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Abstract

An agent who is only imperfectly informed can use a device which generates public

information about his type. While the agent’s decision to use the device may signal his

private information, the device can reveal information that goes beyond what the agent

knows. The device shall be designed to learn as much about the agent’s type as possible.

The agent wants to be perceived as good and is risk–averse with respect to this perception.

The optimal device commits at most one type of error: It may be subject to false negatives,

but not to false positives. Moreover, the optimal device is either imperfect or not always used

such that the agent’s type cannot always be perfectly inferred. Inducing full participation

can be optimal only if the agent’s private information is very informative. Otherwise it is

optimal to induce partial participation which allows perfect inference of private information.

JEL codes: D82, D83.

Keywords: imperfect information, information generation, signaling, mechanism design, no mon-

etary transfers.

1 Introduction

We show in this paper how two features which are present in many design problems, but which

do not fit into the classic design framework, may be incorporated and analyzed. The following

problem highlights the features in which we are interested: The safety of operating systems,

software applications and data storage is a major concern, in particular in organizations which
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handle sensitive data like government agencies. However, thorough safety assessments are only

possible with access to the source code, which is at the producer’s discretion to grant or to

deny. The producer, on the other side, may not be perfectly informed about his product’s safety

either, for instance because it contains code provided by a third party or because the producer

cannot perfectly assess whether there are still bugs in his own code. As a consequence, he is

uncertain about what will be found if he grants access to the code. Although the decision not

to grant access will be interpreted as an unfavorable signal, it may be better for the producer to

face a relatively stable demand rather than a lottery of a very high demand following a positive

assessment and a very low demand following a negative assessment. Such risk-averse preferences

may for instance be induced by convex adjustment costs. Facing the producer’s discretion to

deny access, how should a test of an operating system or a software application be designed if one

wants to achieve an as precise as possible assessment of its safety? The present paper proposes

a model which allows to cope with such design questions.

The above problem is a non–standard design problem because two crucial assumptions are

not met. In a standard problem with uncertainty about the agent’s type it is assumed that

the agent either perfectly knows his type or does not have an informational advantage at all,

and that in the presence of private inofrmation the designer can only indirectly learn about the

agent’s type through his actions or reports. In our model we capture the features of the situation

described above as follows: First, the agent is only imperfectly informed about his type. His

private information is a probabilistic assessment of his type. Second, besides the possibility of

learning about the agent’s type through his actions, the designer can construct a device which,

if used, directly reveals information about the agent’s type. I.e. the mechanism reacts to the

true information, not to the agent’s imperfect private information. We assume that the designer

wants to learn the agent’s true type, while the agent wants to be perceived as a good type but

is risk–averse with respect to this perception. The designer can observe either that the device

is not used or that it is used and, if so, then also the generated information. If the decision to

use the device is contingent on the agent’s private information, then the observed participation

behavior is indirectly revealing about the agent’s type as his private information is informative

about the true type. In addition, if the device is used, the generated information is directly

revealing about the agent’s type. Ceteris paribus, the more precise the information generated

by the device is, the less attractive is participation for a risk–averse agent. Thus, if the usage

of the device is at the agent’s discretion, there may arise a trade–off between the quality of the

generated information and the participation level. This paper explores this trade–off, giving rise

to the following questions: First, for any intended participation behavior, what is the optimal

quality? Related to that, which errors, if any, shall the device be subject to? False positives,

false negatives, or both? Second, what is the optimal participation behavior, i.e. how important

is indirect learning through self–selection into the device?

Imperfect private information in conjunction with the possibility to generate information plays

an important role in many applications. A used–car salesman typically has better information
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about the quality of a car than a potential buyer, but a technical inspection authority is able to

generate information that goes beyond what the salesman knows. A local authority has a better

picture about the terror potential in the country than the rest of the world. Local investigations

by an international organization nevertheless may disclose information that goes beyond what

the authority knows. The medical history of a patient’s ancestors allows an imperfect assessment

of his risk of having a certain genetic defect. A genetical scan can improve upon that information.

Likewise, a student has an idea about his ability, but a professor might get an even better picture

from a test, an exam or a personal conversation. All these examples as well as our introductory

example have in common that information generation might not be possible without the agent’s

consent. The software producer decides whether to grant access to the source code. Having a

car inspected requires the salesman’s agreement, conducting investigations on sovereign territory

requires the agreement of the local authority, and conducting a genetic scan is not legally possible

without the patient’s consent. Moreover, even if explicit agreement seems not to be required,

some information–generating mechanisms offer the implicit possibility to avoid the generation of

meaningful information. While it might not be an option for a student not to answer a question

at all, it is often possible to evade questions by making meaningless statements instead of giving

possibly incorrect answers.

In all these cases subsequently designed contracts (sales contracts, international agreements,

insurance contracts, employment contracts) can condition on the available information. With

more precise information the less informed party may save information rents and/or realize effi-

ciency gains, i.e. the less informed party generally benefits from learning about the type. For the

better informed party private information gives rise to a signaling motive. However, conditional

on being able to signal superior private information, the generation of additional information

may be harmful. As an example, consider the software producer who assesses his products’

safety as above average. Though he has an interest in signaling a high safety standard, he might

shy away from additional information generation because this introduces additional uncertainty

in his demand which may be harmful due to convex adjustment costs. Such preferences can be

represented by (reduced form) utility functions which are monotonic in the less informed party’s

perception and which exhibit risk–aversion with respect to the realized perception. Risk–aversion

effectively constrains information generation. We explore optimal information generation under

that constraint.

The paper proceeds as follows: In Section 3 we introduce the model. We argue in Section 4

that the usefulness of generating imperfect information goes hand in hand with the imperfection

of private information. With perfect private information optimal learning can already be achieved

with a device which is not prone to errors, without any private information learning is impossible.1

1Similar incentive effects as in our model may arise in a model where the agent is endowed with perfect

private information but where he cannot perfectly anticipate which public signal will be generated if he uses the

device, for instance because the device is always imperfect for technical reasons. An interesting question in such

a framework is the following: Should the device designer spent effort to reduce the probability of false positives,

of false negatives, or should he rather refrain from trying to improve the quality of the device. The answer to
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The main analysis of the model is conducted in Sections 5, 6 and 7. What makes the design

problem complicated is that general equilibrium type effects arise. Equilibrium behavior and the

utility associated to a certain behavior/to the signals that may be generated by the device are

simultaneously determined for any given device. Small adjustments in the device cause ample

direct and indirect effects which generally go into different directions making compound effects

complex and hard to assess. Moreover, we have to cope with the fact that a certain device

may be consistent with a number of different equilibrium participation behaviors and a certain

equilibrium participation behavior can in general be induced through different devices. First, in

Section 5, we derive properties of equilibrium participation behavior and beliefs for given devices.

Then, in Section 6, we explain how the designer must construct the device in order to induce

a certain participation behavior. We characterize the set of implementable device–equilibrium–

combinations. Finally, in Section 7, we study the designer’s optimal device choice.

Our main findings are: The optimal device is subject to only one of two possible types of

error. Generated information that is “high” allows perfect inference that the agent’s type is

good (no false positives), while generated information that is “low” allows only for imperfect

inference (false negatives are possible). I.e., if the agent’s true type is bad, the device always

generates a low signal, while the signal issued when the agent’s true type is good may be either

high or low. With binary private information, it is optimal to induce a participation behavior

from which the agent’s private information can either be perfectly deduced or not deduced at

all. The importance of indirect learning through self–selection into the device depends on the

informativeness of the agent’s private information. The designer prefers perfect inference of the

agent’s private information to full participation except possibly in the case where the agent’s

private information is very informative about his type. In this case it is sometimes optimal that

private information cannot be inferred at all in equilibrium. Moreover, in order to increase the

incentive of an agent with low private information to use the device, it must be harder to obtain

a favorable signal.

In Section 8 we extend our model in two directions. First, we allow for a larger device space.

In the mainpart of the paper information–generating devices generate binary public information,

we show that such devices are indeed optimal when the designer can construct devices which

generate an arbitrary finite number of public signals. Second, we show that the structure of

the optimal device is robust with respect to an alternative specification of private information.

While the analysis in the main part of the paper is for binary private information, we show that

the optimal device has the same properties for continuous private information. We conclude in

those questions is directly related to the analysis in the present paper.

As an example, in 2000, being accused of drug abuse, the designated coach of the German national football team

voluntarily agreed on a drug test which turned out to be positive. Seemingly, he was hoping for a negative result

of the imperfect test although he was perfectly informed about his guilt. In that particular case, the imperfectness

of the generated information is triggered by technical restrictions. However, with a more informative device, the

drug test would probably not have been carried out such that no information would have been generated. In

the present paper, we show that imperfectness may arise endogenously in the absence of exogenous technical

restrictions.

4



Section 9.

2 Related literature

We begin our literature review with contributions that study related design problems and go on

with papers which share essential ingredients of our model framework.

Ostrovsky and Schwarz (2008) assume that schools maximize the average utility of their

students. Noisy reports about students’ abilities are optimal if the students’ utilities are concave

in their perceived ability. Noisy reports induce a redistribution from high ability to low ability

agents, which increases average utility as the former loose less than the latter gain. There is

neither private information nor a participation decision on the students’s side in their model.

Under the assumption that the cost of a (tax-financed) public signaling device increase in its

accuracy, Stiglitz (1975) derives the individually preferred accuracy. Due to the pooling effect,

agents with types above the mode want a higher accuracy than those below the mode. Stiglitz

does not consider voluntary participation. However, he points out that risk averse individuals who

are not perfectly informed about their types may prefer to be treated as averages. The problem,

he observes, is the fact that individuals cannot insure against their type–risk.2 Kamenica and

Gentzkow (2009) consider optimal persuasion mechanisms where the designer, as in our paper,

controls the conditional probabilities with which certain signals will be issued. The designer’s

motive is to influence the beliefs of a decision maker. There is no private information and

participation is not an issue. Information is generated only if the designer’s (reduced form)

utility is convex in the induced belief. Whereas the designer in Kamenica and Gentzkow (2009)

is interested in providing as little information as necessary in order to persuade the decision

maker to take a certain action, the designer in control of the information-generating mechanism

in our paper wants to generate as precise information as possible.

Important applications in which learning about an agent’s type is essential are task assign-

ments or partner matching.3 There, the learning technology is exogenous, there is symmetric

2This has also been pointed out by Hirshleifer (1971). He argues that the revelation of information harms those

whose endowment is worthless in the revealed state. Risk averse individuals do not want a public announcement

of information prior to trading. In our paper, it is not possible to insure the type-risk either. However, an

imperfection of the generated information provides at least a partial insurance as it becomes harder to discriminate

between the types such that their payoffs move closer together.
3In Prescott and Visscher (1980), a firm learns about the workers type through experimenting with task

assignment, where a trade-off arises between generating more precise information and using the already generated

information. In Eeckhout and Weng (2009), it is the agent who chooses a firm and therewith the learning process.

In Waldman (1989), the firm has direct control over the precision of generated information. A cost of information

generation and public observability constrain the precision. In MacDonald (1980) and in Burdett and Mortensen

(1981), it is the agent who invests in information. There is no superior type in MacDonald (1980), i.e. better

information impacts only on efficiency which yields an incentive to invest. In Burdett and Mortensen (1981), the

agent decides whether to buy a perfectly revealing signal. It is assumed that the agent internalizes the efficiency

gains from better allocation which yields an incentive to invest. In Anderson and Smith (2010), agents with

uncertain types match and learning takes place through stochastic production.
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information and the agent’s agreement to information generation is not an issue. In our paper

instead, the designer is free to choose the precision of information but needs the (better-informed)

agent’s agreement for information generation.

Provision of hard information is key in certification procedures, as analyzed e.g. in Lerner

and Tirole (2006) or in Farhi, Lerner, and Tirole (2005).4 Again, in these contributions the in-

formation acquisition technology is exogenous, whereas it is the object of analysis in our paper.

Grossman and Hart (1980), Milgrom (1981) and Okuno-Fujiwara, Postlewaite, and Suzumura

(1990) point out an unraveling effect of the availability of hard information. However, in our

model there is imperfect private information. Thus, complete unraveling is not possible. Risk

aversion on the agent’s part attenuates his desire to signal superior information. Ex-post in-

formation necessarily remains imperfect, either because information is not always generated or

because the generated information is imperfect.

Imperfect private information about a payoff-relevant state variable plays an essential role

in the literature on committee decision making.5 There, information generation takes place by

choosing the set of committee members, taking into account incentives for information acquisition

and revelation. Committee members’ payoffs depend on the beliefs assigned to the state variable

only indirectly via its influence on individual votes, and hence on the decision.

Geanakoplos and Pearce (1989) introduced a class of games, called psychological games, in

which players’ payoffs do not only depend on actions, but also on a system of beliefs about

actions. Therewith, it is possible to capture belief-based preferences such as surprise or guilt.

Related to that, the (reduced form) utilities functions in the present paper depend (only) on

beliefs.

3 The model

3.1 Information, devices and timing

There are two players, an agent (he) who is imperfectly informed about his type and the designer

of an information–generating device (she). If the device is used by the agent, it generates

information about his type.

The agent’s type is either good (ω = 1) or bad (ω = 0), but he is not completely sure about

what his type actually is. He observes a private signal which is either high (θ = h) or low (θ = l)

and which is imperfectly correlated with his true type. We denote the joint probability of type ω

and private information θ by pθω := Prob(θ, ω) and the marginal distributions by pθ :=
∑

ω pθω

and by pω :=
∑

θ pθω. Both types and both private signals occur with positive probability and

there is no private signal from which the agent can perfectly infer his type, i.e. pθω ∈ (0, 1).

Moreover, an agent with a high private signal is more likely to be good than an agent with a

low private signal, i.e. δ := Prob(ω = 1|θ = h) − Prob(ω = 1|θ = l) = ph1

ph
− pl1

pl
> 0. δ is our

4Information becomes “hard” because of a shared interest between the certifier and the receiver of information.
5For a survey, see Gerling, Grüner, Kiel, and Schulte (2005).
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ω = 0 ω = 1

θ = l pl0 := plp0 + δplph pl1 := plp1 − δplph

θ = h ph0 := php0 − δplph ph1 := php1 + δplph

Table 1: Joint distribution of private information and type

measure for how informative the agent’s private information is about his type. The higher δ, the

better the agent can infer his type from his private information. If δ is close to zero, he can infer

almost nothing.

The joint distribution of the private information and the type possesses three degrees of

freedom. It will be convenient to choose p1 ∈ (0, 1), ph ∈ (0, 1) and δ ∈ (0, δmax) with

δmax := min{ p1

ph
, 1−p1

1−ph
} as the primitives of our model instead of three probabilities of the joint

distribution.6 The joint distribution that is induced by our primitives [p1, ph, δ] is as stated in

Table 1.

The agent has the opportunity to use the designer’s device which generates information about

his type. If such information is generated, it is public in the sense that it is also observed by the

designer. As device space we consider the set of all probabilistic mappings from types into either

a high public signal (σ′ = H) or a low public signal (σ′ = L). Any device can be described by two

parameters (s0, s1) ∈ [0, 1]2 where sω := Prob(σ′ = H |ω) is the probability that a high public

signal is generated when the agent’s true type is ω. Without loss of generality we can assume

s0 ≤ s1. We call devices with s0 < s1 informative and devices with s0 = s1 uninformative.

To simplify the statement of our results and the exposition of our proofs, we consider only

informative devices, i.e. we assume s0 < s1.
7 Hence, there is a positive correlation between

obtaining a high public signal and being good.

The device (s0, s1) = (0, 1) is called perfect as it, if used, generates perfect information about

the agent’s type, i.e. it generates high public signals if and only if the agent is good. Any other

device is subject subject to at least one of two kinds of errors: For devices with s1 < 1 a good

agent may get a low public signal (false negative) and for devices with s0 > 0 a bad agent may

get a high public signal (false positive).

The device may be interpreted as a test which produces pass–fail–results. A false negative

then means that a good agent fails the test while a false positive means that a bad agent passes the

test.8 While considering only pass–fail–tests might appear restrictive at a first glance, we show

6This is possible because the following lemma holds: Let A := (0, 1) × (0, 1) × (0, δmax) and B := {[pθω] ∈

(0, 1)4| ph1
ph0+ph1

− pl1
pl0+pl1

> 0}. (i) If [pθω] ∈ B, then (p1, ph, δ) ∈ A. (ii) If (p1, ph, δ) ∈ A, then there exists a

unique distribution [pθω] such that p1 = pl1 + ph1, ph = ph0 + ph1 and δ = ph1
ph

− pl1
pl

. Moreover, [pθω] ∈ B.
7It is never optimal for the designer to choose an uninformative device. If the designer chooses an uninformative

device, there exists no equilibrium where she learns anything about the agent’s type, while there always exist

informative devices for which learning is possible.
8In an “indirect implementation” of the test, s0 and s1 would be determined by elements of luck (e.g. multiple

choice), the difficulty and scope of tasks, and the time given to solve the test.
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in Subsection 8.1 that such tests are indeed optimal within the model framework we consider.

As the agent is not aware whether his true type is 0 or 1, he is only indirectly interested in s0

and s1. He is interested in how likely it is for him to get a high public signal taking into account

his private information. We denote this probability by sθ := Prob(σ′ = H |θ) and obtain

sl =
pl0

pl

s0 +
pl1

pl

s1 = p0s0 + p1s1 − δph(s1 − s0)

sh =
ph0

ph

s0 +
ph1

ph

s1 = p0s0 + p1s1 + δpl(s1 − s0).

The agent decides between using the device (d = Y ) and not using the device (d = N).

We denote the agent’s mixed participation behavior if he has private information θ by αθ :=

Prob(d = Y |θ).

The timing is as follows: First, the designer chooses a device (s0, s1) ∈ [0, 1]2 with s1 > s0.

Then, the agent learns his private information θ ∈ {l, h} and chooses a mixed participation

behavior αθ ∈ [0, 1]. If the device is used, it generates a signal σ′ ∈ {L, H} which is publicly

observed. Finally, the designer updates her belief about the agent’s type according to Bayes’

Law (as far as possible) and payoffs (as described below) realize.

The designer of the device can observe whether the device is used and, if it is used, she

observes also the generated public signal. Thus, there are three different observations she can

make: (d = N), (d = Y, σ′ = L) and (d = Y, σ′ = H). To simplify notation, we say that the

public signal that is generated is σ ∈ {N, L, H} with σ = N meaning (d = N), σ = L meaning

(d = Y, σ′ = L) and σ = H meaning (d = Y, σ′ = H). The probability with which the designer

observes public signal σ is pσ := Prob(σ).9

3.2 Beliefs

Private information and types do not coincide in our framework. The designer can form two

different kinds of beliefs after observing public signal σ: beliefs about the agent’s private infor-

mation and beliefs about the agent’s type.

To describe these beliefs, we introduce the notation pσθ := Prob(σ, θ) for the joint probability

of public signal σ and private information θ, and pσω := Prob(σ, ω) for the joint probability of

public signal σ and type ω.10 If signal σ is generated with positive probability, beliefs for this

signal are determined by Bayes’ Law and we obtain that after observing σ the designer believes

that the agent’s private information is high with probability ησ := Prob(θ = h|σ) = pσh

pσ
and

that his type is good with probability µσ := Prob(ω = 1|σ) = pσ1

pσ
. Moreover, the designer infers

ηY := Prob(θ = h|d = Y ) and µY := Prob(ω = 1|d = Y ) from the agent’s participation (before

the signal realizes).11

9We have pN = pl(1 − αl) + ph(1 − αh), pL = [pl1αl + ph1αh](1 − s1) + [pl0αl + ph0αh](1 − s0) and pH =

[pl1αl + ph1αh]s1 + [pl0αl + ph0αh]s0.
10We have pNh = ph(1 − αh), pLh = [ph1αh](1 − s1) + [ph0αh](1 − s0), pHh = [ph1αh]s1 + [ph0αh]s0, pN1 =

pl1(1 − αl) + ph1(1 − αh), pL1 = [pl1αl](1 − s1) + [ph1αh](1 − s1) and pH1 = [pl1αl]s1 + [ph1αh]s1.
11We have ηY = phαh

phαh+plαl
and µY = ph1αh+pl1αl

phαh+plαl
.
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If non–participation occurs off the equilibrium path, the designer is nevertheless constrained

with respect to her belief about the agent: Since the agent is himself imperfectly informed, the

worst inference that the designer may make is that the agent’s private signal is low and not that

he is actually bad.12

Only the beliefs for σ = N in case the device is always used and the beliefs for σ = L and

σ = H in case the device is never used are not pinned down by Bayes’ Law. We assume that if

the designer observes that the device is not used although the agent is supposed to always use

it, she believes that she faces an agent with low private information. Conversely, if the designer

observes that the device is used although the agent is supposed to never use it, she believes that

the agent has high private information. Since—as will be shown later—an agent with high private

signal has a strictly higher incentive to use the device than an agent with a low private signal,

these are just the beliefs which survive the Intuitive Criterion. Formally, we assume ηN = 0 if

αl = αh = 1 and ηY = 1 if αl = αh = 0. It follows directly µN = pl1

pl
if αl = αh = 1 and

µL = ph1(1−s1)
ph1(1−s1)+ph0(1−s0) as well as µH = ph1s1

ph1s1+ph0s0
if αl = αh = 0.

3.3 Reduced form utility functions

We are interested in the (reduced form) problem where the designer is interested in learning

about the agent’s type and the agent wants to be perceived as good by the designer and is risk

averse with respect to this perception. Therefore the agent’s and the designer’s utility depend

directly on the designer’s belief about the agent’s type to which we will refer just as “belief” or

“perception” in the remainder of the paper.

If an agent with private information θ uses the device, the belief will be µL with probability

1 − sθ and µH with probability sθ. Thus, the agent faces a lottery with expected value Eθ :=

(1 − sθ)µL + sθµH and variance Vθ := (1 − sθ)µ
2
L + sθµ

2
H − E

2
θ. If the agent does not use the

device, the belief will be µN for sure. The agent evaluates beliefs with a smooth utility index

u(µ) which is strictly increasing and strictly concave on (0, 1), and he chooses his participation

behavior to maximize expected utility

Uθ :=

{
UY

θ := (1 − sθ)u(µL) + sθu(µH) if d = Y

UN := u(µN) if d = N
.

To abbreviate notation in the proofs, we will occasionally write uσ and u′
σ instead of u(µσ) and

u′(µσ), respectively.

For the designer, the device choice induces a lottery over beliefs where belief µσ occurs with

probability pσ. She is interested in learning about the agent’s type and thus prefers learning

the realization of any lottery to learning its expected value. A utility function to represent

such preferences is convex in beliefs. We assume that the designer evaluates beliefs with a

strictly convex utility index v(µ) and that she chooses a device to maximize her expected utility

V := pNv(µN ) + pLv(µL) + pHv(µH).

12Hence, “forcing” full participation with adverse beliefs in case of non–participation is not possible in our

framework.
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3.4 A non–reduced problem

Suppose that after observing public signal σ ∈ {N, L, H}, the designer assesses her opinion

about the agent in a report. Her assessment â ∈ [0, 1] is the probability with which she believes

the agent to be good. Her aim is to be as accurate as possible. Formally, she may strive for

minimizing the quadratic difference between her assessment â and the agent’s actual type ω

such that her non–reduced form utility index is ṽ(â, ω) = −(â − ω)2. Hence, she maximizes

E[ṽ(â, ω)|σ] = −µσ(â − 1)2 − (1 − µσ)(â − 0)2 and it follows that the optimal assessment is

â = µσ inducing a reduced form utility index v(µ) = −µ(1 − µ). The agent is interested in

getting a good assessment and he is risk–averse with respect to how he is assessed. For instance,

he might minimize the quadratic difference between the assessment he actually obtains and the

best possible assessment leading to a non–reduced form utility index ũ(â) = −(1 − â)2 and a

reduced form utility index u(µ) = −(1 − µ)2.

In the remainder of the paper we will restrict attention to the reduced form problem and we

will extend our analysis to the non–quadratic case to make clear which properties of the utility

indices drive our results. All our results hold for any quadratic utility indices, u(µ) and v(µ)

with u′ > 0, u′′ < 0 and v′′ > 0. A reader not interested in the technical details might therefore

ignore the conditions imposed on u(·) and v(·) in the statement of our results and just think of

the quadratic case.

3.5 Equilibrium concept

An equilibrium of the game induced by a device (s0, s1) ∈ [0, 1]2 with s0 < s1 is any combination

of beliefs (µN , µL, µH) ∈ [0, 1]3 and any mixed participation strategy (αl, αh) ∈ [0, 1]2 such that

1. given a certain participation strategy, beliefs are consistent with Bayes’ Law and our as-

sumption on out–of–equilibrium beliefs,

2. given beliefs, the agent’s participation behavior is individually rational, i.e. αθ = 1 if

UN < UY
θ , αθ ∈ [0, 1] if UN = UY

θ and αθ = 0 if UN > UY
θ .

As common in the mechanism design literature, we ignore the issue of equilibrium multiplicity

and assume that the designer can pick her favorite equilibrium when multiple equilibria exist.

4 Relation to the classical design framework

There are two benchmark cases: The case where the agent has no private information (i.e., δ = 0)

and the case where he has perfect private information (i.e., δ = 1).

If the agent does not have any private information, there exists no equilibrium where he is

willing to use an informative device. This is so because the expected perception conditional on

using and not using the device is the same. However, using the device involves a risk regarding

which perception will realize. A risk–averse agent thus has a strict incentive to abstain from

10



using the device. Hence, with no informational advantage on the agent’s side, it is not possible

for the designer to learn anything about his type.

By contrast, if private information is perfect, an unraveling argument applies. Since the

agent’s private signal is perfectly correlated with the public signal generated by a perfect device,

the agent can perfectly foresee which public signal will be generated by a perfect device and

thus faces no risk regarding the perception that will realize. As a consequence, there are two

ways for the designer to perfectly learn the agent’s type: First, there is an equilibrium where

the agent uses the perfect device if and only if his private signal is high. When the device is

not used, the designer can infer that the agent has a low private signal, i.e. that he is bad.

Second, there is an equilibrium where the agent always uses the perfect device and the device

reveals the agent’s type. While in the first case the designer learns perfectly via the agent’s

private information through his participation behavior, he learns perfectly via the information

generated by the device in the second case.

The problem with imperfect private information (i.e., δ ∈ (0, 1)) differs in two respects from

the benchmark cases. First, while there is never a use for an imperfect device in the benchmark

cases, such devices might be optimal with imperfect information.13 We are therefore interested in

the questions Is the optimal device imperfect? If so, which kind of errors is it subject to? Second,

while with perfect private information it makes no difference for the designer to learn via the

agent’s private information through his participation decision or via the information generated

by the device, it does make a difference with imperfect private information. Hence, we study the

question Through which channels does the designer want to learn about the agent’s type?

5 Properties of equilibrium candidates for a given device

In this section we take the device as given and show how candidates for the equilibrium partici-

pation behavior look like and which beliefs are associated with them. Afterwards, in Section 6,

we analyze how the designer has to construct the device in order to induce an equilibrium with

a certain participation behavior and in Section 7 we derive the designer’s optimal device choice.

Due to Bayes’ Law and our assumption on out–of–equilibrium beliefs, beliefs are for a given

device (s0, s1) uniquely pinned down by the participation strategy (αl, αh). Therefore, as long

as it is clear which device we consider, we can write UY
θ (αl, αh) and UN(αl, αh) for the agent’s

utility from using and from not using the device when the supposed participation strategy is

(αl, αh).

For any informative device, the agent has a strictly larger incentive to use the device when

his private signal is high than when it is low.

Lemma 1 For any device and for any (αl, αh), UY
l (αl, αh) < UY

h (αl, αh).

13If δ is sufficiently small, the agent never uses the perfect device. Then, neither is the observed participation

behavior informative, nor is information generated by the device. However, it is always possible to learn by

implementing an informative imperfect device which an agent with a high private signal is willing to use.

11



type 0: αl = 0 and αh = 0; necessary and sufficient: UY
h (0, 0) ≤ UN(0, 0)

type I: Equilibria with αl = 0 and αh ∈ (0, 1].

Ia: αh ∈ (0, 1); necessary and sufficient: UN (0, αh) = UY
h (0, αh)

Ib: αh = 1; necessary and sufficient: UY
l (0, 1) ≤ UN (0, 1) ≤ UY

h (0, 1)

type II: Equilibria with αl ∈ (0, 1] and αh = 1.

IIa: αl ∈ (0, 1); necessary and sufficient: UN (αl, 1) = UY
l (αl, 1)

IIb: αl = 1; necessary and sufficient: UN(1, 1) ≤ UY
l (1, 1)

Table 2: Classification of equilibrium types

It follows directly that it cannot happen that the agent uses the device with positive probability

when his private signal is low, while he uses it with probability less than one when his private

signal is high.

Lemma 2 For any device and in any equilibrium, αl = 0 or αh = 1.

Three different types of equilibrium may occur. The definitions of these types and the associated

necessary and sufficient equilibrium conditions are stated in Table 2. In an equilibrium of type

I the agent never uses the device when his private signal is low, while in an equilibrium of type

II an agent with a low private signal uses the device with positive probability. An equilibrium

where the device is never used is of type 0. In the course of the analysis, equilibria in which the

agent uses the device if and only if his private signal is high (type Ib) and equilibria in which

he always uses the device (type IIb) will be of special importance. In an equilibrium of type Ib

the designer can perfectly infer the agent’s private information from his participation behavior.14

We call such an equilibrium an equilibrium with perfect separation of private information. By

contrast, in an equilibrium of type IIb, the designer can infer nothing about the agent’s private

information from his participation behavior.15 We call such an equilibrium an equilibrium with

perfect pooling of private information.

Figure 1 displays how beliefs typically depend on the agent’s participation behavior. On

the left part of the graph beliefs are displayed for αl = 0 and increasing αh (type 0/I), on the

right part beliefs are displayed for αh = 1 and increasing αl (type II). Note that the beliefs at

the very left and the very right of the graph are not completely pinned down by Bayes’ Law.

The beliefs which we specified for the out–of–equilibrium events have the effect that the belief

mapping becomes continuous at the very left and the very right of the graph.

If αl = 0 and αh ∈ [0, 1], beliefs are

µI
N :=

pl1 + ph1(1 − αh)

pl + ph(1 − αh)
, µI

L :=
ph1(1 − s1)

ph1(1 − s1) + ph0(1 − s0)
and µI

H :=
ph1s1

ph1s1 + ph0s0
.

14I.e., ηY = 1 and ηN = 0.
15I.e., ηY = ph and non–participation does not occur with positive probability.
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belief

0

1

p1

pl1

pl
µN

µL

µH

participation
behavior

αl = 0
αh = 0

αl = 0
αh = 1

αl = 1
αh = 1

αh ↑ αl ↑

Figure 1: Beliefs (p1 = 3
5 , ph = 3

5 , δ = 1
3 , s0 = 1

2 , s1 = 9
10 )

If αh = 1 and αl ∈ [0, 1], beliefs are

µII
N :=

pl1

pl

, µII
L :=

µY (1 − s1)

pL|Y
and µII

H :=
µY s1

pH|Y

where pL|Y := µY (1 − s1) + (1 − µY )(1 − s0) and pH|Y := µY s1 + (1 − µY )s0. pL|Y and pH|Y

are the probabilities that a high and a low public signal are generated conditional on that the

device is used, respectively. Note that µY depends on who is using the device, i.e. on αl.

The structure of beliefs as displayed in Figure 1 is the general structure except for two aspects:

First, in Figure 1 µN > µL is true for any participation behavior. However, the device may also

be constructed such that µN < µL is true for some participation behavior. I.e., it is endogenous

whether not using the device is a worse signal than obtaining a low public signal or vice versa.

Second, for devices with s0 = 0 or s1 = 1 the graph looks somewhat differently. For s0 = 0 a

bad agent never obtains a high public signal such that from a high public signal the designer can

perfectly infer that the agent is good (i.e., there are no false positives). Hence, µH = 1 for any

participation behavior. Similarly, for s1 = 1 a good agent never obtains a low public signal such

that from a low public signal the designer can perfectly infer that the agent is bad (i.e., there

are no false negatives). Hence, µL = 0 for any participation behavior.

6 Characterization of device–equilibrium–combinations

In this section we take a participation behavior as given and show how the designer has to

construct the device in order to induce the respective participation behavior. We consider the

case with αh = 1 and αl ∈ [0, 1] in Subsection 6.1 and with αl = 0 and αh ∈ [0, 1] in Subsection

6.2. Therewith we characterize all device–equilibrium–combinations which might be optimal for

the designer.16 The same participation behavior can in general be induced by different devices.

16In Subsection 6.1 we characterize all the device–equilibrium–combinations for which the participation con-

straint is binding. This is without loss of generality as we show in Section 7 that it cannot be optimal for the

designer to have the participation constraint slack. In Subsection 6.2 we distinguish two cases. For parameter val-
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We also analyze how these devices differ. This will be helpful in the analysis of the designer’s

optimal device choice in Section 7.

6.1 Inducing participation of an agent with a low private signal

Suppose αh = 1 and αl ∈ [0, 1]. The problem to incentivize an agent with a low private signal to

use the device is the following: If an agent with low private information does not use the device,

he is perceived as having low private information. Only an agent with low private information

is supposed to abstain from using the device, i.e. Prob(ω = 1|d = N, θ = l) = pl1

pl
. If an agent

with low private information uses the device instead, he faces a lottery over beliefs, i.e. he incurs

a risk regarding how he is perceived. It can only be optimal for him to use the device if the

lottery yields an expected perception that is higher than pl1

pl
. However, if the device is perfect,

a fair lottery is induced and the resulting expected belief is just Prob(ω = 1|d = Y, θ = l) = pl1

pl
.

Hence, an agent with a low private signal has a strict incentive not to use the perfect device. To

incentivize him, the designer has to “redistribute” expected perception from the case where his

private signal is high to that where it is low.17

How does redistribution work? When the device is perfect, a good agent always obtains a

high public signal and a bad agent always obtains a low public signal. I.e., the expected belief

obtained by a good and by a bad agent are 1 and 0, respectively. When the device is imperfect,

a bad agent can obtain signals that also a good agent can obtain such that the type cannot be

perfectly inferred anymore. As a consequence, the expected belief obtained by a good agent is

strictly below 1 and that of a bad agent is strictly above 0. I.e., expected belief is redistributed

from the case where the agent is good to that where he is bad and, by consequence, expected

perception is also redistributed from the case where it is more likely that the agent is good (=

high private signal) to that where it is less likely that he is good (= low private signal). Hence,

the designer can incentivize an agent with a low private signal to use the device by making the

device susceptible to errors.

The device can be made more susceptible to errors by increasing the probability of false

positives (i.e., s0 ↑) or false negatives (i.e., s1 ↓). By increasing s0, it becomes relatively more

likely for the bad agent than for the good agent to obtain a high public signal and relatively less

ues for which the agent is not willing to use the perfect device, we characterize all device–equilibrium–combinations

for which the participation constraint is binding. Again, as we show in Section 7, that this is without loss of

generality. For all other parameter values, the agent is willing to use the perfect device with certainty if his

private information is high. Since this must already specify the for the designer optimal device which induces the

considered type of participation behavior, we do not characterize any other device–equilibrium–combinations.
17The term “redistribution of expected perception” is appropriate since Bayes’ Law dictates that the expected

perception from using the device is not affected by the device choice for a given participation behavior, i.e.

plProb(ω = 1|d = Y, θ = l) + phProb(ω = 1|d = Y, θ = h) = µY . This condition can be interpreted as a

“budget constraint” where Prob(ω = 1|d = Y, θ = l) and Prob(ω = 1|d = Y, θ = h) is expected perception that is

“distributed” to the agent when his private information is low and high, respectively. If a change of the device

leads to an increase of Prob(ω = 1|d = Y, θ = l) by one unit, it causes a decrease of Prob(ω = 1|d = Y, θ = h) by
pl

ph
units.

14



likely to obtain a low public signal. As a consequence, µII
H decreases and µII

L increases:18

∂µII
H

∂s0
= −

(1 − µY )µY

p2
H|Y

s1 = −
(1 − µY )

pH|Y
µII

H < 0 (1)

∂µII
L

∂s0
=

(1 − µY )µY

p2
L|Y

(1 − s1) =
(1 − µY )

pL|Y
µII

L ≥ 0 (2)

By decreasing s1, it becomes relatively more likely for the good agent than for a bad agent to

obtain a low public signal and relatively less likely to obtain a high public signal. Thus, again,

µII
H decreases and µII

L increases:

∂µII
H

∂s1
=

(1 − µY )µY

p2
H|Y

s0 =
µY

pH|Y
(1 − µII

H ) ≥ 0 (3)

∂µII
L

∂s1
= −

(1 − µY )µY

p2
L|Y

(1 − s0) = −
µY

pL|Y
(1 − µII

L ) < 0 (4)

If the designer makes the device less informative by decreasing s1 and/or by increasing s0, the

incentive of an agent with a low private signal to use the device increases strictly.

Lemma 3 For any αl ∈ [0, 1], UY
l (αl, 1) is differentiable in s0 and s1 with ∂

∂s0
UY

l (αl, 1) > 0

and ∂
∂s1

UY
l (αl, 1) < 0.

Consider some fixed participation behavior (αl, 1). The designer can find a device which in-

duces this participation behavior as follows: The relevant participation constraint is UY
l (αl, 1) =

u(pl1

pl
). If the agent’s private signal is low, he has a strict incentive not to use the perfect device,

i.e. UY
l (αl, 1) < u(pl1

pl
) for (s0, s1) = (0, 1). However, he has a strict incentive to use a completely

uninformative device as this allows him pooling with high private information without incurring

a risk, i.e. UY
l (αl, 1) > u(pl1

pl
) for (s0, s1) = (0, 0). From this and a continuity property we obtain

by an Intermediate Value Theorem that there always exists a device (0, s′1) with s′1 ∈ (0, 1) which

implements an equilibrium with participation behavior (αl, 1). But besides device (0, s′1), there

exist also other devices which implement this participation behavior. For instance, when the

designer increases s0 and s1 slightly in the right proportion, the same behavior is implemented.

Moreover, it follows from Lemma 3 that for any s0 there exists at most one s1 for which the

participation constraint is binding. This allows us to describe the set of all devices for which

the participation constraint is binding by a domain of s0–values and a function s1(s0) on this

domain.19

18We present two different ways to describe the partial derivatives of the beliefs. Either of them will be helpful

to simplify different steps in the subsequent proofs. To refer to the first or the second way specifically, we append

an a or a b behind the number of the formula, respectively. I.e., (1a) refers to
∂µII

H

∂s0
= − (1−µY )µY

p2
H|Y

s1, while (1b)

refers to
∂µII

H

∂s0
= −

(1−µY )
pH|Y

µII
H .

19As the set of devices for which the participation constraint is binding depends on the participation behavior

considered, a more concise notation would be s
(αl,1)
1 (s0). For the sake of better readability, we omit (αl, 1) and

make clear through the context for which participation behavior the function s1(s0) is defined.
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Lemma 4 For any participation behavior (αl, 1) with αl ∈ [0, 1] there exists a continuous, strictly

increasing and onto function s1 : [0, s0] → [s1, 1] with s1 ∈ (0, 1), s0 ∈ (0, 1) and s′1(s0) =

−
∂UY

l

∂s0
/

∂UY
l

∂s1
such that the participation constraint is binding for device (s0, s1) if and only if

s1 = s1(s0).

Since all devices (s0, s1(s0)) implement the same participation behavior, the question arises

how these devices differ. In the remainder of this subsection we study how the induced beliefs,

the induced ad interim expected belief, the induced ad interim variance of belief and the induced

ad interim expected utility of the agent depend on s0. Keep in mind that a change in s0 is accom-

panied by a change in s1 according to Lemma 4. In Figure 2 we illustrate the comparison results

for a numerical example. Although the graphs are for a specific utility index and specific param-

eter values, the depicted properties hold fairly general. Figure 2(a) shows devices (s0, s1(s0))

which implement equilibria with perfect pooling of private information (αl = αh = 1).

Consider first the effect of the device choice on beliefs µII
H and µII

L . By increasing s0 and s1,

it becomes more likely that the higher belief µII
H is generated conditional on the device being

used, i.e. pH|Y increases. Moreover, high public signals become more likely for both, a good and

a bad agent, and low public signals become less likely for both of them. Therefore, the effect on

µII
H and µII

L is not obvious. We know that for all devices which induce the same participation

behavior Bayes’ Law dictates that the expected perception of an agent who uses the device is

be the same, i.e. (1 − pH|Y )µII
L + pH|Y µII

H = µY = constant for all devices (s0, s1(s0)). Since

the probability with which the higher of the two beliefs is generated, pH|Y , increases in s0, we

can conclude that either µII
L or µII

H must decrease in s0. It turns out that both do (see Figure

2(b)). Note that for increasing s0 the stigma of failure becomes more severe, i.e. it becomes

more harmful to obtain a low public signal.

Lemma 5 Fix some participation behavior (αl, 1) with αl ∈ [0, 1] and consider devices (s0, s1(s0)).

Then,
dµII

L

ds0
< 0 and

dµII
H

ds0
< 0.

Consider now the effect of the device choice on ad interim expected beliefs El and Eh: From

the point of view of an agent who already knows his private signal, the device induces a lottery

with an expected belief which is (weakly) higher than µY for an agent with a high private signal,

Eh ∈ [µY , ph1

ph
], and (strictly) lower than µY for an agent with a low private signal, El ∈ [pl1

pl
, µY ).

If the device is not perfect, El > pl1

pl
and Eh < ph1

ph
. The size of the redistributive effect depends

on which types of errors the device is susceptible to. For instance, in the example displayed in

Figure 2(c), there is more redistribution when the probability of false positives increases, i.e.

when s0 is higher. The result that redistribution is most effective for devices with the largest

possible s0 generalizes to the case with arbitrary primitives [p1, ph, δ], any participation level

αl ∈ (0, 1] and any utility index satisfying

Assumption 1 u′′′(µ) ≥ 0 for all µ.20

20This assumption holds, for instance, for quadratic utility and for CARA–preferences.
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(c) Expected belief
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0 s0
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Figure 2: Devices for which the participation constraint is binding and properties thereof (p1 = 3
5 ,

ph = 3
5 , δ = 1

3 , αl = αh = 1, u(µ) := −(a − µ)2, a = 1)
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Lemma 6 Fix some participation behavior (αl, 1) and consider devices (s0, s1(s0)). If Assump-

tion 1 holds and αl ∈ (0, 1], dEl

ds0
> 0 and dEh

ds0
< 0. If Assumption 1 holds and αl = 0, dEl

ds0
> 0

and dEh

ds0
= 0.

Next, consider the effect of the device choice on the risk the agent incurs by using the device

as measured by the variance of belief and consider for the moment the case where the agent’s

utility index is quadratic.21,22 Then his expected utility from using the device depends only on

the induced expected belief (+) and the induced variance of belief (–):23

UY
θ = −(a − Eθ)

2 − Vθ with a ≥ 1. (5)

How the variance incurred by an agent with a low private signal depends on the device choice

is straightforward: By construction, UY
l (αl, 1) is constant for all devices (s0, s1(s0)). This is only

possible if an increase in the expected belief, El, comes along with an increase in the variance

of belief, Vl. Hence, dEl

ds0
> 0 implies dVl

ds0
> 0. Figure 2(e) shows that Vl is increasing in our

example. Figure 2(d) shows that changes in Vl are accompanied by changes in (a−El)
2 of equal

size and different direction.

How the variance incurred by an agent with a high private signal depends on the device choice

is more involved since there are two countervailing effects. To see these effects, it is helpful to

make a decomposition of Vh:24

Vh = Vl + ([µII
H + µII

L ] − [El + Eh])(Eh − El) (6)

The first effect is an informativeness effect : By choosing a device (s0, s1(s0)) with a higher

s0, El increases (Lemma 6). This makes the participation constraint less binding and allows the

designer to make the device more informative which increases not only the variance incurred by

an agent with a low private signal, but also that incurred by an agent with a high private signal

suggesting that Vl and Vh move into the same direction. Hence, the informativeness effect is

positive (see the first term on the right–hand side of (6)).

The second effect is a distributional effect. The lotteries over beliefs induced by devices

(s0, s1(s0)) may differ substantially for different values of s0. An example for this is displayed

in Figure 3. Figure 3(a) is for the device which implements an equilibrium with perfect pooling

of private information and which is least effective in redistributing expected belief, Figure 3(b)

is for the device which implements the same participation behavior, but which is most effective

21We study the variance of belief because it helps us getting a better understanding for how the agent’s expected

utility depends on the device choice. Focussing on the quadratic case here is without loss of generality for our

main results because we do not make use of the variance result later on.
22Any quadratic utility index u(µ) which is strictly increasing and strictly convex on (0, 1) is a positive linear

transformation of u(µ) := −(a − µ)2 with a ≥ 1.
23With u(µ) := −(a − µ)2 we obtain UY

θ = −(1 − sθ)(a − µL)2 − sθ(a − µH)2 = −(1 − sθ)[(a − Eθ)2 + 2(a −

Eθ)(Eθ − µL) + (Eθ − µL)2] − sθ[(a − Eθ)2 + 2(a − Eθ)(Eθ − µH) + (Eθ − µH)2] = −Vθ − (a − Eθ)2.
24We have Vh = (1−sh)µ2

L +shµ2
H −E

2
h = (1−sl− [sh−sl])µ

2
L +(sl +[sh−sl])µ

2
H −E

2
l +(E2

l −E
2
h) = Vl+(sh−

sl)(µ
2
H −µ2

L)+(E2
l −E2

h). Using Eh−El = [sh−sl](µH −µL), we obtain Vh = Vl+([µH +µL]−[El+Eh])(Eh−El).
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H = 1

(a) (s0, s1) = (0, s1(0))
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H
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µYEh 1

(b) (s0, s1) = (s−1
1 (1), 1)

Figure 3: Probabilities and beliefs induced by two devices which both implement perfect pooling

of private information (p1 = 3
5 , ph = 3

5 , δ = 1
3 , αl = αh = 1, u(µ) := −(a − µ)2, a = 1)

in redistributing expected belief. The graphs show the two beliefs that may realize and the

probabilities with which these beliefs occur for an agent with a low private signal (white bars)

and an agent with a high private signal (black bars). It can be seen that while the ad interim

expected beliefs El and Eh differ only slightly in the two cases, there are large changes in the

beliefs that may actually realize, µII
L and µII

H (compare also Figures 2(b) and 2(c)). More

importantly, the change in the belief lottery may affect the variance incurred by an agent with a

high and with a low private signal differently. Note that Vθ is a weighted sum of the two squared

deviations (µII
H −Eθ)

2 and (µII
L −Eθ)

2, and note that the former deviation is relatively more likely

in the case where the agent’s private information is high, while the latter is relatively more likely

in the case where the agent’s private information is low. By increasing s0, both beliefs decrease

(Lemma 5) such that the deviation which is relatively more likely when the agent’s private signal

is high, (µII
H −Eθ)

2, decreases and the deviation which is relatively more likely in the case when

the agent’s signal is low, (µII
L − Eθ)

2, increases. Hence, there might be a countervailing force

moving Vl and Vh into different directions. To be a little bit more precise, look at the second

term on the right–hand side of (6): ([µII
H +µII

L ]− [El +Eh])(Eh −El). Since the change in beliefs

is large relative to the change in expected beliefs (see Figure 3 again), how this term changes is

driven by the change in the beliefs. As both beliefs decrease with s0, the distributional effect is

negative.

Since there are two effects which move into different directions, the question arises which

effect is stronger. Heuristically, El differs only slightly for different values of s0 such that the

designer can make the device only slightly more informative when s0 increases,25 while how the

25Somewhat more formally, we get that the informational effect is small relative to the distributional effect by

noting that UY
l = −(a−El)

2 −Vl = constant implies Vl = −(a−El)
2 − constant for all devices (s0, s1(s0)) such

that the informational effect is small when the change in El is small.
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beliefs vary around the expected belief differs substantially for different s0. Hence, the negative

distributional effect dominates the positive informativeness effect such that dVh

ds0
< 0 (see Figure

2(e) for a graphical illustration of Vl and Vh in our numerical example). For any quadratic utility

index, any primitives [p1, ph, δ] and any participation level αl ∈ [0, 1] we obtain the following

result:

Lemma 7 Fix some participation behavior (αl, 1) with αl ∈ [0, 1] and consider devices (s0, s1(s0)).

If the agent’s utility is quadratic, dVl

ds0
> 0 and dVh

ds0
< 0.

If the agent’s utility is quadratic, the utility of an agent with high private information depends

only on Eh (+) and Vh (–). We already know that for a higher s0 the expected belief, Eh,

decreases because there is more redistribution of expected perception (Lemma 6), but that there

is a countervailing effect because the risk he faces, Vh, decreases as well (Lemma 7). By a similar

reasoning as above, the effect of the expected belief is small relative to the effect of the variance

such that his utility increases in s0. Consult again Figures 2(d) and 2(e) to see that the change

in the variance indeed dominates in the example.

If the agent’s utility is not quadratic, additional effects arise such that how the variance of

an agent with a high private signal changes with s0 becomes more involved. Interestingly, under

relatively mild assumptions we obtain clear effects regarding how his expected utility changes

with s0. For any primitives [p1, ph, δ], any participation level αl ∈ [0, 1] and for any utility index

satisfying Assumption 1 and

Assumption 2
(

u′′(µ)
u′(µ)

)2

− u′′′(µ)
u′(µ) > 0 and u′′′′(µ) = 0 for all µ

the utility of an agent with high private information increases with s0 although he is on average

perceived as worse. The expected utility of an agent with low private information is not affected

by the device choice by construction. Hence, from an ex ante perspective, the agent is clearly

better off for higher values of s0.

Lemma 8 Fix some participation behavior (αl, 1) with αl ∈ [0, 1] and consider devices (s0, s1(s0)).

If Assumptions 1 and 2 hold,
dUY

h

ds0
> 0 and

dUY
l

ds0
= 0.

The role of Assumptions 1 and 2 is to limit the importance of higher order moments relative to

the expected value and the variance.26 This is the case which we consider particularly interesting.

If higher order moments have a strong impact on the agent’s utility, other effects than those

described in Lemma 8 may arise.27 Note further that Assumptions 1 and 2 are sufficient for the

result in Lemma 8 but not necessary. For instance, for CARA–preferences with arbitrary risk

parameter, we have
(

u′′(µ)
u′(µ)

)2

− u′′′(µ)
u′(µ) = 0 and higher order derivatives do not vanish. Still, we

obtain:

26Assumption 1 defines a lower bound on u′′′(µ)
u′(µ)

while Assumption 2 defines an upper bound on u′′′(µ)
u′(µ)

for the

cubic case.

27For instance, if we assume that
“

u′′(µ)
u′(µ)

”2
− 2

3
u′′′(µ)
u′(µ)

< 0 and u′′′′(µ) = 0, we obtain
dUY

h

ds0
< 0.
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Lemma 9 Fix some participation behavior (αl, 1) with αl ∈ [0, 1] and consider devices (s0, s1(s0)).

If the agent has CARA–preferences with an arbitrary risk parameter, we obtain
dUY

h

ds0
> 0.

Before we continue our analysis with the second type of equilibrium, we would like to stress

that the results obtained so far do neither depend on the primitives [p1, ph, δ] nor on which

particular participation behavior (with αh = 1) we consider.

6.2 Deterring participation of an agent with a low private signal

Suppose αl = 0 and αh ∈ [0, 1]. The problem to incentivize an agent with a high private signal

to use the device is the following: If he does not use the device, the designer infers that he has a

low private signal with a positive probability and thus perceives him as worse than he actually is

in expected terms, i.e. Prob(ω = 1|d = N, θ = h) = µI
N < ph1

ph
. If he uses the device, the designer

infers correctly that he has a high private signal, i.e. Prob(ω = 1|d = Y, θ = h) = ph1

ph
. However

the agent incurs a risk as the device generates additional information about his type. If this risk

is too large, he is better off not using the device. By making the device susceptible to errors, the

information generated by the device becomes less precise, insuring the agent (partially) against

his type–risk. Since αl = 0 remains true, the agent’s expected perception is not affected. As a

consequence, the designer can increase s0 and/or decrease s1 to incentivize the agent to use the

device. We obtain the following result which is analogous to Lemma 3.

Lemma 10 For any αh ∈ [0, 1], UY
h (0, αh) is differentiable in the device (s0, s1) with ∂

∂s0
UY

h (0, αh) >

0 and ∂
∂s1

UY
h (0, αh) < 0.

Whether an agent with a high private signal is very eager to use the device or not depends

on how much worse he is perceived in expected terms when he does not use the device. An

indicator for this incentive is ph1

ph
− µI

N = δ 1−ph

1−αhph
. For given parameters p1 and ph, he is very

eager to separate when his private signal is very informative about his type, i.e. when δ is large.

There exists a threshold δ̂ ∈ (0, δmax) such that for values of δ above this threshold there exists

an equilibrium where an agent with a high private signal is even willing to use the perfect device

(with probability one).28 For values of δ below this threshold, the agent is not willing to use

the perfect device with a positive probability. In this case there exists a unique equilibrium in

which the perfect device is never used. This is stated in the following lemma which holds for any

primitives [p1, ph, δ] and any utility index u(·).

Lemma 11 Consider the perfect device (s0, s1) = (0, 1). For any p1, ph ∈ (0, 1) there exists a

δ̂(p1, ph) ∈ (0, δmax) such that the following two properties hold: (i) If δ < δ̂(p1, ph), then there

exists no equilibrium of type I. (ii) If δ ≥ δ̂(p1, ph), then there exists an equilibrium of type Ib,

i.e. one in which the agent uses the perfect device if and only if his private signal is high.

Consider δ < δ̂(p1, ph). In this case the agent is not willing to use the perfect device even if

his private signal is high. As αl = 0, he has a strict incentive to use an uninformative device

28This equilibrium may coexist with equilibria where the perfect device is used with a smaller probability.
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as this allows him to signal superior private information without incurring a risk regarding

how he will be perceived. From this and a continuity property we obtain by an Intermediate

Value Theorem that any participation behavior (0, αh) with αh ∈ [0, 1] can be induced by some

device (s0, s1) = (0, s′1). However, there are, again, multiple devices which induce any specific

participation behavior. We obtain a characterization of the set of all devices which induce a

certain participation behavior which is analogous to that in Lemma 4.

Lemma 12 Let δ ∈ (0, δ̂(p1, ph)). For any participation behavior (0, αh) with αh ∈ [0, 1] there

exists a continuous, strictly increasing and onto function s1 : [0, s0] → [s1, 1] with s1 := s1(0) ∈

(0, 1), s0 := s−1
1 (1) ∈ (0, 1) and s′1(s0) = −

∂UY
h

∂s0
/

∂UY
h

∂s1
such that the participation constraint is

binding for device (s0, s1) if and only if s1 = s1(s0).

Consider δ < δ̂(p1, ph) and consider any participation behavior (0, αh) with αh ∈ [0, 1]. Then

the designer is able to make the participation constraint binding implying that an agent with a

high private signal obtains the same utility from using and from not using the device and thus

also the same utility as an agent with a low private signal. Consider now δ > δ̂(p1, ph) and

participation behavior (0, 1). Then the designer is not able to make the participation constraint

binding as the agent has a strict incentive to use even the most informative device when his

private signal is high. It follows that when the agent’s private signal is high, he must be strictly

better off when he uses the device than when he does not use it.

Lemma 13 (i) Let δ ∈ (0, δ̂(p1, ph)), fix some participation behavior (0, αh) with αh ∈ [0, 1]

and consider devices (s0, s1(s0)). Then Ul(0, αh) = Uh(0, αh) = UN (0, αh) for any αh. (ii) Let

δ ∈ (δ̂(p1, ph), δmax) and consider participation behavior (0, 1) and device (s0, s1) = (0, 1). Then

Ul(0, 1) = UN (0, 1) and Uh(0, 1) > UN(0, 1).

7 The optimal device

In this section we analyze the design of the optimal device. We start with a discussion of the

designer’s objective in Subsection 7.1. In Subsection 7.2 we assume that the designer wants to

implement an equilibrium where the agent also uses the device when his private signal is low

and in Subsection 7.3 we assume that she wants to implement one where he only uses it when

his private signal is high. In both subsections we first take the participation behavior as given

and look for the optimal device among those inducing this specific participation behavior. Next,

we identify the optimal device inducing participation that belongs to the respective class. Since

we then already know the optimal device for a given participation behavior, this is equivalent to

identifying the optimal participation behavior in the respective class. Finally, we compare the

two remaining devices to obtain the generally optimal device/participation behavior.
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7.1 The designer’s objective

Assume for a moment that the designer’s and the agent’s utility index are both quadratic. Then,

from an ex ante perspective, the designer’s and the agent’s expected utility depend only on the

ex ante expected belief and the ex ante variance of belief. Due to Bayes’ Law, the ex ante

expected belief is always equal to the prior p1 such that the device choice affects only the ex ante

variance of belief. Roughly speaking, a change in the device which increases the ex ante variance

means better learning about the agent’s type. Hence, it increases the designer’s ex ante expected

utility while it decreases the ex ante expected utility of the risk–averse agent. It follows that the

designer’s optimal device choice minimizes the ex ante expected utility of the agent.

Lemma 14 If the designer’s and the agent’s utility index are both quadratic, maximizing E[v(µ)]

is equivalent to minimizing E[u(µ)].

We are mainly interested in the optimal device choice for the case where decisions depend on

the first two moments of the belief distribution. For this case we do not need to impose more

structure on the utility indices than we imposed in the model section: the agent’s index is any

quadratic function which is increasing and concave and the designer’s index is any quadratic

function which is convex. All our subsequent results apply to the quadratic case and thus also

to the non–reduced problem introduced in Subsection 3.4. However, we proof the subsequent

results for a slightly more general case. This allows us, for instance, to extend our results to the

CARA case when the designer’s preferences have a similar shape as the agent’s preferences. We

adopt the assumption

Assumption 3 v(µ) := −C2u(µ) + C1µ + C0 with C0, C1 ∈ R and C2 > 0

which allows that higher moments of the belief distribution do matter, but which restricts the

“magnitude” and the “direction” of their effect on the designer’s utility. It directly follows

V = −C2E[u(µ)] + C1p1 + C0, (7)

implying that the designer’s ex ante expected utility is maximized when the agent’s ex ante

expected utility is minimized.

7.2 The optimal device inducing participation of an agent with a low

private signal

Fix some participation behavior (αl, 1) with αl ∈ (0, 1]. Because of Assumption 3, the designer

learns most when she minimizes the agent’s ex ante expected utility. Since it cannot be optimal

for her to have the participation constraint slack and since the agent’s outside option does not

depend on the device choice, it follows that when the agent’s private signal is low, he obtains the

same utility from using and from not using the device, and that this utility is the same for all

devices (s0, s1(s0)). Hence, the designer learns most when she minimizes the utility of the agent
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in the case where his private signal is high. Her optimization problem becomes

min
s0∈[0,s0]

UY
h (αl, 1)

s.t. s1 = s1(s0) (as defined in Lemma 4).

Under Assumptions 1 and 2, UY
h (αl, 1) is minimized by device (0, s1(0)) (Lemma 8), i.e. by a

device which is subject to false negatives but not to false positives. Among all the devices for

which the participation constraint is binding, this is the device which redistributes least expected

belief from the case where the agent’s private signal is high to the case where it is low (Lemma 6),

but for which the stigma of failure is least severe (Lemma 5). The intuition that redistribution

makes the participation constraint less binding and thus allows for better learning about the

agent’s type is wrong. While redistribution makes the participation constraint indeed slightly

less binding, it is accompanied by a second, stronger effect which makes the inference that can be

drawn from the generated signals less accurate. This second effect is basically the distributional

effect motivated in Subsection 6.1.

Proposition 1 Fix some participation behavior (αl, 1) with αl ∈ (0, 1]. (i) It is optimal for the

designer to have the participation constraint binding. (ii) If Assumptions 1, 2 and 3 hold, s0 = 0

is optimal for the designer.

Consider now the choice of the participation behavior αl given the optimal device, (s0, s1) =

(0, s1(0)). Since the participation constraint is binding and since the utility from not using the

device does not depend on αl for the considered type of participation behavior, the agent’s ex

ante expected utility is again minimized by minimizing the utility of the agent in the case where

his private signal is high:

min
αl∈(0,1]

UY
h (αl, 1)

s.t. s0 = 0, s1 = s1(0) (as defined in Lemma 4).

Implementing an equilibrium with a higher αl causes three effects: First, to incentivize the agent

to use the device, the designer has to choose a less informative device, i.e. s1(0) decreases in αl

(–).29 Second, the designer learns the agent’s private information less accurately (–).30 Third, a

public signal is generated with a higher probability (+). We can show that under Assumption

3 the third (positive) effect dominates the first two (negative) effects. This means that if the

designer wants to implement an equilibrium which is used with positive probability when the

agent’s private signal is low, then it is optimal for her to choose a device which is always used.

29Suppose that the same device is associated with a higher participation level. As it becomes then relatively

more likely that the agent’s private signal is low conditional on the device being used, it becomes also relatively

more likely that the agent’s type is bad conditional on the device being used. For a given device, this does not

affect the probability of getting a certain public signal but it is detrimental for the associated beliefs such that

participation becomes less attractive. Hence, to induce a higher participation level, the designer has to make the

device less informative by moving s1 closer to s0 = 0 (see Lemma 3).
30From non–participation she can still infer that the agent’s private signal is low, but what she can infer from

participation becomes less accurate.
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The reason for this result is the following: A higher level of participation, αl, can only be

induced by reducing the stigma of failure.31 Reducing the stigma of failure requires that the

agent gets a low public signal more often when he is actually good. Since this hurts the agent

the more the more likely it is that he is good, decreasing s1 in a way that makes the agent

indifferent when his private signal is low makes him worse off when his private signal turns out

to be high. Under Assumption 3 this means better learning about the agent’s type and thus

dominance of the third effect over the first two effects.

Proposition 2 If Assumptions 1, 2 and 3 hold and the designer wants to implement an equi-

librium where the agent uses the device with positive probability when his private signal is low,

then it is optimal for her to implement an equilibrium where the agent always uses the device,

i.e. an equilibrium with perfect pooling of private information.

Consider a test which produces pass–fail–results as an implementation of the optimal device.

The property s0 = 0 of the optimal test means that the bad type never passes the test, s1 < 1

means that the good type fails with a positive probability. The lower s1, the harder the test is to

pass. Interestingly, higher participation is optimally induced by making the test harder to pass.

7.3 The optimal device deterring participation of an agent with a low

private signal

The best that the designer can possibly achieve within the class of equilibria where the device is

not used by an agent with a low private signal, is learning the agent’s private signal perfectly, and,

if the agent’s private signal turns out to be high, learning the agent’s type perfectly. If the agent’s

private information is sufficiently informative, his interest in signaling superior information is

strong enough such that this is actually feasible.

Proposition 3 If δ ≥ δ̂(p1, ph), Assumption 3 holds and the designer wants to implement an

equilibrium in which the device is not used when the agent’s private information is low, then

it is optimal for the designer to implement an equilibrium where perfect separation of private

information is induced by the perfect device.

Consider now δ < δ̂(p1, ph) and fix some participation behavior (0, αh) with αh ∈ (0, 1].

Again, because of Assumption 3, the designer strives for minimizing the agent’s (ex ante) expected

utility. In the considered case it is possible (by construction of δ̂(p1, ph)) and optimal for the

designer to make the agent’s participation constraint binding. If the agent’s private signal is low,

he does not use the device and thus obtains utility UN (0, αh). If the agent’s private utility is

high, he uses the device with positive probability, but he is indifferent between using and not

31We argued in Footnote 29 that s1 must decrease in response to an increase in αl. It follows that the probability

of getting a high public signal decreases for an agent with either kind of private signal ( dsθ

dαl
< 0). Since µH = 1

is true for any participation level, the participation constraint can only remain to be satisfied when the stigma of

failure becomes less severe (
dµII

L

dαl
> 0).
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using it. Hence, he also obtains UN (0, αh). From this it follows that the designer’s problem

simplifies as follows:

min
s0∈[0,s0]

UN (0, αh)

s.t. s1 = s1(s0) (as defined in Lemma 12).

Since UN (0, αh) is not affected by the device choice, any device for which the participation

constraint is binding is optimal.

Proposition 4 Let δ < δ̂(p1, ph) and fix some participation behavior (0, αh) with αh ∈ [0, 1].

If Assumption 3 holds, then it is optimal for the designer to have the participation constraint

binding and any device which induces participation behavior (0, αh) with a binding participation

constraint is optimal.

Note that here s0 = 0 is only weakly optimal. However, weak optimality is a peculiarity of

the participation constraint being binding for the highest possible private signal. We show

in Subsection 8.2 that with continuous private information s0 = 0 is strictly optimal for any

participation behavior for which the device is used with positive probability. Therefore the case

where a device which is subject to false negatives but not to false positives (s0 = 0 and s1 ≤ 1)

is strictly optimal can be seen as the “general case”.

Consider now the optimal participation behavior αh given an optimal device which induces

this participation behavior, for instance, given device (s0, s1) = (0, s1(0)). Since the participation

constraint is binding, the designer’s problem simplifies to

min
αh∈(0,1]

UN(0, αh)

s.t. s0 = 0, s1 = s1(0) (as defined in Lemma 12).

UN (0, αh) does not depend on the device choice. Hence, we can ignore the constraint and have

to consider only how αh affects UN(0, αh). Since the utility from not using the device becomes

worse when the agent uses the device with a higher probability when his private signal is high,

αh = 1 is optimal.

Looking at the non–simplified problem again, we obtain the following heuristics for the result:

Implementing an equilibrium with a higher αh causes three effects. The designer better learns the

agent’s private information (+), he observes a public signal with a higher probability (+), and he

can make the device more informative as a higher participation level makes the agent’s outside

option worse and thus participation more attractive (+). Since all three effects are positive,

αh = 1 must be optimal.

Proposition 5 Let δ < δ̂(p1, ph). If Assumption 3 holds and the designer wants to implement

an equilibrium where the agent does not use the device when his private signal is low, then it

is optimal for her to implement an equilibrium where the agent uses the device if and only if

his private signal is high, i.e. to implement an equilibrium with perfect separation of private

information.
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7.4 The optimal device: perfect pooling versus perfect separation of

private information

To find the optimal device for the designer, we need to compare only two devices: the device

(0, sp
1(0)) which implements an equilibrium with perfect pooling of private information and the

device (0, ss
1(0)) which implements an equilibrium with perfect separation of private informa-

tion.32,33 The designer faces a trade–off between learning more “newly generated” information

through the device and learning also “already existing” private information through self–selection

into the device. In this subsection we investigate this trade–off.

Our main result can be summarized as follows: If the agent’s private signal is not very

informative about his type, then the designer wants to learn the agent’s private information,

whereas if the private signal is very informative, then it might be optimal for the designer to

forego learning this information and to induce full participation instead. At a first glance, this

result appears paradoxical: For more informative private information the designer should have

a stronger interest in learning the agent’s private information and not vice versa. However, the

informativeness of the private information also determines how informative the device can be.

Because of this additional effect, it is not obvious how more accurate private information affects

the designer’s interest in inducing an equilibrium in which she can infer private information. To

see what drives the result, it is helpful to have a closer look at the agent’s utility in both types

of equilibrium.

Remember that with respect to information generation, the designer’s interest is opposed

to the agent’s. Hence, the worse off the agent is, the better off is the designer, i.e. the better

is information generation. In any case, the optimal device leaves the agent with low private

information with expected utility u(pl1

pl
). Pooling allows the agent with high private information

to earn a “rent” which can be extracted by the designer in the case of perfect separation. For

δ < δ̂(p1, ph), his incentive to signal superior information can be fully exploited by the designer.

Hence, perfect separation is better than perfect pooling for low δ. When δ reaches δ̂(p1, ph), the

agent is even willing to use a perfect device to signal high private information. For even higher

δ, the designer cannot fully exploit the agent’s incentive to signal superior information anymore

because the informativeness of the device cannot be increased beyond perfection. Thus, in both

types of equilibria, perfect pooling and perfect separation of information, the agent obtains a rent

if he has high private information. For δ slightly above δ̂(p1, ph) the rent earned in the pooling

case is still larger than that in the separating case, but if δ moves closer to δmax, the rent in the

separating case may actually become larger than the rent in the pooling case. Hence, for very

informative private information, perfect pooling may eventually dominate perfect separation. If

32We have s
p
1(0) := s1(0) with s1(0) as defined in Lemma 4, ss

1(0) := s1(0) for δ < bδ(p1, ph) with s1(0) as

defined in Lemma 12 and ss
1(0) := 1 for δ ≥ bδ(p1, ph).

33Remember that if δ < bδ(p1, ph), then the designer is indifferent between all devices which implement perfect

separation of private information. Hence, if δ < bδ(p1, ph) and the device (0, ss
1(0)) is optimal, then it is not

uniquely optimal. Otherwise, the optimal device is unique.
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this happens or not depends on the primitives of the model.34 We conclude this section by

stating our main result formally:

Proposition 6 Let Assumptions 1, 2 and 3 be satisfied. (i) If δ < δ̂(p1, ph), then it is optimal for

the designer to induce perfect separation of private information. (ii) If δ ≥ δ̂(p1, ph), it is either

optimal for the designer to induce perfect separation or perfect pooling of private information.

8 Extentions

One may wonder in how far our previous results hinge upon our binary structure. In this section

we show that our main results prevail when we allow for more general devices and/or continuous

private information.

8.1 More than two public signals

In this subsection we explain why it suffices to restrict attention to devices which, if used, generate

only two different public signals. We show that a device which induces three different beliefs

cannot be optimal as the designer always has an incentive to change the device in a way such

that only two different beliefs do arise. This proves that there is no need for devices which are

capable of generating three different public signals. The same argument can be applied to the

case with any finite number of public signals showing that a two–signal–device is optimal in the

class of devices which allows for any finite number of public signals.

The model with three public signals. The device generates a public signal σ′ ∈

{L, M, H} and is characterized by a vector (sL|0, sM|0, sH|0; sL|1, sM|1, sH|1) with sL|0 + sM|0 +

sH|0 = 1 and sL|1 + sM|1 + sH|1 = 1. sσ′|ω denotes the probability with which public signal σ′

is generated when the agent’s type is ω. If an agent with private information θ uses the device,

he obtains public signal σ′ with probability sσ′|θ := pθ0

pθ
sσ′|0 + pθ1

pθ
sσ′|1. The belief assigned to

public signal σ′ is µσ′ :=
µY sσ′|1

pσ′|Y
with pσ′|Y := µY sσ′|1 + (1 − µY )sσ′|0. pσ′|Y is the probability

that public signal σ′ arises conditional on the device being used.

Sketch of proof. Consider a fixed participation behavior with αl > 0 and αh = 1. Under

Assumption 3, this is the only case where a device which generates three public signals may

strictly outperform any device which generates only two public signals.35 Moreover, recall that

34Consider u(µ) = −(1−µ)2 and any v(µ) which satisfies Assumption 3. If p1 = 3
4
, ph = 1

4
and δ is sufficiently

close to δmax = 1
3
, then the designer prefers the equilibrium with perfect pooling of private information to that

with perfect separation of private information. If p1 = 1
4
, ph = 3

4
, then the designer prefers for any δ ∈ (0, δmax)

the equilibrium with perfect separation of private information.
35For any participation behavior with αl = 0, there are only two possibilities: First, a perfect device is optimal.

This requires only the generation of two different public signals. Second, any device which satisfies the participa-

tion constraint is optimal. Since the participation constraint can always be satisfied with a device that generates

only two public signals when it can be satisfied with a device which generates more than two public signals, there

exists a device which is optimal and which generates only two public signals.
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under Assumption 3 the designer strives for minimizing UY
h and it cannot be optimal for her to

have the participation constraint of an agent with a low private signal slack.

Assume now to the contrary that (i) the device (sL|0, sM|0, sH|0; sL|1, sM|1, sH|1) is optimal,

and (ii) no device which generates only two public signals is optimal.

Because of (ii), we can assume without loss of generality that µL < µM < µH and pσ′|Y > 0.36

Fix now the parts of the device which are responsible for the high signal σ′ = H , i.e. sH|0

and sH|1. Then the designer has only two degrees of freedom left, say s0 =: sM|0 and s1 =: sM|1.

Using notation β0 := 1−sH|0 and β1 := 1−sH|1, we have sL|0 = β0−s0 and sL|1 = β1−s1. This

implies sH|θ = pθ0

pθ
(1−β0)+

pθ1

pθ
(1−β1), sM|θ = pθ0

pθ
s0+ pθ1

pθ
s1 and sL|θ = pθ0

pθ
(β0−s0)+

pθ1

pθ
(β1−s1)

and UY
θ := sL|θu(µL) + sM|θu(µM ) + sH|θu(µH). Note that neither sH|θ nor µH depend on s0

or s1 such that sH|θu(µH) is constant with respect to s0 and s1.

Condition (i) requires that s0 and s1 solve a problem with the following structure:

min
s0∈[0,β0]

s1∈[0,β1]

sL|hu(µL) + sM|hu(µM ) + constant

s.t. sL|lu(µL) + sM|lu(µM ) + constant = constant

The structure of this problem is very similar to the structure of the optimal device problem in

the case where only devices which generate two different public signals are feasible. The main

difference is that we do not have β0 = β1 = 1, but β1 < 1, β0 ≤ 1. I.e., there are stricter and

possibly asymmetric upper bounds on s0 and s1. It follows that if s0 = β0 or s1 = β1, it is

not feasible to change the device in a way which increases s0 and s1. However, using similar

arguments as those used in the poof to Lemma 8 and Proposition 1, we obtain that for any s0 > 0

the designer profits from decreasing s0 and s1 in a way such that the participation constraint

continues to hold. Since such a modification is always feasible, only devices with s0 = 0 may be

consistent with (i). However, since s0 = 0 implies µM = 1, this can not be consistent with the

ordering of beliefs induced by (ii). Contradiction.

More generally, let any device which generates a finite number X ∈ N of different public

signals and which induces X different beliefs with µ1 < µ2 < . . . < µX be given. Then, for any

i, j ∈ N with i < j < X there exists a device for which µi and µj become slightly larger and for

which all other beliefs remain unchanged, which is strictly preferred by the designer. Hence, a

device can only be optimal if it induces less than two public signals that are smaller than µX .

As nothing can be learned from a device which generates only one public signal, a device which

generates two public signals is optimal.

Using the above strategy of proof, we can establish the following proposition:37

Proposition 7 Let Assumptions 1, 2 and 3 be satisfied and suppose devices may generate any

finite number of public signals. Then the optimal device induces only two different beliefs and

36If two of the induced beliefs were equal or if one belief did not occur with positive probability, the same

lottery over beliefs could be induced by a device which generates only two different public signals. If the ordering

of beliefs was different, it could be restored by relabeling.
37A rigorous proof can be obtained from the authors upon request.
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can thus be implemented by a device which generates two different public signals.

8.2 Continuous private information

In this subsection we assume that the agent’s private information θ is continuously distributed

on [0, 1], while we maintain the assumption that his true type is binary, i.e. ω ∈ {0, 1} and that

a higher θ is associated with a higher probability that ω = 1. We intend to show that our result

that the optimal device is not subject to false positives is indeed general.

While equilibria in the discrete setting are characterized by a mixed participation behavior,

equilibria in the continuous setting are characterized by a threshold θ̃ that separates the signals

for which the agent participates and those for which he does not.38 We are interested in the

construction of the optimal device for a given participation behavior. Hence, we can consider θ̃

as a fixed parameter.

In both, the binary and the continuous version of the model, only a single participation

constraint is relevant for the design problem: the constraint for the lowest private signal with

which the agent is supposed to use the device. The result that a device with s0 = 0 is strictly

optimal to induce a certain participation behavior (αl, 1) is driven by the fact that the average

participant is better than the marginal participant. In the continuous version of the model

this is true for any θ̃ < 1. In the proof given below we show that this property does indeed

suffice to show that the optimal device problem in the continuous case can be transformed into

a problem that can be treated as the problem in the binary case. Hence, strict optimality of

s0 = 0 carriers over to the continuous version of the model for any participation threshold θ̃ < 1.

The designer’s indifference between all the devices which induce a certain participation behavior

(0, αh) stems from the fact that the average participant coincides with the marginal participant.

In the continuous version this is only the case for θ̃ = 1. Since for θ̃ = 1 the device is used

with probability zero, inducing such a participation behavior cannot be optimal for the designer.

Hence, the possibility that a device with s0 > 0 might be optimal is a peculiarity of the binary

version of the model. Therefore s0 = 0 being strictly optimal can be seen as the “general” result.

In the remainder of this subsection we present the proof for the case with θ̃ ∈ (0, 1).

The problem with continuous private information. We have to adapt some of the

notation introduced in Section 3 to the continuous distribution of private information. In par-

ticular, we have to redefine the joint distribution of information and type. It will be convenient

to choose a notation which is similar to that in the discrete version of the model, but to indicate

parameters and variables which are affected by the changes in the distribution by hats.39

The distribution is completely specified by the unconditional probability that the agent’s

type is good, Prob(ω = 1) =: p̂1, and the density functions of the agent’s private information

38Since—as in the binary setting—an agent has a strictly higher incentive to use an informative device when

his private information is higher, threshold strategies are the only strategies which can be incentive compatible.
39For instance, we will use the hat–notation to describe the distribution or the beliefs as they are derived from

the distribution, but we can use the old notation to describe the device, the public signals or the utility indices.
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conditional on the agent’s type which we denote by p̂(θ|ω). We assume that p̂(θ|ω) is continuously

differentiable and strictly positive on its support. From these definitions it follows that the joint

density of θ and ω is p̂ωp̂(θ|ω) =: p̂(θ, ω) and that the marginal density of θ is p̂0p̂(θ|ω =

0) + p̂1p̂(θ|ω = 1) =: p̂(θ) with p̂0 := 1 − p̂1. We assume that Prob(ω = 1|θ) = bp(θ,ω=1)
bp(θ)

is increasing in θ. This is analogous to assuming that there is a positive correlation between

the agent’s private information and his type in the version of the model with binary private

information.

Now we have everything at hand to describe the probability that an agent with private

information θ ∈ [0, 1] obtains a high public signal from a given device (s0, s1),

ŝθ :=

(
1 −

p̂(θ, ω = 1)

p̂(θ)

)
s0 +

p̂(θ, ω = 1)

p̂(θ)
s1,

and the beliefs which may realize:

µ̂N :=
Prob(θ < θ̃, ω = 1)

Prob(θ < θ̃)
=

∫ eθ

0
p̂(θ, ω = 1)dθ
∫ eθ

0 p̂(θ)dθ

µ̂Y :=
Prob(θ ≥ θ̃, ω = 1)

Prob(θ ≥ θ̃)
=

∫ 1
eθ

p̂(θ, ω = 1)dθ
∫ 1

eθ
p̂(θ)dθ

µ̂L :=
Prob(θ ≥ θ̃, ω = 1, σ = L)

Prob(θ ≥ θ̃, σ = L)
=

µ̂Y (1 − s1)

µ̂Y (1 − s1) + (1 − µ̂Y )(1 − s0)

µ̂H :=
Prob(θ ≥ θ̃, ω = 1, σ = H)

Prob(θ ≥ θ̃, σ = H)
=

µ̂Y s1

µ̂Y s1 + (1 − µ̂Y )s0

The utility that an agent with private information θ obtains from using the device is ÛY
θ (θ̃) :=

(1 − ŝθ)u(µ̂L) + ŝθu(µ̂H) and the utility that he obtains from not using the device is ÛN(θ̃) :=

u(µ̂N ). Using a reasoning similar to that in the proof of Lemma 1, there exists an equilibrium

characterized by some threshold θ̃ ∈ (0, 1) if and only if ÛY
eθ

(θ̃) = ÛN(θ̃).

From an ex ante perspective, the agent’s expected utility is

E[u(µ̂)] =

∫ eθ

0

ÛN(θ̃)p̂(θ)dθ +

∫ 1

eθ

ÛY
θ (θ̃)p̂(θ)dθ

=

[∫ eθ

0

p̂(θ)dθ

]
u(µ̂N ) +

[∫ 1

eθ

p̂(θ)dθ

]
[(1 − µ̂Y )(1 − s0) + µ̂Y (1 − s1)] u(µ̂L)

+

[∫ 1

eθ

p̂(θ)dθ

]
[(1 − µ̂Y )s0 + µ̂Y s1] u(µ̂H).

Hence, under Assumption 3 the designer’s optimization problem is

min
s0,s1

E[u(µ̂)] s.t. ÛY
eθ

(θ̃) = ÛN (θ̃).

An auxiliary problem with binary private information. Consider now for a moment

the setting with discrete private information characterized by

pl =

∫ eθ

0

p̂(θ)dθ, ph =

∫ 1

eθ

p̂(θ)dθ, plω =
p̂(θ̃, ω)

p(θ̃)
pl, phω =

∫ 1

eθ

p̂ωp̂(θ, ω)dθ
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and note that for θ̃ ∈ (0, 1) we obtain pl1, pl0, ph1, ph0 ∈ (0, 1) and δ = ph1

ph
− pl1

pl
> 0 such that the

probability distribution satisfies the basic assumptions introduced in Section 3. pl, ph and phω

can be seen as the probabilities that arise in a discretized version of our continuous model where

“participators” and “non–participators” are pooled. pl is the mass of non–participators, ph the

mass of participators, and ph1

ph
is the “average” probability with which a participator believes to

be good. However, pl1

pl
is not the “average” probability with which a non–participator believes to

be good, but the probability with which the “best” non–participator believes to be good. This

is to take account of the fact that the participation constraint has to be binding for the best

non–participator in the continuous version of the model. As described below, the solution to this

auxiliary binary problem allows us to infer the solution to the original continuous problem.

Consider participation behavior with αl = 0 and a binding participation constraint as ana-

lyzed in Subsection 6.1. The belief assigned to the event that the device is not used is

µN =
pl1

pl

=
p̂(θ̃, ω = 1)

p̂(θ̃)

and the belief assigned to the event that the device is used is

µY =
ph1

ph

=

∫ 1
eθ

p̂1p̂(θ, ω = 1)dθ
∫ 1

eθ
p̂(θ)dθ

.

Since we have µY = µ̂Y (by construction), it follows µL = µ̂L and µH = µ̂H . Moreover, the

probability with which a high public signal is generated when an agent with a low private signal

uses the device is

sl =

(
1 −

p̂(θ̃, ω = 1)

p̂(θ̃)

)
s0 +

p̂(θ̃, ω = 1)

p̂(θ̃)
s1

such that sl = ŝeθ
and UY

l (0, 1) = ÛY
eθ

(θ̃). However, for the utility the agent obtains from not

using the device we obtain UN (0, 1) = u(µN ) which differs from ÛN (θ̃) = u(µ̂N ). Taking this

difference into account, the agent’s ex ante expected utility in the auxiliary problem can be

expressed as his ex ante expected utility in the original problem adjusted for the difference in

utility from not using the device: E[u(µ)] = E[u(µ̂)] + pl[u(µN) − u(µ̂N )]. Under Assumption 3

the designer’s optimization problem becomes

min
s0,s1

E[u(µ̂)] + pl[u(µN ) − u(µ̂N )] s.t. ÛY
eθ

(θ̃) = UN(0, 1).

Since pl[u(µ̂N ) − u(µN )] is not affected by the device choice, this problem is equivalent to

min
s0,s1

E[u(µ̂)] s.t. ÛY
eθ

(θ̃) = UN (0, 1)

which is the original problem in the continuous version of the model, except for the fact that the

constant on the right–hand side of the participation constraint differs.

The optimal device in the continuous version of the model. Lemma 8 implies that

under Assumptions 1, 2 and 3 s0 = 0 is the solution to the auxiliary problem. Recall that the
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only difference between the optimization problem in the continuous and in the discrete version

of the model is the size of the constant on the right–hand side of the participation constraint.

However, the proof to Lemma 8 does not directly make use of the size of this constant, it makes

only use of the existence of a function s1(s0) (with the properties specified in Lemma 4) for which

the participation constraint is binding. By reconsidering the proof to Lemma 4, we obtain that

if a function s1(s0) exists also in the case with the altered participation constraint , then it has

the same properties as in the discrete version of the model such that Lemma 8 applies also to the

continuous version of the model. Hence, if this is the case, we can conclude that s0 = 0 is optimal

also with continuous private information. However, with continuous private information it might

happen that a function s1(s0) for which the participation constraint is binding fails to exist. The

reason for this is the following: Since an agent with private information θ̃ is on average perceived

as worse than he actually is when he does not use the device, he might have a strict incentive to

use a perfect device. If this is the case, there exists no device (s0, s1) for which the participation

constraint is binding. A consequence of this is that an agent with private information θ̃ has a

strict incentive to use any device. By a continuity property, the agent has also a strict incentive

to use the device when his private information is just below θ̃ contradicting that there exists an

equilibrium with participation threshold θ̃. This establishes the following result:

Proposition 8 If Assumptions 1, 2 and 3 hold and if there exists an equilibrium of the contin-

uous version of the model with threshold θ̃, then there exists also an equilibrium in which this

threshold is induced by a device with s0 = 0 and the equilibrium induced by the device with s0 = 0

is optimal for the designer.

9 Conclusion

The present paper explores a framework with imperfect private information and voluntary par-

ticipation to study information generation from a mechanism design perspective. In our model

a mechanism is a device which is capable of generating information that goes beyond what the

agent knows. Exploiting the agent’s incentive to signal superior private information, the de-

signer can incentivize the agent to use a mechanism which generates additional information. On

the other hand, with a mechanism which does not generate any additional information, it is

also not possible to learn anything about the agent’s private information. However, voluntary

participation in conjunction with risk aversion effectively constrain information generation.

When the designer is interested in a binary feature (e.g., whether the agent is good/bad, he

has/does not have a certain genetic defect or a disease, his product satisfies/does not satisfy

certain quality standards, . . . ), the optimal device generates binary information and can thus be

interpreted as a test which produces a pass–fail–result. In order to induce participation, it may be

necessary that the device is susceptible to errors. However, the optimal device commits at most

one type of error. While it may be subject to false negatives, it is not subject to false positives.

That is, the optimal test is hard to pass and if the test is passed, then it can be perfectly inferred
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that the agent’s true type is good. If the designer wants the agent to participate not only if

he holds the most optimistic beliefs about his true type, then the test becomes even harder to

pass when higher participation shall be induced. The reason is that the stigma of failure is lower

with a harder test such that participation becomes more attractive for the agent in case he has

pessimistic beliefs about his true type. In many design problems, the designer is not entirely

free to choose the precision of generated information (e.g. due to technical restrictions). With

voluntary participation, such restrictions need not be binding because the generated information

may need to be distorted in order to induce participation anyway.

A Proofs

Proofs of Section 5

Proof (Lemma 1). Note that UY
h (αl, αh) − UY

l (αl, αh) = (sh − sl)[u(µH) − u(µL)] = δ(s1 −

s0)[u(µH) − u(µL)]. We have δ > 0, s1 > s0 and u(µ) strictly increasing. Thus, if we can

show that µH > µL, we are done. If αl > 0 or αh > 0, Bayes’ Law yields µH − µL =
[pl1αl+ph1αh][pl0αl+ph0αh]

pLpH
(s1 − s0). This expression is strictly positive. If αl = αh = 0, it fol-

lows from our assumptions on beliefs that µH − µL = ph0ph1

[ph1s1+ph0s0][ph1(1−s1)+ph0(1−s0)]
(s1 − s0)

which is strictly positive as well. q.e.d.

Proof (Lemma 2). Assume to the contrary that there exists a device which induces an equi-

librium with αl ∈ (0, 1] and αh ∈ [0, 1). Then individual rationality implies UY
h (αl, αh) ≤

UN (αl, αh) and UN (αl, αh) ≤ UY
l (αl, αh) contradicting Lemma 1. q.e.d.

Proofs of Section 6

Proof (Lemma 3). It can easily be checked that µII
L , µII

H and sl are differentiable in (s0, s1).

This and differentiability of u(µ) imply that also UY
l (αl, 1) is differentiable in s0 and s1. We get

∂

∂sω

UY
l (αl, 1) =

∂sl

∂sω

[uH − uL] + (1 − sl)
∂µII

L

∂sω

u′
L + sl

∂µII
H

∂sω

u′
H . (8)

Consider first ω = 0: Inserting (1b) and (2b) in (8) and using

1 − sl

pL|Y
= 1 +

[µY − p1 + δph]

pL|Y
(s1 − s0) (9)

as well as

sl

pH|Y
= 1 −

[µY − p1 + δph]

pH|Y
(s1 − s0) (10)

we obtain after rearranging:

∂UY
l

∂s0
=

[
(p0 + δph)uH − (1 − µY )µII

H u′
H

]
−
[
(p0 + δph)uL − (1 − µY )µII

L u′
L

]

+(1 − µY )(µY − p1 + δph)(s1 − s0) ·

{
µII

L u′
L

pL|Y
+

µII
H u′

H

pH|Y

}
.
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Note that the derivative of (p0 + δph)u(µ) − (1 − µY )µu′(µ) with respect to µ is (µY − p1 +

δph)u′(µ) − (1 − µY )µu′′(µ) which is strictly positive since µY ≥ p1 and since u(µ) is strictly

increasing and strictly concave. Thus, the expression in the first line is strictly positive. Moreover,

the expression in the last line is also strictly positive such that
∂UY

l

∂s0
> 0.

Consider now ω = 1. Inserting (3b) and (4b) in (8) and using (9) and (10) we obtain:

∂UY
l

∂s1
=

[
(p1 − δph)uH + µY (1 − µII

H )u′
H

]
−
[
(p1 − δph)uL + µY (1 − µII

L )u′
L

]

−µY (µY − p1 + δph)(s1 − s0) ·

{
(1 − µII

L )u′
L

pL|Y
+

(1 − µII
H )u′

H

pH|Y

}
.

Note that the derivative of (p1 − δph)u(µ) + µY (1 − µ)u′(µ) with respect to µ is −(µY − p1 +

δph)u′(µ) + µY (1 − µ)u′′(µ) which is strictly negative. Thus, the expression in the first line is

strictly negative. Moreover, the expression in the last line is also strictly negative such that
∂UY

l

∂s1
< 0. q.e.d.

Proof (Lemma 4). Note that UN (αl, 1) = u(pl1

pl
) for any device. (s0, s1) → (0, 0) implies

UY
l (αl, 1) → u(µY ) > u(pl1

pl
). Thus, the agent has a strict incentive to use a sufficiently unin-

formative device when his private information is low. By strict concavity of u(µ), the agent has

a strict incentive not to use the perfect device (s0, s1) = (0, 1) when his private information is

low: UY
l (αl, 1) = (1 − sl)u(0) + slu(1) < u(sl) = UN (αl, 1). Moreover, by Lemma 3, UY

l (αl, 1)

is continuous in s1 for s0 = 0. Hence, we can apply an Intermediate Value Theorem to obtain

that there exists a s1 ∈ (0, 1) such that UN (αl, 1) = u(pl1

pl
) for device (0, s1). Since UY

l (αl, 1) is

strictly increasing in s1 by Lemma 3, s1 is unique.

It follows directly from Lemma 3 that there exists a connected and closed domain [0, s0] and a

continuous and increasing function s1(s0) on this domain such that UY
l (αl, 1) = UN (αl, 1) if and

only if s0 ∈ [0, s0] and s1 = s1(s0). By construction, s1 = s1(0) ∈ (0, 1). For s0 = 1 there exists

no device for which the participation constraint is binding, since an agent with a low private

signal has a strict incentive to use the uninformative device (1, 1). Hence, s0 < 1.

Since s1(s0) is monotonous, it is differentiable almost everywhere. We obtain s′1(s0) =

−
∂UY

l

∂s0
/

∂UY
l

∂s1
> 0 for any s0 in the domain. q.e.d.

Proof (Lemma 5). Lemma 4 implies
dµII

H

ds0
=

∂µII
H

∂s0
+s′1(s0)

∂µII
H

∂s1
= [−

∂µII
H

∂s0

∂UY
l

∂s1
+

∂µII
H

∂s1

∂UY
l

∂s0
]/[−

∂UY
l

∂s1
].

It follows from Lemma 3 that
dµII

H

ds0
< 0 if and only if [−

∂µII
H

∂s0

∂UY
l

∂s1
+

∂µII
H

∂s1

∂UY
l

∂s0
] < 0.

−
∂µII

H

∂s0

∂UY
l

∂s1
+

∂µII
H

∂s1

∂UY
l

∂s0

= [uH − uL]

[
∂sl

∂s0

∂µII
H

∂s1
−

∂sl

∂s1

∂µII
H

∂s0

]
+ (1 − sl)

[
∂µII

H

∂s1

∂µII
L

∂s0
−

∂µII
H

∂s0

∂µII
L

∂s1

]
u′

L. (11)

Using (1a) and (3a) we get
[

∂sl

∂s0

∂µII
H

∂s1
− ∂sl

∂s1

∂µII
H

∂s0

]
= µY (1−µY )

p2
H|Y

sl and using (1b), (2b), (3b) and
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(4b) we get
[

∂µII
H

∂s1

∂µII
L

∂s0
−

∂µII
H

∂s0

∂µII
L

∂s1

]
= −µY (1−µY )

pL|Y pH|Y
(µII

H − µII
L ). Inserting this into (11), we obtain

. . . =
µY (1 − µY )

p2
H|Y

sl(µ
II
H − µII

L )

{
uH − uL

µII
H − µII

L

−
pH|Y

sl

1 − sl

pL|Y
u′

L

}
. (12)

Since uH−uL

µII
H

−µII
L

< u′
L by strict concavity of u(µ) and since

pH|Y

sl

1−sl

pL|Y
> 1, we obtain that (12) is

strictly negative. Hence,
dµII

H

ds0
< 0.

Lemma 4 implies
dµII

L

ds0
=

∂µII
L

∂s0
+ s′1(s0)

∂µII
L

∂s1
= [−

∂µII
L

∂s0

∂UY
l

∂s1
+

∂µII
L

∂s1

∂UY
l

∂s0
]/[−

∂UY
l

∂s1
]. It follows

from Lemma 3 that
dµII

L

ds0
< 0 if and only if [−

∂µII
L

∂s0

∂UY
l

∂s1
+

∂µII
L

∂s1

∂UY
l

∂s0
] < 0.

−
∂µII

L

∂s0

∂UY
l

∂s1
+

∂µII
L

∂s1

∂UY
l

∂s0

= [uH − uL]

[
∂sl

∂s0

∂µII
L

∂s1
−

∂sl

∂s1

∂µII
L

∂s0

]
− sl

[
∂µII

H

∂s1

∂µII
L

∂s0
−

∂µII
H

∂s0

∂µII
L

∂s1

]
u′

H (13)

Using (2a) and (4a) we get
[

∂sl

∂s0

∂µII
L

∂s1
− ∂sl

∂s1

∂µII
L

∂s0

]
= −µY (1−µY )

p2
L|Y

(1− sl) and using (1b), (2b), (3b)

and (4b) we get
[

∂µII
H

∂s1

∂µII
L

∂s0
−

∂µII
H

∂s0

∂µII
L

∂s1

]
= −µY (1−µY )

pL|Y pH|Y
(µII

H − µII
L ). Inserting this into (13), we

obtain

. . . =
µY (1 − µY )

p2
L|Y

(1 − sl)(µ
II
H − µII

L )

{
−

uH − uL

µII
H − µII

L

+
sl

pH|Y

pL|Y

1 − sl

u′
H

}
. (14)

Since uH−uL

µII
H

−µII
L

> u′
H by strict concavity of u(µ) and since sl

pH|Y

pL|Y

1−sl
< 1, we obtain that (14) is

strictly negative. Hence,
dµII

L

ds0
< 0. q.e.d.

Proof (Lemma 6). Lemma 4 implies dEl

ds0
= ∂El

∂s0
+ s′1(s0)

∂El

∂s1
= [−∂El

∂s0

∂UY
l

∂s1
+ ∂El

∂s1

∂UY
l

∂s0
]/[−

∂UY
l

∂s1
].

It follows from Lemma 3 that dEl

ds0
> 0 if and only if [−∂El

∂s0

∂UY
l

∂s1
+ ∂El

∂s1

∂UY
l

∂s0
] > 0.

−
∂El

∂s0

∂UY
l

∂s1
+

∂El

∂s1

∂UY
l

∂s0

= −

{
∂sl

∂s0
[µII

H − µII
L ] + (1 − sl)

∂µII
L

∂s0
+ sl

∂µII
H

∂s0

}

·

{
∂sl

∂s1
[uH − uL] + (1 − sl)

∂µII
L

∂s1
u′

L + sl

∂µII
H

∂s1
u′

H

}

+

{
∂sl

∂s1
[µII

H − µII
L ] + (1 − sl)

∂µII
L

∂s1
+ sl

∂µII
H

∂s1

}

·

{
∂sl

∂s0
[uH − uL] + (1 − sl)

∂µII
L

∂s0
u′

L + sl

∂µII
H

∂s0
u′

H

}

= (1 − sl)
{
[µII

H − µII
L ]u′

L − [uH − uL]
}[ ∂sl

∂s1

∂µII
L

∂s0
−

∂sl

∂s0

∂µII
L

∂s1

]

+sl

{
[µII

H − µII
L ]u′

H − [uH − uL]
} [ ∂sl

∂s1

∂µII
H

∂s0
−

∂sl

∂s0

∂µII
H

∂s1

]

+(u′
L − u′

H)sl(1 − sl)

[
∂µII

L

∂s0

∂µII
H

∂s1
−

∂µII
L

∂s1

∂µII
H

∂s0

]
. (15)
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Using (2a) and (4a) we get
[

∂sl

∂s1

∂µII
L

∂s0
− ∂sl

∂s0

∂µII
L

∂s1

]
= µY (1−µY )

p2
L|Y

(1 − sl), using (1a) and (3a) we get
[

∂sl

∂s1

∂µII
H

∂s0
− ∂sl

∂s0

∂µII
H

∂s1

]
= −µY (1−µY )

p2
H|Y

sl and using (1b), (2b), (3b) and (4b) we get
[

∂µII
L

∂s0

∂µII
H

∂s1
−

∂µII
L

∂s1

∂µII
H

∂s0

]
=

−µY (1−µY )
pL|Y pH|Y

(µII
H − µII

L ). Inserting this into (15), we obtain

. . . = µY (1 − µY )
(1 − sl)

2

p2
L|Y

{
[µII

H − µII
L ]u′

L − [uH − uL]
}

−µY (1 − µY )
s2

l

p2
H|Y

{
[µII

H − µII
L ]u′

H − [uH − uL]
}

−µY (1 − µY )[µII
H − µII

L ](u′
L − u′

H)
sl

pH|Y

(1 − sl)

pL|Y

= µY (1 − µY )

(
1 − sl

pL|Y
−

sl

pH|Y

)
[µII

H − µII
L ]

·

{
1 − sl

pL|Y
[u′

L −
uH − uL

µII
H − µII

L

] +
sl

pH|Y
[u′

H −
uH − uL

µII
H − µII

L

]

}
. (16)

We have (1− sl)/pL|Y > 1 and sl/pH|Y < 1. Since also u′
L − (uH −uL)/(µII

H −µII
L ) > 0 by strict

concavity of u(µ), (u′
L + u′

H)[µII
H − µII

L ] − 2(uH − uL) ≥ 0 is sufficient for (16) > 0.

Define Zµ(ǫ) := [u′(µ + ǫ) + u′(µ)]ǫ − 2[u(µ + ǫ) − u(µ)] with ǫ > 0. Then Z ′
µ(ǫ) = u′′(µ +

ǫ)ǫ + [u′(µ + ǫ) + u′(µ)] − 2u′(µ + ǫ), Z ′′
µ(ǫ) = u′′′(µ + ǫ)ǫ, Zµ(0) = 0 and Z ′

µ(0) = 0. From this

it follows

Zµ(ǫ) ≥ 0 ⇔

∫ ǫ

0

Z ′
µ(e1)de1 + Zµ(0) ≥ 0

⇔

∫ ǫ

0

[∫ e1

0

Z ′′
µ(e2)de2 + Z ′

µ(0)

]
de1 ≥ 0

⇔

∫ ǫ

0

∫ e1

0

u′′′(µ + e2)e2de2de1 ≥ 0.

This is true if u′′′(µ) ≥ 0. Thus, u′′′(µ) ≥ 0 implies dEl

ds0
> 0. This together with dµY

ds0
= 0 (which

holds by construction of s1(s0)) implies dEh

ds0
< 0 if αl > 0. If αl = 0, we have µY = 0 ·El + 1 ·Eh

such that a change in El does not affect Eh. q.e.d.

Proof (Lemma 7). This follows directly from Lemma 6 and Lemma 8 below. El increases with

s0, while Ul is constant in s0. By (5), this is only possible when Vl increases with s0. Moreover,

Eh decreases (weakly) with s0, while Uh increases with s0. Again, by (5), this is only possible

when Vh decreases with s0. q.e.d.

Proof (Lemma 8).
dUY

l

ds0
= 0 is true by construction of s1(s0).

Lemma 4 implies
dUY

h

ds0
=

∂UY
h

∂s0
+ s′1(s0)

∂UY
h

∂s1
= [−

∂UY
h

∂s0

∂UY
l

∂s1
+

∂UY
h

∂s1

∂UY
l

∂s0
]/[−

∂UY
l

∂s1
]. It follows

from Lemma 3 that
dUY

h

ds0
> 0 if and only if [−

∂UY
h

∂s0

∂UY
l

∂s1
+

∂UY
h

∂s1

∂UY
l

∂s0
] > 0.

−
∂UY

h

∂s0

∂UY
l

∂s1
+

∂UY
h

∂s1

∂UY
l

∂s0
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= −

{
∂sh

∂s0
[uH − uL] + (1 − sh)

∂µII
L

∂s0
u′

L + sh

∂µII
H

∂s0
u′

H

}

·

{
∂sl

∂s1
[uH − uL] + (1 − sl)

∂µII
L

∂s1
u′

L + sl

∂µII
H

∂s1
u′

H

}

+

{
∂sh

∂s1
[uH − uL] + (1 − sh)

∂µII
L

∂s1
u′

L + sh

∂µII
H

∂s1
u′

H

}

·

{
∂sl

∂s0
[uH − uL] + (1 − sl)

∂µII
L

∂s0
u′

L + sl

∂µII
H

∂s0
u′

H

}

= [uH − uL]2
[

∂sl

∂s0

∂sh

∂s1
−

∂sl

∂s1

∂sh

∂s0

]

+[uH − uL]u′
L

{[
(1 − sl)

∂sh

∂s1
− (1 − sh)

∂sl

∂s1

]
∂µII

L

∂s0

+

[
(1 − sh)

∂sl

∂s0
− (1 − sl)

∂sh

∂s0

]
∂µII

L

∂s1

}

+[uH − uL]u′
H

{[
sl

∂sh

∂s1
− sh

∂sl

∂s1

]
∂µII

H

∂s0
+

[
sh

∂sl

∂s0
− sl

∂sh

∂s0

]
∂µII

H

∂s1

}

+u′
Lu′

H [(1 − sl)sh − (1 − sh)sl]

[
∂µII

L

∂s0

∂µII
H

∂s1
−

∂µII
L

∂s1

∂µII
H

∂s0

]
(17)

Note that [ ∂sl

∂s0

∂sh

∂s1
− ∂sl

∂s1

∂sh

∂s0
] = δ, [(1−sl)

∂sh

∂s1
−(1−sh) ∂sl

∂s1
] = δ(1−s0), [(1−sh) ∂sl

∂s0
−(1−sl)

∂sh

∂s0
] =

δ(1− s1), [sl
∂sh

∂s1
− sh

∂sl

∂s1
] = δs0, [sh

∂sl

∂s0
− sl

∂sh

∂s0
] = δs1 and [(1− sl)sh − (1− sh)sl] = δ(s1 − s0).

Moreover, using (1b), (2b), (3b) and (4b) we get
[

∂µII
L

∂s0

∂µII
H

∂s1
−

∂µII
L

∂s1

∂µII
H

∂s0

]
= −

(µII
H −µII

L )2

(s1−s0) such that

(17) becomes

. . . = δ[uH − uL]2 + δ[uH − uL]u′
L

[
(1 − s0)

∂µII
L

∂s0
+ (1 − s1)

∂µII
L

∂s1

]

+δ[uH − uL]u′
H

[
s0

∂µII
H

∂s0
+ s1

∂µII
H

∂s1

]
− δu′

Lu′
H(µII

H − µII
L )2. (18)

It follows directly from (2a) and (4a) that [(1 − s0)
∂µII

L

∂s0
+ (1 − s1)

∂µII
L

∂s1
] = 0, and from (1a) and

(3a) that [s0
∂µII

H

∂s0
+ s1

∂µII
H

∂s1
] = 0. Hence, (18) becomes

. . . = δ[uH − uL]2 − δu′
Lu′

H(µII
H − µII

L )2. (19)

We derive now a sufficient condition for this expression being strictly positive implying
dUY

h

ds0
> 0.

Define Zµ(ǫ) := [u(µ + ǫ) − u(µ)]2 − u′(µ + ǫ)u′(µ)ǫ2 with ǫ > 0. Then Z ′
µ(ǫ) = 2u′(µ +

ǫ)[u(µ+ ǫ)−u(µ)]− [2ǫu′(µ+ ǫ)+ ǫ2u′′(µ+ ǫ)]u′(µ), Z ′′
µ(ǫ) = 2u′′(µ+ ǫ)[u(µ+ ǫ)−u(µ)]+2u′(µ+

ǫ)[u′(µ + ǫ) − u′(µ)] − [4ǫu′′(µ + ǫ) + ǫ2u′′′(µ + ǫ)]u′(µ), Z ′′′
µ (ǫ) = 2u′′′(µ + ǫ)[u(µ + ǫ) − u(µ)] +

6u′′(µ+ ǫ)[u′(µ+ ǫ)−u′(µ)]− [6ǫu′′′(µ+ ǫ)+ ǫ2u′′′′(µ+ ǫ)]u′(µ), Zµ(0) = 0, Z ′
µ(0) = 0, Z ′′

µ(0) = 0

and Z ′′′
µ (0) = 0. Moreover,

Z ′′′′
µ (ǫ) = 6[u′′(µ + ǫ)2 − u′′′(µ + ǫ)u′(µ)] + 2u′′′(µ + ǫ)u′(µ + ǫ)

+2u′′′′(µ + ǫ)[u(µ + ǫ) − u(µ)] − [8ǫu′′′′(µ + ǫ) + ǫ2u′′′′′(µ + ǫ)]u′(µ). (20)
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The second expression in the first line is non–negative by Assumption 1. The expression in the

second line is zero since u′′′′(µ) = 0 (second part of Assumption 2). Furthermore, u′′(µ + ǫ) ≥

u′′(µ) by Assumption 1 and u′′′(µ+ǫ) = u′′′(µ) by the second part of Assumption 2. This implies

Z ′′′′
µ (ǫ) ≥ 6[u′′(µ)2 − u′′′(µ)u′(µ)]

which is strictly positive by the first part of Assumption 2.

Note that

Zµ(ǫ) > 0

⇔

∫ ǫ

0

Z ′
µ(e1)de1 + Zµ(0) > 0

⇔

∫ ǫ

0

[∫ e1

0

Z ′′
µ(e2)de2 + Z ′

µ(0)

]
de1 > 0

⇔

∫ ǫ

0

∫ e1

0

[∫ e2

0

Z ′′′
µ (e3)de3 + Z ′′

µ(0)

]
de2de1 > 0

⇔

∫ ǫ

0

∫ e1

0

∫ e2

0

[∫ e3

0

Z ′′′′
µ (e4)de4 + Z ′′′

µ (0)

]
de3de2de1 > 0

⇔

∫ ǫ

0

∫ e1

0

∫ e2

0

∫ e3

0

Z ′′′′
µ (e4)de4de3de2de1 > 0.

Hence, Assumption 1 and Assumption 2 are sufficient for Zµ(ǫ) > 0 such that the two assumptions

imply
dUY

h

ds0
> 0. q.e.d.

Proof (Lemma 9). We have to show that expression (19) in the proof to Lemma 8 is strictly

positive for CARA preferences with arbitrary risk parameter, i.e. for u(µ) = − exp(−γµ) with

γ > 0. By making the change in variables µII
H = x + ǫ and µII

L = x, a sufficient condition for the

result is

δ[u(x + ǫ) − u(x)]2 − δu′(x + ǫ)u′(x)ǫ2 > 0 for any ǫ, γ > 0.

By using u(x+ǫ)
u(x) = exp(−γǫ), u′(x+ǫ)

u(x) = −γ exp(−γǫ) and u′(x)
u(x) = −γ we can write this condition

as

[exp(−γǫ)− 1]2 − (γǫ)2 exp(−γǫ) > 0 for any ǫ, γ > 0.

After substituting γ̃ = γǫ and doing some rearrangements this becomes

1 > exp(−γ̃) + γ̃ exp(−
1

2
γ̃) for any γ̃ > 0.

Define ξ(γ̃) := exp(−γ̃)+γ̃ exp(− 1
2 γ̃). Since ξ(0) = 1, ξ′(γ̃) = exp(− 1

2 ỹ)(− exp(− 1
2 γ̃)+1− 1

2 γ̃) <

0 for any γ̃ is sufficient for the result. After doing some more rearrangements, we obtain that

1 < exp(−
1

2
γ̃) +

1

2
γ̃ for any γ̃ > 0

is sufficient for the result. Define now η(γ̃) := exp(− 1
2 γ̃) + 1

2 γ̃. Since η(0) = 1 and η′(γ̃) =

− 1
2 exp(− 1

2 γ̃) + 1
2 is strictly positive for γ̃ > 0, we are done. q.e.d.
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Proof (Lemma 10). We have the following:

∂µI
H

∂s0
= −

(1 − [p1 + δpl])

sh

µI
H , (21)

∂µI
L

∂s0
=

(1 − [p1 + δpl])

1 − sh

µI
L, (22)

∂µI
H

∂s1
=

[p1 + δpl]

sh

(1 − µI
H), (23)

∂µI
L

∂s1
= −

[p1 + δpl]

1 − sh

(1 − µI
L). (24)

It can easily be checked that µI
L, µI

H and sh are differentiable in (s0, s1). This and differen-

tiability of u(µ) imply that also UY
h (αl, 1) is differentiable in (s0, s1). We get:

∂

∂sω

UY
h (0, αh) =

∂sh

∂sω

[uH − uL] + (1 − sh)
∂µI

L

∂sω

u′
L + sh

∂µI
H

∂sω

u′
H . (25)

Consider first ω = 0: Inserting (21) and (22) in (25), we obtain after rearranging:

∂UY
h

∂s0
= (1 − [p1 + δpl])

{[
uH − µI

Hu′
H

]
−
[
uL − µI

Lu′
L

]}
.

Note that the derivative of u(µ)− µu′(µ) with respect to µ is −µu′′(µ) which is strictly positive

for µ > 0 by strict concavity of u(µ). This implies
∂UY

h

∂s0
> 0.

Consider now ω = 1. Inserting (23) and (24) in (25), we obtain:

∂UY
h

∂s1
= [p1 + δpl]

{[
uH + (1 − µI

H)u′
H

]
−
[
uL − (1 − µI

L)u′
L

]}
.

Note that the derivative of u(µ)+ (1−µ)u′(µ) with respect to µ is (1−µ)u′′(µ) which is strictly

negative for µ < 1 by strict concavity of u(µ). Hence,
∂UY

h

∂s1
< 0. q.e.d.

Proof (Lemma 11). We first construct δ̂(p1, ph) and show then that it has the desired proper-

ties. For the perfect device (s0, s1) = (0, 1) we have UY
h (0, 1) = (1− [p1+δpl])u(0)+[p1+δpl]u(1)

and UN (0, 1) = u(p1 − δph). While the former function is strictly increasing in δ, the latter one

is strictly decreasing in δ such that there exists at most one point of intersection. If we can show

that we have UN (0, 1) > UY
h (0, 1) for δ → 0 and UN (0, 1) < UY

h (0, 1) for δ → δmax, we can apply

the Intermediated Value Theorem (since UN(0, 1) and UY
h (0, 1) are both continuous) to obtain

existence of a point of intersection. Note that limδ→0 UY
h (0, 1) = (1 − p1)u(0) + p1u(1) which is

strictly smaller than u(p1) by strict concavity of u(µ), and note that limδ→0 UN(0, 1) = u(p1).

Hence, UN (0, 1) > UY
h (0, 1) for δ → 0. We have to distinguish two cases when we consider

δ → δmax: Case 1: p1 ≤ ph implying δmax = p1

ph
. In this case we have limδ→δmax UN (0, 1) = u(0)

which is strictly smaller than limδ→δmax UY
h (0, 1) = (1 − p1

ph
)u(0) + p1

ph
u(1). Case 2: p1 > ph

implying δmax = 1−p1

1−ph
. In this case we have limδ→δmax UY

h (0, 1) = 0u(0)+ 1u(1) which is strictly

larger than limδ→δmax UN (0, 1) = u(p1−ph

1−ph
). From the above we can conclude that for any p1 and

for any ph there exists a unique δ ∈ (0, δmax) such that UN (0, 1) = UY
h (0, 1) and we will refer to

it henceforth as δ̂(p1, ph).
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(i) Assume to the contrary that δ < δ̂(p1, ph) and that αh > 0. By construction of δ̂(p1, ph),

we have UN (0, 1) > UY
h (0, 1). Since UY

h (0, αh) does not depend on αh and since UN(0, αh)

is strictly decreasing in αh, it follows UN (0, αh) > UY
h (0, αh) for any αh. Hence, incentive

compatibility is violated for αh > 0. Contradiction.

(ii) By construction of δ̂(p1, ph), UN (0, 1) ≤ UY
h (0, 1). Hence, αh = 1 is consistent with

incentive compatibility and it remains only to check that αl = 0 is also consistent. We have

UY
l (0, 1) = (1− [p1 − δph])u(0)+ [p1 − δph]u(1) < u(p1 − δph) by strict concavity of u(µ). Since,

UN (0, 1) = u(p1 − δph), we obtain UN(0, 1) > UY
l (0, 1) and are done. q.e.d.

Proof (Lemma 12). For any αh ∈ [0, 1] we have UN (0, αh) ∈ [u(p1 − δph), u(p1)]. Moreover,

UN (0, αh) does not depend on the device. (s0, s1) → (1, 1) implies µI
L → p1 + δpl and µI

H →

p1 + δpl such that UY
h (0, αh) → u(p1 + δpl) > UN (0, αh). Thus, an agent with a high private

signal has a strict incentive to use a sufficiently uninformative device. By contrast, δ < δ̂(p1, ph)

and Lemma 11 imply UY
h (0, αh) < UN (0, αh) for (s0, s1) = (0, 1), i.e. an agent with a high

private signal has a strict incentive not to use the perfect device. Since UY
h (0, αh) is continuous

in the device by Lemma 10, we can apply the Intermediate Value Theorem to obtain that there

exists a s1 ∈ (0, 1) such that UN(0, αh) = UY
h (0, αh) for device (0, s1). Since UY

h (0, αh) is strictly

increasing in s1 (Lemma 10), s1 is unique.

It follows directly from Lemma 10 that there exists a connected and closed domain [0, s0] and

a continuous and increasing function s1(s0) on this domain such that UY
h (0, αh) = UN (0, αh) if

and only if s0 ∈ [0, s0] and s1 = s1(s0). By construction, s1 = s1(0) ∈ (0, 1). Since an agent with

a high private signal has a strict incentive to use the uninformative device (s0, s1) = (1, 1), there

exists no device for s0 = 1 for which the participation constraint is binding. Hence, s1 < 1.

Since s1(s0) is monotonous, it is differentiable almost everywhere. We obtain s′1(s0) =

−
∂UY

h

∂s0
/

∂UY
h

∂s1
> 0 for any s0 in the domain. q.e.d.

Proof (Lemma 13). Since in any equilibrium with αl = 0 an agent with a low private signal

does not use the device, Ul(0, αh) = UN (0, αh).

(i) By construction of the function s1(s0) (Lemma 12), the participation constraint for an

agent with a high private signal is binding for devices (s0, s1(s0)). Hence, UY
h (0, αh) = UN(0, αh).

Since an agent with a high private signal also obtains utility UN (0, αh) when he does not use

the device, it follows Uh = UN(0, αh).

(ii) By construction of δ̂(p1, ph) (see the first part of the proof to Lemma 11), we have

UY
h (0, 1) > UN(0, 1) for any δ > δ̂(p1, ph). q.e.d.

Proofs of Section 7

Proof (Lemma 14). Let u(µ) = b0+b1µ−b2µ
2. Then, E[u(µ)] = b0+b1E[µ]−b2E[µ2]. Bayes’

Law implies E[µ] = p1 and strict concavity of u(µ) requires b2 > 0 such that E[u(µ)] is minimized

iff E[µ2] is maximized. Let v(µ) = a0 + a1µ + a2µ
2. Then, E[v(µ)] = a0 + a1E[µ] + a2E[µ2].

Bayes’ Law implies E[µ] = p1 and strict convexity of v(µ) requires a2 > 0 such that E[v(µ)]
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is maximized iff E[µ2] is maximized. Hence, maximizing E[v(µ)] is equivalent to minimizing

E[u(µ)]. q.e.d.

Proof (Proposition 1). (i) Only for equilibria with αl = 1 it is possible that the participation

constraint is not binding. Consider the case with αl = 1 and assume to the contrary that is

optimal for the designer to have the constraint not binding. By Lemma 3, there exist equilibria

with a higher s1 and/or a smaller s0 which implement the same participation behavior. For

both adjustments, µII
H increases and µII

L decreases with at least one effect being strict (see the

inequalities in (1), (2), (3) and (4)). I.e., the beliefs that may realize become more extreme.

The designer’s utility from this kind of equilibrium is V = pLv(µL) + pHv(µH). By Bayes’ Law

(1 − pH)µL + pHµH = p1 implying pH = p1−µL

µH−µL
. Hence, V = µH−p1

µH−µL
v(µL) + p1−µL

µH−µL
v(µH) and

we get

∂V

∂µH

=
p1 − µL

µH − µL

{
v′(µH) −

v(µH) − v(µL)

µH − µL

}

∂V

∂µL

=
µH − p1

µH − µL

{
v′(µL) −

v(µH) − v(µL)

µH − µL

}
.

By strict convexity of v(µ), ∂V
∂µH

> 0 and ∂V
∂µL

< 0, i.e. the designer’s utility increases if beliefs

become more extreme. Contradiction. We can conclude that the participation constraint must

be binding.

(ii) Knowing that the participation constraint must be binding, we can apply Lemma 8 to

obtain that under Assumptions 1 and 2 E[u(µ)] increases strictly with s0. Since under Assump-

tion 3 the designer strives for minimizing the agent’s utility (see (7)), s0 = 0 is optimal for the

designer. q.e.d.

Proof (Proposition 2). By Proposition 1, (i) UY
l (αl, 1) = UN(αl, 1) and (ii) s0 = 0 is true

for the optimal device. Note that (ii) implies µII
H = 1. Moreover, note that (i) and UN(αl, 1) =

u(p1 − δph) imply that UY
l (αl, 1) neither depends on αl nor on the device choice. This and

Assumption 3 imply that the designer’s problem simplifies to

min
αl∈(0,1]

UY
h (αl, 1) = (1 − sh)u(µII

L ) + shu(1)

s.t. UY
l (αl, 1) = (1 − sl)u(µII

L ) + slu(1)
!
= u(p1 − δph).

Since we can apply the Implicit Function Theorem to the constraint, sufficient for the optimality

of αl = 1 is
dUY

h

dαl

=
∂UY

h

∂αl
− [

∂UY
l

∂αl
]/[

∂UY
l

∂s1
]
∂UY

h

∂s1
= [−

∂UY
h

∂αl

∂UY
l

∂s1
+

∂UY
h

∂s1

∂UY
l

∂αl
]/[−

∂UY
l

∂s1
] < 0. Since we

already know that the numerator is positive by Lemma 3, it suffices to show that −
∂UY

h

∂αl

∂UY
l

∂s1
+

∂UY
h

∂s1

∂UY
l

∂αl
< 0.

−
∂UY

h

∂αl

∂UY
l

∂s1
+

∂UY
h

∂s1

∂UY
l

∂αl

=

[
(1 − sl)

∂sh

∂s1
− (1 − sh)

∂sl

∂s1

]
∂µII

L

∂αl

u′(µII
L )(u(1) − u(µII

L ))
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+ [(1 − sl)(1 − sh) − (1 − sl)(1 − sh)]
∂µII

L

∂αl

u′(µII
L )

∂µII
L

∂s1
u′(µII

L )

= δ
∂µII

L

∂αl

u′(µII
L )
[
u(1) − u(µII

L )
]
.

This expression is strictly negative if
∂µII

L

∂αl
= µ′

Y (αl)
1−s1

p2
H|Y

is strictly negative. Since s1(0) < 1 by

Lemma 4, this is true if µ′
Y (αl) is strictly negative. Hence, µ′

Y (αl) = − δphpl

[ph+plαl]2
concludes the

proof. q.e.d.

Proof (Proposition 3). Due to Assumption 3, the designer chooses device (s0, s1) and partic-

ipation behavior (αl, αh) to minimize Ṽ := plU
N (0, αh) + ph[(1−αh)UN (0, αh) + αhUY

h (0, αh)].

By Lemma 11, device (s0, s1) = (0, 1) implements participation behavior (αl, αh) = (0, 1).

We now show that this is indeed optimal for the designer. The strategy of proof is as follows:

We ignore incentive compatibility and show that for any device Ṽ can be increased by increasing

αh, and for any participation behavior Ṽ can be increased by decreasing s0 and by increasing

s1. This proves that Ṽ evaluated at αh = 1 and at (s0, s1) = (0, 1) is an upper bound on what

the designer can achieve. Since this is actually implementable, we are done.

Note that UN (0, αh) does not depend (directly) on the device and that UY
h (0, αh) does not

depend (directly) on the participation behavior. It follows directly from Lemma 10 that for a

given αh we have ∂ eV
∂s0

< 0 and ∂ eV
∂s1

> 0. Moreover,

∂Ṽ

∂αh

= ph[UY
h (0, αh) − UN(0, αh)] + [1 − phαh]

∂UN(0, αh)

∂αh

= ph[
pL

αhph

u(µI
L) +

pH

αhph

u(µI
H) − u(µI

N )] + [1 − phαh]
∂µI

N

∂αh

u′(µI
N ).

Using that pL

αhph
u(µI

L) + pH

αhph
u(µI

H) < u(ph1

ph
) = u(p1 + δpl) by strict concavity of u(·) and that

∂µI
N

∂αh
= − δplph

[1−αhph]2 , we obtain

∂Ṽ

∂αh

< ph[u(p1 + δpl) − u(µI
N )] −

δplph

1 − αhph

u′(µI
N ).

Using now that [p1 + δpl] − µI
N = δpl

1−αhph
, we get

∂Ṽ

∂αh

<
δplph

1 − αhph

{
u(p1 + δpl) − u(µI

N )

[p1 + δpl] − µI
N

− u′(µI
N )

}
< 0.

Thereby the last inequality follows from strict concavity of u(·). q.e.d.

Proof (Proposition 4). For αh = 0 the result is obvious as the designer’s utility does then

not depend on the device. Note that for αh ∈ (0, 1) it is only possible to induce participation

with UN (0, αh) = UY
h (0, αh), while for αh = 1 also UY

l (0, 1) ≤ UN (0, 1) < UY
h (0, 1) is possible.

However, since, by Assumption 3, the designer is interested in minimizing UY
h (0, 1), he has by

Lemma 10 a strict incentive to decrease s0 and / or to increase s1 until UN (0, 1) = UY
h (0, 1). By

Lemma 11 and assumption δ < δ̂(p1, ph), it is always possible to get this condition binding and by
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Lemma 1 this is possible without violating the incentive of the agent to not use the device when

his private signal is low. Hence, we can restrict attention to the case where the participation

constraint of the agent is binding when his private signal is high. However, in this case the

designer’s utility is completely pinned down by the agent’s utility from not using the device,

UN (0, αh), which does not depend on the device choice. As a consequence, the designer obtains

the same expected utility from any device which satisfies the participation constraint. q.e.d.

Proof (Proposition 5). From Proposition 4 and Assumption 3 it follows that the designer

chooses participation behavior αh to maximize Ṽ := −UN(0, αh). Since UN (0, αh) strictly

decreases in αh, αh = 1 is optimal for the designer. q.e.d.

Proof (Proposition 6). Consider first δ < δ̂(p1, ph). Proposition 4 and Proposition 5 imply

that if the designer wants to induce a participation behavior with αl = 0, then αh = 1 is optimal

and the participation constraint is binding when the agent’s private signal is high. This implies

V I = −C2U
N (0, 1) + C1p1 + C0.

Proposition 1 and Proposition 2 imply that if the designer wants to induce a participation

behavior with αl > 0, then s0 = 0 and αl = 1 are optimal and the participation constraint is

binding when the agent’s private signal is low. Moreover, Lemma 1 and UY
l (1, 1) = UN (1, 1)

imply UY
h (1, 1) > UN (1, 1). Hence,

V II < −C2U
N (1, 1) + C1p1 + C0.

Since UN (0, 1) = UN(1, 1), V I > V II . I.e., the designer strictly prefers the equilibrium with

perfect separation of private information to the equilibrium with perfect pooling of private in-

formation.

Consider now δ > δ̂(p1, ph). It follows from Proposition 2 and Proposition 3 that either

(αl, αh) = (1, 1) or (αl, αh) = (0, 1) is optimal. q.e.d.
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