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Abstract

We introduce a novel decision procedure involving multi-dimensional iterative

reasoning, in which a player decides separately on the various features of his strategy using

an iterative process. This type of strategic reasoning fits a range of complicated situations

in which a player faces a large and non-ordered strategy space. In this paper, the procedure

is used to explain the results of a large web-based experiment of a tournament version of

the Colonel Blotto Game. The interpretation of the participants’ choices as reflecting

multi-dimensional iterative reasoning is supported by an analysis of their response times

and the correlation between the participants’ behavior in this game and their choices in

another game which triggers standard k-level reasoning. Finally, we reveal the most

successful strategies in the tournament, which appear to reflect 2-3 levels of reasoning in

each "dimension".
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Our interest is in exploring the behavior of human beings in relatively complicated

strategic situations. Most experimental research on strategic reasoning has focused on

behavior in simple games in which the set of strategies is either small or naturally ordered.

These games often trigger attractive decision rules such as playing the (pure strategy) Nash

equilibrium, eliminating iteratively dominated strategies or implementing level-k reasoning.

We wish to discover schemes of strategic reasoning used in situations in which it is hard to

assess the strategy space due to its size and structure. In such situations, where there is no

simple mental representation of the strategy space, the player is forced to formulate his

strategy by choosing several features of a strategy. Furthermore, the player’s payoff

depends in a non-trivial way on the features chosen by the other player. A theory of choice

in such situations could supply the instruments to construct new models of behavior in a

variety of contexts. In this paper we explore the experimental behavior of a large sample of

participants in the renowned Colonel Blotto game. The game itself is interesting per se and

has been applied to study a variety of economic and political situations. The game also

resembles other strategic scenarios such as allocation of funds between tasks,

multi-characteristic product races and multi-object auctions. However, its main role in this

paper is to serve as a platform for studying a novel strategic scheme that can be relevant for

analyzing other game situations.

1. The Colonel Blotto Game

Imagine you are a colonel in command of an army during wartime. You and the colonel

of the enemy’s army each command 120 troops. Your troops will engage the enemy in 6

battles on 6 separate battlefields.

It is the night before the battles and each of you must decide how to deploy your forces

across the 6 battlefields. In the morning, you will win a battle if the number of troops you

have assigned to a particular battlefield is higher than that assigned by your opponent. In

the case that you have both allocated the same number of troops to a particular battlefield,

the outcome of the battle will be a loss for both of you.

Your deployment of troops will face that of each of the other participants in the

tournament. Your total score will be the number of battles you win against all the other

participants.

How will you deploy your 120 troops?

Please pause for a second and try to devise a strategy. How would you play such a game?
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The first possibility that comes to mind is the simple strategy of allocating the 120 troops

evenly across the six battlefields. This instinctive strategy is likely to be chosen by other

participants as well. If you choose this strategy, you will score no points against these

participants. Furthermore, if some of the players will choose this strategy, and the marginal

distribution of the other players’ assignments in each battlefield will be symmetric around

20, the instinctive strategy will score less than 3 points on average. You speculate that

winning the tournament requires scoring more than 3 points and thus choosing this strategy

does not seem promising.

This may lead you to consider concentrating your troops in only some of the battlefields.

But in how many? By allocating your troops evenly across five battlefields, you will win 5

battles and score 5 points against any opponent who chooses the instinctive strategy.

However, what if the other players have the same thought and concentrate their troops in

only five fields? In that case it might be better for you to assign a larger number of troops to

only four battlefields, hoping to score 4 points against these players. It is not obvious where

to stop this chain of arguments.

Suppose you have decided to deploy your troops in a certain number of battlefields and

to abandon the others. Should you completely abandon those battlefields? Other players

might also abandon them and therefore assigning even a small number of troops to these

fields would score some easy victories. Other players are likely to go through a similar

reasoning process and you need to decide on the exact number of troops to be assigned to

the almost abandoned battlefields.

You might also doubt that the six fields are treated symmetrically. Is it possible that other

players will systematically deploy more troops in some fields than in others? If so, you will

gain more points by assigning larger masses to specific fields.

As you can see, the game is quite complicated and numerous considerations arise. At this

point you are probably hoping that a game-theoretical analysis of the situation will provide

some guidance in formulating a strategy. In the multi-player tournament a player’s target is

to score more points than the others. For a distribution of pure strategies to be an

equilibrium, it must be a symmetric mixed strategy Nash equilibrium in a two-player game,

in which each player maximizes his expected score. Calculating the equilibrium of this

game is extremely complicated. But in any case, do you have any basis for the conjecture

that the equilibrium will be realized in the tournament of our version of the Blotto game?

It seems that the best way to proceed is by understanding how real people behave in the

game. That is the goal of our paper. A strategy in the Blotto game consists of an allocation

of 120 troops across six battlefields. The number of strategies is around 250 million. A
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permutation is a set consisting of all strategies obtained by permuting a particular strategy

(ignoring the labels of the battlefields). There are about 400 thousand permutations in the

game. Thousands of strategies and almost a thousand permutations were actually chosen by

the participants in our experiments. Thus, it is a challenge to identify and interpret common

patterns of behavior in the data.

Unlike some other well-known simple games, it is hard to imagine a simple decision rule

(such as successive elimination of dominated strategies) that could be used by a player in

the Blotto game. It is also reasonable to assume that players do not adopt a process which

involves finding a best response to a well-defined belief. This is because given the huge

strategy space it is implausible that participants hold "single point" beliefs (which assume

that most of the other participants will choose a particular strategy). If participants hold

non-single point beliefs, then calculating the best response is enormously difficult, even if

the belief’s support consists of only a few strategies.

Our hypothesis is that the large size of the strategy space and its structure force a player

to think in terms of “features" (or "dimensions") of strategies rather than thinking about

strategies per se. The paper presents a new decision procedure by which a player decides on

each of the various features of his strategy separately using an iterative process and then

integrates his choices in the various dimensions to formulate a strategy.

Following a discussion of the decision procedure in Section 2, we describe the

large-scale web-based experiment of the Blotto game we carried out in Section 3. In

Section 4 we suggest that participants consider three particular features of a strategy and

show that indeed many of the participants used our procedure and referred to these features.

In Section 5 we further support the interpretation of choices in the Blotto game as reflecting

multi-dimensional iterative reasoning by using additional data. Finally, in Section 6, we

open Colonel Blotto’s “top secret files", which reveal the salient strategies and the most

successful strategies. We promise a surprise!

2. Multi-dimensional (iterative) reasoning

We propose a new decision procedure that fits not only the Blotto game but also other

games that are characterized by a rich structure. According to this procedure, a player has

in mind some major dimensions (or features) of a strategy. What those dimensions are

depends on the structure of the game. The player makes a decision (chooses a value) for

each dimension separately. In a repeated game, for instance, a dimension of a strategy

could be the number of periods which a current action can depend on and the value will be
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any non-negative integer. Another example of a dimension could be the stationarity of the

strategy and the values might be "yes" or "no". In a multi-object auction, one dimension of

a strategy could be the sum of all bids made by the player and the value will be any

non-negative number. Another dimension could be the number of objects the player bids

on.

A player might apply different dimensional decision rules to the various dimensions.

Examples for simple dimensional decision rules are "choose the salient value in this

dimension" or "choose the middle value (in some geography of the values)". More complex

dimensional decision rules will be based on the player’s belief regarding the other players’

choices of values in that dimension. In our analysis we focus (but not exclusively) on

iterative decision rules. A player starts by considering the instinctive value for this

dimension. He might end the process at this point and choose that value. Alternatively, he

may respond properly to the belief that many other players choose the instinctive value.

That is, he may apply what we call a proper response operator, which assigns an

approximation of a best response to each value of the dimension. The proper response to a

value v in a particular dimension might be calculated, for example, as follows: take a

typical strategy which dictates the value v in this dimension; find the best response to a

belief that most of the other players chooses this strategy; the value associated with this

best response strategy is the proper response to the value v.

The player might repeat this process iteratively by properly responding to the value

obtained in the previous step. Thus, if he carries out step 1 of the reasoning in this

dimension, he chooses the value that properly responds to the step 0 value, which is the

instinctive choice of value in this dimension. If he implements step 2 of the reasoning, he

chooses the value which is the proper response to the step 1 value. Higher steps of

reasoning are defined in a similar manner. After making a decision in all dimensions, the

player chooses a strategy that fits all chosen values. Note, that this strategy is not

necessarily a best response to a particular belief on the other players’ strategies.

Such a procedure is not uncommon in real life situations. Consider, for example, two

competing fashion clothing firms, A and B, which produce a similar product. Each firm

needs to choose the price and the design of its product before it learns about the choice of

the other firm. In the previous year, both firms chose a price of $12 and produced a similar

design. In one of its meetings, A’s management decides to reduce the price to $10 since it

expects firm B to reduce its price to $11 (A speculates that B anticipates that A will not be

altering the price). In a separate meeting, A’s management decides to adopt a new and more

modern design for the product since it expects firm B to stick to last year’s design. Given
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these two decisions, the planning department must come up with a new design that can be

cheaply produced and has a modern look. The outcome could be a provocative design made

out of cheap material. Is this a best response to firm B’s strategy? Not necessarily.

Note the similarity and difference between this procedure and the k-level reasoning

approach (see Stahl and Wilson (1995)). A k-level model assumes that the population is

partitioned into a collection of types, which differ in their depth of reasoning. Thus, a

level-0 type is non-strategic and follows a simple decision rule. It is generally assumed that

he randomizes uniformly (see Crawford and Irriberi (2007) and Arad (2009) for different

specifications of the level-0 type, which take into account instinctive attraction to salience).

A k-level type, for any k ≥ 1, best responds to the belief that all other players are level

k − 1 types. In previous studies of other games, it was found that the most common types

are level-1 and level-2 and it is rare to observe behavior consistent with a higher level. Our

procedure differs from k-level reasoning in two major aspects: First, it relates to the

features of the strategies rather than to the strategies themselves. This enables the level of

reasoning to vary across dimensions. Second, it uses a "proper response" operator, which is

only roughly connected to the best response operator.

3. The Experiment

The platform used to conduct the experiment was the didactic website at

gametheory.tau.ac.il. Each participant played our version of the Blotto game once. The

participants came from two separate and distinct populations:

(i) Classes: Teachers of game theory courses occasionally assign their students virtual

games and decision-theoretical problems from the site’s bank of problems. The results

obtained at the site are typically similar to those in laboratories experiments using monetary

incentives (see Rubinstein (2007)).

Students were asked to participate in a tournament against their classmates; we will be

reporting mainly the aggregated data of all the tournaments. The only incentive provided to

the participants was that the three tournament winners in each class would have their names

announced by the teacher. 4605 students had participated in the game. They belong to 129

groups in 25 countries (Argentine, Australia, Belgium, Brazil, Brunei, Canada, China,

Denmark, Finland, France, Ireland, Israel, Mexico, Moldova, Netherlands, Norway,

Slovakia, Spain, Switzerland, Taiwan, Thailand, Turkey, UK, USA and Vietnam).

(ii) Calcalist: "Calcalist" is a Hebrew business daily published in Israel. In the eve of

Passover 2009, we invited Calcalist’s readers to experience Game Theory by playing three
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games posted on our website. The invitation was done through a newsletter, a link in a

major news website, a link on "Calcalist on-line" and through Calcalist printed version in

which the games were described. 1928 readers chose to participate. Prior to the Blotto

tournament, the readers played two other games: Arad’s Tennis Coach problem (see Arad

(2009)) and a novel game called "91-100", which will be described later in the paper. Both

games naturally trigger k-level reasoning. It was promised to the readers that the names of

the three tournament winners would appear in an article that will report the main findings.

Note that in both the Classes and the Calcalist experiment, participants were formally

incentivized to try to win the tournament, i.e. to obtain the highest score among the

participants. Our tournament differs from that of a two-player Blotto game in which each

player is incentivized to maximize his expected score. We believe that our tournament

structure has the advantage of encouraging daring and inducing more strategic thinking.

Given the huge number of possible strategies, as well as the variety of strategies actually

chosen, thousands of independent observations are needed for a proper analysis of the

considerations that arise in a player’s mind. The use of web-based experimentation, which

provided us with a sample of 6533 participants, overcame this hurdle. It also enabled us to

confirm the robustness of the results through the sampling of two distinct populations:

game theory students and readers of a financial newspaper, a less conventional group of

participants for this kind of experiment. Despite the differences between the two

populations, the results are very similar.

4. Multi-dimensional reasoning in the Blotto game

Before demonstrating how the multi-feature procedure can be plausibly applied in the

Blotto game, it is worthwhile reviewing the difficulties involved in applying the standard

k-level approach: We begin from the conjecture that the most prominent starting point for

iterative reasoning is the instinctive deployment of troops, i.e., 20 to each battlefield. We

take this to be the natural specification for level-0 behavior for two related reasons. First, it

has the aesthetic features which make it the first strategy to come to mind (evidence for

which is the particularly low response time associated with this strategy). Second, it passes

the "coordination test": if two people are playing a coordination game in which they are

rewarded only if they simultaneously choose the same allocation of 120 troops across the 6

battlefields, they would obviously choose the instinctive strategy.

The difficulty arises when trying to specify the typical actions of higher-level types.

Unlike some other simple games, here there are many best responses to the level-0 strategy,
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which makes the specification of the level-1 type unclear. Consequently, it is not

reasonable to assign a single-point belief to the level-2 type. Holding a complex belief,

which takes into account all the possible level-1 strategies, is not plausible either.

Furthermore, the calculation of a best response to a non-degenerate distribution of level-1

strategies is very difficult even if the belief contains only a few strategies in its support.

Taking the level-0 to be a uniform randomization over the strategy space (that is,

assigning equal probabilities to all 250 million strategies) is of no benefit since the

calculation of the best response to this behavior is extremely difficult.

Thus, we find it more likely that a participant in the Blotto game employs the

multi-dimensional (iterative) reasoning process described in Section 2. In other words, he

chooses his strategy after considering several dimensions of the strategy and applying

iterative reasoning to each dimension separately.

We focus on three important features of a strategy: the number of reinforced battlefields,

the unit digit in a single-field assignment and the order of the six single-field assignments.

(a) The number of reinforced battlefields.

Choosing to reinforce k  0,1, . . , 5 battlefields means that the participant has decided to

strengthen his forces in k battlefields by assigning to each of them a large number of troops.

We define the reinforcement of a battlefield as the assignment to it of more than 20 troops.

The description of the iterative process in a particular dimension requires specifying the

starting point and the proper response operator. The starting point of the iterative process in

this dimension is the reinforcement of 0 battlefields since the instinctive strategy, which

assigns 20 troops to each battlefield, involves 0 reinforcements. This strategy is of course

the only non-dominated strategy that involves 0 reinforcements.

As for the proper response function, we define the reinforcement of 5 battlefields to be a

proper response to the reinforcement of 0 battlefields and the reinforcement of 4

battlefields to be a proper response to the reinforcement of 5 battlefields. However, it is not

clear that the reinforcement of 3 battlefields can be considered as the third step of

reasoning. It is worthwhile elaborating on this point.

The first iterative step is to reinforce 5 battlefields. (The straightforward strategy of this

kind involves deploying 24 troops in 5 of the battlefields.) If used against the step-0

strategy it will win 5 battles and thus score the maximum number of points possible in this

game. This is the reason that reinforcing 5 battlefields is intuitively the optimal response to

the step-0 strategy. Furthermore, if a player believes that a vast majority of participants, but

not all, will reinforce 0 battlefields, then reinforcing 5 battlefields is a necessary condition
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for him to win the tournament. Given this belief, reinforcing 4 battlefields or less does not

guarantee winning the tournament: if even one player in the tournament reinforces 5

battlefields, that player will score an average of almost 5 points, which is higher than the

average score achieved by anyone who reinforces 4 battlefields or less.

As intuition suggests, the second step is the reinforcement of 4 battlefields. (The

straightforward strategy of this kind involves deploying 30 troops in each of 4 battlefields.)

The second-step type in this dimension believes that a vast majority of players reinforce 5

battlefields. By reinforcing 4 battlefields, the player expects to score about 4 points against

the step-1 strategies, while the step-1 strategies will score around 3 points against each

other. Thus, he will expect to win the tournament as long as the proportion of step-0 types

is not greater than the proportion of step-1 types. Reinforcing less than 4 battlefields yields

at most an average score of 3 points and is not successful given his beliefs.

An automatic continuation of the iterative process may lead to the thought that

reinforcing 3 battlefields is a proper response to the reinforcement of 4 battlefields. Indeed,

reinforcing 3 battlefields would generally yield a score of at least 3 points against step-2

strategies, whereas the average score of step-2 strategies against themselves is at most 3

(due to the possibility of ties). However, if in addition to step-2 strategies there are

strategies of lower steps, a step-2 strategy will have the advantage of scoring about 4 points

against these strategies. In such cases, reinforcing 3 battlefields may turn out to be inferior

overall. Thus, the third iterative step is not clear-cut. In any case, the iterative chain stops

here. Reinforcing less than 3 battlefields is not optimal against strategies that involve

reinforcing 3 or more battlefields.

Note that in the calculation of a proper response a player uses "an approximation of best

response" to the lower step. He does so ignoring the other dimensions of the strategy and

believing that if he reinforces less battlefields than his opponent, then he is likely to win in

each of the reinforced battlefields. This argument makes sense since he has more resources

for each reinforced battlefield. However, this is just an approximation since it does not take

into account the possibility that the opponent’s assignment in each reinforced battlefield

can differ in size and some assignments may be very large.

We proceed into the analysis of the data. We will say that a participant has reinforced a

battlefield if he assigned there more than 20 troops. This definition is somewhat arbitrary

but it allows partitioning the strategies according to the number of reinforcements and

captures the essence of concentrating troops in certain battlefields (for example the strategy

23-23-23-23-14-14 involves the reinforcement of 4 battlefields).

The following table presents the distribution of the number of reinforced battlefields for
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each population, as well as the median response time (MRT) for each category (measured

in seconds). Note that when classifying the participants by level of reasoning we excluded a

few dozen participants who did not assign all 120 troop.

# of fields with Classes Calcalist

more than 20 troops % Score MRT (Stdev) % Score MRT (Stdev)

0 step 0 12% 2.24 113s (3.3s) 11% 2.04 79s (5.2s)

5 step 1 8% 3.15 182s (10.1s) 14% 2.92 135s (6.3s)

4 step 2 26% 3.08 192s (5.7s) 33% 3.05 143s (3.1s)

3 step 3 ? 22% 2.95 189s (6.3s) 22% 2.89 128s (4.7s)

2 19% 2.59 163s (4.1s) 13% 2.54 124s (6.3s)

1 12% 1.73 149s (6.3s) 7% 1.73 110s (7.9s)

Table 1

The data on response time supports our intuition regarding the structure of iterative

reasoning in this dimension. The step-0 strategy is associated with exceptionally low

response time, indicating that this choice is indeed instinctive. The step-1 and 2 strategies

are associated with a relatively high response time, suggesting the use of a more complex

deliberation process. The response time for the step-2 strategies is somewhat higher than

that for step-1 strategies. The response time of strategies with 3 reinforced battlefields is

also high, suggesting that participants who made this choice were involved in a complex

reasoning process as well. It is possible that these participants continued the iterative

reasoning process intuitively, in an attempt to respond properly to step-2 strategies (though

it is not clear that their choice is actually a proper response). Participants who decided to

reinforce only one or two battlefields spent significantly less time on the decision, a hint

that those bad choices were made hastily.

In Table 1 there is a difference between the Students and the Calcalist readers: the

Calcalist readers tended to reinforce 4 or 5 fields relatively more often and to reinforce 1 or

2 fields less often. This might be because the Calcalist readers are more sophisticated.

Alternatively, having participated in the two other games (the 91-100 game and the tennis

coach problem) prior to the Blotto game may have triggered deeper iterated reasoning in

this dimension among the Calcalist readers.

Note that the response time of the Calcalist readers was generally lower than that of the

Students. The difference may be explained by the fact that the Calcalist readers were
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presented with an Hebrew version of the game, which is much shorter than the English

version presented to the students. Moreover, Hebrew is the Calcalist readers’ mother

tongue, whereas many of the students in the classes are not native speakers of English. In

any case, all the relevant patterns regarding response time will turn out to be the same for

both populations.

(b) The unit digit in single-field assignments

A non-complicated and somewhat instinctive allocation of 120 troops across 6

battlefields involves single-field assignments that are multiples of 10 troops. Thus, we

consider the use of the unit digit 0 in all battlefields as reflecting step 0 in this strategy’s

feature.

The most efficient way to win a battlefield is by assigning to that battlefield one troop

more than the opponent. Thus, if a player suspects that a vast majority of the opponents’

single-field assignments involve the use of a certain unit digit, using often a unit digit

greater by one can be considered a proper response. (Note that the unit digits across the

battlefields are not independent since they must sum up to a multiple of ten.) Of course, the

assumption in the background is that the player’s choice of tens digit will frequently be the

same as his opponents’. Thus, the first iterative reasoning step would be the use of the unit

digit 1 in some of the battlefields. The second step would be using the unit digit 2 and so

on. We doubt, though, that the choice of the unit digit 7, for example, is actually an

outcome of 7 steps of reasoning. Even in simple games in which iterative reasoning is

natural and straightforward, strategies that reflect more than 3 steps of reasoning were

rarely observed in the literature (see a discussion in Arad and Rubinstein (2010)).

Table 2 presents the distribution of unit digits in all the single-field assignments:

Unit digit

0 1 2 3 4 5 6 7 8 9

Classes 62% 10% 3% 2% 4% 12% 1% 1% 2% 4%

Calcalist 56% 13% 5% 2% 5% 11% 1% 1% 2% 4%

Table 2

A majority of single-field assignments involved the unit digit 0 (almost all of them were

either 0, 10, 20, 30 or 40). The unit digit 1 is heavily used (primarily in the choices 1 and
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21). The choice of the unit digit 2 is less frequent (it appears primarily in the choices of 2

and 22).

We found that 30%-38% of the participants used the unit digits 1 or 2 in at least one

single-battlefield assignment and half of them used those unit digits for at least three

battlefields. The participants in this group spent significantly more time in deliberation than

other participants: the MRT was 214s among the students and 153s among the Calcalist

readers. In contrast, the MRT of those participants who chose only multiples of 10 (45% of

the total participants) was 137s among the students and 106s among the Calcalist readers,

reflecting this choice’s instinctive nature. The MRT of the other participants who (i) did not

use only multiples of 10 and (ii) did not use the unit digits 1 or 2 at all was somewhere in

between (170s among the students and 127s among the Calcalist readers).

The unit digit 5 was the second/third most frequently used. This is the result of two

patterns observed in the data: (i) One-fifth of the participants who used the unit digit 5 at

least once, used the unit digit 1 five times. (ii) A large number of participants used only

multiples of 5 (as in the strategy 25-25-25-25-10-10). The unit digit 4 was used more

frequently than 6,7 or 8 due to the popularity of allocating 24 troops to 5 battlefields (step 1

in the reinforced battlefield dimension). The use of the unit digit 9 was clearly a corollary

of the use of the unit digit 1.

In Table 2 we find again a difference between the Students and the Calcalist readers: the

Calcalist readers used the unit digits 1 and 2 more frequently and the unit digit 0 less

frequently. This difference is in the same spirit of the difference indicated above regarding

the number of reinforced fields.

(C) Order of single-fields assignments

Once a player has chosen a particular partition of his 120 troops into 6 "divisions", he

also needs to decide how to allocate the (perhaps) different-sized divisions among the 6

battlefields. Intuitive procedures of allocating the troops may treat the battlefields in a non

symmetric way. For example, a player could allocate divisions successively, starting with

allocating the strongest division to battlefield 1 and ending with allocating the weakest

division to battlefield 6. Alternatively, he could concentrate the stronger divisions in the

middle battlefields and the weaker in the edges (or the opposite).

Note that iterative reasoning is not as natural here as in the other two dimensions. Since

there is more than one intuitive way to allocate the divisions, there is ambiguity regarding

the step 0 value in this dimension. The definition of a proper response is also not as clear as
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in the previous dimensions. Suppose, for example, that a player believes that the other

player is concentrating his troops primarily in the middle battlefields. One proper response

would be to concentrate more troops in the middle battlefields and to assign a relatively

small number of troops to the edges. Another plausible proper response would be to

abandon the two central battlefields and assign more troops to all other battlefields in order

to increase the chances of winning those battles.

Although an iterative process is less likely to be implemented in this dimension, the

choice of value can still be an outcome of some other deliberation process. We do not

identify a particular decision rule used in the order dimension, but we do trace in the data

some interesting asymmetries that are presented below.

The six battlefields are numbered 1 to 6. Naturally, we focus on two types of symmetry:

directional: Are battlefields 1,2,3 treated identically to battlefields 6,5,4 respectively?

positional: Is the pair of battlefields in the center (3 and 4) treated the same as the pair of

battlefields in the edges (1 and 6) and as the pair of battlefields in the mid-positions (2 and

5)?

It should be mentioned that the Students and the Calcalist readers played versions of the

game that differed in one framing detail: in the game played by the Students, the 6

battlefields were arranged vertically, with battlefield 1 on top and battlefield 6 on the

bottom. In the game played by the Calcalist readers, the battlefields were arranged

horizontally with battlefield 1 on the left and battlefield 6 on the right. However, this did

not appear to have any effect on the results concerning this dimension.

The following graphs present the cumulative distribution of the number of troops

assigned to each of the six battlefields. The graphs reveal that the marginal assignment of

troops to each battlefield is far from being that induced by the uniform distribution over the

interval 0,40, which is the game-theoretic prediction for the related classical

constant-sum Blotto game. Note the dramatic "jumps" around numbers like 20 and 30 and

that only 10% (rather than 25%) of the choices in each field are above 30.
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Figure 1: Cumulative distribution of single field assignments in the six fields

The cumulative distributions are essentially ordered identically in the two populations by

first-order stochastic domination: 3,4,2,5,1,6. For convenience, we also present the 33rd,

50th, 67th percentile points for each of the 6 battlefields:

Classes Calcalist

Field 1 2 3 4 5 6 1 2 3 4 5 6

33rd percentile 10 15 20 20 15 8 10 20 20 20 18 10

Median 20 20 21 20 20 20 20 21 24 22 20 20

67th percentile 25 25 28 26 24 21 24 25 30 29 25 21

Table 3

Most noticeable is the low number of troops assigned to the 6th battlefield and the high

number assigned to battlefields 3 and 4. This is in line with some other experimental results

which demonstrate a tendency of people to avoid the edges and to concentrate resources on

the center positions (see, for example, Rubinstein, Tversky and Heller (1996)).

There is almost no distinction between right and left. Battlefields 2 and 5 are treated

almost symmetrically and the distributions for battlefields 3 and 4 are also very close. The

fact that more troops are assigned to battlefield 1 than to battlefield 6 is the only directional

asymmetry that was observed. A possible explanation is that a participant’s instincts lead

him to over-assign troops. Since allocations are often executed from the first battlefield to

the last, battlefield 6 is treated as the "residual".

As can be seen in Table 4, some of the most popular single-field assignments appear in a

non-symmetric way in the six fields. For example, the assignments 0 and 1 are twice as
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frequent in battlefields 1 and 6 as in battlefields 3 and 4 and the frequency of the

assignment of 30 to each of the battlefields 3 and 4 is much higher than for the other pairs.

Field Classes Calcalist

Assign. % 1 2 3 4 5 6 % 1 2 3 4 5 6

0 14 19% 17% 11% 11% 16% 22% 16 19% 15% 8% 9% 14% 20%

1 4 7% 4% 3% 3% 4% 5% 4 7% 4% 2% 2% 5% 6%

30 15 14% 14% 19% 17% 12% 12% 15 13% 14% 21% 19% 14% 11%

Table 4

5. Support for the presence of multi-dimensional iterative reasoning

At this stage, we wish to introduce the novel "91-100 game". Calcalist readers (unlike the

Students) played this game before playing the Blotto game. (For a more detailed analysis of

several related games, see Arad and Rubinstein (2010).) The fact that the same participants

played both the 91-100 game and the Blotto game enables us to examine the correlation

between their observed behavior in the two games. This can help in evaluating our

interpretation of participants’ reasoning in the Blotto game. The data in this section is based

solely on the Calcalist’s participants.

5.1. The 91-100 game

Following is a description of the game as presented (in Hebrew) to the Calcalist readers:

You and another person are playing a game in which each player requests an amount of

money. The amount must be an integer between 91 and 100 shekels. Each player will

receive the amount he requests. A player will receive an additional amount of 100 shekels if

he asks for exactly one shekel less than the other player.

What amount of money would you ask for?

In this game it is hard to think of more than one dimension for a strategy. We find the

game in particular suitable for studying (one-dimensional) k-level thinking for four reasons:

(i) The level-0 type specification is intuitively appealing: The choice of 100 is a natural

anchor for an iterative reasoning process. It is the instinctive choice when choosing a sum

of money between 91 and 100 dollars (100 is the salient number in this set and "the more

money the better"). Furthermore, the choice of 100 is not entirely naive: if a player does not
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want to take any risk or prefers to avoid competition, he might give up the attempt to win

the additional 100 dollars and simply request the highest certain amount.

(ii) Best-responding is easy: Given the anchor 100, best-responding to any level-k action

is very simple and leaves no room for errors.

(iii) Robustness to the level-0 specification: The type-1 action, i.e. choosing 99, is the

unique best response to a wide range of reasonable beliefs including (a) all distributions in

which 100 is the most frequent choice and (b) the uniform distribution and a class of beliefs

that are close to it. This makes the analysis robust to the specification of the level-0

behavior.

(iv) Clear payoffs: Unlike other games which trigger iterative reasoning (for example, the

Centipede game and the Traveler’s Dilemma) this game does not call for social preferences.

In particular, if a player believes that his opponent chooses a number n  91, choosing

n − 1 will reward him with $100 not at the expense of the other player.

Assuming that all players wish to maximize the expected amount of shekels they receive,

the game has a unique symmetric mixed-strategy Nash equilibrium (which yields an

expected payoff of 100).

Action 91 92 93 94 95 96 97 98 99 100

Equilibrium 55% 9% 8% 7% 6% 5% 4% 3% 2% 1%

Experiment 18% 19% 10% 21% 18% 14%

Table 5

As shown in Table 5, the behavior of participants is very far from the Nash equilibrium.

Most notable is the low percentage of participants who chose 91 relative to the equilibrium

prediction. The choice of 100, which in equilibrium appears only rarely, was chosen by

14% of the participants. The actions 97-98-99 that seems to exhibit 1-2-3 levels of

reasoning were chosen by 49% of the participants, whereas in equilibrium they should have

been chosen by only 9%. As noted above, higher levels of iterative reasoning are almost

never observed in other studies of k-level reasoning. In our results, the actions 92-96 are

also rare and appear much less often than expected by equilibrium.

In a parallel experiment of this game, about 160 Students provided ex-post explanations

for their choices. An analysis of their explanations suggests that the actions 92-96 are

generally not an outcome of 4- to 8-level of reasoning. It also validates the classification of
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97-98-99 as the 1-2-3 levels of reasoning.

5.2. Correlation between behavior in "91-100" and "Blotto"

In this section, we seek support for our interpretation of some of the choices in the Blotto

game as an outcome of multi-dimensional steps of reasoning. This is done by investigating

the correlation between standard k-level iterative behavior in the 91-100 game and behavior

in the Blotto game which seems to exhibit iterative reasoning in the various dimensions.

More precisely, we examine the correlation between the choices 97-98-99 in the 91-100

game and either reinforcing 4 or 5 battlefields or using the unit digits 1 or 2 in the Blotto

game. Given that the choices 97-98-99 clearly reflect 1-2-3 levels of reasoning in the

91-100 game (whereas the rest of the strategies are attributed to other decision rules),

evidence of correlation will provide support for our intuition that these Blotto game choices

emerge from iterative reasoning.

Table 6 shows the distributions of choices in the 91-100 game as a function of the

participants’ choice of the number of reinforced battlefields:

# of fields with Action in 91-100

more than 20 troops 91 92-96 97-99 100

0 step 0 25% 19% 35% 21%

5 step 1 17% 13% 56% 13%

4 step 2 16% 17% 55% 12%

3 Step 3 ? 16% 19% 50% 15%

2 20% 25% 42% 13%

1 16% 21% 42% 21%

Table 6

Participants who did not reinforce any of the battlefields (i.e. 0 reinforcements) tended to

choose 91 and 100 more often and to choose 97-99 dramatically less often than the other

participants. Of those who reinforced 4 or 5 battlefields, 55-56% chose 97-99 ( 2%)

whereas of those who reinforced 2 or less battlefields the proportion was only 42%

( 2%). The behavior of participants who reinforced 3 battlefields resembled more that of

the participants who reinforced 4 or 5 battlefields: 50% of them chose 97-99 ( 2%). This

finding supports our conjecture that strategies involving 3 battlefields reinforcements are
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the result of an intuitive continuation of the iterative reasoning process in this dimension.

Table 7 presents the mean number of battlefields with the unit digits 1 or 2 in the Blotto

game as a function of the choices in the 91-100 game.

Action in 91-100 91 92-96 97-99 100

% 18% 18% 49% 15%

Blotto: Mean # of fields with digit 1 or 2 0.82 (0.08) 0.97 (0.09) 1.20 (0.06) 1.03 (0.10)

Table 7

Table 7 demonstrates that the tendency to use the unit digits 1 and 2 is correlated with

choosing 97-99 in the 91-100 game. Another way to see it: more than 57% of the

participants who used the unit digits 1 and 2 at least once chose 97-99, while only 45% of

those who did not use those digits chose 97-99.

A total of 47% of the Calaclist’ participants reinforced 4 or 5 battlefields in the Blotto

game and 38% of the participants used the unit digits 1 and 2 at least once. The choices of

25% of the participants exhibit iterated reasoning in both dimensions. We found that these

participants’ behavior is correlated with the choices of 97-99 in the 91-100 game. In

particular, 59% ( 2%) of them chose 97-99, whereas among those who reinforced fewer

than 3 battlefields and did not use the digits 1 or 2, only 39% ( 2%) made those choices.

Incidentally, the choices of 97-99 are also correlated with a high score in the Blotto

game. Table 8 demonstrates this by comparing the 91-100 choices of the

highest-performing 20% in the Blotto game with the choices of the rest of the participants.

91 92-96 97-99 100

Blotto’s top 20% 10% 20% 60% 11%

the rest 20% 19% 46% 15%

Table 8

Thus, we find that participants who exhibit 1-3 levels of reasoning in the 91-100 game

tend to more often choose a strategy using 1 or 2 steps of reasoning in each of the two

dimensions (i.e. the number of reinforced battlefields and the unit-digit numbers). This

finding provides support for our interpretation of the reenforcement of five or four

battlefields and the use of the unit-digit 1 and 2 as reflecting multi-dimensional iterative

reasoning.

18



6. The Secret Files: Popularity and Success in the Bolotto Game

Let us open the secret files and present the most popular strategies in the game and the

winning ones. Nine of the 250 million strategies were chosen by at least one percent of the

participants. The strategies and their average scores are presented in Table 9. The nine most

popular strategies were together used by around 30% of the participants in each of the

populations.

Strategies Classes Calcalist

Battlefields n4605 n1928

# 1 2 3 4 5 6 % Score % Score

1 20 20 20 20 20 20 11.4% 2.33 11.1% 2.09

2 30 30 30 30 0 0 4.4% 2.87 4.6% 2.86

3 0 0 30 30 30 30 3.4% 2.97 4.6% 2.91

4 120 0 0 0 0 0 1.9% 0.98 1.1% 0.99

5 21 21 21 21 21 15 1.5% 3.19 3.3% 2.80

6 24 24 24 24 24 0 1.4% 3.08 1.6% 2.90

7 0 30 30 30 30 0 1.3% 2.93 1.2% 2.86

8 40 40 40 0 0 0 1.2% 2.76 1.6% 2.79

9 0 24 24 24 24 24 1.0% 3.16 1.9% 2.94

Table 9

Table 10 presents the permutations that were chosen by at least 2% of the participants in

each of the populations. Apparently, there were eight permutations that were the most

popular in both populations and all together were chosen by 41-45% of the participants. (A

permutation’s average score is calculated as the average for all participants whose

strategies were within that permutation.)
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Permutation Classes Mean Score Calcalist Mean Score

n4605 n1928

1 20-20-20-20-20-20 11.4% 2.33 11.1% 2.09

2 30-30-30-30-0-0 11.2% 2.92 13.3% 2.90

3 120-0-0-0-0-0 4.7% 0.99 2.4% 0.99

4 40–40-40-0-0-0 4.1% 2.78 4.5% 2.81

5 30-30-20-20-10-10 2.9% 2.74 2.0% 2.66

6 24-24-24-24-24-0 2.8% 3.12 4.0% 2.94

7 30-30-29-29-1-1 2.2% 3.27 2.5% 3.18

8 21-21-21-21-21-15 2.0% 3.20 4.8% 2.81

Table 10

The most popular strategies and permutations were not very successful and scored well

below the best-performing strategies in the tournament (which scored around 3.8 points on

average).

Comment on the attentiveness of the participants: participants were not forced to assign

all the 120 troops across the battlefields. This was a device for checking their attentiveness.

Among the students, only 5.4% of the participants chose such a dominated strategy. Among

Calcalist’s readers, the proportion dropped to 3.0%.

One popular permutation, which may be the outcome of players not paying sufficient

attention to the game, is the assignment of 120 to one of the battlefields. This permutation

was chosen by 4.7% of the participants in the Classes and 2.4% among the Calcalist

readers. The choice of the homogenous strategy is instinctive but does not necessarily

imply that insufficient attention was paid to the game. It was chosen by 11% of our

participants. To scale this fact, in the Avrahami and Kareev (2009)’s Blotto experiment

(described below), which was carried out in a laboratory with monetary incentives, 25% of

the participants chose the homogenous strategy in the first round of the game.

And now to the surprising result: The winning strategy in the classes’ grand tournament

and in the Calcalist tournament was the same: 2-31-31-31-23-2 (and needless to say, was

chosen by two different people...). Furthermore, there was also significant overlap in the

lists of the top 10 strategies in the two tournaments (see Table 11). Four strategies are
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common to both lists and, up to a permutation, 7 out of the top 10 strategies on the Classes

list appear on the other list as well.

Classes’ grand tournament Calcalist tournament

1 2 3 4 5 6 Score 1 2 3 4 5 6 Score

1 2 31 31 31 23 2 3.83 1 2 31 31 31 23 2 3.77

2 3 31 31 31 21 3 3.80 2 2 32 31 31 22 2 3.76

3 3 31 3 31 31 21 3.76 3 2 23 31 31 31 2 3.75

4 1 31 31 31 25 1 3.76 4 1 1 32 32 32 22 3.72

5 2 27 31 31 27 2 3.75 5 1 1 31 31 31 25 3.71

6 2 31 23 31 31 2 3.74 6 2 27 31 31 27 2 3.71

7 1 1 31 31 31 25 3.73 7 2 31 1 31 31 24 3.70

8 2 21 32 32 2 31 3.72 8 1 31 31 31 25 1 3.70

9 1 1 31 31 25 31 3.71 9 1 25 31 31 31 1 3.69

10 1 31 31 25 31 1 3.69 10 1 1 34 31 31 22 3.69

Table 11

We were curious as to whether there is another strategy that was not chosen and could

have done better than the others. We simulated 41,040 strategies in which all unit digits are

1,2 or 3 and found no such strategy.

The features of the winning strategy 2-31-31-31-23-2 are illuminated by the explanation

provided by the Calcalist winner:

"In the first stage, I decided that I would "surrender" on two fronts, but not so easily. I

thought that other people would decide to assign a few battalions to some of the fronts and

perhaps would not deploy any battalions to other fronts. So I could win on an "abandoned"

front at the inexpensive price of one battalion. Eventually, I decided to deploy two

battalions on the weak fronts in order to overpower anyone who thought like me and placed

one battalion on the weak fronts. It seems logical to me that the weak fronts would be on

the edges. I was left with 116 battalions to allocate to four fronts, which is an average of 29

battalions per front. I decided to reinforce three of the four remaining fronts with two

battalions - that is, to deploy 31 battalions - in order to defeat those who allocated the

remaining battalions equally. In this way, I would also defeat those who allocated 30

battalions to each of the four central fronts."

Here are some of the features characterizing the ten leading strategies:
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a) Two battlefields were essentially abandoned. In fact, all 30 leading strategies in the

two tournaments used a low number of troops (1,2 or 3) in exactly two single-field

assignments.

b) The most often almost abandoned battlefields are 1 and 6. This is profitable since

these battlefields tended to be abandoned in the population much more than the middle

ones.

c) Battlefields 2 and 5 were treated rather symmetrically (and, in particular, the strategy

2-23-31-31-31-2 does almost as well as the winning strategy).

d) 30 troops are generally assigned to the middle battlefields. This is beneficial since

the assignments to battlefields 3 and 4 tended to be the highest.

It is interesting to look at the winning strategies in the 11 tournaments of the largest

classes, which contained at least 60 participants. In 4 of these classes (Argentine (2) and

Canada (2)), a permutation of 1-35-1-31-31-21 was the winning strategy. In the other 4

(Switzerland (2), Thailand and Slovakia), a permutation of 31-1-31-1-31-25 was the

winning strategy. In the remaining 3 large classes (in Switzerland and Argentina), the

winning strategies were 31-31-31-21-3-3, 3-21-3-31-21-21 and 7-33-33-7-33-7. Note that 8

out of the 11 winning strategies belong to the same two permutations. All winning

strategies in the 11 large classes, like the overall leading strategies (in the two grand

tournaments), involved the reinforcement of 4 battlefields and the avoidance of multiples of

ten. The winning strategies in the large classes performed well in the grand tournament as

well. While the top 10 strategies in the grand tournament scored on average 3.7-3.83, the

winning strategies in the large classes achieved an average score of 3.6-3.76 in the grand

tournament.

In order to evaluate the relative contribution of each of the three features of a strategy to

a participant’s score we ran a regression in which a participant’s score is explained by three

variables, corresponding to the three features discussed earlier:

A) A  1 if the participant reinforces 5 fields, A  2 if he reinforces 4 fields and A  0

otherwise.

B) B  the number of fields in which the participant used the unit digit 1 or 2.

C) C  1 if the numbers of troops allocated to each of the extreme fields (1 and 6) were

strictly less than the number allocated to each of the fields 2,3,4 and 5.

The results for the two populations are remarkably similar:

ScoreClasses  2.41  0.28A  0.10B  0.20C

(R²  0.32, 95% confidence intervals for the four coefficients respectively:
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2.40,2.43, 0.26,0.29, 0.09,0.11 and 0.14,0.25)

ScoreCalcalist  2.49  0.24A  0.10B  0.16C

(R²  0.40, 95% confidence intervals for the four coefficients respectively:

2.46,2.51, 0.23,0.26, 0.09,0.11 and 0.09,0.23)

The large confidence interval for the coefficient of C is due to the small number of

participants for whom C  1 (6% among the students and 7% among the Calcalist readers).

In contrast, A  0 for 35%-47% of the participants and B  0 for 27%-29% of the

participants. Conditional on A  0, the expected value of A is 1.7 − 1.8 and conditional on

B  0, the expected value of B is 2.7 − 2.8.

The large coefficient of A implies that the number of reinforced fields is the most

significant feature in determining a strategy’s score. Although the coefficient of C is

somewhat larger than that of B, considering the unit digit dimension when formulating a

strategy may still be more beneficial than considering the order dimension of the strategy.

This is because, according to the regression results, the benefit from using the unit digit 1

or 2 in a few battlefields is greater than that from allocating the lowest single-field

assignments to the battlefields 1 and 6.

Overall, the results provide evidence that all the three features play a significant role in

explaining a player’s success in the game.

Time and Performance

Does an investment of more thought in the Blotto game translate into a better

performance?

A standard regression affirms that response time contributes significantly and positively

to performance in the Blotto game. Thus, for the Students sample we obtain the equation:

score  2.07  0.12lnresponse time and for the Calcalist sample we obtain a similar

equation: score  1.99  0.15lnresponse time.

In order to better understand the correlation, we divided the two populations into ten

deciles according to their response time. Figure 2 plots the average score and the two

standard deviations for each decile. We find that the mean score of the three bottom deciles

is dramatically lower than that of the two top deciles. On the other hand, the average

performance in the 4th-8th deciles is almost identical.
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Figure 2:Mean score by response time deciles

Gender effects

Calcalist readers (but not the students) were asked to report their gender. Only 10% of

the readers were females. Males did significantly better with an average score of 2.75

( 0.01) as compared to 2.55 ( 0.04) for females. This is in spite of the fact that

females spent more time on the game (females’ median response time was 145s vs. 125s for

the males).

Experience in Game Theory

We asked the Calcalist readers whether they had ever taken a course in Game Theory and

one-sixth of them had. One might expect that a course in game theory would improve one’s

ability to play games; especially a synthetic game like the one experimented here. We

found that taking a Game Theory course has only a marginal effect: The average score of

Game Theory graduates was 2.78 ( 0.03) as compared to a close average score of 2.72

(  0.01) for the others. In other words, a course in Game Theory may be entertaining,

but there is no evidence that it helps much in playing games.

7. Bibliographic notes

The classic version of the game was suggested in Borel (1921). Its continuous version

was explored analytically by Roberson (2006). The more difficult discrete case, with B

troops allocated to K battlefields, was analyzed by Hart (2008). Both concluded that in an
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equilibrium, players treat the battlefields symmetrically and the marginal distribution of the

troops in each battlefield is essentially uniform in the interval 0,2B/K. Our

non-constant-sum version of the game is somewhat different from these versions since two

players who tie on a particular battlefield do not split a point but rather get nothing.

The Blotto game has received widespread attention due to its interpretation within the

political economics literature as a game between two presidential candidates who have to

allocate their limited budgets to campaigns in the “battlefield” states. Myerson (1993)

suggested another interpretation of the Blotto game as a vote-buying game.

Only a few experiments of Blotto games have been conducted. Partington reports in his

website (http://www.amsta.leeds.ac.uk/~pmt6jrp/personal/blotto.html) on a Blotto game

tournament conducted in 1990. In his version, the participants had to allocate 100 troops

across 10 battlefields. The winning strategy was 17-3-17-3-17-3-17-3-17-3.

Avrahami and Kareev (2009) report on an experiment of a "lottery version" of the

constant-sum game. Each participant played 8 times in a row against a single player. In

each round, once the two players have chosen their allocation of troops, one battlefield per

player was randomly selected and the winner of the round was determined by comparing

between the assignments in the two selected battlefields. This design prevents framing

effects induced by the ordering of the battlefields. Among other things, the authors studied

the case in which each player assigns 24 troops across 8 battlefields. In this case, the theory

predicts that the marginal distribution of the assignment in each battlefield will be uniform

in 0,6. In the vast majority of observations, 2-4 troops were assigned to each battlefield

and a significant number of participants allocated the troops homogeneously (3 troops to

each battlefield). For other recent experiments of variants of the game, see Chowdhury,

Kovenock and Sheremeta (2009), Cinar and Gőksel (2010), Horta-Vallve and

Llorente-Saguer (2010) and Modzelewski, Stein and Yu (2009).

8. Conclusion

In the paper we focused on a version of the Blotto game. We consider the game to be an

example of an interesting complicated game, in which the set of strategies is large and it is

difficult to calculate (or even to approximate) a best-response function. We have argued

that in such games (and not only the Blotto game itself) it is natural to decide about each of

the various features of strategies separately rather than about strategies per se. Often, the

deliberation over a feature naturally involves an iterative process. The decision procedure

we have proposed captures this sort of strategic reasoning.
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The following are three classes of strategic situations in which using the procedure seems

natural:

(i) Variations of the Blotto game. Each player has limited resources that he has to assign

to various "tasks" (battlefields). The features of a strategy in such a context might be

similar to those referred to in our discussion of the Blotto game.

(ii) Multi-object auctions. A set of objects is put up for auction. Players simultaneously

place bids on each one. In this case, the features could be, say, the sum of the bids, the

number of objects not to be bid on, and the number of objects on which to place high bids.

The starting points of the iterative process in the various dimensions could be, say, "a sum

of bids as determined by convention", "bidding on all objects" and "bidding very high on

only half of the objects".

(iii) Product races. Consider two competing car producers who bring out a new model of

executive car each year. Relevant features might be the timing of the launch, what

generation to upgrade the technology to, investment in advertising and price. Last year’s

choices might serve as the initial values for the iterative process.

Note that we do not claim that people always use the multi-dimensional iterative

reasoning scheme. All we argue is that in some games there is a significant group of people

who choose their strategy based on a procedure of this type. People use a variety of

decision procedures even in very simple situations and thus we do not think that one can

hope for a universal procedure that would explain the behavior of all people in such games.

It is worthwhile discussing the difficulties in applying the multi-dimensional procedure to

explain behavior in other games. The procedure has many degrees of freedom: the

dimensions of a strategy, the starting point of the iterative process in each dimension and

the proper-response operator. The identification of these elements is "ad-hockish" and

might depend on the context and the framing of the situation. Future research may uncover

principles for identifying these elements in any situation. However, we believe that at this

stage, common sense could be used to point out these elements in particular strategic

interactions of interest.

To conclude: to the best of our knowledge, this paper is the first attempt to define and

identify in the data a process involving several non-inclusive forms of iterative reasoning.

We believe that our findings shed light on major considerations that arise in contexts

similar to the Blotto game. Incorporating multi-dimensional reasoning in theoretical models

and analyzing experimental data of other games in light of such a decision procedure are

topics for future research.
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