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Abstract
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1 Introduction

This is a very preliminary and incomplete draft on dynamic games. In this draft, I

study repeated games with public or private monitoring and mediated communica-

tion. Specifically, I look at T -private communication equilibria. I begin with some

examples and then I offer three main results. The first result equates the study of

T -private equilibria as the discount factor δ tends to one to virtual enforcement in a

contracting environment, by extending the idea of Abreu et al. (1990) of delayed in-

formation to repeated games without delay—including those with public monitoring.

I do this by making failure and success regimes depend on the realization of uncertain

behavior, thereby constructing T -private equilibria for any T ∈ N. An implication

is that I can get rid of pairwise identifiability to prove the Folk Theorem when such

T -private equilibria are allowed, even in the case of public monitoring.

The second result establishes a “universal” Folk theorem. In this draft I restrict

attention to just efficient outcomes, but the results generalize. I show that an efficient

outcome can be approximated with T -private equilibria as δ → 1 if every disobedience

from an efficient correlated strategy of the stage game is detectable by some action

profile. By a result of Lehrer (1992), it follows that there is no discontinuity in the

efficient equilibrium payoff correspondence with respect to δ at δ = 1. This includes

for instance the example of Radner et al. (1986). Thus, with T -private communication

equilibria it is possible to restore continuity in their example. Moreover, since the

condition only depends on the probability distribution of signals, it holds for all utility

functions that lead to a well-behaved feasible, individually rational payoff set.

I show by example (specifically, see Examples 4 and 5) that there may be a dis-

continuity when the above condition fails. Then I present the last main result. I

derive necessary and sufficient conditions jointly on the payoffs and probabilities in

the stage games such that it is possible to approximate an efficient outcome with

T -private communication equilibria.

At this point, I conjecture that the techniques developed below extend to general

dynamic games. I intend to pursue this work in the next draft.

This paper is based on Rahman (2008), which studies a one-shot contracting problem.

The main contribution here is to apply the techniques from that paper to the context

of repeated games. Hence, Theorem 1 is this paper’s main result. It shows that the

Folk theorem is equivalent to a contracting problem that ignores self-generation.
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In this paper I focus on communication equilibria and derive a Folk theorem with

minimal observability. I show that as long as every disobedience from efficiency is

detectable by someone after some perhaps inefficient action profile, patient players can

come close to efficiency. I also show that every profitable deviation from efficiency

is uniformly and credibly detectable if and only if efficiency is approachable. The

techniques develop an algorithm based on that by Fudenberg and Levine (1994), to

compute the equilibrium payoff set for any assumptions on the monitoring technology.

I will explore this in more detail in the next draft.

Although some authors eschew mediated communication in dynamic games, others

embrace it. In this paper I argue that mediated communication is helpful for several

reasons. Firstly, of course, such communication enlarges the set of equilibria. As a

result, this makes a a Folk theorem possible when otherwise it would not (e.g., one-

sided monitoring, as in Example 2). Without mediated communication, it is often

necessary that everyone can (statistically) observe everyone’s deviations. See Fong

et al. (2007), for example. This seems too much to ask in some applications. Also,

there is often an issue with conditionally dependent signals and private monitoring.

See, e.g., Sekiguchi (1997), Yamamoto (2007) and Sugaya (2010). On the other

hand, this point is moot with a mediator, as Example 3 illustrates. Moreover, the

literature often replaces mediated communication with arguably contrived equilibria

where players effectively communicate through their actions. The communication

equilibria studied here yield one side of a revelation principle for dynamic games.

Some forms of communication have been studied before in repeated games. See

Kandori and Matsushima (1998), Kandori (2003), Obara (2009) and Tomala (2009).

This paper is strictly more general. For instance, none of the papers above offer

a solution to Example 1 below. Mediated communication gives continuity of the

equilibrium correspondence with respect to the discount factor δ at δ = 1 a “fighting

chance” when otherwise it might not have one (e.g., Radner et al., 1986). Finally,

communication isolates the effect of the future for incentives. In determining when the

folk theorem holds, for instance, mediated communication ensures that it is achieved

by dynamic incentives: when it fails, it is because dynamic incentives fail, and not a

lack of communication. Without a mediator, such a distinction is cannot be made.

In Section 2, I present some motivating examples. In Section 3, I describe the model.

In Section 4, I present results from Rahman (2008) that will be used to prove the

Folk theorem. Finally, in Section 5 I state and prove the main results of this paper.
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2 Examples

In this section I present some motivating examples that illustrate the paper’s main

results. I begin with the classic Prisoners’ Dilemma, followed by a variant of it.

2.1 Prisoners’ Dilemma with Public Monitoring

Let us begin with the Prisoner’s Dilemma with public monitoring.

Example 1. There are two players, each of whom may cooperate, C, or defect,

D. Stage game payoffs are standard and given by the left bi-matrix below; signal

probabilities are on the right:

C D C D

C 2, 2 −1, 3 C 3
4
, 1

4
1
4
, 3

4

D 3,−1 0, 0 D 1
4
, 3

4
1
2
, 1

2

Payoffs Probabilities

The stage game is repeated infinitely often. At each stage, players take an action

and subsequently observe a public signal according to the conditional probabilities

above. Players earn the average of discounted payoffs with discount factor δ ∈ [0, 1),

as usual.

In this example, the set of symmetric perfect public equilibrium payoffs is bounded

away from efficiency (2, 2) uniformly in the discount factor δ. This result is standard,

see Green and Porter (1984), Radner et al. (1986), and Abreu et al. (1990). One way

to see this is with the usual observation of imperfect monitoring. Another way to see

this is by noticing that pairwise identifiability fails in a binding way.

One might think that the Kandori and Obara (2006) approach to private strategies

might be able to help with this example. However, it is not difficult to see that

the Kandori and Obara (2006) approach also fails here, since they require that (i)

the probability of “good news” decreases with the number of deviators, and (ii) the

decrease is increasing. A more general approach is that suggested by (Rahman and

Obara, 2010, Example 1). However, this approach fails here, too, because they also

require (i), which does not hold. Indeed, this is the challenge of this instance of the

Repeated Prisoners’ Dilemma.

3



I will now show how cooperation may be sustained even when such monotonicity

fails. Specifically, as δ → 1, I will construct a sequence of equilibria whose payoffs

converge to (2, 2), the symmetric efficient outcome of full cooperation.

Claim 1. For any ε > 0 there exists δ < 1 and an equilibrium of the repeated game

above such that each player’s payoff lies within ε of full cooperation for every δ ≥ δ.

I will now prove this claim. To do so, I will employ T -private equilibria and extend

the approach of Abreu, Milgrom and Pearce (1991) to the current setting of public

monitoring. But how can we do this if signals are publicly revealed every period? By

delaying the announcement of (recommended or played) actions.1

At every stage t, the mediator independently asks each player to play C with proba-

bility µ and D with probability 1−µ. There are two relevant outcomes to be defined:

“success” and “failure.” The two outcomes obtain according to the following rule:

CC CD DC DD

g success failure failure success

b failure success success success

Now we can follow Abreu, Milgrom and Pearce’s T -period arrangement by delaying

the public announcement of behavior. During a T -period block, if a string of T

consecutive failures occurs then the players will play (D,D) forever from then on

with probability α to be determined. Otherwise, if the a string of consecutive failures

did not occur, then the players will each revert to playing the mixed strategy (µ, 1−µ)

for another T periods, and keep a tally of the next T failures or successes.

For any player i, let ϕi(ai, bi) be the probability of failure conditional on a recom-

mendation to play ai ∈ {C,D} and a decision to play bi ∈ {C,D}. By Bayes’ Rule,

ϕi(C,C) = 1/4, ϕi(C,D) = µ/4 + 1/2, ϕi(D,C) = 3µ/4, ϕi(D,D) = µ/4.

Therefore, when a player obeys his recommendations, the probability of failure is at

least µ/4 and at most 1/4. Moreover, for any recommendation-contingent deviation

plan, as long as µ is sufficiently close to 1, the probability of failure is at least 1/2.

Hence, if a player deviates from his recommended actions during any τ of the T

periods, the likelihood of punishment is bounded below by

(1/2)τ (µ/4)T−τα.

1For now, I will focus on recommended actions, but by Rahman (2009, Theorem 10) it is possible

to do away with the mediator. I will discuss this further later.
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On the other hand, without deviations it is bounded above by (1/4)Tα. Of course,

after τ deviations, the utility gain is bounded above by (1− δ)τµτ .

To compute the cost, let v be the average discounted payoff from the game. The cost

of τ deviations is at least

[(1/2)τ (µ/4)T−τ − (1/4)T ]αv.

Notice that [(1/2)τ (µ/4)T−τ−(1/4)T ] = (1/4)T τ [µT/τ (2/µ)−1] ≥ (1/4)T τ [2µT−1−1].2

If we could choose α such that

1− δ = δT (1/4)T [2µT−1 − 1]αv

then we could discourage any τ deviations. To see this, notice that

(1− δ)µτ ≤ (1− δ)τ = τδT (1/4)T [2µT−1 − 1]αv ≤ τ(1/4)T [2µT−1 − 1]αv,

so τ deviations are indeed deterred as long as µT−1 > 1/2.

Let us now see what is achievable. Fix µ and T such that µT−1 > 1/2 and consider

the following problem, to be explained in detail below:

V ∗T,µ(δ) = max
w

v s.t.

v = (1− δT )2µ+ δT [(1− p)v + p(v − w)] (value recursion)

1− δ ≤ δT (1/4)T [2µT−1 − 1]w (incentive compatibility)

0 ≤ w ≤ v, (self-generation)

where p = Pr(T failures) = [µ(1 + µ)/4]T . The problem above maximizes the game’s

symmetric value subject to (i) value recursion, so the payoff is generated by the trigger

strategy described above by interpreting w and αv,3 (ii) incentive compatibility, since

the previous argument showed that this constraint suffices to discourage all deviations,

and (iii) self-generation, so that promised utility can be delivered with future play.

Clearly, the incentive constraint must bind at the optimum of this problem, hence

w =
1− δ

δT (1/4)T [2µT−1 − 1]
.

2This follows from µ/λ > 1⇒ (µ/λ)τ − 1 ≥ τ [(µ/λ)− 1].
3Notice that 2µ = 2µ2 + (3− 1)µ(1− µ) is the flow payoff from the mixed strategies (µ, 1− µ).
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Substituting this into the value recursion equation, it follows that

V ∗T,µ(δ) = 2µ− 1− δ
1− δT

[µ(1 + µ)]T

2µT−1 − 1
.

If µ is sufficiently close to 1, µ(1 + µ) > 1, therefore

V ∗T,µ(δ) ≥ 2µ− δ

δ + · · ·+ δT
2

2µT−1 − 1
→ 2µ− 2

T [2µT−1 − 1]
as δ → 1.

Fix any small ε ∈ (0, 1). For any T ∈ N there clearly exists µT < 1 such that

2(µT )T−1 ≥ 1 + ε, and of course µT → 1 as T →∞. If V ∗T (δ) = V ∗T,µT (δ) then clearly

lim
δ→1

V ∗T (δ) = 2µT −
2

T [2(µT )T−1 − 1]
≥ 2µT −

2

Tε
→ 2 as T →∞.

Hence, the T -private equilibria above sustain virtual cooperation, proving the claim.

2.2 Prisoners’ Dilemma with Private Monitoring

Now consider the Prisoners’ Dilemma with private monitoring.

Example 2 (One sided monitoring). Just as in Example 1 above, there are two

players, each of whom may cooperate, C, or defect, D. Stage game payoffs are

standard and given by the left bi-matrix below; signal probabilities are on the right:

C D C D

C 2, 2 −1, 3 C 3
4
, 1

4
1
2
, 1

2

D 3,−1 0, 0 D 1
2
, 1

2
1
2
, 1

2

Payoffs Probabilities

The difference here is that now the signal is only observed by player 1. Player 2

observes nothing (apart from his own actions and recommendations). Also notice that

the probabilities are slightly different. Player 1 paying D leads to an uninformative

signal, but playing C is informative of player 2’s action.

This example is interesting for several reasons. Firstly, one sided monitoring is com-

pletely excluded by the literature on repeated games. Secondly, as will be seen from

the general model, every deviation from the efficient outcome is detectable, so it can

be approximated by equilibria of the repeated game. However, for the same reasons

as for Example 1, T -private equilibria are needed to do so.
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Example 3 (Two sided monitoring). Just as in Example 1 above, there are two

players, each of whom may cooperate, C, or defect, D. Stage game payoffs are

standard and given by the left bi-matrix below; private signal marginal probabilities

are on the middle for player 1 and on the right for player 2:

C D C D C D

C 2, 2 −1, 3 C 3
4
, 1

4
1
4
, 3

4
C 3

4
, 1

4
3
4
, 1

4

D 3,−1 0, 0 D 3
4
, 1

4
1
4
, 3

4
C 1

4
, 3

4
1
4
, 3

4

Payoffs Player 1’s Probs Player 2’s Probs

Of course, I have not specified how players’ signals are correlated. But regardless of

how correlated they are, it is still true that every disobedience from full cooperation

is detectable, hence efficiency is attainable for sufficiently patient players.

2.3 Efficiency and Observability

The next examples show the limits of detectability when trying to sustain efficient

behavior. On the one hand, Radner, Myerson and Maskin showed that there may be

a discontinuity between what is attainable as δ → 1 and when δ = 1, in some sense.

Example 1 suggests that this is not the case. Indeed, as long as every deviation is

detectable, the example suggests that there is a sequence of (perhaps private) equi-

libria whose payoffs converge to efficiency, which Radner (1986) shows is attainable

when δ = 1. On the other hand, Lehrer (1992) shows that, when δ = 1, an efficient

outcome is attainable essentially if and only if every profitable deviation from the

efficient outcome is detectable by some not necessarily efficient action profile.

The examples below show that this condition does not characterize attainability as

δ → 1. In each of the examples below, the efficient outcome (D,C) cannot be

approximated as δ → 1, yet every profitable deviation from that outcome is detectable

by some action profile, not necessarily the efficient action profile.

Example 4 (Detecting profitable deviations). There are two players. Stage game

payoffs appear in the left bi-matrix below; public signal probabilities are on the right:

C D E C D E

C 4, 2 1, 4 1, 5 C 3
4
, 1

4
1
4
, 3

4
3
4
, 1

4

D 4, 3 0, 4 0, 3 D 1
2
, 1

2
1
2
, 1

2
1
2
, 1

2

Payoffs Probabilities
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In this example there exists no equilibrium such that the efficient outcome (D,C)

is attained even virtually as δ → 1. To see this, first notice that that the profile

(D,C) cannot be played with probability one. Otherwise, player 2 can profitably

deviate to play D instead of C without being detected. Furthermore, the profile

(D,C) cannot be played with positive probability. Otherwise, if player 1 plays C

with positive probability then player 2 can play E which weakly dominates C and is

also completely undetectable. On the other hand, for a deviation from (D,C) to be

profitable, it must be the case that player 2 plays D with positive probability, but

this is detectable when player 1 plays C. Therefore, although it is possible to sustain

the payoff profile (4, 3) in equilibrium when δ = 1 in the sense of Lehrer (1992), it is

impossible to do so as δ → 1.

For future reference, the same problem occurs even if we replace the probabilities

given (C,D) with (5
6
, 1

6
) instead. With these new probabilities, detection implies

attribution in the sense of Rahman and Obara (2010). This is because deviations

from (C,C) shift probability in different directions. As will be argued later, the

set of unattributable deviations is important for understanding the set of payoffs

attainable in a repeated game.

The same problem occurs in the next example, although for a slightly different reason.

Example 5 (Dominated detection). There are two players. Stage game payoffs ap-

pear in the left bi-matrix below; public signal probabilities are on the right:

C D E C D E

C 4, 2 1, 4 1, 5 C 3
4
, 1

4
1
4
, 3

4
3
4
, 1

4

D 4, 3 0, 4 0, 3 D 1
2
, 1

2
1
2
, 1

2
1
2
, 1

2

E 3, 2 −1, 4 −1, 3 E 3
4
, 1

4
1
4
, 3

4
3
4
, 1

4

Payoffs Probabilities

Again, although efficiency can be sustained when δ = 1, it cannot be sustained as

δ → 1. To see this, notice that although if player 1 plays E then the argument of the

previous example fails, playing E is strictly dominated by C for player 1, and again

is completely undetectable. Hence there is no way of getting player 1 to play E, and

as a result (D,C) is not attainable.

These two examples reflect all that can go wrong in trying to sustain efficiency in a

repeated game, as I argue later when I develop the general model.
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3 Model

Consider a repeated game with private monitoring. The stage game consists of a

finite set I = {1, . . . , n} of players, a finite set Ai of actions for each player i ∈ I,

where A =
∏

iAi, utility profile u : I × A → R, where ui(a) is the utility to player

i from action profile a, and a finite set of signals Si. Let S =
∏

i Si and Pr(s|a) be

the probability that the profile s of signals is observed if the profile a of actions was

played. Players have a common discount factor δ, where δ ∈ [0, 1). Given a sequence

a∞ = (a1, a2, . . .) of action profiles, the utility to player i is given by

Ui(a
∞) = [(1− δ)/δ]

∞∑
t=1

δtui(at).

Let U = conv {u(a) ∈ RI : a ∈ A} be the convex hull of possible payoff vectors in

the stage game. I make the following relatively standard assumptions.

Assumption 1 (Full support). Pr(s|a) > 0 for all (a, s).

This assumption means that every signal is possible, regardless of what players play.

It is largely made for simplicity. This way “the entire tree lights up,” in other words,

nothing is off the path of play.

Assumption 2 (Minimax ). ui(a) ≤ 1 for all (i, a) and

min
µ∈∆(A)

max
βi:Ai→Ai

∑
a∈A

ui(βi(ai), a−i)µ(a) = 0 ∀i ∈ I.

The first part is just a normalization that will save some notation, but is otherwise

without loss of generality. The second part says that the (correlated) minimax value

for each player is normalized to 0. Let U∗ = {u ∈ U : u ≥ 0} be the set of feasible,

individually rational payoffs.

Assumption 3 (Full dimensionality). dimU∗ = n.

This is a technical way of saying that it is possible to punish and reward agents

independently. It implies that we can use a version of the algorithm by Fudenberg

and Levine (1994) to characterize equilibrium payoffs. Since we will be generalizing

their algorithm, let us recall it formally next; then I will introduce my extension.

3.1 Public Sequential Equilibria

[To be completed.]
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3.2 Public Communication Equilibria

[To be completed. In this draft, I will only study the algorithm for maximizing the

unweighted sum of utilities.]

First, let us turn the repeated game into a contracting problem. For any player i, let

ρi : Si → Si be a reporting strategy, where ρi(si) is the planned report upon observing

si. Let ∆ui(a, bi) = ui(a−i, bi)−ui(a) and ∆ Pr(s|a, bi, ρi) = Pr(s|a−i, bi, ρi)−Pr(s|a),

where

Pr(s|a−i, bi, ρi) =
∑

ti∈ρ−1
i (si)

Pr(s−i, ti|a−i, bi)

is the probability that the signal profile s is reported if (a−i, bi) was played.

Consider the following nonlinear programming problem:

W = max
µ≥0,v,w

n∑
i=1

vi s.t.
∑
a∈A

µ(a) = 1,

vi = (1− δ)
∑
a∈A

µ(a)ui(a) + δ
∑
(a,s)

Pr(s|a)µ(a)wi(a, s) ∀i ∈ I,

(1− δ)
∑
a−i

µ(a)∆ui(a, bi) + δ
∑

(a−i,s)

µ(a)wi(a, s)∆ Pr(s|a, bi, ρi) ≤ 0 ∀(i, ai, bi, ρi),

n∑
i=1

wi(a, s)µ(a) ≤
n∑
i=1

viµ(a) ∀(a, s).

This problem is reminiscent of the equilibrium-characterizing problem of Fudenberg

and Levine (1994), but there are some important differences. Regarding the similar-

ities, I am maximizing the sum of lifetime utilities by choosing continuation values

subject to incentive compatibility (the penultimate family of constraints) and self-

generation (the last family). Applying different welfare weights to the objective and

the self-generation constraint characterizes the set of public equilibria.

As for the differences, there are several. Firstly, the continuation values depend not

only on (reported) signals, but also on recommended actions. Secondly, the problem

chooses a correlated strategy subject to it being a communication equilibrium, i.e.,

honesty and obedience is incentive compatible.

I will now transform the problem is several ways to obtain a linear programming

problem that will become my focus. I will do so in two steps. In the first step,

I transform the problem from one of choosing transfers wi(a, s) to one of choosing
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probability-weighted transfers xi(a, s).

W = max
µ≥0,v,x

n∑
i=1

vi s.t.
∑
a∈A

µ(a) = 1,

vi = (1− δ)
∑
a∈A

µ(a)ui(a) + δ
∑
(a,s)

Pr(s|a)xi(a, s) ∀i ∈ I,

(1− δ)
∑
a−i

µ(a)∆ui(a, bi) + δ
∑

(a−i,s)

xi(a, s)∆ Pr(s|a, bi, ρi) ≤ 0 ∀(i, ai, bi, ρi),

n∑
i=1

xi(a, s) ≤
n∑
i=1

viµ(a) ∀(a, s),

0 ≤ xi(a, s) ≤ µ(a) ∀(i, a, s).

The problem has changed in two ways. First, every entry of wi(a, s)µ(a) has been

replaced with xi(a, s), to be interpreted as a probability-weighted continuation value.

Next, a new family of constraints (the last one) has been added to the problem.

This family is there to ensure that the probability-weighted payments are adapted

to µ. In other words, in order to avoid solutions to the problem with xi(a, s) 6= 0

and µ(a) = 0. If this were the case then the interpretation of probability-weighted

transfers would not apply. The reason that the constraints capture this idea is due

to Assumption 2, which requires that continuation values wi(a, s) belong to [0, 1].

Therefore, probability-weighted continuation values xi(a, s) must belong to [0, µ(a)].

I now make the following change of variables. Let

ξi(a, s) =
δ

1− δ
[viµ(a)− xi(a, s)].

Simple manipulations yield the following linear programming problem.

W = max
µ≥0,ξ

n∑
i=1

∑
a∈A

µ(a)ui(a)−
∑
(a,s)

Pr(s|a)ξi(a, s) s.t.
∑
a∈A

µ(a) = 1,

∑
a−i

µ(a)∆ui(a, bi) ≤
∑

(a−i,s)

ξi(a, s)∆ Pr(s|a, bi, ρi) ∀(i, ai, bi, ρi),

n∑
i=1

ξi(a, s) ≥ 0 ∀(a, s),

− δ

1− δ
µ(a) ≤ ξi(a, s) ≤

δ

1− δ
µ(a) ∀(i, a, s).

The only part of the transformation that is not immediate is the way that the last

family of constraints changed. To obtain it, just use the fact that vi ∈ [0, 1], hence

− δ

1− δ
µ(a) ≤ δ

1− δ
[0− xi(a, s)] ≤ ξi(a, s) ≤

δ

1− δ
[viµ(a)− 0] ≤ δ

1− δ
µ(a).
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This last problem is clearly equivalent to the original one. (Although the adaptability

constraints have changed slightly in the last transformation, this is without loss, as

the only role they fill is in ensuring that no payments take place after zero -probability

recommendations. Hence the problems are equivalent in terms of the limit as δ → 1.)

Definition 1. Call the linear program above the primal, and call its dual problem

(you guessed it) the dual.

Notice how the change of variables has isolated the effect of δ to just the last family

of constraints, where a higher δ means that there is a wider range of possible values

for ξi(a, s). As δ → 1, the constraints relax. This is also seen clearly from the dual,

which I present next. Deriving the dual is long but straightforward, so I omit its

derivation. Since the primal has a feasible solution (namely, a correlated equilibrium

of the stage game together with 0 payments), the value of the primal equals the value

of the dual. Here’s the dual.

W = min
λ,η≥0,κ

κ s.t.

κ ≥
n∑
i=1

ui(a)−
∑

(bi,ρi)

λi(ai, bi, ρi)∆ui(a, bi)

+
δ

1− δ
∑
s∈S

|Pr(s|a)− λi(ai, bi, ρi)∆ Pr(s|a, bi, ρi)− η(a, s)| ∀a ∈ A.

Intuitively, think of λi as a deviation plan for player i. (See Rahman (2008).) The

multiplier η is studied in some detail by Rahman and Obara (2010).

From the dual we can easily see that Example 1 cannot have an approximately efficient

public communication equilibrium, even as δ → 1. Consider the profile of deviation

plans given by λi(C,D) = 1 and λi(D,C) = 1/2 for each player i. It is easy to

see that there exists η ≥ 0 with ‖Pr(s|a)− λi(ai, bi, ρi)∆ Pr(s|a, bi, ρi)− η(a, s)‖ = 0.

Notice, furthermore, that for each a
∑

i ui(a) −
∑
λi(ai, bi)∆ui(a, bi) is strictly less

than 2. Therefore W < 2 regardless of δ. By strong duality, the result follows.

As δ → 1, it is tempting to think that the dual above converges to

min
λ,η≥0,κ

κ s.t. κ ≥
n∑
i=1

ui(a)−
∑

(bi,ρi)

λi(ai, bi, ρi)∆ui(a, bi) ∀a ∈ A,

Pr(s|a)− λi(ai, bi, ρi)∆ Pr(s|a, bi, ρi) = η(a, s) ∀(a, s),

but this would be wrong, as is easily seen from Example 4. The difference between

these two problems distinguishes the case δ → 1 from δ = 1.

12



3.3 T -Private Communication Equilibria

I will now extend the argument of Abreu et al. (1990) to this general setting, as in

Example 1. Consider the repeated game whose stage game consists of T repetitions

of the original stage game. We will use the duality above in this game; the primal

associated with this reinterpreted repeated game is called the T -primal, and its dual

the T -dual.

Fix a T -period stage game, where T ∈ N. During every period t ∈ {1, . . . , T},
player i is confidentially asked by a mediator to choose ait ∈ Ai and decides bit ∈ Ai,
which may differ from Ai, then privately observes some signal sit ∈ Si, and submits

a confidential report rit ∈ Si to the mediator which may also differ from sit. Let

Hi = Ai × Si be the set of all action-signal pairs, with typical elements (ait, rit),

(bit, sit), etc. For now, assume that everyone is honest and obedient, so bit = ait and

rit = sit for all (i, t).4 Let Ui(a
T ) = [(1 − δ)/δ(1 − δT )]

∑T
t=1 δ

tui(at) be the utility

accrued during the current T -period stage. Let Pr(sT |aT ) =
∏T

t=1 Pr(st|at).

A T -deviation for player i is any sequence of maps (βi, ρi) = (βi1, ρi1, . . . , βiT , ρiT )

such that βit : Ati × St−1
i → Ai and ρit : Ati × Sti → Sti , where βit corresponds to pos-

sible disobedience contingent on past recommendations and observations, and ρit to

possible dishonesty. Write Ui(a
T |βi) = [(1− δ)/δ(1− δT )]

∑T
t=1 δ

tui(a−it, βit(a
t
i, s

t−1
i ))

for the utility from disobeying according to βi. Also, let

Pr(sT |aT , βi, ρi) =
T∏
t=1

Pr(st|at, βit(ati, st−1
i ), ρit(a

t
i, s

t−1
i )),

where

Pr(st|at, βit(ati, st−1
i ), ρit(a

t
i, s

t−1
i )) =

∑
τit∈ρ−1

it (sit|ati,s
t−1
i )

Pr(s−it, τit|a−it, βit(ati, st−1
i ))

stands for the probability that st is reported.

A communication mechanism is any µ such that
∑

a1
µ(a1) = 1 and∑

at+1

µ(at+1, st) = µ(at, st−1) Pr(st|at) ∀(at, st).

Given any such communication mechanism µ, let

µ(at, st−1|βi, ρi) = µ(at, st−1)
Pr(st|at, βi(ati, st−1

i ), ρit(a
t
i, s

t−1
i ))

Pr(st|at)
.

4For any family {Xit} of sets indexed by i and t, let Xi0 = {∅}, Xt =
∏
iXit, X−it =

∏
j 6=iXjt,

Xt
i =

∏t
τ=1Xiτ , Xt =

∏
iX

t
i and X =

∏
i,tXit. Thus, S is the space of all signal profile histories.

13



Let Ui(µ) =
∑

(aT ,sT−1) Ui(a
T )µ(aT , sT−1) denote player i’s utility from the commu-

nication mechanism played at the current T -period stage when he is honest and

obedient, and Ui(µ|βi, ρi) =
∑

(aT ,sT−1) Ui(a
T |βi)µ(aT , sT−1|βi, ρi) the utility when

he deviates according to (βi, ρi). Write ∆Ui(µ|βi, ρi) = Ui(µ|βi, ρi) − Ui(µ), and

∆ Pri(s
T |aT , βi, ρi) = Pr(sT |aT , βi, ρi)− Pr(sT |sT ).

Using the same transformations as for the case when T = 1 in the previous subsection,

we end up with the following reduced-form T -primal:

WT (δ) = max
µ≥0,ξ

n∑
i=1

Ui(µ)−
∑

(aT ,sT )

Pr(sT |aT )ξi(a
T , sT ) s.t.

∑
a1

µ(a1) = 1,

∑
at+1

µ(at+1, st) = µ(at, st−1) Pr(st|at) ∀(at, st),∑
a−i

µ(a)∆Ui(µ|βi, ρi) ≤
∑

(aT ,sT )

ξi(a
T , sT )∆ Pr(sT |aT , βi, ρi) ∀(i, βi, ρi),

n∑
i=1

ξi(a
T , sT ) ≥ 0 ∀(a, s),

− δT

1− δT
µ(aT , sT−1) ≤ ξi(a

T , sT ) Pr(sT−1|aT−1) ≤ δT

1− δT
µ(aT , sT−1) ∀(i, aT , sT ).

After much manipulation, the T -dual simplifies to the following problem. Denote by

aT :
⋃T
t=1 S

t−1 → A any pure recommendation strategy for the mediator conditional

on past reports, and let AT be the set of all such pure mediation strategies.

WT (δ) = min
λ,η≥0,κ

κ s.t.

κ ≥
n∑
i=1

∑
sT−1

Ui(aT (sT−1))−
∑

(βi,ρi)

λi(βi, ρi)∆Ui(aT (sT−1)|βi, ρi) +

δT

1− δT
∑
st

|Pr(sT |aT )−
∑

(βi,ρi)

λi(βi, ρi)∆ Pr(sT |aT (sT−1), βi, ρi)− η(aT , sT )| ∀aT ∈ AT .

At this point let me make three comments. First, the T -dual is structurally similar

to the 1-dual from before. Secondly, the mediator’s strategies in the T -period stage

may vary with observed reports. Finally, an application of Kuhn’s Theorem shows

that we may rewrite the T -dual in terms of behavior strategies (i.e., with multipliers

λit(b
t
i, r

t
i |ati, sti) such that λit extends λis for s < t) rather than mixed strategies (i.e.,

λi defined as a mixture over all possible deviations).
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4 Digression

The main goal of this paper is to establish a Folk theorem under minimal observability

assumptions. First, though, let me digress and present some preliminary results taken

from Rahman (2008). Consider a one-shot contracting problem, as in the 1-private

equilibria considered above, but this time ignoring the self-generation constraint.

Let µ ∈ ∆(A) be a correlated strategy and ζ : I × A× S → R be a payment scheme

contingent on recommendations and reports for each player. A pair (µ, ζ) is called

incentive compatible if honesty and obedience is optimal:∑
a−i

µ(a)∆ui(a, bi) ≤
∑

(a−i,s)

µ(a)ζi(a, s)∆ Pr(s|a, bi, ρi) ∀(i, ai, bi, ρi).

In other words, (µ, ζ) is incentive compatible if µ is a communication equilibrium

(Myerson, 1986; Forges, 1986) of the game induced by ζ.

Definition 2. A correlated strategy µ is enforceable if a payment scheme ζ exists

such that (µ, ζ) is incentive compatible. Let E denote the set of enforceable correlated

strategies. Call µ virtually enforceable if there exists a sequence {µm} ⊂ E such that

µm → µ. Let E denote the set of virtually enforceable correlated strategies.

A strategy for agent i is a map σi : Ai → ∆(Ai × Ri), where σi(bi, ρi|ai) is the

probability that i plays (bi, ρi) when recommended ai. Call σi a deviation if it ever

differs from honesty and obedience. The deviation σi is called µ-profitable if∑
(a,biρi)

µ(a)∆ui(a, bi)σi(bi, ρi|ai) > 0.

Let Pr(µ) be the vector of report probabilities if everyone is honest and obedient,

defined by Pr(s|µ) =
∑

a µ(a) Pr(s|a) for each s. Let Pr(µ, σi) be the vector of report

probabilities if everyone is honest and obedient except for i, who plays σi instead,

defined for each signal profile s by

Pr(s|µ, σi) =
∑
a∈A

µ(a)
∑

(bi,ρi)

Pr(s|a−i, bi, ρi)σi(bi, ρi|ai).

Definition 3. For any B ⊂ A, σi is called B-detectable if Pr(s|a) 6= Pr(s|a, σi) for

some a ∈ B and s ∈ S.5 Otherwise, σi is called B-undetectable. A strategy is simply

detectable if it is A-detectable, and undetectable if it is A-undetectable.

5We abuse notation by identifying Dirac measure [a] ∈ ∆(A) with the action profile a ∈ A.

15



Intuitively, a strategy is detectable if there is a recommendation profile such that the

report probabilities induced by the strategy differ from that induced by honesty and

obedience, assuming that everyone else is honest and obedient. Crucially, different

action profiles may be used to detect different strategies. To illustrate this difference,

consider the next example, where, for any mixed (or correlated) strategy profile,

individual full rank fails, yet every deviation is detectable.

Example 6. Two publicly verifiable signals and two players. Player 1 has two choices,

{U,D}, and player 2 has three, {L,M,R}. Payoffs and probabilities are given in the

bi-matrices below, as usual.

L M R L M R

U 1, 0 0, 1 0, 1 U 1
2
, 1

2
1
4
, 3

4
3
4
, 1

4

D 3, 2 1, 3 1, 3 D 1
3
, 2

3
1
4
, 3

4
3
4
, 1

4

Payoffs Probabilities

Since every deviation is detectable, by the main result of this paper there is a se-

quence of equilibria of the repeated game whose payoffs converge to the efficient

level (3, 2) as δ → 1. However, it is necessary to resort to T -private equilibria with

recommendation-contingent continuation values.

The first result characterizes enforceability. For proofs, see Rahman (2008).

Lemma 1. A correlated strategy µ is enforceable if and only if every µ-profitable

deviation is supp µ-detectable.

As this result shows, profitable deviations are important. These are necessarily

disobediences. Formally, given B ⊂ A, a strategy σi is called B-disobedient if

σi(bi, ρi|ai) > 0 for some ai ∈ Bi and bi 6= ai, where Bi = {bi ∈ Ai : ∃b−i s.t. b ∈ B}
is the projection of B on Ai. Next, I pin down virtual enforcement with probabilities.

Lemma 2. Fix any µ ∈ ∆(A). Every supp µ-disobedience is detectable if and only if

for any profile of utility functions, µ is virtually enforceable.

This result characterizes when an action profile is virtually enforceable for every utility

profile. To illustrate the characterizing condition, consider the following example.

Example 7. Two players, two public signals. Payoffs and probabilities appear below.

L M R L M R

U 3, 2 0, 3 0, 3 U 1
4
, 3

4
1
4
, 3

4
1
4
, 3

4

D 4, 0 0, 1 0, 1 D 1
4
, 3

4
3
4
, 1

4
3
4
, 1

4

Payoffs Probabilities
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The efficient outcome here is (U,L). Since every (U,L)-disobedience is detectable in

this example, by Lemma 2 it is virtually enforceable, therefore by the main result of

this paper a Folk theorem applies, i.e., there is a sequence of equilibria of the repeated

game whose payoffs converge to the efficient level (3, 2) as δ → 1.

Lemma 2 is a key result that will be used for the Folk theorem. It shows that a is

virtually enforceable for every utility profile as long as every disobedience from a is

detectable with some perhaps occasional behavior—call it “monitoring.” Crucially,

there is no requirement on disobediences to behavior outside of a, so deviations from

monitoring need not be detectable.

I now characterize virtual enforcement for a fixed utility profile. Although the pre-

vious lemma looks simple, a similar result for a fixed utility profile is not as simple.

To see why, notice that, on the one hand, virtually enforcing some a does not require

that every a-disobedience be detectable: strictly unprofitable a-disobediences may be

undetectable, for instance. On the other hand, it is not enough that every strictly

profitable a-disobedience be detectable, as Example 4 shows. There, every strictly

profitable (D,C)-disobedience is detectable, yet (D,C) is not virtually enforceable.

Detecting (D,C)-profitable deviations is not enough there because E weakly dom-

inates C and is indistinguishable from it. Indeed, if E strictly dominated C then

there would exist a (D,C)-profitable, undetectable strategy, rendering (D,C) virtu-

ally unenforceable. On the other hand, if player 1’s payoff from (D,E) was negative

instead of zero then (D,C) would be virtually enforceable because playing E when

asked to play C would be unprofitable if player 1 played C with low probability.

So what is required beyond detecting profitable deviations? Below, I will argue that

profitable deviations must be uniformly and credibly detectable. To illustrate, note

that if E is removed from Example 4 then (D,C) is virtually enforceable, not just

because every (D,C)-profitable deviation is detectable (this is true with or without

solitaire), but also because the utility gains from every (D,C)-profitable deviation

can be uniformly outweighed by monetary losses. To describe this formally, let us

introduce some notation. For any strategy σi and any correlated strategy µ, write

‖∆ Pr(µ, σi)‖ =
∑
s∈S

∣∣∣ ∑
(a,bi,ρi)

µ(a)[σi(bi, ρi|ai) Pr(s|a−i, bi, ρi)− Pr(s|a)]
∣∣∣.

Intuitively, this norm describes the statistical difference between abiding by µ and

deviating to σi. Thus, σi is supp µ-undetectable if and only if ‖∆ Pr(µ, σi)‖ = 0.
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Say that every µ-profitable deviation is uniformly detectable if z ≥ 0 exists such that

for every µ-profitable deviation σi there exists η ∈ ∆(A) (possible different for differ-

ent σi) such that σi is supp η-detectable and ∆vi(η, σi) < z
∑

a η(a) ‖∆ Pr(a, σi)‖.
Uniform detectability implies that a bound z ≥ 0 exists such that for every µ-

profitable deviation σi, there exist (i) a correlated strategy η that detects σi, and (ii)

an incentive scheme ζ satisfying −z ≤ ζi(a, s) ≤ z, that strictly discourage σi.
6,7 Intu-

itively, every µ-profitable deviation can be strictly discouraged with a correlated strat-

egy and an incentive scheme bounded by the same amount. To see how uniform de-

tectability fails in Example 4 but holds without the action E, let α and β, respectively,

be the probabilities that player 2 plays D and plays E after being asked to play C.

Clearly, (D,C)-profitability requires α > 0. For uniform detectability we need z such

that given α > 0 and β ≥ 0, η exists with (α+ β)η(C,C) + αη(D,C) < 2zαη(C,C).

Therefore, (α + β)/α < 2z is necessary for uniform detectability. However, no z

satisfies this for all relevant (α, β). Removing E restores uniform detectability: now

β = 0, so any z > 1/2 works.

Uniform detectability is still not enough for virtual enforcement, as Example 5 shows.

In Example 5 every (D,C)-profitable deviation is uniformly detectable when player

1 plays E, but this action is not credible because it is strictly dominated by and

indistinguishable from C. Hence, (D,C) is not virtually enforceable.

Definition 4. Say every µ-profitable deviation is uniformly and credibly detectable if

there exists z ≥ 0 such that for every µ-profitable deviation σi, there exists η ∈ ∆(A)

satisfying (i) σi is supp η-detectable, (ii) ∆vi(η, σi) < z
∑

a η(a) ‖∆ Pr(a, σi)‖, and

(iii) ∆vj(η, σj) ≤ z
∑

a η(a) ‖∆ Pr(a, σj)‖ for all other (j, σj).

Intuitively, just as before, we may use different η to uniformly detect different σi, but

these η must be credible in that incentives can be provided (Footnote 6) for everyone

else to play η. This yields the characterization we sought, proved in Rahman (2008).

Lemma 3. A given correlated strategy µ is virtually enforceable if and only if every

µ-profitable deviation is uniformly and credibly detectable.

6To find this payment scheme, invoking the Bang-Bang Principle, let ζi(a, s) = ±z depending on

the sign of the statistical change created by σi, namely
∑

(bi,ρi)
σi(bi, ρi|ai) Pr(s|a−i, bi, ρi)−Pr(s|a).

7To see intuitively why I have a strict inequality, suppose that there is a µ-profitable deviation σi

and a correlated strategy η for which ∆vi(η, σi) = z
∑
a η(a) ‖∆ Pr(a, σi)‖. In this case, it would be

impossible to discourage σi by playing η instead of µ with some probability and payments bounded

within ±z.
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5 Results

In this section I will state the main results. The first main result claims that efficiency

is attainable as δ → 1 if there exists an efficient outcome of the stage game such that

every disobedience from the outcome is statistically detectable. The second claims

that efficiency is attainable as δ → 1 if and only if there exists an efficient outcome

of the stage game such that every disobedience is uniformly and credibly detectable.

All these terms were defined in the previous section. To prove these claims I will use

the results of Sections 3 and 4 together.

Of course, these results are subject to the restriction of T -private communication

equilibria, for T ∈ N. These equilibria need not be belief-free, and players may have

strict incentives to play their recommended actions. At this point, I conjecture that

the set of T -private equilibrium payoffs is dense in the set of private equilibria.

Let U = u(E) = {u(µ) ∈ RI : µ ∈ E} be the set of payoff profiles attainable with

virtually enforceable correlated strategies, where u(µ) =
∑

a u(a)µ(a) is the expected

payoff profile from µ and u(a) = (u1(a), . . . , un(a)) for each a ∈ A. Recall that U∗ is

the set of feasible, individually rational payoffs. We may now state the paper’s main

result, from which the Folk theorems below follow.

Theorem 1. Let u∗ ∈ U∗ be an efficient payoff profile. There exist T (δ)-private

equilibria whose payoffs converge to u∗ as δ → 1 if and only if u∗ ∈ U .8

Theorem 1 leads to the following two Folk theorems.

Corollary 1. Let u∗ ∈ U∗ be an efficient payoff profile. If there is a correlated strategy

µ such that u(µ) = u∗ and every supp µ-disobedience is detectable then T (δ)-private

equilibria exist whose payoffs converge to u∗ as δ → 1.

Interestingly, this Folk theorem gives conditions on the monitoring technology alone

such that, for any profile of utility functions (satisfying Assumptions 1–3), an effi-

cient outcome is approachable as players become increasingly patient. Also, by the

Folk theorem of Lehrer (1992) for δ = 1, it follows that there is no discontinuity in

the efficient equilibrium payoff correspondence with respect to δ at δ = 1 when the

detectability condition above is satisfied.

8In this preliminary and incomplete draft I focus on efficient outcomes, but in the next draft

I will replace Theorem 1 with the following claim: the set of payoff profiles for which there is a

sequence of approximating T -private equilibria is given by U
∗

= U∗ ∩ U .
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Corollary 2. Let u∗ ∈ U∗ be efficient. There is a correlated strategy µ such that

u(µ) = u∗ and every µ-profitable deviation is uniformly and credibly detectable if and

only if T (δ)-private equilibria exist whose payoffs converge to u∗ as δ → 1.

This result gives a joint condition on the monitoring technology and the utility func-

tions such that an efficient outcome can be approached with T -private equilibria. In

fact, this condition is necessary and sufficient for the Folk theorem. By Lemmas 2–3,

Theorem 1 above clearly implies Corollaries 1 and 2, so proving Theorem 1 is enough

to prove both Folk theorems.

6 Proof of Theorem 1

Sufficiency is easy. Since u∗ is efficient, it is on the boundary of U∗. Suppose that there

exists a sequence of T (δ)-private equilibria whose payoffs converge to u∗ as δ → 1. For

each T (δ)-private equilibrium, take the expected correlated strategy played during

the first T (δ) periods. Since less information relaxes incentive constraints, playing

this correlated strategy, call it µδ, every period regardless of what players report is

also a T (δ)-private equilibrium with the same continuation values. By hypothesis,

taking a subsequence if necessary, µδ → µ such that u(µ) = u∗. Merging the payoffs

from periods 2 to T to the continuation values finally implies that u∗ ∈ U .

For necessity, suppose that u∗ ∈ U and u∗ is efficient, so there exists µ such that

u(µ) = u∗ and a sequence {µm} ⊂ E such that µm → µ. For any ε > 0, therefore,

there exists M such that µm is within ε of µ for all m ≥ M . Now, any such µm

is enforceable, so by Lemma 1 every µm-profitable deviation is supp µm-detectable.

The problem of enforcing µm played for T consecutive periods (call the associated

communication mechanism µmT ) with self-generated continuation values is given by

WT (µmT ) = max
ξ

n∑
i=1

Ui(µ
m
T )−

∑
(aT ,sT )

µmT (aT ) Pr(sT |aT )ξi(a
T , sT ) s.t.

∑
(aT ,sT )

µm(aT ) Pr(sT |aT )∆Ui(µ
m
T |βi, ρi) ≤

∑
(aT ,sT )

µmT (aT )ξi(a
T , sT )∆ Pr(sT |aT , βi, ρi) ∀(i, βi, ρi),

n∑
i=1

ξi(a
T , sT ) ≥ 0 ∀(aT , sT ) ∈ supp µTm,
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where µm is fixed. The dual of this problem is

WT (µm) = min
λ,η≥0

n∑
i=1

Ui(µ
m
T )−

∑
(βi,ρi)

λi(βi, ρi)∆Ui(µ
m
T |βi, ρi) s.t.

µmT (aT )[Pr(sT |aT )−
∑

(βi,ρi)

λi(βi, ρi)∆ Pr(sT |aT , βi, ρi)] = η(aT , sT ) ∀i, (aT , sT ) ∈ supp µTm.

Equivalently, we may write the dual constraints as

Pr(sT |aT )−
∑

(βi,ρi)

λi(βi, ρi)∆ Pr(sT |aT , βi, ρi) = η(aT , sT ) ∀i, (aT , sT ) ∈ supp µmT .

If there is no profile λ ≥ 0 that satisfies these equations apart from honesty and

obedience for every m then the self-generation constraint does not bind and the

theorem is proved, so suppose not, i.e., there exists a profile of deviation that satisfies

the dual constraints above. Again, if honesty and obedience solves the dual for every

m then the self-generation constraint does not bind and we are done, so suppose not.

By Lemma 1, since µmT is enforceable, it follows that every µmT -profitable deviation is

supp µmT -detectable. Therefore, since the set of deviations is compact, it follows that

sup
λi≥0

inf
(aT ,sT )

∑
(βi,ρi)

λi(βi, ρi)∆Ui(µ
m
T |βi, ρi)∑

(βi,ρi)
λi(βi, ρi)∆Lr(sT |aT , βi, ρi)

= KT
i < ∞,

where (aT , sT ) ∈ supp µmT in the inf above and

∆Lr(sT |aT , βi, ρi) = ∆ Pr(sT |aT , βi, ρi)/Pr(sT |aT ).

Indeed, if KT
i =∞ then for every (aT , sT ) the denominator is 0, but this implies that a

µmT -profitable, supp µmT -undetectable deviation exists. Everything is finite, so the inf

and sup above are attained at (âT , ŝT ) and λ̂, respectively. Let Λ̂i =
∑

(βi,ρi)
λ̂i(βi, ρi)

and σ̂i(βi, ρi) = λ̂i(βi, ρi)/Λ̂i.

The dual above is solved by (âT , ŝT ) and λ̂ as above such that

Pr(ŝT |âT )−
∑

(βi,ρi)

λi(βi, ρi)∆ Pr(ŝT |âT , βi, ρi) = 0.

To see this, for a given deviation profile λ to solve the dual (and not honesty and

obedience), it is clearly necessary that
∑

(βi,ρi)
λi(βi, ρi)∆Ui(µ

m
T |βi, ρi) > 0. If there

is no (aT , sT ) such that

Pr(sT |aT )−
∑

(βi,ρi)

λi(βi, ρi)∆ Pr(sT |aT , βi, ρi) = 0 (∗)
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then λ cannot solve the dual. Otherwise, it is possible to increase Λi for each i an

further decrease the objective without violating the dual constraints.

Rearranging it follows that for any (aT , sT ) such that (∗) holds,

Λi = 1/
∑

(βi,ρi)

σi(βi, ρi)∆Lr(sT |aT , βi, ρi).

Of course, given σi, as Λi is gradually increased from 0, the first (aT , sT ) to hit the

constraint (∗) will be the pair (âT , ŝT ) that solves

max
(aT ,sT )

∑
(βi,ρi)

λi(βi, ρi)∆Lr(sT |aT , βi, ρi).

Given λ that solves the dual and (âT , ŝT ) as above, the objective becomes

WT (µm) =
n∑
i=1

Ui(µ
m
T )−

∑
(βi,ρi)

σi(βi, ρi)∆Ui(µ
m
T |βi, ρi)∑

(βi,ρi)
σi(βi, ρi)∆Lr(sT |aT , βi, ρi)

=
n∑
i=1

Ui(µ
m
T )−KT

i ,

as claimed.

The final step in the proof will be to show that KT
i → 0 as T → ∞. Let λ̂ and

(âT , ŝT ) satisfy ∑
(βi,ρi)

λ̂i(βi, ρi)∆Ui(µ
m
T |βi, ρi)∑

(βi,ρi)
λ̂i(βi, ρi)∆Lr(ŝT |âT , βi, ρi)

= KT
i ∀i.

Since µmT is a T -repetition of µm, without loss the solution σ̂ above is the τ -repetition,

where τ ≤ T , of a deviation in the stage game and (âT , ŝT ) is also a T -repetition of

some stage-game profile (a, s). Let ‖∆ui‖ = max(a,bi){ui(a−i, bi)− ui(a)}, so

KT
i ≤

‖(τ/T )∆ui‖
∆τLr(s|a, σi)

,

where

∆τLr(s|a, σi) =

[∑
(bi,ρi)

σi(ai, bi, ρi) Pr(s|a−i, bi, ρi)
Pr(s|a)

]τ
− 1.

Finally, since [
∑

(bi,ρi)
σi(ai, bi, ρi) Pr(s|a−i, bi, ρi)/Pr(s|a)]τ > 1 (otherwise (∗) fails),

it follows that ∆τLr(s|a, σi) ≥ τ∆Lr(s|a, σi), hence

KT
i ≤

‖∆ui‖
TLr(s|a, σi)

→ 0 as T →∞.

This completes the proof of Theorem 1.
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7 Extension

[In this section I intend to extend the previous results to arbitrary multistage games.]

8 Conclusion

[To be written.]
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