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Abstract

We study a spatial model of party formation in which the set of agendas is the unit
circle. We characterize the sets of pure-strategy Nash equilibria under the plurality and
proportional rules. In both rules, multiple configurations of parties are possible in Nash
equilibrium. We refine our predictions using a new notion called “defection-proof” Nash
equilibrium. Under the plurality rule, only those Nash equilibria in which either two or
three parties exist are defection-proof, whereas multiple parties exist in any defection-
proof Nash equilibrium under the proportional rule. These results are mostly consistent
with the predictions of Duverger (1954).
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1 Introduction

In democratic societies, collective decisions are made in legislatures. The legislators are often

grouped into parties. Party representation and configuration in turn depend on the political

framework (cf. Rae, 1971; Lijphart, 1990 and Taagepera and Shugart, 1989) and the particular

strategies adopted by the politicians, parties and voters within that framework. One natural

question is, how electoral systems affect the number of parties that form and their respective

positions?

Two famous predictions about the effect of electoral systems on political party formation

are attributed to the political scientist, Maurice Duverger (1954). Duverger’s law states that

plurality voting favors a two-party system. According to Duverger’s hypothesis, proportional
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representation favors multi-partyism. Therefore, the Duvergerian comparative prediction is

that the number of parties is larger under proportional representation than under plurality

voting (Riker, 1982; Morelli, 2004).

Cox (1987), Palfrey (1989), Feddersen (1992) and Fey (1997) find theoretical support for

Duverger’s law when the voters avoid wasting their vote on “hopeless” candidates. Rivière

(1998), and Osborne and Tourky (2008) focus on economies of party size to explain the

formation of political parties. Other papers that explain the existence of parties, without

particularly focusing on one of Duverger’s predictions, include Osborne and Slivinski (1996),

Besley and Coate (1997), Jackson and Moselle (2002), Snyder and Ting (2002), and Levy

(2004).

Morelli (2004) is the first to addresses both the law and hypothesis. He shows that more

than two parties may be active in a multi-district election with plurality voting when there

is sufficient heterogeneity in policy preferences across districts. In addition, when the distri-

bution of preferences is more aligned, the number of “effective” parties under proportional

representation must be less than three. Thus, Morelli (2004) finds that the Duvergerian

comparative prediction may be violated in a multi-district setting.

In this paper, we study whether the predictions by Duverger have game theoretic founda-

tions in a spatial model.1 The Downsian model of electoral competition (Downs, 1957), where

the set of agendas equals the unit interval, is not suitable for this research. In this standard

framework, pure-strategy equilibria do not exist under the proportional rule; whereas, the

incentive to attract the median voter generates a single party in the pluralistic system when

considering refinements that allow movements on party-level. This motivates our point of

departure from the standard framework: we instead assume that the set of agendas equals

the unit circle. We hereby follow in the success of the industrial organization literature in

studying multi-firm competition by moving from Hotelling’s linear city (Hotelling, 1929) to

Salop’s circular city (Salop, 1979).2

The summary description of the model is as follows. There are a finite number of politi-

cians that simultaneously and independently choose to promote agendas in the elections,

where the set of agendas is the unit circle. Politicians promoting the same agenda form a

party. Hence, the party structure follows directly from the politicians’ decisions to promote

agendas. We assume that the voters are uniformly distributed over the unit circle, with each

voter’s most preferred agenda coinciding with her location on the circle. Furthermore, voters

are assumed to vote sincerely, i.e., support the party closest to their most preferred agendas.

This assumption results in the vote share of each party to be proportional to its distance to

1We solely focus on the pre-election process of strategic party formation. In particular, we ignore policy
and welfare implications, and the impact of post-election coalition formation on actual power.

2According to Persson and Tabellini (2000, p.5),“It is hard to model the outcome of multiparty competition
...”. As we will see, the transition to a circular agenda space may be a step forward.
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the two adjacent parties. Next, the electoral system determines a mapping from the distribu-

tion of votes to the distribution of “power”. In the pluralitarian system, the parties with the

highest vote share gain all power (winner takes all); in the proportional system, the power of

each party equals its vote share. We assume that the politicians belonging to a party share

equally in its power, and each politician is opportunistic (office-motivated), trying to maxi-

mize her individual power. Hence, in general, each politician prefers to become a member of

a party with a high vote share but as few other members as possible.

We provide a full characterization of the sets of pure-strategy Nash equilibria in both the

pluralitarian and proportional systems, and show that these sets are nonempty. Typically,

both systems possess a rich set of Nash equilibria.3 Therefore, we define a notion of defection-

proofness to refine the Nash equilibrium predictions.

Defection-proof Nash equilibrium is similar in motivation to coalition-proof Nash equi-

librium (Bernheim et al., 1987), but only allows for particular deviations, which we call

defections.4 The defections include deviations by a coalition of politicians that are typically

observed in reality; for instance, shifts in agenda, mergers of parties, and a set of politicians

splitting from their original parties and forming a new party or joining an existing one.5

In the pluralitarian system, we show that Nash equilibria that generate strictly more than

three parties are not defection-proof, whereas only multiple parties are supported as defection-

proof Nash equilibrium under the proportional rule. Our defection-proof Nash equilibrium

predictions are only partially consistent with Duverger’s law – we predict either two or three

parties under pluralitarian system – but they fully support Duverger’s hypothesis and the

Duvergerian comparative prediction.

In Section 2, we present the details of the model and the definition of defection-proofness.

In Sections 3 and 4, we present, respectively, the equilibrium analysis for the pluralitarian

and proportional systems. We conclude in Section 5 by summarizing our results. Proofs are

collected in Section 6.

3A high multiplicity of (types of) equilibria is also found in a two-stage location-quantity game along the
circle’s circumference in Gupta et al. (2004).

4The set of defection-proof Nash equilibria includes the set of strong Nash equilibria (Aumann, 1959).
However, there is no logical relation between the sets of coalition-proof Nash equilibria and defection-proof
Nash equilibria. A defection-proof Nash equilibrium is immune to self-enforcing or credible defections by any
coalition (i.e., defections from which there are no further credible defections by any subcoalition). On the other
hand, a coalition-proof Nash equilibrium is immune to credible deviations by any coalition (i.e., deviations from
which there are no further credible deviations by any subcoalition). The set of possible defections by a coalition
is a subset of the set of deviations by that coalition. Nevertheless, the set of credible defections by a coalition
is not necessarily a subset or superset of the set of credible deviations.

5Duverger already reasoned that the field of parties is trimmed to just two by the forces of “fusion” and
elimination (cf. Fey, 1997). According to Kaminski (2006), “party politics revolves around the emergence of
new parties [and] electoral splits and coalitions.” In Eguia (2010), the stability of a party configuration or
voting bloc in an assembly is defined with respect to immunity of the current configuration against fourteen
classes of deviations. Our definition of defections includes twelve of these classes – exception being classes D1
and D3 in which a subset of politicians deviate to become independents or singleton parties. Hence, considering
only defections does not seem to be too restrictive.
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2 Model

There is a finite set of politicians, I, with |I| ≥ 3.6 The set of agendas, A, is the circumference

of a circle of unit length. An agenda is denoted by a. The politicians simultaneously choose to

support agendas. We restrict attention to pure strategies. Therefore, A is the set of strategies

for each politician. A strategy profile is denoted by s. For any J ⊆ I, sJ denotes the strategy

profile (si)i∈J and s−J denotes the strategy profile (si)i∈I\J .

A strategy profile s defines a partition P(s) of the set of politicians, where each P ∈ P(s)

is such that for some agenda a, si = a for all i ∈ P and sj 6= a for all j 6∈ P . That is,

every politicians who belongs to P supports the same agenda a in the profile s and none of

the politicians outside P support the agenda a. We will refer to any P ∈ P(s) as a party.

Hence, P(s) is the set of all parties formed in the strategy profile s. The agenda supported

by a party P ∈ P(s) is the unique agenda supported by every politician who belongs to P .

For any P ∈ P(s), let Rs(P ) be the first party that is supporting an agenda in the clockwise

direction starting at the agenda supported by P . Similarly, let Ls(P ) be the first party that

is supporting an agenda in the counterclockwise direction starting at the agenda supported

by P . Any two parties P,P ′ ∈ P(s) are adjacent if P ′ ∈ {Ls(P ), Rs(P )}.

Voters are uniformly distributed on A. Each voter’s location on A is her most-preferred

agenda. Voters are assumed to vote sincerely for the party supporting the agenda closest to

her most-preferred agenda; in case there are two such parties, she votes for each with equal

probability – there cannot be more than two such parties since the set of agendas is a circle.

The weight of a party P ∈ P(s), denoted by wP (s), is the proportion of voters who

vote for party P . We term the length of the arc between the agenda supported by P and

agenda supported by Ls(P ) as the left distance of party P and denote it by ls(P ). Similarly,

the length of the arc between the agenda supported by P and agenda supported by Rs(P )

will be called the right distance of party P and denoted by rs(P ). It is straightforward to

show that wP (s) = ls(P )+rs(P )
2 (see Figure 1). Note that wP (s) ≥ 0 for all P ∈ P(s) and

∑

P∈P(s)wP (s) = 1. Then w(s) = (wP (s))P∈P(s) is the distribution of weights under the

strategy profile s.

A rule ρ defines for every strategy profile s, the power ρP (w(s)) of each party P ∈ P(s)

as a function of the distribution of weights w(s). We assume that the politicians belonging

to a party share equally in its power. Furthermore, politicians receive utility equal to their

individual power – such office-motivated politicians are standard in the literature. Hence, the

utility of politician i in strategy profile s is ui(s) =
ρP (w(s))

|P | , where i ∈ P ∈ P(s).

For any rule ρ, a strategy profile s is a Nash equilibrium if there do not exist i ∈ I

and s′i ∈ A such that ui(s
′
i, s−i) > ui(si, s−i). Thus, Nash equilibrium strategies are stable

against unilateral deviations by a single politician. However, Nash equilibrium disregards the

6|X| is the cardinality of set X.
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Figure 1: The dotted lines demarcate arcs that define the distance between adjacent parties. The
thick lines demarcate arcs that define each party’s voter base or weight. The weight of a party is the
average of its left and right distances.

possibility of coordinated deviations or defections by a coalition of politicians.

Definition 1 (Defection). A defection from a strategy profile s by a coalition J ⊆ I is

a strategy profile for coalition J , s′J ∈ A|J |, such that sj 6= s′j = a for all j ∈ J , and

uj(s
′
J , s−J) > uj(sJ , s−J) for all j ∈ J .7

Thus, a defection is a deviation from a strategy profile by a coalition of politicians that

satisfies two requirements: first, all the members of the coalition deviate to the same agenda

and second, all the members of the coalition must strictly improve their utilities after the

deviation. The following are some examples of defections:

• Shift in a party’s agenda: All the politicians in a party decide to shift the agenda

supported by their party.

• Split in a party: A subset of politicians belonging to a party form a new party by

supporting a different agenda.

• Merger of parties: All the politicians in two or more parties choose to support a new

common agenda.

• A set of politicians split from their original parties and merge at a new or some previously

supported agenda.

Such defections are quite common in politics and therefore, we allow for them in our model.

However, unless binding agreements are possible among the defecting coalition, the defection

must be self-enforcing or credible.

7It is standard to assume that while contemplating a deviation, a coalition considers the strategy of the
complement as fixed. Moreover, one could imagine a stronger notion of defection that requires that in case
the defecting coalition chooses an agenda that is already supported by another party, then the politicians in
the latter party should also be better-off. The resulting notion of defection-proof Nash equilibrium can easily
be shown to make precisely the same selection among Nash equilibria. However, this stronger definition of
defection is not consistent with Nash equilibrium. After all, in Nash equilibrium, we consider defections by
single politicians but do not care in case such a defection makes the party that this single politician joins worse
off. Therefore, we should stick with the current weaker notion of defection.
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Definition 2 (Credible Defection).

(i) A credible defection from a strategy profile s by a politician j ∈ I is a s′j ∈ A such that

s′j is a defection from s by politician j.

(ii) A credible defection from a strategy profile s by a coalition J ⊆ I such that |J | > 1

is a strategy profile for coalition J , s′J ∈ A|J |, such that s′J is a defection from s by

coalition J and there does not exist any subcoalition J ′ ⊂ J with a credible defection

from (s′J , s−J).

Thus, a credible defection by a coalition is such that no further credible defection is possible

by any proper subcoalition.

Definition 3 (Defection-Proof Nash Equilibrium). A defection-proof Nash equilibrium is a

strategy profile s such that there is no credible defection from s by any coalition J ⊆ I.

Defection-proof Nash equilibria are stable against credible defections by any coalition. Clearly,

the set of defection-proof Nash equilibria is a subset of the set of Nash equilibria.

We restrict attention to two specific rules, plurality rule and proportional rule. Under the

plurality rule, all parties with the maximum weight share power equally whereas any party

with less than the maximum weight gets zero power. Formally, for any strategy profile s, the

plurality rule defines the power of any P ∈ P(s) as

PlP (w(s)) ≡

{

1
| argmax

P ′∈P(s) wP ′(s)|
if P ∈ argmaxP ′∈P(s) wP ′(s)

0 otherwise.

Under the proportional rule, the power of a party equals its weight. Hence, for any strategy

profile s, the proportional rule defines the power of any P ∈ P(s) as

PrP (w(s)) ≡ wP (s).

3 Plurality Rule

We begin with the characterization of the set of Nash equilibria under the plurality rule.

Theorem 1. Under plurality rule, a strategy profile s is a Nash equilibrium if and only if the

numbers of politicians in any two parties in P(s) differ by at most 1, and exactly one of the

following holds:

(i) |P(s)| = 2 and min{ls(P ), rs(P )} > 1
3 for some P ∈ P(s).

(ii) 3 ≤ |P(s)| ≤ |I|
2 and all parties have equal weights.

(iii) 3 ≤ |P(s)| ≤ 4, |P(s)| > |I|
2 and all parties are equidistant from each other.
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(iv) 5 ≤ |P(s)| ≤ 6, |P(s)| > |I|
2 , all parties are equidistant from each other, and there does

not exist any pair of singleton parties that are adjacent.

Thus, whether s is a Nash equilibrium or not depends only on two factors: first, the respective

distances between the agendas supported in s – which determine the weights of the parties

– and second, the numbers of politicians in the parties formed in s. Hence, if s is a Nash

equilibrium, then the strategy profile s′ obtained by either shifting the agendas supported by

all politicians by a fixed constant or permuting the identities of the politicians will also be a

Nash equilibrium. This is obviously because of the particular specification of the utilities of

the politicians.

An important property of Nash equilibrium under the plurality rule is that all parties

formed in equilibrium have equal weight (Lemma 9). This is because only those parties with

the maximum weight obtain positive power. Hence, if a party has less than the maximum

weight, then a politician belonging to that party obtains zero utility but could obtain positive

utility by deviating to an agenda supported by some party (more precisely, any party with the

highest weight in the hypothetical situation in which the set of politicians is I \{i}, where i is

the deviating politician, and these politicians choose agendas according to the strategy profile

s−i). The weight of a party is the average of its left and right distances. Thus, it follows that

the sums of the left and right distances of all parties formed in equilibrium are equal. Since

the right (left) distance of party P k is trivially equal to the left (right) distance of Rs(P k)

(Ls(P k)), it follows that the left (right) distance of a party P k equals the right (left) distance

of party Rs(P k) (Ls(P k)). Therefore, if {P 1, . . . , Pn} is the set of parties that form in Nash

equilibrium and, without loss of generality, P k+1 = Rs(P k) for all k = 1, . . . , n − 1, then we

obtain the following two sequences of equalities:

ls(P 1) = rs(P 2) = ls(P 3) = rs(P 4) = . . . (1)

ls(Pn) = rs(P 1) = ls(P 2) = rs(P 3) = . . .

In words, if we move along the circle in the clockwise direction, then every other arc defined

by the set of agendas supported in equilibrium has the same length.

The property that all parties have equal weights in equilibrium, generates two possible

configurations of parties in equilibrium:

(i) An odd number of parties form in equilibrium. Then all parties must be equidistant from

each other. To see this, suppose n = 5, i.e., five parties P 1, . . . , P 5 form in equilibrium

(see Figure 2(1)). Using (1), we obtain

ls(P 1)=rs(P 2)= ls(P 3)=rs(P 4)= ls(P 5)=rs(P 1)= ls(P 2)=rs(P 3)= ls(P 4)=rs(P 5).

Since the parties are equidistant, the set of agendas supported in equilibrium s can be
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graphically visualized as the vertices of a n-sided convex regular polygon (as shown in

Figure 2(2)).

b

b

bb

b

P 1

P 2

P 3P 4

P 5

(1)

b

b

bb

b

P 1

P 2

P 3P 4

P 5

(2)

Figure 2: Odd number (> 1) of parties under plurality rule: (1) All parties have equal weight and are
equidistant. (2) The locations of the parties are the vertices of a convex regular polygon.

(ii) An even number of parties form in equilibrium. First, consider the case when more

than two parties form. Then both equidistant and non-equidistant configurations are

possible. Figure 3 shows these configurations with six parties. In general, we can

graphically visualize the set of agendas supported in equilibrium as follows. Since the

parties have equal weights, we have

ls(P 2) + rs(P 2) = ls(P 4) + rs(P 4) = ls(P 6) + rs(P 6) = . . .

But ls(P 2) + rs(P 2) is the distance between the agendas supported by parties P 1 and

P 3; ls(P 4)+rs(P 4) is the distance between the agendas supported by parties P 3 and P 5

and so on. Hence, all odd-numbered parties (P 1, P 3, . . . , Pn−3, Pn−1) are equidistant

from each other and thus, the agendas supported by these parties are vertices of an
n
2 -sided convex regular polygon (as shown in Figure 4(2)). Similarly, all even-numbered

parties (P 2, P 4, . . . , Pn−2, Pn) are equidistant from each other and the agendas sup-

ported by these parties are also vertices of an n
2 -sided convex regular polygon (as shown

in Figure 4(2)). If in addition, all parties are equidistant from each other, then the

agendas supported by all parties are vertices of a n-sided convex regular polygon (as

shown in Figure 4(1)).

When only two parties form in equilibrium, each party has a weight of 1
2 . In this

case, it must be that the minimum distance between the two parties is greater than 1
3 .

Otherwise, a single politician from the party having the larger number of politicians

– who obtains a utility of at most 1
4 as she shares power of 1

2 with at least one other

politician – can deviate to the agenda in the middle of the longer arc between the

agendas supported by the two parties. The left and right distances of this new singleton

party will be both at least 1
3 and hence, it will have at least as much weight as the other
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Figure 3: Even number (> 2) of parties under plurality rule: All parties have equal weight but both
equidistant (shown in (1)) and non-equidistant (shown in (2)) configurations are possible. In (2), all
even-numbered parties are equidistant from each other and all odd-numbered paries are equidistant
from each other.
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P 3

P 4P 5

P 6

(2)

Figure 4: Even number (> 2) of parties under plurality rule: (1) When all parties are equidistant,
their locations are the vertices of a convex regular polygon. (2) When parties are not equidistant, the
locations of all even-numbered/odd-numbered parties are the vertices of a convex regular polygon.

two parties. Thus, the deviating politician will obtain a utility of at least 1
3 , which is a

contradiction.

The utility of a politician is a function both of the weight of her party and the number of other

politicians who belong to her party. Since all parties have the same weight in equilibrium, a

politician in party P obtains 1
|P | proportion of the weight. If there is another party P ′ such

that |P | > |P ′| + 1, then a politician from party P could deviate to the agenda supported

by P ′, increasing her utility to 1
|P ′|+1 proportion of the weight. Therefore, the numbers of

politicians in any two parties in P(s) differ by at most 1 in equilibrium.

It also follows from the theorem that the number of parties formed in equilibrium is

bounded below by 2 and above by max{ |I|
2 , 6}. Any strategy profile in which only a single

party is formed is not an equilibrium since by deviating to any other agenda, any politician

can form a singleton party with the weight of 1
2 and hence, increase her utility from at most 1

3

– since |I| ≥ 3 – to 1
2 . On the other hand, suppose the number of parties formed in equilibrium

is greater than both |I|
2 and 6. Figure 5(1) shows such a strategy profile when |I| = 17 but

nine parties form. Then at least one party, say P 2, is singleton and the utility of this politician
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is less than 1
6 (see figure). Since the numbers of politicians in any two parties cannot differ

by more than 1, both P 1 = Ls(P 2) and P 3 = Rs(P 2) have at most two members. Without

loss of generality, let rs(P 2) ≤ ls(P 2). If the single politician in P 2 were to deviate to the

agenda supported by P 3 (as shown in Figure 5(2)), then the weight of party P 3 ∪ P 2 will

increase by ls(P 2)
2 and the weight of P 1 by rs(P 2)

2 , while the weights of all other parties will

stay constant as the agendas supported by their respective adjacent parties stay fixed. Since

we started with a situation of equal weights, the merged party P 3∪P 2 will have the maximum

weight and hence, through this deviation, the politician will obtain a utility of at least 1
6 as

she shares the power of at least 1
2 with at most two other members, which is a contradiction.

The following corollary immediately follows from the above theorem.

b
b

b

b

bb

b

b

b

|P 1| = 2

|P 2| = 1

|P 3| = 2

|P 4| = 2

|P 5| = 2|P 6| = 2

|P 7| = 2

|P 8| = 2

|P 9| = 2

(1)

b

b

b

bb

b

b

b

b

|P 1| = 2

|P 3 ∪ P 2| = 3

|P 4| = 2

|P 5| = 2|P 6| = 2

|P 7| = 2

|P 8| = 2

|P 9| = 2

(2)

Figure 5: Number of parties is bounded above by max{ |I|
2
, 6}: Assume |I | = 17. (1) A strategy profile

in which 9 parties form. (2) A unilateral deviation by the politician in P 2 that increases her utility.

Corollary 2. For any |I| ≥ 3, there exists a pure-strategy Nash equilibrium under plurality

rule.

Indeed, the model under plurality rule has multiple Nash equilibria, with the number of

political parties in equilibrium ranging from 2 to max{ |I|
2 , 6}. Next, we refine our predictions

using defection-proofness. The following theorem characterizes the set of defection-proof Nash

equilibria.

Theorem 3. Under plurality rule, a strategy profile s is a defection-proof Nash equilibrium

if and only if the numbers of politicians in any two parties in P(s) differ by at most 1 and

exactly one of the following holds:

(i) |P(s)| = 2 and min{ls(P ), rs(P )} > 1
3 for some P ∈ P(s).

(ii) |P(s)| = 3 and all parties are equidistant from each other.

Thus, defection-proofness sharply refines the set of Nash equilibria: only those Nash equilibria

in which either two or three parties form are defection-proof Nash equilibria. To see why Nash

equilibria with at least four parties are not defection-proof, let’s consider a Nash equilibrium
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s in which P 1, . . . , Pn parties form, where n ≥ 4, and all parties are equidistant, with the

distance equal to d (the proof takes care of all cases). Let a be the agenda that is the midpoint

of the agendas supported by P 2 and P 3 (as shown in Figure 6(1)). Now, if a coalition

consisting of all politicians in P 2 and P 3 were to deviate to supporting a, ceteris paribus,

then n−1 parties, viz. {P 1, P 2∪P 3, P 4, . . . , Pn}, will be formed in the resulting profile s′ (as

shown in Figure 6(2)). The weight of the party P 2 ∪ P 3 will be 3
2d, while the weights of P 1

and P 4 will each be 5
4d, and the weights of all other parties will remain unchanged. Since we

started with a situation of equal weights, the merged party P 2 ∪ P 3 will be the unique party

with the maximum weight and hence, each member of the deviating coalition will obtain a

utility of 1
|P 2|+|P 3| compared to the utility of either 1

n|P 2| or
1

n|P 3| in profile s. Since n ≥ 4

and the numbers of politicians in parties P 2 and P 3 do not differ from each other by more

than 1 – since s is a Nash equilibrium –, we have n|P 2| ≥ 4|P 2| > 2|P 2|+1 ≥ |P 2|+ |P 3| and

similarly, n|P 3| > |P 2| + |P 3|. Thus, each member of the deviating coalition will be strictly

better-off after the deviation and hence, we have obtained a defection from s by coalition

P 2 ∪ P 3. This defection is in fact credible. Consider any subcoalition J ′ ⊂ P 2 ∪ P 3. If

starting from s′, all members of J ′ were to deviate to an agenda like a′, which lies on the

arc between the agendas supported by P 1 and P 4 that does not contain a (see Figure 6(2)),

then at least as many agendas as in s′ will be supported in the resulting profile s′′. However,

the weight of party P 2 ∪ P 3 \ J ′ will not change while the weight of any other party will be

at most 5
4d. Hence, the subcoalition J ′ cannot improve its utility by this deviation. On the

other hand, if starting from s′, all members of J ′ were to deviate to an agenda like a′′ or a′′′,

which lie between a and the agenda supported by either P 1 or P 4 (see Figure 6(2)), then the

weight of party J ′ will be 3
4d, which is less than the weight of P 2 ∪ P 3 \ J ′. Thus, J ′ cannot

improve its utility by such a deviation. Hence, we conclude that the initial defection from s

is a credible defection.

b

b

bb

b

P 1

P 2

a

P 3P 4

P 5

(1)

b

b

b

b

P 1

a′′

a supported by P 2 ∪ P 3

a′′′P 4

P 5

a′

(2)

Figure 6: Nash equilibria with more than 3 parties are not defection-proof: (1) A Nash equilibrium
with 5 parties. (2) A credible defection by P 2 ∪ P 3.

In contrast, all Nash equilibria in which either two or three parties form are defection-

proof Nash equilibria. Let’s consider a Nash equilibrium s as shown in Figure 7(1) with three
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b

b P1 ∪ P2 ∪ {j1, j2}

P3 \ {j1, j2}

(2)

bb

b P1 ∪ {j1, j2, j3}

P2 \ {j3}P3 \ {j1, j2}

(3)

bb

b
P1 ∪ {j1, j2, j3}

P2 \ {j3}P3 \ {j1, j2}

(4)

Figure 7: Nash equilibria with 3 parties are defection-proof: (1) A Nash equilibrium with 3 parties.
(2) There do not exist defections that result in only two supported agendas. (3) and (4) show that
there do not exist defections that result in three supported agendas.

parties, P 1, P 2 and P 3 (the argument for two parties is similar). First, consider a defection

in which all three parties merge, resulting in s′ with a single agenda being supported. Since

s′ is not a Nash equilibrium, there exists a credible defection from s′ by a single politician

belonging to the initial defecting coalition. Thus, the initial defection cannot be credible.

Second, consider a defection in which all politicians, except some in say P 3, merge, resulting

in s′ with two agendas being supported (as shown in Figure 7(2)). Thus, instead of 1
3|P 1|

, a

defecting politician belonging to P 1 obtains a utility of at most 1
2|P 1|+2|P 2|

after the defection.

But 2|P 1| + 2|P 2| ≥ 2|P 1| + |P 2| + 1 ≥ 3|P 1|, where the last inequality follows from the

fact that the numbers of politicians in parties P 1 and P 2 do not differ from each other by

more than 1. Thus, any politician belonging to P 1 will not improve her utility through this

defection, a contradiction. Third, any defection that results in a s′ in which three agendas

are supported must be such that at least two agendas supported in s, say those of P 2 and P 3,

are also supported in s′. That is, some politicians belonging to P 2 and P 3 are not members

of the defecting coalition. If the party formed supports an agenda which is different than

the agenda supported by P1 in s, then it has a weight of 1
3 (Figure 7(3)) or 1

6 (Figure 7(4))

depending on the arc on which the agenda is placed. In both cases, there is at least one party

with a weight of strictly more than 1
3 . Therefore, the party formed has zero power and so

the defection is not beneficial. If the party formed supports the agenda supported by P1 in

s, then all three agendas supported in s are also supported in s′. But such a defection even

12



by a single politician is not beneficial since s is a Nash equilibrium. Finally, any defection

that results in a s′ in which four agendas are supported must be such that all three agendas

supported in s are also supported in s′ (note that there does not exist a defection that results

in five or more supported agendas). But this cannot be beneficial for the same reasoning

above. Thus there is no credible defection from s by any coalition.

As a corollary, we easily obtain the following result:

Corollary 4. For any |I| ≥ 3, there exists a defection-proof Nash equilibrium under plurality

rule.

4 Proportional Rule

In this section, we study the formation of political parties under the proportional rule. Like

in the plurality rule, the vote share or weight of any party is equal to the average of its left

and right distances. However, in contrast, now every party has positive power equal to its

weight. As the next theorem shows, this substantially alters the configurations of political

parties that form in Nash equilibria.

Theorem 5. Under proportional rule, s is a Nash equilibrium if and only if for any party

P ∈ P(s) either

(i) |P | = 2 and ls(P ) = rs(P ) = maxP ′∈P(s){l
s(P ′), rs(P ′)} or

(ii) |P | = 1 and ls(P ) + rs(P ) ≥ maxP ′∈P(s){l
s(P ′), rs(P ′)}.

According to the theorem, all parties have at most two politicians in any Nash equilibrium.

To see this, suppose a party P has at least three politicians in a Nash equilibrium s (as

shown in Figure 8(1)). The weight of this party equals ls(P )+rs(P )
2 . Since P has at least three

politicians, any politician in P obtains a utility of at most ls(P )+rs(P )
6 . If any politician in P

were to unilaterally deviate to an agenda on the arc corresponding to max{ls(P ), rs(P )}, then

she would form a new singleton party with weight max{ls(P ),rs(P )}
2 (as shown in Figure 8(2)).

Clearly, ls(P )+rs(P )
6 < max{ls(P ),rs(P )}

2 . Hence, a strategy profile in which there exists a party

with at least three politicians cannot be a Nash equilibrium.

Moreover, in any Nash equilibrium, any party with two politicians must be equidistant

from the parties that are adjacent to it, with the distance equal to d∗ = maxP ′∈P(s){l
s(P ′),

rs(P ′)}, i.e., the maximum distance between any two adjacent parties. If not, then any

politician in such a party P shares a weight of ls(P )+rs(P )
2 < d∗ with the other politician

in P and hence, obtains ls(P )+rs(P )
4 < d∗

2 . If this politician were to unilaterally deviate to

an agenda on any arc corresponding to d∗, she would increase her utility to d∗

2 , which is a

contradiction to Nash equilibrium.

13



b

b

bb

Ls(P )

|P | > 3

Rs(P )P ′

(1)

b

b

b

bb

Ls(P )

{i}

P \ {i}

Rs(P )P ′
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Figure 8: All parties in Nash equilibrium have at most 2 members: (1) A strategy profile with |P | > 3.
(2) A unilateral deviation by some i ∈ P that increases i’s utility.

Finally, the second condition in the theorem says that any singleton party in any Nash

equilibrium must obtain a weight of at least d∗

2 . The politician in a singleton party obtains a

utility equal to the her party’s weight. Therefore, if the second condition were violated, this

politician could unilaterally deviate to an agenda on any arc corresponding to d∗ and increase

her utility to d∗

2 .

An upper bound of two on the membership of any party in Nash equilibrium implies that

a large number of parties form under the proportional rule when the number of politicians

is not too small. In particular, the number of parties in any Nash equilibrium must be at

least |I|
2 , if |I| is even, and at least |I|+1

2 , if |I| is odd. Furthermore, every integer number of

political parties, starting from |I|
2 or |I|+1

2 up to |I|, can be found in some Nash equilibrium.

To see this, pick any integer n in the interval [ |I|2 , |I|] and construct a n-sided regular convex

polygon in the unit circle. The agendas corresponding to the vertices of this polygon are

equidistant by construction. Therefore, any distribution of the politicians over these agendas

such that each agenda has at least one and at most two politicians satisfies the conditions in

the theorem and hence, it is a Nash equilibrium (for example, see Figure 9(1)). However, it is

not necessary that the agendas supported in Nash equilibrium are equidistant. For instance,

consider the case when |I| = 10. Then the following strategy profile with nine parties is a

Nash equilibrium: there is a single party with two politicians and at a distance of 2
11 from

each of its adjacent parties, and the rest of the eight singleton parties are at a distance of 1
11

from each other (see Figure 9(2)).

The following corollary follows from the theorem (see the discussion in the previous para-

graph).

Corollary 6. For any |I| ≥ 3, there exists a pure-strategy Nash equilibrium under propor-

tional rule.

We also have multiple Nash equilibria under the proportional rule, with the number of political

parties that can form in Nash equilibrium ranging from |I|
2 or |I|+1

2 up to |I|. Like for the

plurality rule, we now use the notion of defection-proofness with the aim of refining the set

14
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Figure 9: |I | = 10. (1) Nash equilibrium with 9 equidistant parties. (2) Nash equilibrium with 9
parties that are not equidistant.

of Nash equilibria. However, in contrast to the plurality rule, defection-proofness has no bite

under the proportional rule.

Theorem 7. Under proportional rule, s is a defection-proof Nash equilibrium if and only if

it is a Nash equilibrium.

As we argue in the proof, any defection s′J from a Nash equilibrium s by a coalition J to

an agenda a such that at least three politicians support a in the resulting strategy profile

(s′J , s−J) cannot be credible. This is because of the same reason why any strategy profile

in which there exists a party with at least three politicians is not a Nash equilibrium: any

politician in the party supporting a, and hence in J , can unilaterally deviate to improve her

utility, which is a credible defection from (s′J , s−J).

Thus, if there exists a credible defection from s, it must involve a coalition J with exactly

two politicians – a defection by a single politician does not exist since s is a Nash equilibrium.

Moreover, the credible defection must be to an agenda a that is not supported by any party

in s, i.e., a must lie between the agendas supported by two adjacent parties in s, say P ′ and

Ls(P ′) (as shown in Figure 10(1)). We argue that there does not exist any such defection

from s. To see this, first suppose that both the agendas supported by P ′ and Ls(P ′) in s

are also supported in s′ = (s′J , s−J) (as shown in Figure 10(2)). Then in the strategy profile

s′, the utility of each politician in J equals ls(P ′)
4 . If this were a defection from s, increasing

the utility of both politicians in J over their utilities in the strategy profile s, then s could

not have been a Nash equilibrium. This is because when the strategy profile is s, any single

politician in J could unilaterally deviate to a and obtain the utility ls(P ′)
2 as she now forms a

singleton party supporting an agenda between the agendas supported by P ′ and Ls(P ′) in s,

which remain supported after her deviation. Next, suppose that only the agenda supported

by Ls(P ′) in s is supported in s′. Then all the politicians in P ′ must be part of the defecting

coalition J . If the agenda supported by Rs(P ′) in s is also supported in s′ (as shown in

Figure 10(3)), then the utility of any politician in P ′ in s′ cannot be greater than her utility

in s since the weight of her party is the same in both profiles. On the other hand, if the
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Figure 10: (1) Nash equilibrium s. There does not exist a defection by J to agenda a such that: (2)
The agendas supported by P ′ and Ls(P ′) in s are also supported in s′. (3) The agendas supported by
Ls(P ′) and Rs(P ′) in s are also supported in s′ but the agenda supported by P ′ in s is not supported
in s′. (4) The agenda supported by Ls(P ′) in s is also supported in s′ but the agendas supported by
P ′ and Rs(P ′) in s are not supported in s′.

agenda supported by Rs(P ′) in s is not supported in s′ (as shown in Figure 10(4)), then all

the politicians in Rs(P ′) must also be part of the defecting coalition. But if two different

parties in s are part of the defecting coalition and the size of the defecting coalition is equal

to two, then each of the defecting parties must be singleton. Moreover, letting P ′′ = Rs(P ′),

it must be that none of the politicians in Rs(P ′′) are part of J . Therefore, each politician in J

obtains ls(P ′)+rs(P ′)+rs(P ′′)
4 after the defection. This is no more than ls(P ′)+rs(P ′)

2 , the utility

of the politician in the singleton party P ′ in s, because ls(P ′) + rs(P ′) is at least equal to

the maximum distance between any two adjacent parties in s (second condition in Theorem

5). The argument in the other two cases – when only the agenda supported by P ′ in s is

supported in s′ and when neither the agenda supported by P ′ nor by Ls(P ′) in s is supported

in s′ – is similar.

Since there exists a pure-strategy Nash equilibrium under the proportional rule, we have

the following corollary:

Corollary 8. For any |I| ≥ 3, there exists a defection-proof Nash equilibrium under propor-

tional rule.
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5 Summary

Our aim in this paper was to study whether the predictions of Duverger (1954) have game

theoretic foundations in a spatial model. Unfortunately, the standard model with a linear

set of agendas does not provide satisfactory answers to this question; the set of pure-strategy

Nash equilibria is empty under the proportional rule whereas it is singleton under the plurality

rule for refinements that allow explicit coordination on party-level. Hence, we instead used

the set of agendas equal to the unit circle. As we have shown, this departure generates

significantly different results; we now have multiple pure-strategy Nash equilibria under both

rules. We used the notion of defection-proof Nash equilibrium to refine our predictions. Under

the plurality rule, either two or three parties form in any defection-proof Nash equilibrium.

This result is only partially consistent with Duverger’s law since there exists defection-proof

Nash equilibria with three parties. On the other hand, under the proportional rule, multiple

parties form in any defection-proof Nash equilibrium. Thus, Duverger’s hypothesis and the

Duvergian comparative prediction are supported by our results.

6 Proofs

6.1 Plurality Rule

Proof of Theorem 1: We prove the theorem through a series of lemmas.

Lemma 9. If s is a Nash equilibrium with |P(s)| ≥ 2, then all parties in P(s) have equal

weights.

Proof. Suppose s is a Nash equilibrium with |P(s)| ≥ 2 but there exists a P ∈ P(s) such

that wP (s) < maxP ′∈P(s) wP ′(s). Hence, PlP (w(s)) = 0 and ui(s) = 0 for all i ∈ P .

Pick any politician i ∈ P and party P̂ ∈ argmaxP ′∈P(s) wP ′(s). Consider the strategy

profile (s′i, s−i) such that s′i = â, where â is the agenda supported by P̂ in s. Note that

P̂ ∪ {i} ∈ P(s′i, s−i). If P̂ ∪ {i} = argmaxP ′∈P(s′
i
,s−i)wP ′(s′i, s−i), then ui(s

′
i, s−i) > 0, a

contradiction. If not, then pick any P̂ ′ ∈ argmaxP ′∈P(s′
i
,s−i) wP ′(s′i, s−i). Let â′ be the

agenda supported by P̂ ′ in (s′i, s−i). Consider the strategy (s′′i , s−i) such that s′′i = â′. The

sets of agendas supported by the parties are the same in (s′i, s−i) and (s′′i , s−i). Hence,

P̂ ′ ∪ {i} ∈ argmaxP ′∈P(s′′
i
,s−i) wP ′(s′′i , s−i). Therefore, ui(s

′′
i , s−i) > 0, a contradiction.

Lemma 10. If s is a Nash equilibrium with |P(s)| ≥ 2, then for any two adjacent parties P

and P ′ in P(s), we have ls(P ) = rs(P ′) and rs(P ) = ls(P ′). Furthermore, if |P(s)| is odd,

then all parties are equidistant from each other.

Proof. Let P and P ′ be two adjacent parties in P(s). Without loss of generality, let P ′ =

Ls(P ). Hence, ls(P ) = rs(P ′). By Lemma 9, P and P ′ have equal weights. So rs(P ) = ls(P ′).
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Let P 1 = P and P k+1 = Rs(P k) for k = 1, . . . , |P(s)| − 1. Note that P |P(s)| = P ′. If

|P(s)| is odd, then we have rs(P 1) = ls(P 2) = rs(P 3) = . . . = rs(P |P(s)|), rs(P |P(s)|) = ls(P 1)

and ls(P 1) = rs(P 2) = ls(P 3) = . . . = ls(P |P(s)|). Therefore, all parties are equidistant from

each other.

Lemma 11. If s is a Nash equilibrium with |P(s)| ≥ 2, then maxP,P ′∈P(s) |P | − |P ′| ≤ 1.

Proof. Pick any P,P ′ ∈ P(s). Without loss of generality, let |P | > |P ′|+1. Consider a politi-

cian i ∈ P . We have ui(s) =
wP (s)
|P | . Let s′i = a′, where a′ is the agenda supported by party P ′

in s. Since the sets of agendas supported in (s′i, s−i) and s are the same, all parties formed in

(s′i, s−i) have equal weights (s is a Nash equilibrium and Lemma 9). Furthermore, the weight

of party P ′∪{i} in the strategy profile (s′i, s−i) is equal to wP ′(s). Hence, ui(s
′
i, s−i) =

w
P ′(s)

|P ′|+1 .

But wP (s) = wP ′(s), by Lemma 9. Therefore, ui(s
′
i, s−i) > ui(s), a contradiction.

Lemma 12. A strategy profile s such that |P(s)| = 2 is a Nash equilibrium if and only if

min{ls(P ), rs(P )} > 1
3 for any P ∈ P(s) and maxP,P ′∈P(s) |P | − |P ′| ≤ 1.

Proof. Let s be a Nash equilibrium such that |P(s)| = 2. Then maxP,P ′∈P(s) |P | − |P ′| ≤ 1

follows from Lemma 11.

Let P(s) = {P,P ′}. Since |I| ≥ 3, at least one of the parties is not singleton. Without

loss of generality, let |P | > 1. Pick an i ∈ P . Since wP (s) = wP ′(s) = 1
2 , we have ui(s) ≤

1
4 .

Let d = min{ls(P ), rs(P )}. We call the arc between the agendas supported by parties P

and P ′ in s with length d as arc d, and the other arc as arc 1 − d (in case d = 1
2 , then call

any one of the two arcs defined by the agendas supported by P and P ′ in s as arc d and the

other as arc 1− d).

Suppose d ≤ 1
3 . Let politician i deviate to s′i, which is the midpoint of arc 1−d. In strategy

profile (s′i, s−i), there are three parties {i}, P \{i} and P ′. Furthermore, w{i}(s
′
i, s−i) =

1−d
2 ≥

1
3 , wP\{i}(s

′
i, s−i) = wP ′(s′i, s−i) =

1+d
4 ≤ 1

3 . Hence, ui(s
′
i, s−i) ≥

1
3 , a contradiction.

To prove the other implication, suppose s is a strategy profile with P(s) = {P,P ′}, d > 1
3

and maxP,P ′∈P(s) |P | − |P ′| ≤ 1. Pick any i ∈ P . We have ui(s) = 1
2|P | . Consider any

deviation s′i by politician i. Now, two cases are possible:

(i) |P | > 1: Suppose s′i is an unsupported agenda on arc d. Then three parties {i}, P \ {i}

and P ′ form in (s′i, s−i). Moreover, w{i}(s
′
i, s−i) = d

2 but wP\{i}(s
′
i, s−i) > 1

2 − d
2 ≥ d

2

since d ≤ 1
2 . Hence, ui(s

′
i, s−i) = 0. Hence, i has no incentive to deviate from si to

s′i. Next, suppose s′i is an unsupported agenda on arc 1 − d. Again, three parties {i},

P \ {i} and P ′ form in (s′i, s−i). Moreover, w{i}(s
′
i, s−i) =

1−d
2 but either P ′ or P \ {i}

has a weight of at least 1+d
4 > 1−d

2 since d > 1
3 . Hence, ui(s

′
i, s−i) = 0 and i has no

incentive to deviate from si to s′i. Finally, if s′i is the agenda supported by party P ′ in

s, then ui(s
′
i, s−i) =

1
2(|P ′|+1) ≤

1
2|P | since |P | − |P ′| ≤ 1. So i has no incentive to make

this deviation.
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(ii) |P | = 1: As long as s′i is not the agenda supported by P ′, ui(s
′
i, s−i) =

1
2 . If s′i is the

agenda supported by P ′, then ui(s
′
i, s−i) =

1
|P ′|+1 ≤ 1

3 . So i has no incentive to deviate.

A similar argument can be made for any politician in party P ′. Hence, s is a Nash equilibrium.

Lemma 13. A strategy profile s such that |P(s)| ≥ 3 and |I| ≥ 2|P(s)| is a Nash equilibrium

if and only if all parties in P(s) have equal weights and maxP,P ′∈P(s) |P | − |P ′| ≤ 1.

Proof. Suppose strategy profile s is such that all parties have equal weights and maxP,P ′∈P(s)

|P | − |P ′| ≤ 1. Pick any P ∈ P(s) and i ∈ P . Since wP (s) =
1

|P(s)| , we have ui(s) =
1

|P(s)||P | .

Furthermore, since |I| ≥ 2|P(s)|, we must have |P ′| ≥ 2 for all P ′ ∈ P(s). Consider any

deviation s′i by politician i. If s′i is an agenda supported by some P ′ ∈ P(s), then the

sets of agendas supported by the parties are the same in s and (s′i, s−i). Hence, all parties

formed in (s′i, s−i) have equal weights and wP ′∪{i}(s
′
i, s−i) = wP ′(s). Therefore, ui(s

′
i, s−i) =

1
|P(s)|(|P ′|+1) ≤

1
|P(s)||P | since |P | ≤ |P ′|+1. If s′i is an agenda that is not supported in strategy

s, then there exists a P ′ ∈ P(s) such that s′i is between the agendas supported by P ′ and

Ls(P ′) in s. Hence, w{i}(s
′
i, s−i) = ls(P ′)

2 . But the weight of party R(s′
i
,si)(P ′) in (s′i, s−i)

equals ls(P ′)+rs(P ′)
2 (using the fact that there are at least three parties in s and all these

parties have equal weights). Hence, ui(s
′
i, s−i) = 0 and therefore, there is no incentive for her

to deviate. Lemmas 9 and 11 prove the other implication.

Lemma 14. There does not exist a Nash equilibrium s such that either (i) |P(s)| = 1 or (ii)

|P(s)| > 6 and |I| < 2|P(s)|.

Proof. Suppose s is such a Nash equilibrium. If |P(s)| = 1, then any politician i can deviate

to any s′i and obtain ui(s
′
i, s−i) =

1
2 > 1

|I| = ui(s). Next, if |P(s)| > 6 and |I| < 2|P(s)|, then

there exists at least one party P ∈ P(s) such that P = {i}. It follows from Lemma 9 that

ui(s) = 1
|P(s)| . Let P ′ be the closest party adjacent to P in s. We know that |P ′| ∈ {1, 2}

(Lemma 11). If politician i deviates to s′i, which is the agenda supported by P ′ in s, then

there are at most two parties with the highest weight in (s′i, s−i) and P ′ ∪ {i} is one of these

two parties. Hence, ui(s
′
i, s−i) ≥

1
2(|P ′|+1) ≥

1
6 > 1

|P(s)| , a contradiction.

Lemma 15. A strategy profile s such that 5 ≤ |P(s)| ≤ 6 and |I| < 2|P(s)| is a Nash

equilibrium if and only if all parties are equidistant from each other, maxP,P ′∈P(s) |P |− |P ′| ≤

1, and there do not exist P,P ′ ∈ P(s) such that P and P ′ are adjacent, and |P | = |P ′| = 1.

Proof. Let s be such a Nash equilibrium. First, suppose that the parties are not equidistant.

It follows from Lemma 10 that |P(s)| = 6 and ls(P ′′) 6= rs(P ′′) for all P ′′ ∈ P(s). Since

|I| < 2|P(s)| there exists a party P ∈ P(s) such that P = {i}. Hence, ui(s) = 1
|P(s)|

(Lemma 9). Let P ′ be the closest party adjacent to P in s. We know that |P ′| ∈ {1, 2}
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(Lemma 11). If politician i deviates to s′i, which is the agenda supported by P ′ in s, then

the weight of party P ′ ∪ {i} in (s′i, s−i) is strictly greater than any other party’s weight and

hence, ui(s
′
i, s−i) ≥

1
3 > 1

6 , a contradiction. Therefore, all parties in s are equidistant from

each other.

Next, suppose that there are two adjacent parties P,P ′ ∈ P(s) such that |P | = |P ′| = 1.

Let P = {i}. Then ui(s) =
1

|P(s)| (Lemma 9). If politician i deviates to s′i, which is the agenda

supported by P ′ in s, then there are exactly two parties in (s′i, s−i) with the highest weight

and party P ′ ∪ {i} in (s′i, s−i) is one of them. Hence, ui(s
′
i, s−i) =

1
4 > 1

|P(s)| , a contradiction.

Finally, we show the other implication. Let s satisfy the conditions listed in the lemma.

Pick any P ∈ P(s) and i ∈ P . Then |P | ≤ 2 and ui(s) =
1

|P(s)||P | . Consider any deviation s′i

by politician i.

(i) Suppose |P | = 2: If s′i is an agenda supported by some P ′ ∈ P(s), then the sets of agen-

das supported by the parties are the same in s and (s′i, s−i). Hence, wP ′∪{i}(s
′
i, s−i) =

wP ′(s) and therefore, ui(s
′
i, s−i) = 1

|P(s)|(|P ′|+1) ≤ 1
|P(s)||P | since |P | ≤ |P ′| + 1. If s′i

is an agenda that is not supported by any party in strategy s, then there exists a

P ′ ∈ P(s) such that s′i is between the agendas supported by P ′ and Ls(P ′) in s. Hence,

w{i}(s
′
i, s−i) =

ls(P ′)
2 . But the weight of party R(s′

i
,si)(P ′) in (s′i, s−i) equals

ls(P ′)+rs(P ′)
2

(using the fact that there are at least three parties in s and all these parties have equal

weights). Hence, ui(s
′
i, s−i) = 0 and therefore, there is no incentive for her to deviate.

(ii) Suppose |P | = 1: Let arc d′ be the arc between the agendas supported by Ls(P ) and

Rs(P ) in s that does not contain si. If s′i is in arc d′ but s′i is neither the agenda

supported by Ls(P ) nor Rs(P ) in s, then parties Ls(P ) and Rs(P ) are also formed

in strategy (s′i, s−i) and at least one of them obtains a higher weight than the party

of politician i in (s′i, s−i). Hence, ui(s
′
i, s−i) = 0 and therefore, there is no incentive

to deviate. If s′i is the agenda supported by Ls(P ) in s, then Ls(P ) ∪ {i} and Rs(P )

form in strategy (s′i, s−i) and obtain the highest weight. Since |Ls(P )| = 2, we have

ui(s
′
i, s−i) =

1
6 . Therefore, there is no incentive to deviate. A similar argument works if

s′i is the agenda supported by Rs(P ) in s. In the remaining case, ui(s
′
i, s−i) = 0 since

both Ls(P ) and Rs(P ) are also formed in strategy (s′i, s−i) and at least one of them

obtains a higher weight than the party of politician i in (s′i, s−i). Hence, there is no

incentive to deviate.

Therefore, s is a Nash equilibrium.

Lemma 16. A strategy profile s such that 3 ≤ |P(s)| ≤ 4 and |I| < 2|P(s)| is a Nash

equilibrium if and only if all parties are equidistant from each other and maxP,P ′∈P(s) |P | −

|P ′| ≤ 1.
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Proof. The proof of this lemma is similar to the proof of Lemma 15.

The above lemmas together imply the characterization in the theorem.

Proof of Theorem 3: We prove the theorem through a series of lemmas.

Lemma 17. Let s be such that |P(s)| ≥ 4. Then s is not a defection-proof Nash equilibrium.

Proof. Assume that s is a defection-proof Nash equilibrium. Let P(s) = {P 1, . . . , Pn} such

that n ≥ 4. Without loss of generality, let P k+1 = Rs(P k) for all k = 1, . . . , n − 1 and

ls(P 3) ≤ rs(P 3). Since s is a Nash equilibrium, all parties in P(s) have equal weights.

Therefore, ui(s) = 1
|P(s)||P k|

for all i ∈ P k. Moreover, |P 2| + |P 3| ≤ 2|P k| + 1 for k = 2, 3

(using Lemma 11).

Consider the arc between the agendas supported by P 2 and P 3 in s corresponding to

ls(P 3). Let a be the midpoint of this arc. Consider the coalition J = P 2 ∪ P 3 and s′J such

that s′j = a for all j ∈ J . Let s′ = (s′J , s−J). Now, P(s′) = {P 1, P 2 ∪ P 3, P 4, . . . , Pn} and

ls
′
(P 2 ∪ P 3) = ls(P 2) + ls(P 3)

2 = rs(P 3) + rs(P 2)
2 = rs

′
(P 2 ∪ P 3).

Thus, the weight of P 2 ∪ P 3 in s′ equals ls(P 2) + ls(P 3)
2 . Now, rs

′
(P 1) = ls

′
(P 2 ∪ P 3)

and ls
′
(P 1) = ls(P 1) = ls(P 3) ≤ rs(P 3) = ls(P 2). Similarly, ls

′
(P 4) = rs

′
(P 2 ∪ P 3) and

rs
′
(P 4) ≤ rs(P 3). Therefore, in s′, P 2 ∪ P 3 has a greater weight than both P 1 and P 4.

Clearly, wP k(s′) = wP k(s) for all k > 4. Therefore, in s′, P 2 ∪ P 3 is the unique party with

the maximum weight. Hence, uj(s
′) = 1

|P 2|+|P 3|
for all j ∈ J .

Since |P(s)||P k | ≥ 4|P k| > 2|P k| + 1 ≥ |P 2| + |P 3| for k = 2, 3, s′J is a defection from s

by J .

Consider any subcoalition J ′ ⊂ J and let s′′J ′ be such that s′′j = a′ 6= a for all j ∈ J ′′. Let

s′′ = (s′′J ′ , s′−J ′). If a′ lies on the arc between the agendas supported by P 1 and P 4 in s′ that

does not contain a, then party J \ J ′ will be the unique party with the maximum weight in

s′′. Hence, the utility of each j ∈ J ′′ will be zero in s′′. In all other cases, the new party J ′

will obtain a weight of ls
′
(P 2∪P 3)

2 , which is less than the weight obtained by at least either P 1

or P 4 in s′′. Thus, the utility of each j ∈ J ′′ will again be zero in s′′. So there does not exist

any subcoalition J ′ ⊂ J with a defection from s′. Therefore, s′J is a credible defection from s

by J , a contradiction.

Lemma 18. Let s be a Nash equilibrium such that |P(s)| = 3. Then, s is a defection-proof

Nash equilibrium.

Proof. Let P(s) = {P 1, P 2, P 3}, J a coalition of politicians, and s′J a profile for this coalition

such that sj 6= s′j = a for all j ∈ J . Suppose s′J is a credible defection from s by J . Consider

the following cases:
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(i) P k \ J 6= ∅ for all k ∈ {1, 2, 3}. Pick any j ∈ J and consider the strategy profile

(s′j, s−j). Clearly the set of agendas supported in (s′J , s−J) is equal to the set of agendas

supported in (s′j, s−j). Therefore, the weight of party supporting a in (s′J , s−J) is equal to

the weight of the party supporting a in (s′j, s−j). But the latter party is singleton. Thus,

uj(s
′
j, s−j) ≥ uj(s

′
J , s−J) > uj(s), a contradiction to the fact that s is a Nash equilibrium.

(ii) P 1 ⊆ J and P k \J 6= ∅ for k = 2, 3. Then a is not supported by P 1 in s. If a is also not

supported by P 2 or P 3 in s, then three parties form in (s′J , s−J) but the weight of the party

supporting a is less than the weight of at least one other party. Thus, uj(s
′
J , s−J) = 0 for all

j ∈ J , a contradiction. If a is supported by, without loss of generality, P 2, then P 2 ∩ J = ∅.

Now, two parties form in (s′J , s−J). Pick any j ∈ P 1. Then uj(s
′
J , s−J) ≤

1
2|P 1|+2|P 2| . On the

other hand, uj(s) =
1

3|P 1|
. However, 3|P 1| ≤ 2|P 1| + 2|P 2| because |P 1| ≤ |P 2| + 1 ≤ 2|P 2|.

So s′J cannot be a defection. Similarly, we can obtain contradictions when either:

(iii) P 2 ⊆ J and P k \ J 6= ∅ for k = 1, 3, or

(iv) P 3 ⊆ J and P k \ J 6= ∅ for k = 1, 2.

(v) P 1 ∪ P 2 ⊆ J and P 3 \ J 6= ∅. Then a is not supported by both P 1 and P 2 in s.

If a is also not supported by P 3 in s, then two parties form in (s′J , s−J). Pick any j ∈ P 1.

Then uj(s
′
J , s−J) ≤ 1

2|P 1|+2|P 2| . On the other hand, uj(s) = 1
3|P 1| . However, as above,

3|P 1| ≤ 2|P 1| + 2|P 2|. So s′J cannot be a defection, a contradiction. If a is supported by

P 3, then P 3 ∩ J = ∅. Now, a single party is formed in (s′J , s−J). However, since (s′J , s−J) is

not a Nash equilibrium, there exists a credible defection by a single politician, without loss

of generality by j ∈ J , from (s′J , s−J). Thus, (s′J , s−J) is not a credible defection from s by

J , a contradiction. We can similarly obtain contradictions when either:

(vi) P 1 ∪ P 3 ⊆ J and P 2 \ J 6= ∅, or

(vii) P 2 ∪ P 3 ⊆ J and P 1 \ J 6= ∅.

(viii) P 1 ∪ P 2 ∪ P 3 = J . A single party is formed after the defection and hence, the

resulting profile is not a Nash equilibrium. Thus, the initial defection is not credible, a

contradiction.

Lemma 19. Let s be a Nash equilibrium such that |P(s)| = 2. Then s is a defection-proof

Nash equilibrium.

Proof. Let P(s) = {P 1, P 2}, J a coalition of politicians, and s′J a profile for this coalition

such that sj 6= s′j = a for all j ∈ J . Suppose s′J is a credible defection from s by J . Consider

the following cases:

(i) P k \ J 6= ∅ for all k ∈ {1, 2}. Pick any j ∈ J and consider the strategy profile

(s′j, s−j). Clearly the set of agendas supported in (s′J , s−J) is equal to the set of agendas

supported in (s′j, s−j). Therefore, the weight of party supporting a in (s′J , s−J) is equal to

the weight of the party supporting a in (s′j, s−j). But the latter party is singleton. Thus,

uj(s
′
j, s−j) ≥ uj(s

′
J , s−J) > uj(s), a contradiction to the fact that s is a Nash equilibrium.
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(ii) P 1 ⊆ J and P 2 \J 6= ∅. Then a is not supported by P 1 in s. If a is also not supported

by P 2 in s, then two parties form in (s′J , s−J). The weight of the party supporting a is equal

to 1
2 . Thus, for any j ∈ P 1, we have uj(s

′
J , s−J) ≤ 1

2|P 1|
= uj(s), a contradiction. If a is

supported by P 2, then P 2 ∩ J = ∅. Now, a single party is formed in (s′J , s−J). However,

since (s′J , s−J) is not a Nash equilibrium, (s′J , s−J) is not a credible defection from s by J , a

contradiction. We can similarly obtain a contradiction when:

(iii) P 2 ⊆ J and P 1 \ J 6= ∅.

(iv) P 1 ∪ P 2 = J . A single party is formed after the defection and hence, the resulting

profile is not a Nash equilibrium. Thus, the initial defection is not credible, a contradiction.

These lemmas together imply the characterization in the theorem.

6.2 Proportional Rule

Proof of Theorem 5: We prove the theorem through a series of lemmas.

Lemma 20. Let s be such that there exists a party P in P(s) with |P | ≥ 3. Then s is not a

Nash equilibrium.

Proof. Let P ∈ P(s) such that |P | ≥ 3. Without loss of generality, suppose ls(P ) ≥ rs(P ).

Pick any politician i ∈ P and consider the strategy profile (s′i, s−i) such that s′i is any agenda

on the arc corresponding to ls(P ) except the agendas supported by P and Ls(P ) in s. Then

ui(s
′
i, s−i) =

ls(P )
2 > ls(P )

|P | ≥ ls(P )+rs(P )
2|P | = ui(s). Therefore, s is not a Nash equilibrium.

Lemma 21. Let s be a Nash equilibrium. Then for any P ∈ P(s) such that |P | = 2, we must

have ls(P ) = rs(P ) = maxP ′∈P(s){l
s(P ′), rs(P ′)}.

Proof. Let P ∈ P(s) such that |P | = 2. Let d∗ = maxP ′∈P(s){l
s(P ′), rs(P ′)}. Suppose

d∗ > min{ls(P ), rs(P )}. Note that d∗ ≥ max{ls(P ), rs(P )}. Therefore, ls(P )+rs(P )
2 < d∗. Let

P ′′ = argmaxP ′∈P(s){l
s(P ′), rs(P ′)} and without loss of generality, suppose ls(P ′′) ≥ rs(P ′′).

Pick any politician i ∈ P and consider the strategy profile (s′′i , s−i) such that s′′i is any agenda

on the arc corresponding to ls(P ′′) except the agendas supported by P ′′ and Ls(P ′′) in s. Then

ui(s
′′
i , s−i) =

ls(P ′′)
2 = d∗

2 > ls(P )+rs(P )
4 = ui(s). Therefore, s is not a Nash equilibrium.

Lemma 22. Let s be a Nash equilibrium. Then for any P ∈ P(s) such that |P | = 1, we must

have ls(P ) + rs(P ) ≥ maxP ′∈P(s){l
s(P ′), rs(P ′)}.

Proof. Let P ∈ P(s) such that |P | = 1. Suppose ls(P ) + rs(P ) < maxP ′∈P(s){l
s(P ′), rs(P ′)}.

Let P ′′ = argmaxP ′∈P(s){l
s(P ′), rs(P ′)} and without loss of generality, suppose ls(P ′′) ≥

rs(P ′′). Pick any politician i ∈ P and consider the strategy profile (s′′i , s−i) such that s′′i

is any agenda on the arc corresponding to ls(P ′′) except the agendas supported by P ′′ and
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Ls(P ′′) in s. Then ui(s
′′
i , s−i) = ls(P ′′)

2 > ls(P )+rs(P )
2 = ui(s). Therefore, s is not a Nash

equilibrium.

Lemma 23. Let s be such that for any party P ∈ P(s) either

(i) |P | = 2 and ls(P ) = rs(P ) = maxP ′∈P(s){l
s(P ′), rs(P ′)} or

(ii) |P | = 1 and ls(P ) + rs(P ) ≥ maxP ′∈P(s){l
s(P ′), rs(P ′)}.

Then s is a Nash equilibrium.

Proof. Let s be such a strategy profile and d∗ = maxP ′∈P(s){l
s(P ′), rs(P ′)}. Pick a P ∈ P(s)

such that |P | = 2. A politician i in party P gets d∗

2 . Consider a deviation s′i. First, suppose

s′i is not an agenda supported in s. Clearly, s′i lies between two agendas supported in s.

Furthermore, since |P | = 2, all the agendas that are supported in s are also supported in

(s′i, s−i). Hence, there exists a P ′′ ∈ P(s) such that ui(s
′
i, s−i) =

ls(P ′′)
2 ≤ d∗

2 = ui(s). Second,

suppose s′i is an agenda supported in s by P ′′ such that |P ′′| = 2. Now, the set of agendas

supported in (s′i, s−i) equals the set of agendas supported in s. Clearly, ui(s
′
i, s−i) = d∗

3 <

ui(s). Finally, suppose s′i is an agenda supported in s by P ′′ such that |P ′′| = 1. Again,

the set of agendas supported in (s′i, s−i) equals the set of agendas supported in s. Moreover,

ui(s
′
i, s−i) =

ls(P ′′)+rs(P ′′)
4 ≤ d∗

2 = ui(s).

Next, pick a P ∈ P(s) such that |P | = 1. Since ls(P ) + rs(P ) ≥ d∗, the politician i in

party P gets utility of at least d∗

2 . Consider a deviation s′i. First, suppose s
′
i is not an agenda

supported in s. If s′i does not lie on the arc between the agendas supported by Ls(P ) and

Rs(P ) that contains si, then there exists a P ′′ ∈ P(s) such that ui(s
′
i, s−i) =

ls(P ′′)
2 ≤ d∗

2 ≤

ui(s). On the other hand, if s′i lies on the arc between the agendas supported by Ls(P ) and

Rs(P ) that contains si, then ui(s
′
i, s−i) = ui(s). Second, suppose s′i is an agenda supported

in s by P ′′ such that |P ′′| = 2. If P ′′ /∈ {Ls(P ), Rs(P )}, then ui(s
′
i, s−i) =

d∗

3 < d∗

2 ≤ ui(s).

On the other hand, if P ′′ = Ls(P ) (a similar argument works when P ′′ = Rs(P )), then

ui(s
′
i, s−i) = ls(P ′′)+ls(P )+rs(P )

6 ≤ d∗

2 ≤ ui(s). Finally, suppose s′i is an agenda supported

in s by P ′′ such that |P ′′| = 1. If P ′′ /∈ {Ls(P ), Rs(P )}, then ui(s
′
i, s−i) ≤ d∗

2 ≤ ui(s).

On the other hand, if P ′′ = Ls(P ) (a similar argument works when P ′′ = Rs(P )), then

ui(s
′
i, s−i) =

ls(P ′′)+ls(P )+rs(P )
4 ≤ d∗+ls(P )+rs(P )

4 ≤ ls(P )+rs(P )
2 = ui(s).

Therefore, s is a Nash equilibrium.

These lemmas together imply the characterization in the theorem.

Proof of Theorem 7: Every defection-proof Nash equilibrium is by definition a Nash equi-

librium.

Suppose s is a Nash equilibrium. Let J be a coalition of politicians, and s′J a profile for

this coalition such that sj 6= s′j = a for all j ∈ J . Suppose s′J is a credible defection from s

by J .
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Since s is a Nash equilibrium, we must have |J | ≥ 2. Consider the profile s′ = (s′J , s−J)

and let P ∈ P(s′) be such that J ⊆ P .

First, suppose |P | ≥ 3. Without loss of generality, let ls
′
(P ) ≥ rs

′
(P ). Pick any politi-

cian j ∈ J and consider the strategy profile (s′′j , s
′
−j) such that s′′j is any agenda on the

arc corresponding to ls
′
(P ) except the agendas supported by P and Ls′(P ) in s′. Then

uj(s
′′
j , s

′
−j) = ls

′
(P )
2 > ls

′
(P )
|P | ≥ ls

′
(P )+rs

′
(P )

2|P | = uj(s
′). Therefore, s′′j is a credible defection

from s′ by j ∈ J ; a contradiction. Thus, it must be that |P | = |J | = 2. Therefore, a is not

supported by any party in s and hence, a lies between the agendas supported by some P ′ and

Ls(P ′) in s. Consider the following cases:

(i) Suppose P ′ \ J 6= ∅ and Ls(P ′) \ J 6= ∅. Pick any j ∈ J . Then uj(s
′) = ls(P ′)

2 . Since

s′J is a defection from s by J , it must be that uj(s
′) > uj(s). Consider the strategy profile

(s′j, s−j). Clearly, uj(s
′
j, s−j) = ls(P ′)

2 > uj(s), a contradiction to the fact that s is a Nash

equilibrium.

(ii) Suppose P ′ ⊆ J and Ls(P ′) \ J 6= ∅. If Rs(P ′) \ J 6= ∅, then for any j ∈ J ∩ P ′ we

have uj(s
′) = ls(P ′)+rs(P ′)

4 ≤ uj(s) (the equality uses the fact that |J | = 2). On the other

hand, if Rs(P ′) ⊆ J , then P ′ ∪ Rs(P ′) ⊆ J and |J | = 2 implies that P ′ ∪ Rs(P ′) = J . Let

P ′′ = Rs(P ′). Since P ′ ∪ Rs(P ′) = J , both parties Ls(P ′) and Rs(P ′′) form in s′. Moreover,

since s is a Nash equilibrium and |P ′| = 1, we have rs(P ′′) ≤ ls(P ′)+rs(P ′). Thus, for j ∈ P ′,

uj(s
′) = ls(P ′)+rs(P ′)+rs(P ′′)

4 ≤ ls(P ′)+rs(P ′)
2 = uj(s), a contradiction. We can similarly obtain

a contradiction when:

(iii) P ′ \ J 6= ∅ and Ls(P ′) ⊆ J .

(iv) Suppose P ′ ⊆ J and Ls(P ′) ⊆ J . Let P ′′ = Ls(P ′). Then P ′ ∪ P ′′ = J since |J | = 2.

Moreover both parties Ls(P ′′) and Rs(P ′) form in s′ (these parties exist since |I| ≥ 3 > |J |).

Since s is a Nash equilibrium and |P ′| = 1, we have ls(P ′′) ≤ ls(P ′)+rs(P ′). Thus, for j ∈ P ′,

uj(s
′) = ls(P ′′)+ls(P ′)+rs(P ′)

4 ≤ ls(P ′)+rs(P ′)
2 = uj(s), a contradiction.
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