ = exp(−1/η) gives the choice function

ση(π) =

{

1− exp(−1/η) if π < 0
exp(−1/η) otherwise.

For η → 0 the waste function of this choice function is the mutation counting function

w(a) ≡ wM (π) = 1[0,∞)(π). (3.4)

In particular, we see that w(0) = 1.

3

Example 2 (Logit choice). The logit choice function is defined as

ση(π) =
1

1 + exp(π/η)
.

For η → 0 its waste function is given by

w(π) ≡ wL(π) = max{0, π}. (3.5)

It is well known that this choice model can be derived from a random utility model with extreme-value
distributed errors (see e.g. McFadden (1981) or Anderson et al. (1992)).

8This models a probabilistic choice behavior where agents are biased for their current strategy since a revising
agent only makes a switch if the alternative promises a strictly higher (myopic) payoff. Alternative specifications
of the choice model only changes the waste function at the point π = 0, which is possible by Hypothesis 1. This
observation is due to Sandholm (2010b).
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3

Example 3 (Probit choice). Beside the Logit, another well known model from the discrete-choice
literature is the Probit. While the logit choice model assumes extreme-value distributed errors, the
probit choice function assumes normally distributed errors. Consider player p = 1, 2 and assume
that

ση(π) = P(ǫ1 − ǫ2 > π)

where ǫj , j ∈ {1, 2}, are i.i.d. N(0, η/2) distributed error terms. Denote by Z = ǫ1−ǫ2√
η ∼ N(0, 1).

Then it follows that

ση(π) = P

(

Z >
π√
η

)

= 1− Φ

(

π√
η

)

,

where Φ is the cumulative distribution function of the standard normal distribution. Considering
the limit η → 0, it follows from the Laplace principle that the unlikelihood function is given by

w(π) ≡ wP (π) =
π2

2
1[0,∞)(π). (3.6)

3

4. Equilibrium selection

For finite population size N and positive noise level η the stochastic evolutionary process is a finite-
state irreducible Markov chain. Standard results on finite Markov chains (see e.g. Stroock (2005))
tell us that for every parameter pair (N, η) ∈ N × (0,∞) the process XN,η possesses a unique
invariant distribution, denoted by µN,η. Since the pioneering work of Kandori et al. (1993) and
Young (1993) it is common practice to call a state x ∈ X

N stochastically stable if it is contained in
the support of the limiting invariant distribution µN := limη→0 µ

N,η. Since in this paper we work
with more general choice functions, we are satisfied with a milder, large-deviations type, criterion
of stochastic stability, which has been recently proposed by Sandholm (2010a;b).

Definition 1. A state x ∈ X
N is called stochastically stable in the small noise limit if

− lim
η→0

η

N
log µN,η(x) = 0.

In this section we introduce some general methods with which stochastically stable states in the
small noise limit and in the small noise large population double limit can be identified. A more
formal account of the material presented here can be found in Appendix A.

4.1. Measuring stochastic stability

We define a path of length K + 1 as a sequence of states φN := (φN0 , φ
N
1 , . . . , φ

N
K), where

(i) each φNk ∈ X
N , and

(ii) N(φNk+1 − φNk ) ∈ V for all k ∈ {0, . . . ,K − 1}.
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ΦN
x is the set of admissible paths starting at x ∈ X. To measure the cost of a one-step transition

along a path, we need to attach costs to every feasible direction of motion at a state x ∈ X
N .

Therefore we introduce the functions9

κp(x, v) := sgn(vp)w
[

sgn(vp)dp(x−p)
]

, p ∈ {1, 2}, v ∈ V,

κ(x, v) := (κ1(x, v), κ2(x, v))

and define the cost of a transition from a point x in direction v ∈ V as10

c(x, v) := κ1(x, v)v1 + κ2(x, v)v2 ≡ 〈κ(x, v), v〉 . (4.1)

The costs of a path φN are measured by the action functional

LT (φ
N ) :=

T−1
∑

k=0

c[φNk , φ
N
k+1 − φNk ], L0 ≡ 0. (4.2)

From the definition of waste functions it is clear that the process can leave the set XBA = X\ (XA∪
XB) at zero costs by letting the player for whom it is a best reply to do so adjust toward A or B
(recall Figure 1). Every path that connects B with A (A with B) must incur the positive costs
needed to wander through the set XB (XA) and no more. Hence, it is sufficient to define a path on
XB (XA) to determine the costs of going from B to A (A to B). Moreover, it suffices to define an
escape path only up to the point where it hits the outer boundary of the stability set, defined as

∂XB := ({x1∗} × [0, x2∗]) ∪ ([0, x1∗]× {x2∗}),
∂XA := ({x1∗} × [x2∗,m

2]) ∪ ([x1∗,m
1]× {x2∗}).

However, due to finite population effects, these sets will in general have an empty intersection
with the discrete grid X

N . To account for finite population effects we define for p = 1, 2 the
smallest point on the grid X

N which is larger than or equal xp∗ as ξpN := 1
N ⌈Nxp∗⌉. Similarly

we call the largest points smaller than or equal xp∗ as ζpN := 1
N ⌊Nxp∗⌋. Then, we call ∂XN

B =
({ξ1N} × [0, ξ2N ]) ∪ ([0, ξ1N ]× {ξ2N}) and ∂XN

A = ({ζ1N} × [ζ2N ,m
2]) ∪ ([ζ1N ,m

1]× {ζ2N}).

Suppose we are given a mixed equilibrium x∗ = (x1∗, x
2
∗), a waste function w, and a population size

parameter N ≥ N0. The stochastic potentials of the two strict Nash equilibria A and B are defined
as

γNA (w, x∗, α) := min{LK(φN )|φN ∈ ΦN
B , φ

N
K ∈ ∂XN

B , K ∈ N}, (4.3)

γNB (w, x∗, α) := min{LK(φN )|φN ∈ ΦN
A , φ

N
K ∈ ∂XN

A , K ∈ N}. (4.4)

We define the selection coefficient as the difference in stochastic potentials, i.e.

SN (w, x∗, α) := γNA (w, x∗, α)− γNB (w, x∗, α). (4.5)

A central result of stochastic stability analysis is that the strict Nash equilibrium with the smaller
stochastic potential is uniquely stochastically stable (see e.g. Young, 1993; 1998). Thus, equilibrium

9For π 6= 0 we define sgn(π) := π
|π|

, and sgn(0) := 0.
10In general we denote the inner product between two vectors x, y as 〈x, y〉 := x1y1 + x2y2.

9



A is uniquely stochastically stable in the small noise limit at population size N if SN (w, x∗, α) < 0.
If SN (w, x∗, α) > 0 then equilibrium B is uniquely stochastically stable in the small noise limit.
It is intuitively clear that in the population game (d1, d2) only the two strict Nash equilibria are
candidates for the being stochastically stable in the small noise limit. Indeed, Young (1998, chapter
4) shows that this is true in his truncated fictitious play process. However, since we consider general
noisy best-response dynamics, this still requires a proof.

Theorem 4.1. Fix a population parameter N ≥ N0 and a waste function w. The set of stochas-
tically stables states in the small noise limit in the population game (d1, d2) is contained in the set
{(0, 0), (m1,m2)}.

Proof. See Appendix A.

Hence, we have the following small noise limit characterization, whose proof can also be found in
Appendix A.

Proposition 4.1. For all N ≥ N0 we have

lim
η→0

| η
N

log
µN,η(B)

µN,η(A)
− SN (w, x∗, α)| = 0. (4.6)

This proposition endows us, in principle, with a general procedure for selecting between the two
competing strict equilibrium points. In order to apply Proposition 4.1 one has to solve the dynamic
program which underlies the definitions of the stochastic potentials γNA (w, x∗, α) and γNB (w, x∗, α).
Then one obtains equilibrium selection results for every population size parameter N . However, the
larger N the finer the grid X

N ⊂ X, and the more complex it becomes to solve the dynamic program
lying behind the definition of the stochastic potentials. We circumvent this problem by following a
common idea in evolutionary equilibrium selection, in which the action functionals are approximated
by line integrals, and the dynamic programs are replaced by optimal control problems.11 To do this
in a meaningful way we have to invest some effort in making precise in which sense the equilibrium
selection procedure for the finite state model is related to a suitably defined continuum model.
This requires mastering some technical details which are collected in Appendix B. The prize for
the effort is that we obtain precise and clean equilibrium selection results.
First we introduce the continuous counterpart of a path. In the continuum population model we call
an absolutely continuous curve φ : [0, T ] → X a path.12 We endow R

2 with norm ||x|| := |x1|+ |x2|.
The sphere with respect to this norm is denoted by U = {x ∈ R

2| ||x|| = 1} A path φ is admissible
if for all t the tangent vector is contained in the set

φ′(t) ∈ U(φ(t)) := {u ∈ U |(∃ǫ > 0) : φ(t) + ǫu ∈ X}.

The continuous equivalent to the cost function (4.1) is then the 1-form

(∀x ∈ X)(∀u ∈ U(x)) : c(x, u) = 〈κ(x, u), u〉 .

11Pioneers in this direction are Binmore et al. (1995), Binmore and Samuelson (1997), Maruta (2002), Blume
(2003) and Sandholm (2010b).

12Recall that a function φ : [0, T ] → X is absolutely continuous if for every ǫ > 0 there exists a δ > 0 such that for
any finite set of intervals [t0, t1), [t1, t2), . . . , [tn−1, tn) with

∑
k(tk+1−tk) < δ it follows that

∑
k ||φ(tk+1)−φ(tk)|| < ǫ.

In particular, an absolutely continuous curve is differentiable almost everywhere.
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We define the line integral with respect to a piecewise continuously differentiable curve φ : [0, T ] → X

as

L(φ) :=

n−1
∑

k=0

∫ tk+1

tk

c[φ(t), φ′(t)]dt,

where over each interval [tk, tk+1) ⊆ [0, T ] on which the curve φ is differentiable we evaluate the
integral as

∫ tk+1

tk

c[φ(t), φ′(t)]dt =
∫ tk+1

tk

(

κ1(φ(t), φ′(t))(φ1)′(t) + κ2(φ(t), φ′(t))(φ2)′(t)
)

dt.

Now, let us focus on the problem of finding a least-cost path to exit the stability set XB.13 This
can be formulated as the following variational problem:

min
∫ T
0 c[x(t), u(t)]dt

s.t. x′(t) = u(t) a.a t ∈ [0, T ]
u(t) ∈ U(x(t)) a.a t ∈ [0, T ]
x(0) = B, x(T ) ∈ ∂XB

T ∈ [0,∞)

(4.7)

A solution is a pair (φ̄(·), T ), consisting of an absolutely continuous curve φ̄ : [0, T ] → X, satisfying
all the listed constraints. This curve is called a least-cost path, and the time point T is called
the exit time of the least-cost path. Some comments are in order here. First, in the formulation
of the optimization problem (4.7) we anticipate that an optimal control path for (4.7) will be
non-decreasing, and non-increasing for the exit-problem from the set XA. The reason for this is
simple. Any non-monotonic path has segments with zero costs because it points into the direction
of the equilibrium point we want to get away from. Without loss of generality we can cut out such
segments. Second, we restrict the tangent vector of any feasible path to lie in the set U(x). Also
this is without loss of generality; Since any least cost path must be monotonic we can normalize
the tangent vector to lie in the unit sphere without affecting optimality of the control.
Given this pre-information on the shape of a least cost exit path, we can write the running costs in
problem (4.7), with a slight abuse of notation, as

κ(φ̄(t), φ̄′(t)) ≡ κ(φ̄(t)).

The value function of the optimal control problem measures the cost of an exit path, i.e.14

γA(w, x∗, α) =
∫ T

0
c(φ̄(t), φ̄′(t))dt =

∫ T

0

〈

κ(φ̄(t)), φ̄′(t)
〉

dt.

As in the finite case, we declare the selection coefficient for the continuum problem to be the
differences in the optimal value functions, i.e.

S(w, x∗, α) := γA(w, x∗, α) − γB(w, x∗, α). (4.8)

The following central result justifies our focus on large population equilibrium selection.

13The formulation of the least cost problem to exit XA is formulated in a symmetric way.
14This is the optimal value function corresponding to problem (4.7).
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Theorem 4.2.

lim
N→∞

lim
η→0

| η
N

log
µN,η(B)

µN,η(A)
− S(w, x∗, α)| = 0.

The proof of this theorem is rather long and technical so we present it in Appendix B. Theorem
4.2 tells us that in the small noise large population double limit the odds-ratio of the invariant
distribution between the two strict Nash equilibria can be bounded as

exp

(

−N
η
S(w, x∗, α) − βN,η

1

)

≤ µN,η(B)

µN,η(A)
≤ exp

(

−N
η
S(w, x∗, α) + βN,η

2

)

for numbers βN,η
1 , βN,η

2 > 0 converging to 0 when we first take the small noise limit and then the
large population limit. The practical implication of Theorem 4.2 is that it assures us that the
selection coefficient defined in (4.8), obtained from the optimal control problem, really gives us an
informative equilibrium selection criterion.

4.2. Main results

Having collected all the theoretical results, we are now ready to apply these tools to concrete
equilibrium selection problems. We start with the relatively simple case in which there is one
player in each player role. This is a standard normal form game in which two players repeatedly
choose pure strategies according to the noisy-best response function Bp

η . Afterwards we turn to the
analysis of the large population case.

4.2.1. Equilibrium selection for the case Np = 1.

If there is only one player in each player role the solution of the equilibrium selection problem is
straightforward. The stochastic potential of the two Nash equilibria are15

γA(w, x∗, α) = min{w(x2∗), w(αx1∗)} = w
(

min{αx1∗, x2∗}
)

, (4.9)

γB(w, x∗, α) = min{w(α(1 − x1∗)), w(1 − x2∗)} = w
(

min{α(1 − x1∗), 1 − x2∗}
)

. (4.10)

To see that these are indeed the costs of transitions, observe that the cost of a switch from action 1
to 2 is w(−dp(1)), while the cost of a switch from action 2 to 1 is w(dp(0)), p ∈ {1, 2}. The relevant
set of paths reduces to the set of sequences of the form φ = (φ0, φ1, φ2), with φ0 = (0, 0) (all play
strategy 2), φ2 = (1, 1) (all play strategy 1), and φ1 ∈ {(1, 0), (0, 1)}. Hence, to identify a least cost
path only the first step of the path matters, and therefore the minimum function is used.

Observation 1. The best-response with mutations dynamics of Example 1 does not allow us to make
any prediction in this case. Therefore, in the rest of this section we assume that w is monotonically
increasing on R+.

In the coordination game with incentive functions (d1, d2), equilibrium A is 1
2 -dominant (Morris et al.,

1995) if and only if max{x1∗, x2∗} < 1/2. It turns out that 1
2 -dominance is a sufficient condition for

stochastic stability under any noisy best-response protocol.16

15These formulas hold, mutatis mutandis, also if the unlikelihood functions are heterogeneous, i.e. if the players
use different noisy best-response protocols.

16Okada and Tercieux (2009) observe this for the logit choice.
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Theorem 4.3. Consider the coordination game (d1, d2) with Np = 1. Then a 1
2 -dominant equilib-

rium is stochastically stable.

Proof. We prove only the case where A is 1
2 -dominant. We have to distinguish the following cases.

Suppose first that α ≥ 1. From max{x1∗, x2∗} < 1
2 we get min{1 − x1∗, 1 − x2∗} > 1

2 . From the
monotonicity of the waste function it follows that γA(w, x∗, α) = w

(

min{αx1∗, x2∗}
)

≤ w(x2∗) <
w(1/2), while γB(w, x∗, α) > w(1/2). Hence, S(w, x∗) < 0.
Now suppose that α < 1. Now the expression min{α(1 − x1∗), 1 − x2∗} can fall below 1/2 if α is
sufficiently small. Hence, we have to distinguish two cases. First let us assume that x2∗ > αx1∗.
Thus γA(w, x∗, α) = w(αx1∗). If γB(w, x∗, α) = w(α(1 − x1∗)) then we see that S(w, x∗, α) =
w(αx1∗) − w(α(1 − x1∗)) < 0 as x1∗ < 1/2. If γB(w, x∗, α) = w(1 − x2∗) > κ(1/2) the claim follows
from the fact that w(αx1∗) < w(1/2). Second assume that x2∗ ≤ αx1∗. Then γA(w, x∗, α) = w(x2∗)
and 1−x2∗ ≥ 1−αx1∗ > α(1−x2∗). Hence, S(w, x∗, α) = w(x2∗)−w(α(1−x1∗)) ≤ w(αx1∗)−w(α(1−x1∗))
and the claim follows from the argument above.

Proposition 4.2. Consider the coordination game (d1, d2) with Np = 1 p ∈ P. The implicit
function S(w, x∗, α) = 0 is solved by the piecewise linear curve

x2∗ = σ(x1∗, α) :=







1− αx1∗ if x1∗ ∈ [0, 1
2α ),

1
2 if x1∗ ∈ [ 1

2α ,
2α−1
2α ],

α(1 − x1∗) if x1∗ ∈ (2α−1
2α , 1]

if α ≥ 1 and by

x1∗ = σ̃(x2∗, α) :=











1− x2
∗
α if x2∗ ∈ [0, α2 ),

1
2 if x2∗ ∈ [α2 ,

2−α
2 ],

1−x2
∗

α if x2∗ ∈ (α−2
α , 1].

if α < 1.

Proof. We only provide a verification of the formula for the case α ≥ 1. The case where α < 1 is
shown by almost identical arguments. For the proof we have to distinguish two cases.

(i) Assume that γA(w, x∗, α) = w(x2∗). Then, by monotonicity, x2∗ ≤ αx1∗.

Case 1: If γB(w, x∗, α) = w(1 − x2∗), then x2∗ ≥ 1 − α(1 − x1∗). These two inequalities are
consistent with S(w, x∗) = 0 if, and only if, 1/2 ∈ [1−α(1−x1∗), αx1∗], or if x1∗ ∈ [ 1

2α ,
2α−1
2α ].

Case 2: If γB(w, x∗, α) = wα(1− x1∗)), then x2∗ ≤ 1− α(1− x1∗). S(w, x∗) = 0 if, and only if
x2∗ = α(1 − x1∗). This is consistent with the above inequality if, and only if x1∗ ≥ 2α−1

2α .

(ii) Assume that γA(w, x∗, α) = w(αx1∗) ⇔ αx1∗ < x2∗, by monotonicity of the cost function. Since
α ≥ 1 it follows α(1−x1∗) ≥ 1−αx1∗, and therefore 1−x2∗ < 1−αx1∗ ⇔ γB(w, x∗, α) = w(1−x2∗).
Then S(w, x∗, α) = 0 only if x2∗ = 1 − αx1∗, which is consistent with the inequalities just
established if, and only if, x1∗ ≤ 1

2α .

A key quantity in stochastic stability analysis is the notion of risk-dominance. Let us view the state
space X as a measure space endowed with Lebesgue product measure λ := λ1 × λ2. An intuitive
notion of risk-dominance requires that the stability set of one equilibrium covers a larger area in X

than the stability set of the other equilibrium. Hence, we have the following definition:
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Figure 2: Plot of S(w, x∗, α) = 0. The diagonal line arises for α = 1. Below each of these lines equilibrium A is
stochastically stable, while above each of these lines equilibrium B is stochastically stable.

Definition 2. Strict Nash equilibrium A risk-dominates B if

λ(XA) > λ(XB) ⇔ (m1 − x1∗)(m
2 − x2∗) > x1∗x

2
∗.

Remark 1. For mp = 1, p ∈ P, this is the standard definition of risk-dominance as given by
Harsanyi and Selten (1988). For general population sizes our definition of risk-dominance is equiv-
alent to the stochastic dominance concept of Sandholm (2010b), as our population games are char-
acterized by linear incentives.

Theorem 4.4. If α = 1 and Np = 1, p ∈ P, then a strict Nash equilibrium is stochastically stable
under any noisy best-response protocol if, and only if, it is risk-dominant.

Proof. If α = 1 then σ(x1∗, 1) = 1− x1∗. Hence S(w, x∗, 1) > (<)0 if and only if x1∗ + x2∗ > (<)1.

4.2.2. Equilibrium selection in large population environments

By construction of the revision dynamics we have ẋ1 + ẋ2 = 1. If we introduce the variable u = ẋ1

we can write the variational problem (4.7) in the following, more structured, form:

min
u(·),T

∫ T

0

{

w(x2∗ − x2(t))u(t) + (1− u(t))w(α(x1∗ − x1(t)))
}

dt

s.t. ẋ1(t) = u(t), ẋ2(t) = 1− u(t)
u(t) ∈ [0, 1]
x(0) = (x1(0), x2(0)) = (0, 0),
x(T ) = (x1(T ), x2(T )) ∈ ∂XB ,
T ∈ [0,M ]

(4.11)
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Once we have solved this problem, finding the exit path from XA is a relatively easy task. Suppose
ψ̄ is such an exit path from XA. Let us perform the change of variables φ̄p(t) := mp − ψ̄p(t)
and denote by yp∗ := mp − xp∗, p ∈ P. Then (φ̄p)′(t) = −(ψ̄p)′(t). Now, if φ̄(·) is an admissible
path for the problem of finding a least cost path connecting equilibrium A with B it must be a
non-increasing function, i.e. (φ̄1)′(t) = u(t) ∈ [−1, 0] and (φ̄2)′(t) = 1 − u(t). Hence, (ψ̄p)′(t) =
−u(t) ∈ [0, 1]. Additionally, the set ∂XA is transformed under this change of coordinates into the
set ∂YA =

(

{y1∗} × [0, y2∗ ]
)

∪
(

[0, y1∗ ]× {y2∗}
)

. Putting these insights together, we can formulate the
optimal control problem to exit the set XA with least cost as

min
u(·),T

∫ T

0

{

w(y2∗ − y2(t))u(t) + (1− u(t))w(α(y1∗ − y1(t)))
}

dt

s.t. ẏ1(t) = u(t), ẏ2(t) = 1− u(t)
u(t) ∈ [0, 1]
y(0) = (y1(0), y2(0)) = (0, 0),
y(T ) = (y1(T ), y2(T )) ∈ ∂+YA,
T ∈ [0,M ]

(4.12)

This dynamic optimization problem is isomorphic to problem (4.11), and thus we only need to solve
one of the two problems. In the rest of the paper we concentrate on the solution of (4.11).
To actually solve the optimal control problems we apply Pontryagin’s Maximum principle. Let
λ := (λ0, λ

1, λ2) denote the vector of adjoint functions. The Hamiltonian can be written as

H(x(t), u(t), λ(t)) = I(x(t), λ(t)) + u(t)G(x(t), λ(t)),

where

I(x, λ) := λ2 − λ0w(α(x
1
∗ − x)),

G(x, λ) : = λ0
(

w[α(x1∗ − x1)]− w(x2∗ − x2)
)

+ λ1 − λ2.

As different degrees of convexity of the unlikelihood functions will generate different sets of results,
we organize our presentation of the results accordingly. The interested reader may consult Appendix
C for a full derivation of the solutions.

4.2.3. Strictly convex unlikelihood functions

Let us introduce the numbers

a(w;x∗, α) := αw′(αx1∗), b(w;x∗, α) := w′(x2∗). (4.13)

These quantities are the marginal costs at t = 0 for any path in X which starts at the origin (0, 0)
and moves either in the direction of increasing x1 or increasing x2. If the players have unequal
marginal costs, an optimal control path should exploit this and put full weight on the cost function
of the player with lower marginal costs. This implies that ū(t) ∈ {0, 1} must be optimal on some
interval [0, τ). The point τ will depend on the data of the game and the unlikelihood function,
and is defined as the time point at which a path hits the line on which the marginal costs of the
transitions in the two feasible directions of motion are equalized. Once this is the case, we can
calculate the rate of increase of the path in the direction of the x1-axis as

g(x;x∗, α) :=
w′′(x2∗ − x2)

w′′(x2∗ − x2) + α2w′′[α(x1∗ − x1)]
. (4.14)
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Based on this intuition we have the following general result. Let 1[s] be equal to 1 if statement s
is true, and 0 otherwise.

Proposition 4.3. Consider the optimal control problem (4.11) and suppose that the waste function
w is strictly convex. Define

τ ≡ τ(w;x∗, α) :=

{

x2∗ − (w′)−1(a(w;x∗, α)) if a(w;x∗, α) ≤ b(w;x∗, α)
x1∗ − 1

α(w
′)−1(b(w;x∗, α)/α) otherwise.

(4.15)

The triple (φ̄(·), ū(·), T ) with

ū(t) =

{

1 [a(w;x∗, w) > b(w, x∗, α)] if t ∈ [0, τ),
g(φ̄(t);x∗, α) if t ∈ [τ, T ],

T = x1∗ + x2∗,

φ̄1(t) =

∫ t

0
ū(s) d s, φ̄2(t) = t− φ̄1(t), t ∈ [0, T ],

where g(x;x∗, α) is defined in equation (4.14), satisfies all the conditions provided by the Maximum
principle with adjoint functions for a(w;x∗, α) ≤ b(w;x∗, α)

λ̄1(t) =

{

a(w;x∗, α)(τ − t) + w(x2∗ − τ) if t ∈ [0, τ),
w(x2∗ − φ̄2(t)) if t ∈ [τ, T ]

, λ̄2(t) = w[α(x1∗ − φ̄1(t))]

or

λ̄1(t) = w(x2∗ − φ̄2(t)), λ̄2(t) =

{

b(w;x∗, α)(τ − t) + w(α(x1∗ − τ)) if t ∈ [0, τ),
w(α(x1∗ − φ̄1(t))) if t ∈ [τ, T ]

for a(w;x∗, α) > b(w;x∗, α).

Now, by the change of variables trick, we immediately get the reverse characterization of least cost
paths to exit the stability set XA. For sake of completeness we report our findings in the following
Proposition.

Proposition 4.4. Consider the optimal control problem (4.12) and suppose that the waste function
w is strictly convex. Set τ ≡ τ(w;m−x∗, α) as defined in equation (4.15). The triple (ψ̄(·), ū(·), T )
with

ū(t) =

{

1 [a(w;m− x∗, α) > b(w;m− x∗, α)] if t ∈ [0, τ),
g(m− ψ̄(t);m− x∗, α) if t ∈ [τ, T ],

T =M − x1∗ − x2∗,

ψ̄1(t) = m1 −
∫ t

0
ū(s) d s, ψ̄2(t) =M − t− ψ̄1(t), t ∈ [0, T ],

where g(m− x;m− x∗, w) is defined in equation (4.14), satisfies all the conditions provided by the
Maximum principle with adjoint functions for a(w;m− x∗, α) ≤ b(w;m− x∗, α)

λ̄1(t) =

{

a(w;m − x∗, α)(τ − t) + w(m2 − x2∗ − τ) if t ∈ [0, τ),
w(ψ̄2(t)− x2∗) if t ∈ [τ, T ]

, λ̄2(t) = w[α(ψ̄1(t)− x1∗)]
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or

λ̄1(t) = w(ψ̄2(t)− x2∗), λ̄
2(t) =

{

b(w;m − x∗, α)(τ − t) + w(α(m1 − x1∗ − τ)) if t ∈ [0, τ),
w[α(ψ̄1(t)− x1∗)] if t ∈ [τ, T ]

for a(w;m− x∗, α) > b(w;m− x∗, α).

The probit choice is the only canonical noisy best-response model with a strictly convex waste
function. Thus, in order to get complete equilibrium selection results for the probit choice model
we just have to make the correct substitutions into the formulas provided by Propositions 4.3 and
4.4. Recall from example 3 that the probit choice function has waste function wP (π) = π2/2 for
π ≥ 0. The stochastic potentials of the strict Nash equilibria can be computed as

γA(wP , x∗, α) =







(αx1
∗)

2

2

[

x2∗ − α2x1
∗

3

]

if x2∗ ≥ α2x1∗
(x2

∗)
2

2α2

[

w2x1∗ − x2
∗
3

]

otherwise.

γB(wP , x∗, α) =







α2(m1−x1
∗)

2

2

[

(m2 − x2∗)− α2(m1−x1
∗)

3

]

if m2 − x2∗ ≥ α2(m1 − x1∗)
(m2−x2

∗)
2

2α2

[

α2(m1 − x1∗)− (m2−x2
∗)

3

]

otherwise.

Figure 3 presents an example of an optimal control path for the Probit.

Proposition 4.5. Consider a population game (d1, d2) with two equally sized populations of mass
mp = 1, p ∈ P. If α = 1, then an equilibrium is stochastically stable if and only if it is risk-dominant.

Proof. The proof is a direct computation. The selection integral reduces in the case α = 1 to

S(wP , x∗, 1) =

(

1− x1∗ − x2∗
6

)

P (x1∗, x
2
∗),

where P (x, y) = −2+x+x2+y−4xy+y2 is a polynomial in (x, y) which attains a unique maximum
at the point (0, 1) at which it vanishes, and otherwise is negative. Hence S(wP , x∗, 1) < 0 if and
only if x1∗ + x2∗ < 1, and S(wP , x∗, 1) > 0 if the reverse inequality holds.

4.2.4. The best-response with mutations

In the best-response with mutations model the waste function is the mutation counting function
wM (π) = 1{π>0}, π ∈ R. Hence, the criterion functional for problem (4.11) is

c(x, ẋ) = 1{x2<x2
∗}ẋ

1 + 1{x1<x1
∗}ẋ

2.

Let us consider the problem of how to direct a path in the most cost-efficient way away from the
equilibrium point B = (0, 0). By choosing an interior control, we select a path with initial cost
equal to 1. Directing the path either along the vertical or horizontal axis of the state space gives
the same costs. This is true at every point in the interior of XB. However, choosing an interior
control at some point inside this set increases the length of any path until it hits the target set
∂XB. Hence, no optimal control path can have an interior control at any point in intXB . It follows
that there are two candidates for a solution:

φ1(t) := (t, 0), t ∈ [0, T ], T = x1∗,

17



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

Figure 3: Optimal control paths for the probit choice function for a game between two populations of equal size with
mixed Nash equilibrium x∗ = (0.6, 0.7) and α = 2.5. In this game equilibrium B ≡ (0, 0) is stochastically stable.

and
φ2(t) := (0, t), t ∈ [0, T ], T = x2∗.

The stochastic potential of equilibrium A is

γA(wM , x∗, α) = min{x1∗, x2∗}.

In the same way we see that the stochastic potential of equilibrium B is

γB(wM , x∗, α) = min{m1 − x1∗,m
2 − x2∗}.

The selection coefficient reads as

S(wM , x∗, α) = min{x1∗, x2∗} −min{m1 − x1∗,m
2 − x2∗}.

For mp = 1, i.e. if both populations are of equal size, then we obtain the well-known relationship
between risk-dominance and stochastic stability as first observed by Kandori et al. (1993) (see their
section 9) and Young (1993), but proved with entirely different methods.17 However, if relative
population sizes differ, then this relationship breaks down.

Proposition 4.6. In games with a risk-dominant equilibrium, the best-response with mutations
dynamics selects the risk-dominant equilibrium if and only if mp = 1.

Proof. As soon as mp 6= 1 for some p ∈ P the implicit function S(wM , x∗, w) = 0 no longer defines
a global function x2∗ = σ(x1∗, w), but a sectionally smooth (linear) function in the rectangle X, such
as in Section 4.2.1.

17To see this note that if mp = 1 we have x1
∗ < x2

∗ ⇒ 1 − x1
∗ > 1− x2

∗, and similarly x1
∗ > x2

∗ ⇒ 1− x1
∗ < 1 − x2

∗.
Hence, the selection coefficient takes the form S(wM , x∗, α) = x1

∗ + x2
∗ − 1.
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4.2.5. The logit choice

The logit choice function has waste function wL(π) = max{π, 0} (recall example 2). Consequently
w′ = 1 on (0,∞) and (w′)−1 is not a function (but a set-valued map). Hence, for the logit the
solutions of Proposition 4.3-4.4 are not valid, and therefore this choice function has to be treated
separately. Viewed from the origin of the rectangle X the waste functions wL are distance functions
for (0, 0) to the boundary points of the stability XB, (x1∗, 0) and (0, x2∗). It is therefore intuitive
that the optimal control path should be the same as the one obtained in the best-response with
mutations case, i.e. we expect exit paths to be horizontal or vertical segments along the boundary
of the rectangle X. To test this intuition in Proposition 4.7 we solve a series of auxiliary optimal
control problems, where we choose as terminal state x1∗ or x2∗. In both cases, the optimal control
is indeed a straight path heading directly to these points. In Appendix C we then show that these
are the only optimal control paths for the logit dynamics. As a result we obtain the following
Proposition, which lists all cases exhaustively.

Proposition 4.7. Consider the waste function of the logit choice function wL(π) = max{π, 0}.

(a) The triple (φ̄1, ū1, T1), defined as

T1 = x1∗, φ̄1(t) = (t, 0), ū1(t) = 1, t ∈ [0, T1],

solves the optimal control problem

min
u,T

∫ T

0

{

u(t)(x2∗ − x2(t)) + (1− u(t))α(x1∗ − x1(t))
}

d t

s.t. x(0) = (0, 0), ẋ(t) = (u, 1 − u), u ∈ [0, 1]
x1(T ) = x1∗, x

2(T ) ≤ x2∗

provided that α > 1. The corresponding adjoint functions are

λ̄1(t) = x2∗, λ̄
2(t) = x1∗ − t,

and the stochastic potential is
γA(wL, x∗, α) = x1∗x

2
∗.

(b) The triple (φ̄2, ū2, T2), defined as

T = x2∗, φ̄2(t) = (0, t), ū2(t) = 0, t ∈ [0, T2],

solves the optimal control problem

min
u,T

∫ T

0

{

u(t)(x2∗ − x2(t)) + (1− u(t))α(x1∗ − x1(t))
}

d t

s.t. x(0) = (0, 0), ẋ(t) = (u, 1 − u), u ∈ [0, 1]
x1(T ) ≤ x1∗, x

2(T ) = x2∗

provided that α < 1. The corresponding adjoint functions are

λ̄1(t) = −α(t− x2∗), λ̄
2(t) = x1∗,

and the stochastic potential is
γA(wL, x∗, w) = αx1∗x

2
∗.
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(c) If α = 1, then an optimal control is given by ū3(t) ≡ ū ∈ {0, 1}, with T3 = max{x2∗, x1∗}. The
corresponding adjoint functions are

λ1(t) = x2∗ − x2(t), λ2(t) = x1∗ − x1(t).

The stochastic potential is given by

γA(wL, x∗, α) = x1∗x
2
∗

Having solved the problem of connecting equilibrium B with the target set ∂XB , we can easily
deduce the solution for the problem of finding the least cost path from equilibrium A = (m1,m2)
to the set ∂XA by the change of variables trick. Hence, we obtain the following result:

Theorem 4.5. Consider the coordination game (d1, d2) played by large populations with masses
(m1,m2) where each player selects actions according to the log-linear choice rule. The selection
integral is given by

S(wL, x∗, α) = min{1, α}
[

x1∗x
2
∗ − (m1 − x1∗)(m

2 − x2∗)
]

. (4.16)

This allows us to conclude:

Corollary 4.1. A strict Nash equilibrium is uniquely stochastically stable under the log-linear choice
rule if and only if it is risk-dominant according to definition 2.

Proof of Theorem 4.5. From Proposition 4.7 we know that the stochastic potential of equilibrium
A ≡ (m1,m2) is given by

γA(wL, x∗, α) = min{1, α}x1∗x2∗.
By performing the change of variables we conclude that the stochastic potential of equilibrium
B ≡ (0, 0) is given by

γB(wL, x∗, α) = min{1, α}(m1 − x1∗)(m
2 − x2∗).

4.2.6. Application to symmetric binary choice coordination games

Our approach applies also to symmetric 2× 2 games. To illustrate this, suppose that there is only
a single population of players, where the fraction of 1-players is recorded by the one-dimensional
state variable x ∈ [0, 1].18 In this case α = 1 automatically holds, and we have an exact potential
game. The selection integral takes the form

S(w, x∗, 1) =
∫ x∗

0
w(x∗ − t)dt−

∫ 1

x∗

w(t− x∗)dt

=

∫ 1

0
[w(x∗ − t)− w(t− x∗)] dt

=

∫ 1−x∗

x∗

[w(y)− w(−y)] dy

=

∫ 1−x∗

x∗

w(y)dy.

18Taking the population mass to be one is without loss of generality here.
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Figure 4: Plot of S(w, x∗, α) = 0 for the logit and the probit for α = 3. Below the curves equilibrium A is
stochastically stable, while above the curve equilibrium B is stochastically stable.

From this expression it follows immediately that if x∗ > 1/2 then S(w, x∗, 1) < 0 and equilibrium
A is stochastically stable and risk-dominant. If x∗ < 1/2 then equilibrium B is stochastically
stable and risk-dominant. Finally if x∗ = 1/2 no selection is possible according to either criteria.
Symmetric binary choice coordination games have been more thoroughly investigated by Blume
(2003) and Sandholm (2010b).

5. Conclusion

After all these calculations, it is time to discuss our findings. We have now obtained a complete
picture of stochastic evolutionary equilibrium selection in asymmetric binary choice coordination
games under arbitrary noisy best-response protocols. Our method of obtaining expressions for the
stochastic potentials relied on a particular choice of taking limits. We calculate the ”unlikelihood“
that the dynamics cross the stability sets of the two Nash equilibria by defining a path cost function.
In the large population limit we show that this path cost function can be approximated by a line
integral. This allows us to formulate an optimal control problem to characterize the most likely
path, paths we have called exit paths, among the unlikely ones. Evaluating the cost functional
under this path gives us an expression for the stochastic potential of the two strict Nash equilib-
ria. Since we are able to give a full characterization of exit paths, we regard our optimal control
approach to stochastic evolutionary equilibrium selection as very valuable.
It has turned out that the stochastic potentials of Nash equilibria depend crucially on the degree of
convexity of the waste functions. The role of convexity can be seen in the clearest way by looking at
Figure 4. There we illustrate the regions of stochastic stability for the two canonical random utility
models, the logit and the probit model. In this graph we plot the implicit function S(w, x∗, 3) = 0
for all positions of mixed equilibrium points x∗ (we assume mp = 1, p ∈ P). In this case we know
from our characterization in Proposition 4.7 that if players choose pure strategies according to
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the logit choice function, then long-run play settles down to the risk-dominant equilibrium in the
small noise limit. In stark contrast to this, the probit choice model displays a much more intricate
pattern of equilibrium selection. In particular, we observe that for a large set of games, identified
by the position of their mixed equilibrium x∗ = (x1∗, x

2
∗), the two models select different equilibria.

In particular, what is selected by the probit protocol need not be a risk-dominant equilibrium in
the sense of Harsanyi and Selten (1988). It is interesting to contrast this with recent results ob-
tained by Sandholm (2010b). His Corollary 2 states that in symmetric binary choice coordination
games obtained from random matching of players (i.e. when the incentive functions are linear) a
Nash equilibrium is stochastically stable under any noisy best-response protocol if and only if it is
risk-dominant. Proposition 4.5 extends this result to asymmetric binary choice games if the payoff
parameters are chosen such that α = 1, but not for α 6= 1.

The current analysis has been simplified since we only deal with binary choice asymmetric coordi-
nation games with linear incentives. We leave it to future research to see how we can extend the
optimal control approach to more general population games.
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Appendix A Elements of stochastic stability analysis

For a fixed finite population size parameter N ∈ N, we consider a family of perturbed Markov
chains on the finite state space X

N , defined as

MN =
(

ΩN , (Y η
k )k∈N,BN ,PN

)

η∈R+

where,

• ΩN = (XN )N is the set of infinite sequences x := (xk)k∈N where each xk ∈ X
N ,

• Y η
k is the canonical projection mapping, i.e.

Y η
k : ΩN → X

N , x = (xk)k∈N 7→ Y η
k (x) = xk

• BN = B(ΩN ) the Borel σ-algebra on ΩN .

• P
N is a probability measure on ΩN associated with homogeneous Markov chains having tran-

sition probabilities PN,η : XN × X
N → [0, 1], defined by

PN,η(xk−1, xk) := P
N (Y η

k = xk|Y η
0 = x0, Y

η
1 = x1, . . . , Y

η
k−1 = xk−1)

= P
N (Y η

k = xk|Y η
k−1 = xk−1)

for any sequence (x0, . . . , xk−2) ∈ (XN )k−1.
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The basic assumptions on the transition probabilities of the Markov chain can be formulated in
terms of a large deviations principle which forms the basis of this article.

Hypothesis 2. (i) There exists a function ρN : XN × X
N → [0,∞] such that for all x, y ∈ X

N

lim
η→0

η

N
logPN,η(x, y) = −ρN (x, y). (A.1)

(ii) The matrix
[

exp

(

−N
η
ρN (x, y)

)]

(x,y)∈XN×XN

is irreducible.

It follows from these assumptions that for every fixed N ≥ N0 and η > 0 the Markov chain {Y η
k }k∈N

has a unique invariant distribution µN,η. The graph-theoretic approach of Freidlin and Wentzell
(1998) allows one to represent this invariant distribution in an intuitive way. For every point x ∈ X

N

call an x-graph g ∈ G(x) a collection of arrows (x′ → x′′) such that (i) every point x′ 6= x is the
origin of exactly one arrow, and (ii) the graph contains no cycle. Define

θN,η
x :=

∑

g∈G(x)

θN,η(g), θN,η(g) :=
∏

(x′→x′′)∈g
PN,η(x′, x′′).

Then one can show (see e.g. the Appendix of Young (1998), or Lemma 5.5, p.80, in Kifer (1988)),
that the invariant distribution weights at x ∈ X

N as

µN,η(x) =
θN,η
x

∑

y∈XN θ
N,η
y

.

From this representation, and hypothesis 2, it is easy to see that

− lim
η→0

η

N
log µN,η(x) = IN (x) :=WN

x − min
y∈XN

WN
y

for a bounded function WN : XN → R+ which is defined as

(∀x ∈ X
N) : WN

x := min{WN (g)|g ∈ G(x)},
WN(g) :=

∑

(x′→x′′)∈g
ρN (x′, x′′).

We immediately get the following general characterization of states which retain positive mass,
at an exponential rate, in the limiting invariant distribution, proved by Kandori et al. (1993) and
Young (1993).

Theorem A.1. Any weak limit of the sequence of distributions {µN,η}η≥0 as η → 0 is a probability
distribution µN with support contained in the set {x ∈ X

N |IN (x) = 0}.

Points in the set (IN )−1(0) are population states appearing with highest probability at a logarithmic
scale.

23



Definition 3. The set {x ∈ X
N |IN (x) = 0} is called the set of stochastically stable states in the

small noise limit.

We now apply these general results to our model of stochastic evolution. Therefore we set

XN,η
k/N := Y η

k , k ∈ N,

and identify the function ρN with

ρN (x, y) :=

{

c(x, y − x) if y − x ∈ 1
NU

N (x),
+∞ otherwise.

Recall the definition of the action functional (4.2), which associates to every path φN ∈ ΦN its
total costs, i.e.

LK(φN ) =

K−1
∑

k=0

ρN (φNk , φ
N
k+1) =

K−1
∑

k=0

c(φNk , φ
N
k+1 − φNk ),

L0 ≡ 0.

For every two points x, y ∈ X
N let us introduce the (normalized) cost function

1

N
CN (x, y) = inf{LK(φN )|φN ∈ ΦN

x,y,K ≥ 1}. (A.2)

We collect some properties of the cost function CN (x, y), which are easy to verify.

Lemma A.1. The cost function (A.2) has the following properties:

(i) For every x, y ∈ X
N we have that CN (x, y) ∈ [0,∞).

(ii) If x /∈ X
N
A then CN (x,B) = 0, and if x /∈ X

N
B then CN(x,A) = 0.

Hence, from any point outside the stability set of a strict equilibrium we can find a path which
connects that point with the other strict equilibrium point at zero costs. Therefore, let us introduce
the sets

DN
σ := {x ∈ X

N |CN (x, σ) = 0}, σ ∈ {A,B}. (A.3)

We can then prove the following fact, which also proves Theorem 4.1.

Lemma A.2. {x ∈ X
N |IN (x) = 0} ⊆ {A,B}.

Proof. If x /∈ {A,B} then, by Lemma A.1, CN (x,A) = 0 or CN(x,B) = 0. Suppose CN (x,A) = 0.
The case where CN (x,B) = 0 is analogous and therefore omitted. Consider a least cost x-graph
g∗x ∈ G(x) and let φNA,x represent the unique path connecting A = (m1,m2) with the point x on

the least cost graph g∗x. Delete this path and add a zero cost path φNx,A ∈ ΦN
x,A. This is possible by

hypothesis. Hence,

WN
A ≤WN

x − CN(A, x) + CN(x,A) =WN
x − CN(A, x) < WN

x .

Hence x ∈ DN
A ⇒ WN

A < WN
x . Similarly it follows that x ∈ DN

B ⇒ WN
B < WN

x . Hence, for all
x /∈ {A,B} it follows that IN (x) > 0.
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This shows that, in order to single out predictions which are expected to be the most persistent
ones, we are asked to compute the numbers WN

A ,W
N
B . These quantities are known in the game-

theoretic literature as the stochastic potentials of the equilibrium points A and B. This shows that
our analysis has to focus on the computation of the numbers WN

A and WN
B .19 In the following

Lemma we identify these functions as the well-known stochastic potentials, already introduced in
(4.3) and (4.4).

Lemma A.3. WN
σ = γNσ (w, x∗), σ ∈ {A,B}.

Proof. We proof this Lemma only for the case σ = A. The case for the other equilibrium point is
proved analogously, by only changing notation. We need to show that the costs accumulated on a
least cost graph gA ∈ G(A) equals the costs accumulated on the least cost path φNA ∈ ΦN

B . Therefore,
by Lemma A.1, we only need to consider states in X

N
B , as from all other states we find a null cost

path which connects them to A. However, on X
N
B the graph gA cannot have higher costs than the

path φNA , since otherwise we could form a path with lower costs, leading to a contradiction.

Hence, equilibrium selection is determined entirely by the selection coefficient

SN (w, x∗, α) = γNA (w, x∗, α) − γNB (w, x∗, α).

Let us now have a closer look at the programs lying behind the value functions γNσ (w, x∗), σ ∈
{A,B}. For sake of exposition let us focus on the the stochastic potential of equilibrium point A. It
is by now clear that stochastic potentials are the value functions of the following dynamic program:

min
∑K−1

k=0 c(xk, uk)
s.t. x0 = B, xK /∈ XB

xk+1 = xk +
1
N uk

uk ∈ UN (xk) ∀k = 0, 1, . . . ,K − 1
K ∈ N

(A.4)

where UN (x) := {u ∈ V |x + 1
N u ∈ X

N} is the set of feasible directions (the control variable)
at state x ∈ X

N . The dynamic program has a solution (it is a finite problem), which we denote
as a pair (φ̄NBA,K

N
BA). The (finite) sequence φ̄NBA is a least-cost path for the finite-state Markov

chain XN,η.20 The optimal value function of the dynamic program is exactly the action functional,
evaluated under a least-cost path. Since this is exactly the stochastic potential of a strict Nash
equilibrium, we have

γNA (w, x∗) = LKN
BA

(φ̄NBA), γ
N
B (w, x∗) = LKN

AB
(φ̄NAB).

The following Lemma gives a preliminary characterization of least cost paths.

Lemma A.4. Fix N ≥ N0 and consider the dynamic program (A.4). Then in order to wander
from point A to B (B to A) only non-increasing (non-decreasing) paths can be least-cost.

Proof. Focus on the problem to exit XB. From Lemma A.1 we only have to consider paths with
image on this set. But then any path which is not monotonic only makes the path longer, without
adding something to the performance. Since the length of a path is part of the minimization
problem, we can discard such paths.

19In particular, Lemma A.2 says that the mixed equilibrium point x∗, whenever it lies on the grid X
N , cannot be

a candidate for a stochastically stable state.
20The associated control sequence can be, of course, reconstructed by looking at the increments of the least-cost

path.
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Appendix B The large population limit

In this section we will show that solutions of a suitably defined variational problem are intimately
related to solutions of the dynamic program (A.4). To introduce a continuum approximation we
have to define our class of paths upon which we will then formulate the optimization problem. We
endow R

2 with the norm ||x|| := |x1| + |x2| for every x ∈ R
2. The 1-sphere with respect to this

norm is the set U := {x ∈ R
2| ||x|| = 1}. For every point x ∈ X we define the set of admissible

directions of motion as the tangent space at x

U(x) := {u ∈ U |x+ ǫu ∈ X for some ǫ > 0}.

Note that for every N ≥ N0 and x ∈ X
N we have UN (x) ⊆ U(x). Now, we need to declare a

continuous equivalent of the running cost index (4.1). For every tangent vector u ∈ U(x) a natural
extension of the running cost index of the finite problem is the mapping21

c(x, u) := 〈κ(x, u), u〉 (B.1)

The task of this section is to make it precise how and if the selection coefficients of the finite problem
are related to the selection coefficient of the continuum problem. This is achieved by the following
Theorem.

Theorem B.1.

lim
N→∞

|SN (w, x∗, α) − S(w, x∗, α)| = 0

This theorem says that the selection coefficients of the finite problems converge to the selection
coefficient of the continuum problem. The full justification of our large population analysis is,
however, obtained from Theorem 4.2 which we repeat at this point for the reader’s convenience.

Theorem B.2.

lim
N→∞

lim
η→0

| η
N

log
µN,η(B)

µN,η(A)
− S(w, x∗, α)| = 0.

B.1 Proof of Theorem B.1

We will show that γNA (w, x∗, α) → γA(w, x∗, α) and γNB (w, x∗, α) → γB(w, x∗, α) as N → ∞. It
suffices to show that γNA (w, x∗, α) → γA(w, x∗, α) since the same argument can be used to establish
existence of the other limit. This will prove Theorem B.1. We proceed in several steps.

Step 1: Let φ̄ denote an optimal control path, defined on the time domain [0, T ]. By sampling points
from the curve at the time points 0 < tN1 < tN2 . . . < tN

TN , where tNk := k/N and TN := ⌈NT ⌉,
we obtain a finite sequence of points

φ̄N := (φ̄(0), φ̄(tN1 ), . . . , φ̄(tNTN )).

For p ∈ P and z ∈ {0, 1, . . . , Np} let us introduce the family of intervals

Ip,Nz := (φ̄p)−1[z/N, (z + 1)/N) , 0 ≤ z ≤ Np − 1

Ip,NNp := (φ̄p)−1({mp}).

21Note that V ⊂ U , so that this cost index is indeed an extension of the discrete cost measure 4.1.
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If t ∈ Ip,Nz then z
N ≤ φ̄p(t) < z+1

N . Define the step function

ψp,N (t) :=
Np−1
∑

z=0

z

N
1
Ip,Nz

(t) +mp
1
Ip,N
Np

(t) (p ∈ P, N ≥ N0) (B.2)

Evaluating this function at the time points tN0 , . . . , t
N
TN−1

generates a finite sequence of (not

necessarily distinct) points on the grid X
N , ψN (tNk ), 0 ≤ k < TN . Geometrically, what we

achieve with this construction is a lower approximation of the curve φ̄ with a step function
in the (x1, x2)-plane. At the terminal point TN we complete the sequence by taking xN

TN the
closest point to φ̄(TN ) which lies in the set ∂XN

B , i.e.

ψN (TN ) = argmin{||φ̄(TN )− xN || : xN ∈ ∂XN
B }.

The so generated sequence is denoted, with an abuse of notation, as

ψN = (ψN (tN0 ), . . . , ψN (tTN )).

By construction we have that ψN (tN0 ) = B ≡ (0, 0). Moreover, ψN (t) ≤ φ̄(t) for all t ∈ [0, T )
and on this interval we have even ψN ↑ φ̄ uniformly. To establish uniform convergence on the
whole interval [0, T ], observe that TN ↓ T and that ψN (TN ) → φ̄(T ) as N → ∞. The last
point follows from the fact that the closest point projection is Lipschitz. Hence,

lim
N→∞

max
0≤t≤T

||ψN (t)− φ̄(t)|| = 0. (B.3)

For the two sequences φ̄N and ψN we can evaluate the action functional as

LTN (φ̄N ) =

TN−1
∑

k=0

〈

κ(φ̄(tNk ), φ̄(tNk+1)− φ̄(tNk )
〉

,

LTN (ψN ) =

TN−1
∑

k=0

〈

κ(ψN (tNk )), ψN (tNk+1)− ψN (tNk )
〉

.

Choose N sufficiently large, say N ≥ N0, so that for all N ≥ N0 the jumps of the path ψN

satisfy the constraints imposed on the admissible paths for the dynamic program. Then ψN

is an admissible path for the dynamic program (A.4). Therefore it is true that

LTN (ψN ) ≥ γNA (w, x∗, α) ∀N ≥ N0. (B.4)

Step 2: Given an arbitrary path ψ : [0, T ] → X we denote its variation as

V(ψ) := sup{
n−1
∑

k=0

||ψ(tNk+1)− ψ(tNk )|| : 0 = t0 < t1 < · · · < tn = T},

where the supremum is taken with respect to all partitions of [0, T ]. A curve ψ is of bounded
variation, or rectifiable, if V(ψ) < ∞. It is easy to see that all our paths are of bounded
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variation, i.e. rectifiable. For every N ≥ N0 the action functional LTN (φ̄N ) is a Riemann-
Stieltjes sum with respect to the curve φ̄, and the equidistant covering of [0, T ] introduced
above. Since φ̄ is absolutely continuous, it is of bounded variation, and hence rectifiable. Since
κ is uniformly continuous, the definition of line integrals as a sequence of Riemann-Stieltjes
sums gives us the following immediate fact:

lim
N→∞

LTN (φ̄N ) =

∫ T

0
c(φ̄(t), φ̄′(t))dt. (B.5)

Step 3: Eq. (B.5) will be used to prove that

lim
N→∞

|LTN (ψN )− LTN (φ̄N )| = 0.

By an iterated application of the triangle inequality we get

|LTN (ψN )−LTN (φ̄N )|

≤
TN−1
∑

k=0

|
〈

κ(ψN (tNk )), ψN (tNk+1)− ψN (tNk )
〉

−
〈

κ(φ̄(tNk )), φ̄N (tNk+1)− φ̄N (tNk )
〉

|.

Now, observe that we can bound each individual term in this sum as follows:

|
〈

κ(ψN (tNk )), ψN (tNk+1)− ψN (tNk )
〉

−
〈

κ(φ̄(tNk )), φ̄(tNk+1)− φ̄(tNk )
〉

|
= |

〈

κ(ψN (tNk ))− κ(φ̄(tNk )), ψN (tNk+1)− ψN (tNk )
〉

−
〈

κ(φ̄(tNk )), [(φ̄(tNk+1)− ψN (tNk+1))− (φ̄(tNk )− ψN (tNk ))]
〉

|
≤ |

〈

κ(ψN (tNk ))− κ(φ̄(tNk )), ψN (tNk+1)− ψN (tNk )
〉

|
+ |

〈

κ(φ̄(tNk )), [(φ̄(tNk+1)− ψN (tNk+1))− (φ̄(tNk )− ψN (tNk ))]
〉

|
≤ ||κ(ψN (tNk )− κ(φ̄(tNk )|| · ||ψN (tNk+1)− ψN (tNk )||
+ |

〈

κ(0), [(φ̄(tNk+1)− ψN (tNk+1))− (φ̄(tNk )− ψN (tNk ))]
〉

|

In this derivation we have used in the first bound the triangle inequality, and in the second
bound the Cauchy-Schwarz inequality, together with the fact that the largest cost always
occur at the beginning of the exit path, i.e. κ(0) ≥ κ(x) for all x ∈ XB . Setting K :=
max{κ1(0), κ2(0)}, we observe that

|
〈

κ(0), (φ̄(tNk+1)− ψN (tNk+1)− (φ̄(tNk )− ψN (tNk ))
〉

|
≤ K · ||(φ̄(tNk+1)− ψN (tNk+1)− (φ̄(tNk )− ψN (tNk ))||
≤ K

(

||(φ̄(tNk+1)− ψN (tNk+1)||+ ||(φ̄(tNk )− ψN (tNk ))||
)

.

This bound allows us to conclude that

∑

k

|
〈

κ(0), [(φ̄(tNk+1)− ψN (tNk+1))− (φ̄(tNk )− ψN (tNk ))]
〉

|

≤ 2K max
0≤t≤T

||φ̄(t)− ψN (t)||.
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By eq. (B.3) we find for every ǫ > 0 an index N0 = N(ǫ) such that for all N ≥ N0

max
0≤t≤T

||φ̄(t)− ψN (t)|| < ǫ.

This fact, and the basic estimate above, allows us to bound the differences in the action
functionals for N ≥ N0 as

|LTN (ψN )− LTN (φ̄N )| ≤ max
0≤t≤T

||κ(ψN (t)) − κ(φ̄(t))||V(ψN ) + ǫ.

As N → ∞ the step function ψN (·) converges uniformly to the optimal control path. The
function κ : X → R

2 is uniformly continuous and X compact. Hence, we can find for every
ǫ > 0 a population size N1 such that for all N ≥ N1

max
0≤t≤T

||κ(φ̄(t))− κ(ψN (t))|| < ǫ.

Hence, choosing N2 = max{N0, N1} gives us

|LTN (ψN )− LTN (φ̄N )| < ǫ

for all N ≥ N2. We conclude that

lim
N→∞

|LTN (ψN )− LTN (φ̄N )| = 0.

Together with eq. (B.5) this shows that

lim
N→∞

LTN (x̄N ) = γA(w, x∗, α). (B.6)

Step 4: We claim that
γNA (w, x∗, α) ≥ γA(w, x∗, α) ∀N ≥ N0. (B.7)

To prove this, let x̄N = (x̄N0 , . . . , x̄
N
KN ) denote a solution of the dynamic program. Given this

data set let us again introduce the time points tNk , so that 0 < tN1 < tN2 . . . < tN
KN ≡ TN =

1
NK

N . Then define the polygonal interpolation ψ̃N : [0, TN ] → X as

ψ̃N (0) := (0, 0),

ψ̃N (t) := x̄Nk + (Nt− k)(x̄Nk+1 − x̄Nk ), t ∈ [k/N, (k + 1)/N).

On each interval [k/N, (k+1)/N) the curve ψ̃N is continuously differentiable, where derivative
at the boundary has to be understood as the adequate one-sided derivative. Then we observe
that

LTN (ψ̃N ) =

KN−1
∑

k=0

∫ (k+1)/N

k/N

〈

κ(ψ̃N (tNk )), (ψ̃N )′(t)
〉

dt

≤
KN−1
∑

k=0

1

N

〈

κ(x̄Nk ), N(x̄Nk+1 − x̄Nk )
〉

= γNA (w, x∗, α).
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The inequality in the second line follows from the fact along the path out of the stability set of
B, costs are non-increasing, and therefore κ(x̄Nk ) is the largest cost point on the line connecting
x̄Nk with x̄Nk+1. Now, observe that each polygonal path ψ̃N (·), generated by the data provided
by the solution of the dynamic program (A.4), is an admissible curve for the optimal control
problem (4.7). This follows from the fact that ψ̃N (0) = B = (0, 0), ψ̃N (TN ) /∈ XB, and ψ̃N (·)
is piecewise continuously differentiable with admissible tangent vectors. Hence, it is true that

γNA (w, x∗, α) ≥ γA(w, x∗, α) ∀N ≥ N0. (B.8)

Step 5: We have shown in Step 1 and Eq. (B.7) that

LTN (ψN ) ≥ γNA (w, x∗, α) ≥ γA(w, x∗, α)

for all N ≥ N0. Now, from Step 3 we know that LTN (ψN ) → γA(w, x∗). Hence, it follows
that γNA (w, x∗) → γA(w, x∗) as well. This completes the proof.

B.2 Proof of Theorem 4.2

Note that for every N ≥ N0 we have that

| η
N

log
µN,η(B)

µN,η(A)
− S(w, x∗, α)| ≤ | η

N
log

µN,η(B)

µN,η(A)
− SN (w, x∗, α)|

+|SN (w, x∗, α)− S(w, x∗, α)|

Taking first η → 0 we get from Proposition 4.1 that

| η
N

log
µN,η(B)

µN,η(A)
− SN (w, x∗, α)| → 0

and then we take N → ∞ and cite Theorem B.1. This completes the proof of Theorem 4.2.

Appendix C Solutions to the optimal control problems

We now present a complete solution to the optimal control problem (4.11), and a-fortiori of problem
(4.12). Recall that the Hamiltonian associated with this problem is given by

H(x(t), u(t), λ(t)) = I(x(t), λ(t)) + u(t)G(x(t), λ(t)),

where

I(x, λ) := λ2 − λ0w(α(x
1
∗ − x)),

G(x, λ) : = λ0
(

w[α(x1∗ − x1)]− w(x2∗ − x2)
)

+ λ1 − λ2.

Necessary conditions for a solution (x̄, ū, T ) are (see e.g. Seierstadt and Sydsaeter, 1987, pp.83 and
pp. 143):

1. (λ0, λ1(t), λ2(t)) 6= (0, 0, 0), λ0 ∈ {0, 1},
2. ū(t) ∈ arg max

u∈[0,1]
H(x̄(t), u, λ̄(t)) for almost all t ∈ [0, T ];

3. d
dt λ̄

p(t) = − ∂H
∂xp (x̄(t), ū(t), λ(t)) whenever ū is continuous,
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4. λ̄p(T ) ≤ 0, with equality if xp(T ) < xp∗, p = 1, 2;

5. H(x̄(T ), λ̄(T ), ū(T )) = 0.

The situation λ0 = 0 is particular since in this case the cost functional would not influence the
solution. The following Lemma shows that we can safely ignore this case.

Lemma C.1. λ0 = 1 is always true.

Proof. For sake of contradiction suppose that λ0 = 0. Then the Hamiltonian reduces to H =
u(λ1−λ2)+λ2. By the maximum principle, ū = 1 if λ1 > λ2. Since the Hamiltonian is independent
of x, the adjoint functions are constant, i.e. λp ≡ λ̄p. Suppose that λ̄1 = λ̄2. Then u can be chosen
arbitrarily in [0, 1]. Suppose u ∈ (0, 1). Independently of the choice of the control, the condition
H(x(T ), u(T ), λ(T )) = 0 implies that λ̄2 = 0, a contradiction. Now, without loss of generality we
may assume that λ̄1 < λ̄2. Then ū = 0 is optimal, and it must be true that λ̄2 = 0. However, since
x̄1(T ) < x1∗, transversality requires that λ̄1 = 0, a contradiction.

Given this fact we can exclude λ0 from our set of adjoint functions. We use the notation λ := (λ1, λ2)
for the adjoint functions. These functions solve the differential equations

λ̇1(t) = −∂H
∂x1

[x(t), u(t), λ] = −(1− u)αw′[α(x1∗ − x1)], (C.1)

λ̇2(t) = −∂H
∂x2

[x(t), u(t), λ] = −uw′(x2∗ − x2). (C.2)

Since the Hamiltonian is linear in the control variable we can formulate the Maximum principle as

ū(t) =

{

1 if G(x(t), λ(t)) > 0,
0 if G(x(t), λ(t)) < 0.

(C.3)

If G(x(t), λ(t)) ≡ 0 occurs on a path, the decision rule (C.3) gives us no information where we
should direct the path to. If this occurs then we have

w[α(x1∗ − x1)]− w(x2∗ − x2) = λ2 − λ1. (C.4)

Taking time derivatives in (C.4) and using (C.1)-(C.2) we obtain the marginal-cost equalization
condition

w′(x2∗ − x2) = αw′[α(x1∗ − x1)]. (C.5)

This equation determines a one-dimensional manifold in the (x1, x2)-plane by the map

h(x1, x2) := w′(x2∗ − x2)− αw′[α(x1∗ − x1)] ≡ 0.

The set Σ := h−1(0) is the singular surface, a one-dimensional manifold on which u ∈ (0, 1) holds.
If we assume that κ is C2, we can compute along a path x(t) = (x1(t), x2(t)) ∈ Σ

d

d t
h(x1(t), x2(t)) = −(1− u(t))w′′(x2∗ − x2(t)) + α2u(t)w′′[α(x1∗ − x1(t))] ≡ 0

⇒ u(t) = g(x(t);x∗, α) :=
w′′(x2∗ − x2(t))

w′′(x2∗ − x2(t)) + α2w′′[α(x1∗ − x1(t))]
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Suppose a path x(·) hits the target set ∂XB while following the defining curve of the manifold Σ.
Then transversality requires that at the hitting time T we have H(x(T ), u(T ), λ(T )) = 0. Since
u(T ) ∈ (0, 1), it follows that I(x(T ), λ(T )) = G(x(T ), λ(T )) = 0. Since

I(x(T ), λ(T )) = 0 ⇒ λ2(T ) = w[α(x1∗ − x1(T ))],

it must be true that x1(T ) = x1∗, as transversality requires λ2(T ) ≤ 0. Combining this with the
condition G(x(T ), λ(T )) = 0 shows that also x2(T ) = x2∗ must be true. To summarize:

Observation 2. (a) If a path x(·) hits the target set ∂XB by following the defining curve of Σ,
it must hit the mixed equilibrium point (x1∗, x

2
∗).

(b) If w(π) = max{π, 0}, e.g. the unlikelihood function of the logit choice model, then if α 6= 1
no singular control surface appears.

Part (b) of this observation has the important implication that for the logit choice function almost
always controls of the “bang-bang”-type must be optimal. The only chance for an interior control
appears in the non-generic case when α = 1.22

The next observation recalls a well-known fact that for autonomous optimal control problems the
Hamiltonian is a constant of motion under any solution candidate.

Lemma C.2. Consider a triple (x(·), u(·), λ(·)) satisfying the Maximum principle. Then the Hamil-
tonian is a constant of motion, i.e.

d

d t
H[x(t), u(t), λ(t)] = 0 ∀t ∈ [0, T ].

Proof. We denote by Hx = ( ∂H
∂x1 ,

∂H
∂x2 )

⊤ the column vector of partial derivatives w.r.t. x. Then,
using this notation, we see that

d

d t
H[x(t), u(t), λ(t)] = 〈Hx[x(t), u(t), λ(t)], ẋ(t)〉+Hu[x(t), u(t), λ(t)]u̇(t)

+
〈

Hλ[x(t), u(t), λ(t)], λ̇(t)
〉

= 〈Hx[x(t), u(t), λ(t)], (ẋ(t)−Hλ[x(t), u(t), λ(t)])〉
+Hu[x(t), u(t), λ(t)]u̇(t)

where we have used the adjoint equation λ̇(t) = −Hx[x(t), u(t), λ(t)] in the second line. Since
Hλ[x(t), u(t), λ(t)] = (u(t), 1 − u(t))⊤ = (ẋ1(t), ẋ2(t))⊤ = ẋ(t)⊤, this reduces to

d

d t
H[x(t), u(t), λ(t)] = Hu[x(t), u(t), λ(t)]u̇(t).

If u(t) is either 0 or 1 on some interval (t0, t1), then u̇(t) = 0,∀t ∈ (t0, t1), and the claim follows.
If u(t) ∈ (0, 1) on some interval (t0, t1), then the Maximum principle gives us Hu[x(t), u(t), λ(t)] =
0,∀t ∈ (t0, t1).

From this observation we obtain the following result:

22Genericity refers here to the pure-strategy payoffs in the game.
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Corollary C.1. Every solution candidate (x̄(·), ū(·), λ̄(·), T ) must satisfy

(∀t ∈ [0, T ]) : H(x̄(t), ū(t), λ̄(t)) = 0. (C.6)

Proof. The terminal point T must be chosen such that H(x̄(T ), ū(T ), λ̄(T )) = 0. Since the Hamil-
tonian is a constant of motion, the triple (x̄(·), ū(·), λ̄(·)) must stay on the same level set of the
Hamiltonian for all times.

Therefore, if a path is on the manifold Σ not only h(x1(t), x2(t)) ≡ 0 must be true, but also the
adjoint functions are completely determined as

λ1(t) = w(x2∗ − x2(t)), λ2(t) = w[α(x1∗ − x1(t))]. (C.7)

This holds since I(x(t), λ(t)) = G(x(t), λ(t)) ≡ 0. Given all this information we are now ready to
verify Propositions 4.3 and 4.4.

C.1 Proof of Proposition 4.3

Suppose there exists an optimal control path with ū(t) = 0 for t ∈ [0, τ) for some τ ≤ T . This
means that x̄1(t) = 0 and x̄2(t) = t, t ∈ [0, τ). Then from Lemma C.2 we know that for all t ∈ [0, τ)

H(x̄(t), ū(t), λ̄(t)) = I(x̄(t), λ̄(t)) = 0 ⇒ λ̄2(t) ≡ w(αx1∗).

From (C.1) we get
d

d t
λ̄(t) = −αw′(αx1∗) ≡ −a⇒ λ̄1(t) = −at+K1.

The constant K1 must satisfy the condition

G(x̄(0), λ̄(0)) = K1 − w(x2∗) < 0 ⇒ K1 < w(x2∗).

Additionally, at time t = τ there should be a change in the control. Hence G(x̄(τ), λ̄(τ)) =
−aτ +K1 − w(x2∗ − τ) = 0, form which it follows that

τ =
K1 − w(x2∗ − τ)

a
. (C.8)

At t = τ the path x̄(·) hits the manifold Σ. Hence, for all t ≥ τ the state variables satisfy the
relations

x̄1(t) =

∫ t

τ
ū(s) d s, x̄2(t) = t− x̄1(t)

where ū(t) = g(x̄(t);x∗, α) as defined in equation (4.14). By (C.5) we get the condition

h(x̄1(τ), x̄2(τ)) = 0 ⇒ w′(x2∗ − τ) = αw′(αx1∗) = a.

Under strict convexity of the waste function w, its first derivative w′ is C1 and monotonically
increasing, and therefore possesses a continuous inverse function (w′)−1, which is also monotonically
increasing. Then we obtain

τ = x2∗ − (w′)−1(a), (C.9)

33



provided that this expression is nonnegative. This is the case if and only if w′(x2∗) ≥ a = αw′(αx1∗).
23

Assuming that this relation holds, we can use (C.8) to determine the constant K1 as

K1 = w(x2∗ − τ) + aτ. (C.10)

From time τ onwards the path x̄(·) is on the singular surface Σ, where the adjoint functions are given
by (C.7). From Observation 2 we know that x̄(t) → (x1∗, x

2
∗) as t→ T . Since x̄1(t) + x̄2(t) = t, ∀t,

it immediately follows that T = x1∗ + x2∗. It remains to show that the constructed path satisfies the
Maximum principle on the interval [0, τ). Note that for all t ∈ [0, τ)

G(x̄(t), λ̄(t)) = λ̄1(t)− w(x2∗ − t)

= a(τ − t) + w(x2∗ − τ)− w(x2∗ − t).

At t = 0 this reduces to
G(x̄(0), λ̄(0)) = aτ + w(x2∗ − τ)− w(x2∗).

By the mean-value theorem there exists a ξ ∈ (x2∗ − τ, x2∗) such that

w(x2∗)− w(x2∗ − τ) = w′(ξ)τ.

Since x2∗ − τ = (w′)−1(a) and w′ is monotonically increasing, it follows that w′(ξ) > a. Hence

G(x̄(0), λ̄(0)) = aτ − w′(ξ)τ < aτ − aτ = 0.

Additionally, we observe that

d

d t
G(x̄(t), λ̄(t)) = w′(x2∗ − t)− a > w′(x2∗ − τ)− a = w′ ((w′)−1(a)

)

− a = 0.

Consequently G is initially negative and monotonically increasing on [0, τ), with unique root at
t = τ . Setting a ≡ a(w;x∗, α) ≤ b(w;x∗, α) = w′(x2∗) and τ = τ(w;x∗, α), we have verified that the
proposed triple (x̄(·), ū(·), T ) satisfies all conditions provided by the Maximum principle. Moreover,
the adjoint functions satisfy the transversality conditions. The construction of an optimal control
path with u(t) = 1 on [0, τ) is similar. From Lemma C.2 we know that

H(x̄(t), ū(t), λ(t)) = 0 ⇒ λ1(t) = w(x2∗).

The adjoint equations (C.1)-(C.2) tell us that

λ̇1(t) = 0, λ̇2(t) = −w′(x2∗) ≡ −b

on [0, τ). Hence, λ1(t) ≡ w(x2∗) and λ2(t) = −bt+K2 for all t ∈ [0, τ). The regime-switching time
τ is defined by the condition

G(x̄(τ), λ(τ)) = 0 ⇒ τ =
K2 − w[α(x1∗ − τ)]

b
.

23It is not difficult to verify that in the case where w′(x2
∗) = αw′(αx1

∗) it is true that τ = 0. Hence, in this situation
the path directly starts from the singular surface Σ.
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At t = τ the path hits the manifold Σ and we get therefore the additional condition

w′(x2∗) = αw′[α(x1∗ − τ)] ⇒ τ = x1∗ −
1

α
(w′)−1(b/α)

where we have exploited the strict convexity of the unlikelihood function. We see that τ > 0 if and
only if b(w;x∗, α) = w′(x2∗) < αw′(αx1∗) = a(w;x∗, α). The constant K2 is then given by

K2 = w[α(x1∗ − τ)] + bτ.

Hence, the adjoint function on [0, τ) are λ1(t) = w(x2∗), and λ2(t) = b(τ − t) +w[α(x1∗ − τ)]. From
time τ onwards the path follows the defining curve of the manifold Σ, whose shape we already
know. It remains to show that the Maximum principle is satisfied on [0, τ). At t = 0 we see that

G(x̄(0), λ̄(0)) = −bτ + w(αx1∗)− w[α(x1∗ − τ)] = −bτ + w′(ξ)ατ

where ξ ∈ (α(x1∗ − τ), αx1∗), whose existence is guaranteed by the mean-value theorem. From the
monotonicity of κ′ it follows that αw′ > b, and consequently

G(x̄(0), λ̄(0)) > −bτ + bτ = 0.

Since,
d

d t
G(x̄(t), λ̄(t)) = b− αw′[α(x1∗ − τ)] ≤ b− αw′ ((w′)−1(b/α)

)

= 0

the result follows as above.

Since the Maximum principle gives only necessary conditions for optimal solutions, we don’t actually
know whether the solutions of Propositions 4.3-4.4 are really optimal. To verify this, denote by
(x̄(·), ū(·)) a candidate for a solution identified in Propositions 4.3 and 4.4, respectively. Consider
a vector λ(t) = (λ1(t), λ2(t)) such that

λ̇p(t) = −∂H
∂xp

[x̄(t), ū(t), λ(t)], p = 1, 2 (C.11)

∂H

∂u
[x̄(t), ū(t), λ(t)](ū(t)− u) ≥ 0 ∀u ∈ [0, 1],∀t ∈ [0, T ] (C.12)

H(x, u, λ(t)) is concave in (x, u) for all t. By the Mangasarian sufficiency theorem (Seierstadt and Sydsaeter,
1987, pp. 103) (x̄(·), ū(·)) is indeed a solution of the optimal control problem (4.11), respectively
(4.12). In particular, we can choose λ(t) = λ̄(t) to test the conditions. It is easily verified that

∂H

∂u
[x̄(t), ū(t), λ̄(t)](ū(t)− u) = G(x̄(t), λ̄(t))(ū(t)− u) ≥ 0

for all u ∈ [0, 1] and all t ∈ [0, T ]. Hence, the pair (x̄(·), ū(·)) satisfies also all sufficient conditions.
Hence, we have proved the following result:

Proposition C.1. The triple (x̄(·), ū(·), T ) identified in Propositions 4.3-4.4 is a solution of the
optimal control problem (4.11), respectively (4.12).
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Having verified that the identified solution candidates are indeed optimal solutions, we are ready
to present the general formulas for the stochastic potentials of the two strict Nash equilibria. Let
us introduce the maps ĉ1(x2) := w(|x2∗ − x2|), ĉ2(x1) := w(α|x1∗ − x1|), and the 1-form

ω := ĉ1dx1 + ĉ2dx2, (C.13)

where dx1, dx2 are the differentials associated with the canonical coordinate functions of R2. The
1-form ω is continuously differentiable on X\{(x1∗, x2∗)}. Denote by TA = x1∗+x

2
∗ and TB =M−TA,

the respective hitting times of the optimal control paths identified for problems (4.11) and (4.12).
Moreover, let us call φ̄BA : [0, TA] → XB and φ̄AB : [0, TB ] → XA the curves corresponding to
the respective optimal control paths of problems (4.11) and (4.12). These curves are continuously
differentiable almost everywhere. Consequently, we can formulate the stochastic potentials in the
elegant way24

γA(w, x∗, α) =
∫

φ̄BA

ω :=

∫ TA

0

(

ĉ1(φ̄2BA(t))(φ̄
1
BA)

′(t) + ĉ2(φ̄1BA(t))(φ̄
2
BA)

′(t)
)

d t,

and similarly

γB(w, x∗, α) = −
∫

φ̄AB

ω := −
∫ TB

0

(

ĉ1(ψ2
AB(t))(φ̄

1
AB)

′(t) + ĉ2(φ̄1AB(t))(φ̄
2
AB)

′(t)
)

d t.

Propositions 4.3 and 4.4 give us a complete characterization of optimal control paths for all noisy-
best response protocols which have strictly convex unlikelihood functions on (0,∞). As a corollary
we obtain equilibrium selection results for the probit choice function.

C.2 Solution for the Logit choice

We proof for each of the three cases that the proposed solution satisfies all the necessary conditions
for an optimal solution.

(a) We need to verify that the proposed solution satisfies the necessary conditions given by Max-
imum principle and the appropriate transversality conditions (see Seierstadt and Sydsaeter,
1987, pp.85):

λ1(T ) no condition (C.14)

λ2(T ) ≤ 0 with equality if x2(T ) < x2∗. (C.15)

The adjoint functions must satisfy equations (C.1)-(C.2), which are in our case

λ̇1 = 0, λ̇2(t) = −1 ⇒ λ1(t) ≡ A ,λ2(t) = −t+B,

for constants A,B which have to be adequately chosen. The Hamiltonian is given by

H(x̄(t), ū(t), λ̄(t)) = λ̄1(t)− x2∗ = A− x2∗ = 0

⇒A = x2∗.

24The minus sign in the definition of γB(w, x∗, α) comes from the fact that φ̄′
AB ≤ 0 almost everywhere. We could

get rid of the minus sign by integrating over the time-reversed path, so the way of writing the formula is a matter of
taste.
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The control ū satisfies the Maximum principle if and only if

G(x̄(t), λ(t)) = α(x1∗ − t)− x2∗ + x2∗ + t−B

= αx1∗ −B + t(1− α) > 0

for all t ∈ [0, T ), with an eventual equality at the terminal point t = T = x1∗. At t = 0 this
requires B < αx1∗. Transversality requires that λ2(T ) = 0. Therefore B = x1∗ < αx1∗ iff α > 1.
We observe that d

d tG(x̄(t), λ(t)) = 1− w < 0 for α > 1, and G vanishes exactly at the point
t = x1∗. Hence, G(x̄(t), λ̄(t)) ≥ 0 for all t ∈ [0, T ] with equality only at the terminal point
t = T = x1∗. Hence, the triple (x̄, ū, T ) satisfies all conditions provided by the Maximum
principle, and is therefore a candidate for an optimum. Since ∂H

∂u = G ≥ 0, we observe that

G(x̄(t), λ̄(t))(ū(t)− u) ≥ 0 ∀u ∈ [0, 1],∀t ∈ [0, T ].

The control region is the unit interval [0, 1], a convex and compact set, and the adjoint
functions are continuously differentiable. Moreover H(x, u, λ) is concave in (x, u). Thus, the
proposed solution satisfies the Mangasarian sufficiency conditions (Seierstadt and Sydsaeter,
1987, Theorem 4, pp. 105) and is therefore a solution to the auxiliary optimal control problem.

(b) As in (a) we need to verify that the proposed solution satisfies the Maximum principle with
the appropriate transversality conditions

λ1(T ) ≤ 0, with equality if x1(T ) < x1∗ (C.16)

λ2(T ) no condition (C.17)

Under ū(t) ≡ 0 the adjoint equations (C.1)-(C.2) read as

λ̇1(t) = −α⇒ λ1(t) = −αt+A

λ̇2(t) = 0 ⇒ λ2(t) ≡ B

The Hamiltonian is given by

H(x̄(t), ū(t), λ(t)) = λ2(t)− αx1∗ = 0

⇒B = αx1∗

The proposed control ū satisfies the Maximum principle iff

G(x̄(t), λ(t)) = αx1∗ − (x2∗ − t)− αt+A− αx1∗

= A− x2∗ + t(1− α) ≤ 0

for all t ∈ [0, T ], with equality eventually at the terminal point t = T = x2∗. At t = 0 this
requires that A ≤ x2∗. Transversality requires that λ1(T ) = −αT + A = 0 ⇒ A = αx2∗ < x2∗
iff α < 1. Moreover d

d tG(x̄(t), λ̄(t)) = 1 − α > 0 iff α < 1. Hence G is initially negative and
monotonically increasing over time, with unique root at t = T = x2∗. Hence, the proposed
solution satisfies the Maximum principle and the adjoint functions satisfy the corresponding
transversality conditions. Sufficiency follows again from the Mangasarian sufficiency theorem.
We have ∂H

∂u = G ≤ 0, with equality only at t = T . Thus,

G(x̄(t), λ̄(t))(ū(t)− u) ≥ 0 ∀u ∈ [0, 1],∀t ∈ [0, T ].
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(c) If α = 1 the adjoint equations (C.1)-(C.2) are

λ̇1(t) = −(1− u(t)) = −ẋ2(t) ⇒ λ1(t) = −x2(t) +A

λ̇2(t) = −u(t) = −ẋ1(t) ⇒ λ2(t) = −x1(t) +B

We see that
G(x(t), λ(t)) = x1∗ − x2∗ +A−B = const

and
I(x(t), λ(t)) = B − x1∗.

If u = 0 then B = x1∗. If u = 1 then A = x2∗. If u ∈ (0, 1) then both must be true. Suppose
that ū = 0. Then G(x(t), λ(t)) = −x2∗ + A ≤ 0 ⇒ A ≤ x2∗. Transversality requires that
λ1(T ) = 0, so that A = x2∗. Suppose that ū = 1. Then G(x(t), λ(t)) = B−x1∗ ≥ 0 ⇒ B ≥ x1∗.
Again, by transversality, we conclude that B = x1∗. Hence, ū ∈ {0, 1} together with these
adjoint functions satisfies the necessary conditions for an optimal control.

This completes the proof of Proposition 4.7.

We can also show that no optimal control can exhibit a jump discontinuity at some intermediate
point τ ∈ [0, T ]. Suppose that α < 1 and consider the control

u(t) =

{

0 if t ∈ [0, τ ],
1 if t ∈ (τ, T ]

where τ ≤ T . The initial segment of the path x(·) generated by the proposed control is as in part
(b) of Proposition 4.7. Hence for all t ∈ [0, τ) we have

x(t) = (0, t), λ1(t) = −αt+A,λ2(t) = αx1∗, A ≤ x2∗.

At t = τ there is a jump in the control. In terms of the Maximum principle this implies that

G(x(τ), λ(τ)) = 0 ⇒ τ =
x2∗ −A

1− α
≥ 0.

On (τ, T ] the adjoint equations (C.1)-(C.2) read as

λ̇1(t) = 0 ⇒ λ1(t) ≡ A− ατ = x2∗ − τ

λ̇2(t) = −1 ⇒ λ2(t) = −(t− τ) + αx1∗.

Some formal manipulations give

G(x(t), λ(t)) = (t− τ)(1− α) ≥ 0

for all t ≥ τ since w < 1 by hypothesis. Since x(t) → (x1∗, τ) a transversality condition for any
optimal control problem must be λ2(T ) = 0, or equivalently (T − τ) = αx1∗. Since x(T ) = x1∗,
it must be true that T − τ = x1∗ > αx1∗, a contradiction. Moreover we need that λ1(T ) ≤ 0, or
equivalently τ ≥ x2∗, which is another contradiction. Hence τ = T = x2∗ must be true, and we
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obtain the path of part (b) of Proposition 4.7. Similarly we can show that there can be no optimal
control of the form

u(t) =

{

1 if t ∈ [0, τ ],
0 if t ∈ (τ, T ]

for τ ≤ T if α > 1.
Finally, observe that if α > 1, there can be no path that has u(t) ≡ 0. This follows immediately
from G(x(0), λ(0)) = A−x2∗ = αx2∗ − x2∗ > 0, contradiction! In the same way we see that there can
be no path with u(t) ≡ 1 if α < 1. This follows because we know that G(x(0), λ(0)) = αx1∗ −B =
(α− 1)x1∗ < 0, contradiction!
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