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Abstract
Constructing a directed graph for any finite game, this paper provides a simple characteri-
zation of potential games in terms of the path independence property of this graph. Using
this characterization, we propose an algorithm to determine if a game is potential or not.
The number of equations required in this algorithm is lower than the number obtained in
the algorithms proposed in the recent papers of Hino (2010) and Sandholm (2010).
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1 Introduction

A potential of a game is a function of its strategy profiles such that if a profile is obtained
from another through a unilateral deviation by one player, then the difference in the potential
between these profiles equals the gain in payoff of the deviating player. If a game admits
a potential, it is called a potential game. Introduced by Monderer and Shapley (1996), the
notion of potential games has been useful in enhancing the understanding of issues as diverse
as network congestion, evolutionary dynamics and strategic complementarity (see, e.g., Ui,
2000; Dubey et al., 2006; Hino, 2010; Sandholm, 2010; and the references therein).

This paper provides a simple characterization of potential games. Consider any game
with finitely many players and strategies. For every player, we denote one of its strategy as
the “zero strategy” and call the rest “positive strategies”. A profile s̃ is called a predecessor
of a profile s if s is obtained from s̃ via a unilateral deviation of a player from its zero strategy
to some positive strategy. We construct a weighted directed graph from the game as follows.
The vertices of the graph are the strategy profiles, with the profile with all zero strategies
z acting as the origin. For any predecessor-successor pair (s̃, s), a directed edge is drawn
from s̃ to s and the weight assigned to this edge is the gain in payoff of the corresponding
deviating player. The length of any directed path in this graph is the sum of weights of all
edges that appear in the path. For any profile s, the path independence property holds if all
paths from the origin z to s have the same length. We show that a game admits a potential
if and only if the path independence property holds for all vertices of its associated graph.1

Based on the characterization above, we construct an algorithm to determine whether
a game is potential or not. For all two-person games, the number of equations required in
our algorithm is the same as the number required in the ones2 proposed by Hino (2010) and
Sandholm (2010) and for games with more than two players, our algorithm requires a strictly
lower number of equations.

We present the model and our results in the next section.

2 The model

Let Γ = 〈N, (Si)i∈N , (ui)i∈N〉 be a game in strategic form with a finite number of players,
with each player having a finite number of strategies. Let N = {1, . . . , n} be the set of
players, Si the set of strategies of player i and ui : S → R the payoff function of player i,
where S = ×i∈NSi is the set of strategy profiles and R the set of real numbers. Also denote
S−i = ×j 6=iSj.

Player i has ki ≥ 1 strategies, i.e., |Si| = ki. It will be useful for our analysis to denote
Si = {0, . . . , ki − 1}. Thus each player i has a distinct zero strategy (si = 0) and possibly
other positive strategies (si > 0).

Definition 1 (Monderer and Shapley, 1996) The game Γ is a potential game if there is a
function P : S → R (called a potential function of Γ) such that for every i ∈ N, si, s

′
i ∈ Si

1The path independence property is closely related with potential functions. See, e.g., Calvo and Santos
(1997).

2Both of these algorithms require checking the same number of equations, but Hino’s algorithm involves
less storage.
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and s−i ∈ S−i

ui(si, s−i)− ui(s
′
i, s−i) = P (si, s−i)− P (s′i, s−i) (1)

We begin with the following simple observation.

Lemma 1 The game Γ is a potential game if and only if there is a function P : S → R such
that for every i ∈ N, si ∈ Si and s−i ∈ S−i

ui(si, s−i)− ui(0, s−i) = P (si, s−i)− P (0, s−i) (2)

Proof If Γ is a potential game, then (1) holds for all (si, s
′
i, s−i), so in particular, it holds

for all (si, 0, s−i). To prove the only if part, suppose there is P : S → R such that (2) holds.
Then

ui(si, s−i)− ui(s
′
i, s−i) = [ui(si, s−i)− ui(0, s−i)]− [ui(s

′
i, s−i)− ui(0, s−i)]

= [P (si, s−i)− P (0, s−i)]− [P (s′i, s−i)− P (0, s−i)] = P (si, s−i)− P (s′i, s−i)

This completes the proof.

In light of Lemma 1, the zero strategy of a player will play a central role in our analysis
to determine whether a game is potential or not. Denote the strategy profile where every
player plays its zero strategy by z, i.e.,

z ≡ (0, . . . , 0) (3)

It will be useful to classify the strategy profiles according to the number of zero strategies
in a profile. Specifically, for t = 0, . . . n, define

Vt := {s ∈ S|s has t positive strategies} (4)

Thus, Vt is the set of all strategy profiles where n− t players play their zero strategies and
the remaining t players play positive strategies. Note that Vt ∩ Vt′ = ∅ for t 6= t′ and any
strategy profile s is an element of Vt for some t = 0, . . . , n, so we can partition S = ∪n

t=0Vt.
Also observe that V0 is the singleton set {z}.
Definition 2 Let s ∈ Vt. A strategy profile s̃ ∈ Vt−1 is called a predecessor of s (and s a
successor of s̃) if there is a player i such that (a) si > 0 and s̃i = 0 and (b) sj = s̃j for all
j 6= i. The player i for which (a) and (b) hold is called the critical player of the pair (s̃, s).

Since there are t players who play positive strategies in s ∈ Vt, any such s has exactly t
predecessors, each having a different critical player. In particular, z has no predecessor and
any s ∈ V1 has only one predecessor z.

By Definition 2, if s̃ is a predecessor of s, then s = (si, s−i) and s̃ = (0, s−i) with si > 0,
where i is the critical player of (s̃, s). The profile s can be reached from profile s̃ if player i
makes a unilateral deviation from its zero strategy to the strategy si. For any predecessor-
successor pair (s̃, s) with critical player i, denote

∆(s̃, s) := ui(s)− ui(s̃) = ui(si, s−i)− ui(0, s−i) (5)

Thus, ∆(s̃, s) presents the gain in payoff of the critical player from its deviation when we
move from s̃ to s.
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Consider condition (2) of Lemma 1. Note that if si = 0, this condition holds for any
function P, so let si > 0. Using Definition 2 and (5) in Lemma 1, it follows that a function
P : S → R is a potential function if and only if for every predecessor-successor pair (s̃, s),

P (s)− P (s̃) = ∆(s̃, s) (6)

2.1 A directed graph representation of Γ

Motivated by (6), we construct the weighted directed graph G(Γ) from the game Γ as follows.

(i) Present each s ∈ S = ∪n
t=0Vt as a vertex.

(ii) For any predecessor-successor pair (s̃, s), draw a directed edge which originates at s̃
and terminates at s. Denote this edge by (s̃, s).

(iii) Put the weight ∆(s̃, s) (given by (5)) on the edge (s̃, s).

Remark 1 Denote by et the number of edges that terminate at some s ∈ Vt. Since any s ∈ Vt

has t predecessors, et = t|Vt|. The total number of edges3 in G is η(G) =
∑n

t=0 et =
∑n

t=0 t|Vt|.
Definition 3 A sequence γ = (y0, y1, . . . , ym) is a directed path of G(Γ) if for all `, y` is a
predecessor of y`+1. The vertex y0 is called the origin and ym the terminus of the path γ.
The number of edges in the path γ is m, given by (y0, y1), . . . , (ym−1, ym). The length of the
path γ is the sum of weights over these m edges, given by

L(γ) := ∆(y0, y1) + ∆(y1, y2) + . . .+ ∆(ym−1, ym) =
m−1∑
t=0

∆(y`, y`+1) (7)

If m = 0, the path γ = (y0) has only one vertex and no edge, so its length is zero.

One immediate property of directed paths can be noted. By (7), it follows that for two
directed paths γ = (y0, . . . , ym) and γ′ = (y0, . . . , ym−1),

L(γ) = L(γ′) + ∆(ym−1, ym) (8)

2.2 Path independence: a characterization of potential games

Let s ∈ Vt for some t ≥ 0. It will be useful for our analysis to consider all directed paths
with origin at z and terminus at s. Since the number of players with positive strategies at
s ∈ Vt is t, to reach s from z, we need t unilateral deviations. As these deviations can occur
in t! different ways, this is the number of directed paths with origin z and terminus s. Each
of these paths has exactly t edges.

3If all players have the same number of strategies k, then |Vt| =
(
n
t

)
(k − 1)t and η(G) = n(k − 1)kn−1.

Sandholm (2010, p.9) also proposes a construction of a graph from a game as follows: “...one first assigns
the function an arbitrary value at an arbitrary initial strategy profile s0 ∈ S. One then constructs a tree that
reaches every other strategy profile in S, and whose edges all correspond to unilateral deviations to adjacent
strategies.” In this construction, there is an edge between any two adjacent strategies, so the number of
edges is n

(
k
2

)
kn−1 ≥ η(G) for any k ≥ 2. The graph G constructed in this paper has the minimal number of

edges and thus involves lower storage. See also Section 2.4.
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Definition 4 The path independence property (PI) holds for s ∈ S if all directed paths with
origin z and terminus s have the same length.

Remark 2 Note that PI holds vacuously for z (which is the only element of V0). If s ∈ V1,
its only predecessor is z and there is only path γ = (z, s) with origin z and terminus s. By
(7) and (5), this path has length

∆(z, s) = ui(s)− ui(z) (9)

Therefore, PI trivially holds for any s ∈ V1.

Theorem 1 The game Γ is a potential game if and only if the path independence property
holds for all s ∈ S.
Proof The “if part”: Suppose PI holds for all s ∈ S. Then all directed paths with origin
z and terminus s have the same length. Denote this length by λ(s). Define the function
P : S → R as

P (s) := λ(s) (10)

Observe in particular that P (z) = λ(z) = 0. We prove that P defined in (10) is a potential
function of Γ by showing that P satisfies (6) for any predecessor-successor pair (s̃, s).

First suppose s ∈ V1. Then we know from Remark 2 that the only predecessor of s is z and
there is only one path with origin z and terminus s. This path has length ∆(z, s), so for this
case, P (s) = λ(s) = ∆(z, s). Since P (z) = 0, we have P (s)−P (z) = ∆(z, s) = ui(s)−ui(z),
so (6) holds.

Next suppose s ∈ Vt for some t ≥ 2. Consider any predecessor s̃ ∈ Vt−1 of s. Let
γ = (y0, . . . , yt−1, yt) be a directed path with origin z and terminus s that passes through
s̃, i.e., y0 = z, yt−1 = s̃ and yt = s. Consider the path γ′ = (y0, . . . , yt−1) with origin z and
terminus s̃. Then it follows by (8) that

L(γ) = L(γ′) + ∆(yt−1, yt) = L(γ′) + ∆(s̃, s) (11)

Since PI holds for both s and s̃, we have L(γ) = λ(s) = P (s) and L(γ′) = λ(s̃) = P (s̃).
Using this in (11), we have P (s) − P (s̃) = ∆(s̃, s), so (6) holds for this case as well, which
completes the proof of the “if part”.

The “only if part”: Suppose Γ is a potential game. Then there is a function P such that
(6) holds for any predecessor-successor pair (s̃, s). By (7), the length of any directed path
γ = (y0, . . . , ym) is L(γ) =

∑m−1
`=0 ∆(y`, y`+1). Since (y`, y`+1) is a predecessor-successor pair,

by (6), we have ∆(y`, y`+1) = P (y`+1) − P (y`) for all `, so that L(γ) =
∑m−1

`=0 [P (y`+1) −
P (y`)] = P (ym)− P (y0). Taking y0 = z and ym = s, all paths with origin z and terminus s
has the same length P (s)− P (z), proving that PI holds for s.

2.3 An algorithm to determine a potential game

Theorem 2 Denote

An(k1, . . . , kn) :=
n∑

t=2

(t− 1)|Vt| (12)

To determine whether Γ is a potential game or not, it is sufficient to check An equations.
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Proof Using Theorem 1, we determine whether Γ is a potential game or not by checking if
PI holds for all s ∈ S = ∪n

t=0Vt. Recall from Remark 2 that PI always holds for all s ∈ V0∪V1.
We check the property recursively as follows.

Let t ≥ 2. Suppose PI holds for all s ∈ V` for ` = 0, . . . , t− 1. Consider any s ∈ Vt. Any
directed path with origin z and terminus s must pass through some predecessor s̃ ∈ Vt−1 of
s. Consider two such paths γ = (y0, . . . , yt−1, yt) and γ′ = (y′0, . . . , y

′
t−1, y

′
t) that pass through

the same predecessor s̃, i.e., y0 = y′0 = z, yt = y′t = s and yt−1 = y′t−1 = s̃. Denoting
γ1 = (y0, . . . , yt−1) and γ2 = (y′0, . . . , y

′
t−1), observe that

L(γ) = L(γ1) + ∆(s̃, s) and L(γ′) = L(γ′1) + ∆(s̃, s) (13)

Note that both γ1 and γ′1 have origin z and terminus s̃. Since s̃ ∈ Vt−1, PI holds for s̃,
so L(γ1) = L(γ′1). Denote this common length by λ(s̃). Then it follows from (13) that all
directed paths with origin z and terminus s that pass through the same predecessor s̃ have
the same length λ(s̃) + ∆(s̃, s). Since s ∈ Vt has exactly t predecessors s̃1, . . . , s̃t, it follows
that PI holds for s if and only if

λ(s̃1) + ∆(s̃1, s) = . . . = λ(s̃t) + ∆(s̃t, s)

This implies that we need to check t − 1 equations for every s ∈ Vt. Therefore the number
of equations we have to check to see if PI holds for all s ∈ Vt is (t− 1)|Vt|.

Applying the recursive argument above for t = 2, . . . , n, the total number of equations
we need to check to see if PI holds for all s ∈ S is

∑n
t=2(t− 1)|Vt|.

2.4 Comparison with Hino (2010) and Sandholm (2010)

Consider a game Γ with set of players N = {1, . . . , n} where player i has ki strategies. In the
algorithm proposed in the recent paper of Hino (2010), the number of equations required to
verify whether Γ is a potential game is given as follows, where i, j, ` ∈ N.

Bn(k1, . . . , kn) =
∑
i<j

θij where θij := (ki − 1)(kj − 1)
∏
`6=i,j

k` (14)

Comparing An from (12) with Bn, we have the following result.

Corollary 1

(i) Bn(k1, . . . , kn) = An(k1, . . . , kn) for n = 2 and Bn(k1, . . . , kn) − An(k1, . . . , kn) =∑n
t=3

(
t−1
2

)
|Vt| > 0 for n ≥ 3.

(ii) If ki = k for all i ∈ N, then for any n ≥ 3

Bn(k)− An(k) = (k − 1)kn−2[(k − 1)n2 − (3k − 1)n]/2 + kn − 1

= (n− 1)(n− 2)kn/2− n(n− 2)kn−1 + n(n− 1)kn−2/2− 1

For 2 ≤ k < ∞, limn→∞[Bn(k) − An(k)] = ∞ and for 3 ≤ n < ∞, limk→∞[Bn(k) −
An(k)] =∞.
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Proof (i) It is convenient to translate the expression in (14) in terms of the terminologies
of our model. Observe that for two players i < j, player i has (ki − 1) positive strategies,
j has (kj − 1) positive strategies and there are

∏
`6=i,j k` combinations of strategies from all

the remaining players. Thus, θij presents the number of strategy profiles where both i and
j play positive strategies. The expression in (14) adds up such θij profiles over all i < j.

Note that any strategy profile that is counted in (14) has at least two players playing
positive strategies, i.e., only profiles s ∈ Vt for t ≥ 2 are counted. Consider any such s ∈ Vt.
In this s, exactly t players play positive strategies. Since out of these t players, two players
i < j can be chosen in

(
t
2

)
ways, it follows that the number of times a profile s ∈ Vt is

counted in (14) is
(

t
2

)
. Since the number Bn in (14) is the sum of counts of all s ∈ ∪n

t=2Vt,
we conclude that

Bn(k1, . . . , kn) =
n∑

t=2

(
t

2

)
|Vt| (15)

As
(

t
2

)
− (t− 1) equals 0 if t = 2 and

(
t−1
2

)
if t ≥ 3, the result follows from (12) and (15).

(ii) If ki = k for all i ∈ N (i.e., all players have the same number of strategies k),
|Vt| =

(
n
t

)
(k − 1)t and we have

An(k) =
n∑

t=2

(t− 1)

(
n

t

)
(k − 1)t = (n− 1)kn − nkn−1 + 1,

Bn(k) =
n∑

t=2

(
t

2

)(
n

t

)
(k − 1)t =

n(n− 1)

2
kn−2(k − 1)2

Using the expressions above, the conclusion of (ii) follows by standard computations.

The number of equations required to be checked for the algorithm based on Theorem 3
of Hino (2010) and Theorem 3.5 of Sandholm (2010) is Bn. The number of equations that we
require to check in our algorithm is An < Bn for n ≥ 3. We conclude the paper by providing
an example.

Example 1 Let ki = k for all i ∈ N (i.e., all players have the same number of strategies).

An(k) Bn(k)
n = 3, k = 3 28 36
n = 3, k = 4 81 108
n = 4, k = 3 136 216
n = 3, k = 10 1701 2430
n = 10, k = 3 3, 34, 612 11, 80, 980

The table above indicates that as the number of players or the number of strategies increases,
Bn−An increases substantially and the algorithm presented in this paper leads to significant
reduction in the number of equations to be checked.
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