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ABSTRACT
We study the outcome of natural learning algorithms in
atomic congestion games. Atomic congestion games have
a wide variety of equilibria often with vastly differing social
costs. We show that in almost all such games, the well-
known multiplicative-weights learning algorithm results in
convergence to pure equilibria. Our results show that nat-
ural learning behavior can avoid bad outcomes predicted
by the price of anarchy in atomic congestion games such as
the load-balancing game introduced by Koutsoupias and Pa-
padimitriou, which has super-constant price of anarchy and
has correlated equilibria that are exponentially worse than
any mixed Nash equilibrium.

Our results identify a set of mixed Nash equilibria that we
call weakly stable equilibria. Our notion of weakly stable is
defined game-theoretically, but we show that this property
holds whenever a stability criterion from the theory of dy-
namical systems is satisfied. This allows us to show that in
every congestion game, the distribution of play converges to
the set of weakly stable equilibria. Pure Nash equilibria are
weakly stable, and we show using techniques from algebraic
geometry that the converse is true with probability 1 when
congestion costs are selected at random independently on
each edge (from any monotonically parametrized distribu-
tion). We further extend our results to show that players
can use algorithms with different (sufficiently small) learn-
ing rates, i.e. they can trade off convergence speed and long
term average regret differently.
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1. INTRODUCTION
Congestion games have been studied extensively in com-

puter science, often from the standpoint of analyzing the
price of anarchy: the ratio of solution quality achieved by
the worst-case Nash equilibrium versus the optimal solution.
Koutsoupias and Papadimitriou [21] introduced the price of
anarchy in the context of a load-balancing game studying
the makespan objective function. Congestion games both
with makespan and with social welfare objective function
are well understood; see the surveys by Vöcking [38] and
Roughgarden [31]. Analyzing the inefficiency of Nash equi-
libria provides useful information about the solution quality
achieved by selfish players once they reach an equilibrium,
but does not provide a model of how selfish players behave,
and it says little about whether selfish players will coordi-
nate on an equilibrium, nor which equilibria they are likely
to coordinate on if the game has more than one.

Learning has been suggested as a natural model of players’
behavior in games. No-regret learning algorithms suggest
simple and plausible adaptive procedures where players do
not have regrets about their past behavior in some precise
sense, which makes them natural candidates to model selfish
play. The theory of learning in games has studied the limit
of repeated play when all players use such no-regret learning
strategies. The resulting equilibrium concepts (variants of
correlated equilibrium) typically have worst-case equilibria
that fall short of the solution quality achieved by Nash equi-
librium. Thus, although researchers studying certain classes
of games have proven that the outcome of no-regret learning
matches the price-of-anarchy bound [3, 4, 5, 32], there are
broad classes of games in which there is a large gap between
the predictions arising from analysis of Nash equilibria ver-
sus analysis of learning processes (correlated equilibria).

To illustrate this point, consider the load balancing game
introduced by Koutsoupias and Papadimitriou [21]. In this
game, there are n balls and n bins. Each ball chooses a



bin and experiences a cost equal to the number of balls
that choose the same bin. If the objective function is the
makespan (i.e. maximum load in a bin) then an optimal so-
lution places each ball in a separate bin. These solutions
coincide with the pure Nash equilibria of the game. How-
ever, there are many other mixed Nash equilibria, includ-
ing the fully mixed equilibrium in which each ball chooses
a bin uniformly at random and the expected makespan is
Θ(log n/ log log n). The same game with a non-linear con-
gestion cost results in an arbitrarily high price of anarchy
both in the makespan and in the average congestion cost
models: the same symmetric fully mixed equilibria are ex-
pected to have some bin with congestion Θ(log n/ log log n),
which can have arbitrarily high congestion cost. Worse yet,
the game can have correlated equilibria that are exponen-
tially worse than the worst mixed Nash equilibrium. In the
simple case of linear edge costs the expected makespan is
Θ(

√
n). The ratio is even worse if the congestion cost is

decreasing, as in the cost-sharing games where a bin with x
players costs 1/x to each player. As before, pure equilibria
coincide with the social optimal solution, which in this case
has a total cost of 1, while the fully mixed Nash equilibrium
is expected to use a constant fraction of all bins, and hence
to cost Θ(n).

Our question.
We focus on understanding the quality of outcomes reached

by players using “realistic” learning algorithms. Restricting
attention to realistic learning algorithms is consistent with
our goal of modeling realistic player behavior, and it is also
necessary because within the class of all no-regret learning
algorithms one can find contrived algorithms whose distri-
bution of play converges to an arbitrary (e.g. worst-case)
correlated equilibrium of any game1, as well as contrived al-
gorithms2 whose distribution of play converges into the set
of Nash equilibria of any game.

Our results.
We consider a class of learning dynamics, called the ag-

gregate monotonic selection (AMS) dynamics, that extends
the multiplicative weights learning algorithm [2, 22] (also
known as Hedge [13]) to players whose learning rates may
differ and may vary over the strategy space. We show that
if players use AMS dynamics to adjust their strategies, then
game play converges to a subset of Nash equilibria, which
we call weakly stable equilibria. These are mixed Nash equi-
libria (σ1, . . . , σn) with the additional property that each
player i remains indifferent3 between the strategies in the
support of σi whenever any other single player j modifies
its mixed strategy to any pure strategy in the support of
σj . Pure Nash equilibria are weakly stable, and we show
that the converse is true with probability 1 when congestion
costs are selected at random independently on each edge
(e.g. from any monotonically parameterized distribution).

1We provide a proof for this statement in the full version
of the paper. A well-known result of a similar flavor, but
using calibrated learning rather than no-regret play, is due
to Foster and Vohra [10].
2For examples, see the discussion of related work below.
3Note that the definition does not require each of the strate-
gies in the support of σi to remain a best response after
player j modifies σj . This modification may cause player i
to prefer a strategy lying outside the support of σi.

Thus, our results imply that in congestion games, learning
via AMS dynamics surpasses the Price of Total Anarchy (as
defined by Blum et al. [4]) and also the Price of Anarchy for
mixed Nash equilibria.

Intuitively, players using this learning algorithm are able
to steer clear of undesirable mixed Nash equilibria because
of symmetry-breaking properties resulting from the inher-
ent randomness in the algorithm. In a load-balancing game,
for instance, when one player randomly chooses a machine
it causes others to reduce their probability of choosing that
machine in the future, and this asymmetry is self-reinforcing.
We justify this intuition by showing that the symmetry-
breaking is implied by spectral properties of a matrix that
is defined at each mixed equilibrium of the game, and that
these spectral properties in turn imply weak stability in the
sense defined earlier.

We show that a discrete version of the process with a small
amount of added noise at each step follows the solution of
the differential equation closely enough to converge to the
set of ν-stable equilibria, a generalization of weakly stable
equilibria in which the Jacobian is allowed to have eigenval-
ues whose real part is at most ν, an arbitrarily small positive
real number.

Our techniques.
Our technique is based on analyzing a differential equation

expressing a continuum limit of the multiplicative-weights
update process, as the multiplicative factor approaches 1
and time is renormalized accordingly. For the case of the
Hedge algorithm this differential equation turns out to be
identical to the asymmetric replicator dynamic studied in
evolutionary game theory. More generally, the differential
equation is the extension of the replicator dynamic called
aggregate monotonic selection (AMS) dynamics introduced
by Samuelson and Zhang [33].

As a first step in analyzing the dynamical system, we show
that every flow line of the differential equation converges to
the set of fixed points. As in prior work on replicator dy-
namics in potential games (e.g. [1]) we do this by proving
that the potential function [26] associated with the conges-
tion game is a Lyapunov function for any AMS dynamics;
that is, it is non-increasing along flow lines of the differential
equation and is strictly decreasing except at fixed points.

The set of fixed points of the differential equation includes
all the mixed Nash equilibria (not just the weakly stable or
pure ones) as well as some mixed strategy profiles that are
not Nash equilibria at all. To see which fixed points arise as
limit points of the flow starting from a generic initial con-
dition, we need to distinguish between stable and unstable
fixed points. For a fixed point p that is not a Nash equilib-
rium, it is not hard to argue that p is unstable. For Nash
equilibria, we prove that the dynamical-systems notion of
stability — a fixed point where the Jacobian matrix has no
complex eigenvalues in the open right half-plane — implies
our game-theoretic notion of weakly stable equilibria. To do
this, we prove that when the Jacobian matrix is restricted to
the subspace of strategies played with positive probability,
this submatrix J is nilpotent, i.e. its only eigenvalue is 0. It
is easy to see that Tr(J) = 0. The difficult part here lies in
showing that we also have Tr(J2) ≥ 0, which uses Steele’s
[37] non-symmetric version of the Efron-Stein inequality (see
Theorem 3.6). The fact that Tr(J) = 0 and Tr(J2) ≥ 0, to-
gether with the absence of complex eigenvalues in the right



half-plane, implies that all eigenvalues are 0. This in turn
entails a linear relation on “two-player marginal cost terms”
that implies our game-theoretic notion of weak stability.

Clearly all pure equilibria are weakly stable. To show the
opposite is true with probability 1 when congestion costs are
selected at random independently on each edge, we in fact
prove a stronger statement — the existence of a non-pure
weakly stable equilibrium implies the vanishing of a non-zero
polynomial function of the edge costs — using techniques
from algebraic geometry. To illustrate the idea, consider the
special case of load balancing games with monotonic cost
functions, where weakly stable Nash equilibria are “almost
pure” in the sense that each machine has at most one ran-
domizing player using it. (For example, in a load-balancing
game with one player and 2 identical machines, any mixed
strategy of the one player is stable.) When congestion costs
are selected at random, such almost-pure mixed Nash equi-
libria cannot exist: the probability that two machines have
the same cost is 0. To extend this reasoning to general con-
gestion games we need to use more sophisticated techniques,
as weakly stable Nash equilibria need not be almost-pure.
However, a weakly stable mixed Nash equilibrium must sat-
isfy many polynomial constraints (Nash constraints, insensi-
tivity to one player’s change). Using an algebraic-geometric
version of Sard’s Theorem, we show that congestion costs
that have stable mixed Nash equilibria satisfy a nontrivial
polynomial equation. In the case of load-balancing games
this is a linear relation (two machines having equal cost),
but in general it will be a higher-degree polynomial.

Related work.
No-regret learning algorithms have long been studied in

the context of adaptive game playing. There are a number of
simple and natural families of no-regret learning algorithms
such as the regret matching of Hart and Mas-Colell [18]
and the multiplicative weights or Hedge algorithm, intro-
duced by Freund and Schapire [13], which generalizes the
well-known weighted majority algorithm of Littlestone and
Warmuth [22]. In general games these algorithms converge
into the set of coarse correlated equilibria, but not neces-
sarily into the set of Nash equilibria as we prove here for
congestion games and the Hedge algorithm. Our decision to
analyze the Hedge algorithm in this work was motivated by
the algorithm’s ubiquitousness in learning theory and other
areas of theoretical computer science [2]; the issue of whether
similar results can be obtained for other algorithms such as
regret matching [18] is an interesting open question.

There are a number of other learning-like processes, such
as fictitious play [27], calibrated forecasting [11, 9], regret
testing [12, 15], and others (see [19]) whose play is known to
converge to Nash equilibria in some games. Some of these
results use simple stochastic processes that are tantamount
to stochastic search for a pure Nash equilibrium (e.g. [19])
but are not regret-minimizing, while others use complicated
adaptive procedures satisfying calibration properties that
are closely related to the no-regret property (e.g. [9]). Unlike
these works, our goal is not to discover uncoupled adaptive
procedures for finding a Nash equilibrium but to analyze
the behavior of a particular simple, realistic, and well-known
adaptive procedure.

The dynamics of repeated play in congestion games has
been studied in non-learning-theoretic models such as sink
equilibria and selfish rerouting [6, 16, 25]. For nonatomic

congestion games (i.e., games with infinitesimal players) Fis-
cher, Räcke and Vöcking [8, 7] and Blum, Even-Dar, and
Ligett [3] considered learning dynamics in the setting of mul-
ticommodity flow (or more generally congestion games) and
showed that the dynamics converges to a Wardrop equilib-
rium. Fischer, Räcke and Vöcking [8, 7] consider a replication-
exploration protocol, while Blum, Even-Dar, and Ligett [3]
show that in this setting, if each player uses any no-regret
strategy the behavior will approach the Wardrop equilib-
rium. The setting of atomic congestion games studied here
is much more intricate because the game typically has many
Nash equilibria forming a disconnected set with many com-
ponents, and we need to distinguish between the stable and
unstable ones.

Blum, Hajiaghayi, Ligett, and Roth [4] defined the price
of total anarchy and showed that in a number of games, the
known bounds on the price of anarchy extend also to the
price of total anarchy: the worst case bound on the quality
of coarse correlated equilibria to the optimum outcome is
already achieved over pure Nash equilibria. Roughgarden
[32] extends this to a wider class of games. Our results
complement these by showing that if one assumes players
use a specific, standard no-regret algorithm (namely, Hedge,
or AMS) rather than arbitrarily bad no-regret algorithms,
one obtains much stronger guarantees about the distribution
of play in atomic congestion games: it converges to a weakly
stable Nash equilibrium.

The replicator dynamic and other differential equations
are studied in evolutionary game theory [23, 35], which also
considers associated notions of stability such as evolution-
arily stable states (ESS) and neutrally stable states (NSS).
The book of Fudenberg and Levine [14] provides an excellent
survey on these topics.For each of the three main steps in
our analysis, we identify here the most closely related work
in evolutionary game theory. In congestion games, the

replicator dynamic converges to its fixed point set.

Proofs of this theorem and generalizations, using the game’s
potential function as a Lyapunov function, have appeared
in many prior works, e.g. [1, 20, 27, 34]. Our short proof
conveniently provides a quantitative bound on the rate of
decrease of the potential. A weakly stable fixed point

of the replicator dynamic is a weakly stable equilib-

rium. Our notion of weakly stable equilibrium is similar
to, but weaker than, the notion of neutrally stable states.
It is known that neutrally stable states of a game are Lya-
punov stable points of the replicator dynamic (hence weakly
stable), but our line of attack requires the converse, which
is not true in general [39]. Here, we are able to deduce
this converse by introducing a weaker game-theoretic no-
tion of stability. In almost every game, the weakly

stable equilibria coincide with the pure Nash equi-

libria. The most closely-related result in evolutionary game
theory is Ritzberger and Weibull’s theorem [29] that every
asymptotically stable fixed point set of the replicator dynam-
ics is not contained in the relative interior of any face of the
mixed strategy polytope, and hence contains a pure equi-
librium. Their result applies to general games and not just
congestion games. It is weaker than ours in two key respects:
it assumes a stronger stability property (that need not hold
at the weakly stable fixed points considered in our analysis)
and derives a weaker conclusion (the asymptotically stable
set contains a pure Nash equilibrium but may also contain
other equilibria).



2. MODEL AND PRELIMINARIES

Congestion games.
We assume the reader is familiar with the notions of a

strategic-form game, pure and mixed strategies, and pure
and mixed Nash equilibria.

Congestion games [30] are non-cooperative games in which
the utility of each player depends only on the player’s strat-
egy and the number of other players that either choose the
same strategy, or some strategy that “overlaps”with it. For-
mally, a congestion game is defined by a tuple of the form
(N ; E; (Si)i∈N ; (ce)e∈E) where N is the set of players, E is
a set of facilities (also known as edges or bins), and each
player i has a set Si of subsets of E (Si ⊆ 2E). Each pure
strategy Si ∈ Si is a set of edges (a path), and ce is a cost
(negative utility) function associated with facility e. Given a
pure strategy profile S = (S1, S2, . . . , SN ), the cost of player
i is given by ci(S) =

P

e∈Si
ce(ke(S)), where ke(S) is the

number of players using e in S. Congestion games admit

a potential function Φ(S) =
P

e∈E

Pke(S)
j=1 ce(j), and pure

Nash equilibria are local minima of Φ(S) [30].

Multiplicative update (Hedge) and the AMS dynamic.
An online learning algorithm is an algorithm for choosing

a sequence of elements of some fixed set of actions, in re-
sponse to an observed sequence of cost functions mapping
actions to real numbers. The tth action chosen by the algo-
rithm may depend on the first t− 1 observations but not on
any later observations. The regret of an online learning algo-
rithm is defined as the maximum over all input instances of
the expected difference in payoff between the algorithm’s ac-
tions and the best action. If this difference is guaranteed to
grow sublinearly with time, we say it is a no-regret learning
algorithm or that it is Hannan consistent [17].

The family of regret minimizing algorithms that we study
in this paper are called aggregate monotonic selection (AMS)
dynamics [29, 33], and they generalize the weighted majority
algorithm introduced by Littlestone and Warmuth [22] and
the Hedge algorithm of Freund and Schapire [13]. These
algorithms maintain a vector of n probabilities for the n
available actions, and at each round they sample an action
according to this distribution. (Initially, the probabilities
are all equal.) After each round, AMS dynamics updates
the weights multiplicatively, favoring actions that exhibit
low cost. The update is governed by a global parameter
ε > 0, and a state-dependent parameter β = β(i, p) which
is determined by the player, i, and by the profile of mixed
strategies, p, representing the current state of every player’s
learning algorithm. We can interpret the parameter εβ(i, p)
as the learning rate of player i. If the cost of action a at
time t is ca(t) then the weights are updated by multiplying

with (1 − εβ)ca(t) and then renormalizing:

pt+1
a =

pt
a(1 − εβ)ca(t)

P

j pt
j(1 − εβ)cj(t)

(1)

We will assume throughout that ∀i, p 0 < β(i, p) ≤ 1.
For example, the algorithm Hedge(ε) is obtained by setting
β(i, p) = 1 for all i, p. Hedge(ǫ) is not a no-regret algorithm,
but it is an ε-regret algorithm, and well known tricks (halv-
ing ε as the algorithm proceeds) can be employed so that it
becomes Hannan consistent.

3. THE CONTINUOUS-TIME PROCESS
In this section we define and analyze the continuous-time

version of the Hedge (multiplicative weights) algorithm. We
consider the algorithm’s update rule for probabilities, and
derive the limit as ε → 0, a first-order differential equation
(ODE) known as the replicator dynamic.

Setting up the differential equation.
The continuous-time process we want to analyze in this

section arises as the limit of the update rule (1) as ε → 0.
The cost of a strategy Si for a player i is a random variable
Ci(Si) =

P

e∈Si
ce(1+Ki(e)), where Ki(e) denotes |{j : j 6=

i, e ∈ Sj}|, the number of players other than i that use edge
e. Taking the derivative of the above update with respect
to ε, and substituting ε = 0, we get a differential equation
using the random variables Ci(Si). Taking expectation, and
using the notation ci(e) = E(ce(1 + Ki(e)) for the expected
cost of edge e for player i, we get that the expected cost is
ci(R) = E(Ci(R)) =

P

e∈R ci(e) and the expected update in
the probabilities is the following differential equation, ṗ =
ξ(P ), where:

ξiR = β(i, p)piR

 

X

R̄

piR̄(ci(R̄) − ci(R))

!

. (2)

Fixed points and convergence to fixed points.
By inspecting (2), one can see that the fixed points of

the ODE are the distributions where players mix between
options with equal (but not necessarily minimum) cost.

Theorem 3.1. Probability distributions pi for i ∈ N form
a fixed point of (2) if and only if ∀ i, all strategies R ∈ Si

with piR > 0 have the same expected cost ci(R) for player i.

Before we study fixed points further, we want to establish
that the solutions of the differential equation converge to
fixed points (e.g., do not cycle). To do this we will consider
the standard potential function Φ of the congestion game.
This is analogous to the proof of Monderer and Shapley [27]
who show that in games when players have identical interest
(and also in potential games that are strategically equivalent
to such games for fictitious play and also for the AMS dy-
namic), repeated play with fictitious play converges to the
set of Nash equilibria. Recall that the standard potential
function of a congestion game is defined as

P

e

PKe

k=1 ce(k),
where we use the notation Ke = |{j : e ∈ Sj}| for a pure
strategy profile S = (S1, . . . , Sn). We will denote the ex-
pected value of this function by Ψ, and we will use it as our
potential function.

Theorem 3.2. The time derivative Ψ̇ of the potential func-
tion is 0 at fixed points, and negative at all other points. In

fact, −Ψ̇ ≥ ||ξ||2
1

2β1..i(p)
, where β1..i(p) denotes

Pn

i=1 β(i, p).

Proof. Let Φ−i denote the potential function of the game

without player i, i.e. Φ−i(S−i) =
P

e∈E

Pke(S−i)

j=1 ce(j),
where ke(S−i) denotes the number of players using edge e
in strategy profile S−i. It is well known that the actual po-
tential function Φ satisfies Φ(S) = Φ−i(S−i)+Ci(Si) for all
strategy profiles S. Note that

Ψ = E[Φ−i(S−i)] + E[Ci(Si)] = E[Φ−i(S−i)] +
X

R

piRci(R).



The terms E[Φ−i(S−i)] and ci(R) don’t depend on player i’s
mixed strategy, so ∂Ψ/∂piR = ci(R). Now,

Ψ̇ =
X

i,R

„

∂Ψ

∂piR

«

ṗiR

=
X

i

β(i, p)
X

R,R̄

piRpiR̄

“

ci(R)ci(R̄) − ci(R)2
”

= −
X

i

β(i, p)
X

R<R̄

piRpiR̄

“

ci(R) − ci(R̄)
”2

.

The second line is produced by substituting ∂Ψ
∂piR

and ṗiR

and rearranging the resulting terms. In deriving the last line,
we have assumed that the strategy set of player i is totally
ordered, and we have paired the terms on the preceding line
corresponding to R, R̄ and R̄, R. Finally, to bound −Ψ̇ from
below in terms of ‖ξ‖1 (which is needed for the discrete-time
analysis) we use the Cauchy Schwartz inequality:

(−2β1..i(p))Ψ̇ = β1..i(p)
X

i,R,R̄

β(i, p)piRpiR̄(ci(R) − ci(R̄))2

=

2

4

X

i,R,R̄

β(i, p)piRpiR̄

3

5

2

4

X

i,R,R̄

β(i, p)piRpiR̄(ci(R) − ci(R̄))2

3

5

≥

2

4

X

i,R,R̄

β(i, p)piRpiR̄

˛

˛

˛
ci(R) − ci(R̄)

˛

˛

˛

3

5

2

≥ ‖ξ‖2
1

Unstable fixed points and the Jacobian.
We will use the notion of stability from dynamical sys-

tems. In the neighborhood of a fixed point p0 the ODE can
be approximated by ṗ ≈ J(p − p0), where J is the matrix
of partial derivatives, the Jacobian. A fixed point of a dy-
namical system is said to be unstable ([28]) if the Jacobian
matrix has an eigenvalue with positive real part.

For an ODE represented by a vector field ξ(x) the entry Jij

of the Jacobian is the partial derivative of the i-th coordinate
ξi(x) in the direction of xj . Our ODE has coordinates piR

corresponding to a player i and a strategy R, and our vector
field ξ is defined in (2). Observe in (2) that ξiR is the product
of β(i, p) with a term that vanishes at a fixed point. When
we take the partial derivative in any direction, using the
product rule we find that the derivative of β(i, p) vanishes, as
it is multiplied by 0 at a fixed point. Now let us examine the
entries of the Jacobian matrix case by case. For directions
corresponding to the same player we get

∂ξiR

∂piR

= β(i, p)
X

R̄

piR̄(ci(R̄) − ci(R))

∂ξiR

∂piR̄

= β(i, p)piR(ci(R̄) − ci(R))

where the sum in the partial derivative should be for R̄ 6= R,
but can equally well be understood to be for all R̄. The
second expression is for R̄ 6= R.

Finally, taking a derivative in the direction pjQ for j 6= i
involves understanding how the cost ci(R) depends on the
probability pjQ. We get that mcij

e := E(ce(2 + Kij(e))) −
E(ce(1 + Kij(e))) is the coefficient of pjQ in the cost ci(e).

Using the notation mcij(A) =
P

e∈A mcij
e we get that:

∂ξiR

∂pjQ

= β(i, p)piR

X

R̄

piR̄(mcij(R̄ ∩ Q) − mcij(R ∩ Q))

Note that the marginal cost depends on the probability
distributions of players other than i and j, but does not
depend i and j. In particular, we have that mcij

e = mcji
e for

every edge e.

Theorem 3.3. The Jacobian matrix is expressed by the
equations above.

Lemma 3.4. A fixed point p that is stable corresponds to
a Nash equilibrium.

Proof. Consider a fixed point p of the ODE that is not a
Nash equilibrium. If a fixed point is not a Nash equilibrium,
than there is a player i and a strategy R with piR = 0 that
has β(i, p)

P

R̄ piR̄(ci(R̄) − ci(R)) = λ > 0. The unit vector

wiR with a 1 in the (i, R) coordinate is a left eigenvector of
J with wiRJ = λwiR, hence J has a positive eigenvalue.

At a fixed point p that is a Nash equilibrium, let J be
the submatrix of the Jacobian restricted to the subset of
strategies played with positive probability (piR > 0).

Lemma 3.5. For any right eigenvector w of the matrix J

that satisfies Jw = λw, the vector w◦ extending w with 0
values to the remaining coordinates is an eigenvector of the
full Jacobian, J, with eigenvalue λ.

First note that the trace of J is 0, which follows directly
from the definition of fixed point, and definition of J, as all
diagonal entries are 0. To help establish that the submatrix
J (as well as J) has an eigenvalue with positive real part we
will prove that the trace of J

2 is nonnegative.

Theorem 3.6. Consider a fixed point of the ODE, and
let J be the submatrix of the Jacobian defined above. Then
Tr(J2) ≥ 0, and in fact it is equal to

X

i,j

β(i, p)β(j, p)
X

R<R̄,Q<Q̄

piRpiR̄pjQpjQ̄(MR,R̄,Q,Q̄
i,j )2,

where MR,R̄,Q,Q̄
i,j is defined to be mcij(R ∩ Q) − mcij(R ∩

Q̄) − mcij(R̄ ∩ Q) + mcij(R̄ ∩ Q̄).

To prove this simply check that each term of the form
mcij(R∩Q)mcij(R̄∩ Q̄) occurs in the two expressions with
the same multiplier. We are ready to show that if a fixed
point is stable, then J must have 0 as its only eigenvalue.

Theorem 3.7. For a stable fixed point p, all eigenval-
ues of the submatrix J of the Jacobian corresponding to the
coordinates with piR > 0 are zero. Also, for all players
i, j and all strategies R, R̄, Q, Q̄ played with positive prob-
ability by the players i and j respectively, we must have
mcij(R∩Q)−mcij(R∩Q̄)−mcij(R̄∩Q)+mcij(R̄∩Q̄) = 0.

Proof. For any fixed point the sum of the eigenvalues,
Tr(J), is zero, hence if J has no eigenvalues with positive
real part then all eigenvalues must be pure imaginary. But
in this case Tr(J2) is nonpositive, as it is the sum of squares
of pure imaginary numbers. We know that Tr(J2) ≥ 0 and
hence it must equal zero. Hence all eigenvalues of J must
equal zero, as claimed.



Using the condition derived in above for stable fixed points
of the ODE, we can connect the notion of stable for the
dynamical system to our game theoretic notion of weakly
stable, in the sense defined in the introduction, that each
player i remains indifferent between the strategies in the
support of σi whenever any other single player j modifies
its mixed strategy to any pure strategy in the support of σj .

Theorem 3.8. If a Nash equilibrium is stable for the dy-
namical system then it is a weakly stable Nash equilibrium.

Proof. We have proved that if a Nash equilibrium is sta-
ble for the dynamical system, then for all players i, j and all
strategies R, R̄, Q, Q̄ played with positive probability by the
players i and j, respectively, mcij(R ∩ Q) − mcij(R̄ ∩ Q) =
mcij(R ∩ Q̄) −mcij(R̄ ∩ Q̄). Using j’s mixed strategy σj to
take a weighted average over all Q̄, we get the claim that if i
is indifferent between its strategies R, R′ when j randomizes,
he remains indifferent when j plays only strategy Q.

We have seen the solution of the ODE converges, and that
fixed points of the dynamic system that are not weakly sta-
ble Nash equilibria are unstable for the dynamic system.
Using the theory of differential equations [28], we can con-
clude that starting from a generic initial condition, the ODE
converges to weakly stable Nash equilibria.

Theorem 3.9. From all but a measure 0 set of starting
points, the solution of the ODE (2) converges to weakly sta-
ble Nash equilibria.

4. WEAKLY STABLE EQUILIBRIA
If one fixes the set of players and facilities, and the strat-

egy sets of each player of a congestion game — which we
collectively denote as the game’s “combinatorial structure”
— the game itself is determined by the vector of edge costs
~c, i.e., the vector whose components are the numbers ce(k)
for every edge e and every possible load value k on that
edge. One can thus identify the set of congestion games
having a fixed combinatorial structure with the vector space
R

N where N is equal to the number of pairs (e, k) for which
ce(k) is defined. If one imposes other constraints such as
non-negativity and monotonicity on the edge costs, then the
set of games is identified with a convex subset of R

N rather
than R

N itself.
Our goal in this section is to prove the following theorem.

Theorem 4.1. For almost every congestion game, every
weakly stable equilibrium is a pure Nash equilibrium. In
other words, the set of congestion games having non-pure
weakly stable equilibria is a measure-zero subset of R

N .

In fact, we will prove the following stronger version of
Theorem 4.1.

Theorem 4.2. There is a non-zero multivariate polyno-
mial W , defined on R

N , such that for every game with a
non-pure weakly stable equilibrium, its edge costs satisfy the
equation W (~c) = 0.

This strengthening implies, for example, that among all the
congestion games with a fixed combinatorial structure and
with cost functions taking integer values between 0 and B,
the fraction of such games having a non-pure weakly stable
equilibrium tends to zero as B → ∞.

Define an equilibrium to be fully mixed if it satisfies piR >
0 for every player i and every strategy R in that player’s
strategy set. Every mixed equilibrium ~p of a game is a fully
mixed equilibrium of the subgame obtained by deleting the
strategies that satisfy piR = 0. Since there are only finitely
many such subgames, we can establish Theorems 4.1 and 4.2
by proving the corresponding statements about fully mixed
weakly stable equilibria. Theorem 4.1 then follows because
a finite union of measure-zero sets has measure zero, and
Theorem 4.2 follows because the union of the zero-sets of
polynomials W1, W2, . . . , Wk is the zero-set of their product
W1W2 . . . Wk.

Let X be the set of pairs (~p,~c) such that ~p is a fully mixed
weakly stable equilibrium of the game with edge costs ~c,
let f : X → R

N be the function that projects such a pair
(~p,~c) to its second component, ~c, and let Y ⊆ R

N be the
set f(X), i.e. the set of games having a fully mixed weakly
stable equilibrium. To prove that Y has measure zero and is
contained in the zero-set of a nontrivial polynomial, we will
first prove a “local, linearized version” of the same state-
ment. Lemma 4.3 below asserts, roughly4, that for every
point x ∈ X, with tangent space TxX, the projection of
TxX to R

N has dimension strictly less than N . (And thus,
the image of TxX in R

N has measure zero and is contained
in the zero-set of a nontrivial linear function.) Theorems 4.1
and 4.2 are then obtained using general theorems that allow
global conclusions to be deduced from these local criteria.
To obtain Theorem 4.1 we work in the category of differen-
tiable manifolds and apply Sard’s Theorem [24]: the set of
critical values of a differentiable function has measure zero.
To obtain Theorem 4.2 we work in the category of algebraic
varieties and apply an“algebraic geometry version”of Sard’s
Theorem ([36], Lemma II.6.2.2): if f : X → Y is a regular
map of varieties defined over a field of characteristic 0, and f
is surjective, then there exists a nonempty open set V ⊆ X
such that the differential dxf is surjective for all x ∈ V .5 As
an aid to the reader unfamiliar with algebraic geometry we
summarize some standard definitions in Section 6.

Linearized version of Theorems 4.1 and 4.2.
Each of the expressions ci(R), mcij(R ∩ Q) used in Sec-

tion 3 actually refers to a polynomial — in fact, a multilin-
ear polynomial — in the variables p∗∗ and c∗(∗), because the
probability of any given pure strategy profile being sampled
is a multilinear polynomial in the p∗∗ variables, and the cost
of any edge, in any given pure strategy profile, is one of the

variables c∗(∗). Let the polynomial equation AR,R′

i = 0 ex-
press the fact that player i is indifferent between strategies R
and R′, i.e. ci(R)−ci(R′) = 0. By definition of a weakly sta-
ble equilibrium we must have mcij(R∩Q)−mcij(R′∩Q) =
P

Q̄ pjQ̄(mcij(R∩Q̄)−mcij(R′∩Q̄)) for any Q, hence we get

MR,R′,Q,Q′

i,j = mcij(R∩Q)−mcij(R′ ∩Q)−mcij(R∩Q′)+

4The actual statement is more complicated because X may
have singularities, so the tangent space TxX may be ill-
defined. To deal with this, what we actually show is that
X can be partitioned into finitely many nonsingular subsets
X1, X2, . . . , Xk — possibly of different dimensions — such
that for every x ∈ Xi (1 ≤ i ≤ k), the projection of TxXi to
R

N has dimension strictly less than N .
5Actually the Lemma as stated in [36] requires the field to
be algebraically closed, and it requires the variety X to be
nonsingular. We describe how to work around these techni-
cal difficulties in the proof of Theorem 4.2.



mcij(R′ ∩ Q′) = 0 for all R, R′, Q, Q′. Finally let Pi = 0
encode

P

R∈Si
piR = 1. In earlier sections of this paper, we

have seen that all of these equations must hold when ~p is
a fully mixed weakly stable equilibrium of the game with
edge costs ~c. In other words, if I denotes the polynomial

ideal generated by {AR,R′

i } ∪ {MR,R′ ,Q,Q′

i,j } ∪ {Pi}, then the
set of fully mixed weakly stable equilibria, X, is contained
in the algebraic variety V (I) defined by the vanishing of all
the polynomials in I .

Lemma 4.3. The ideal I contains a polynomial F ∈ R[~p,~c]
that satisfies:

1. ∂F/∂piR ∈ I for all variables piR.

2. ∂F/∂ce(k) 6∈ I for at least one variable ce(k). In fact,
there exists an edge e such that the sum of the partial
derivatives in directions ce(k), for k = 1, . . . , n, is in
1 + I.

Proof. Fix any player i, and fix any two strategies R, R′

for that player. For all players j 6= i fix a strategy Q0
j ∈ Sj .

Consider the polynomial

F = AR,R′

i +
X

j 6=i

h

mcij(R′ ∩ Q0
j ) − mcij(R ∩ Q0

j)
i

Pj .

We can show that it satisfies ∂F/∂pjQ = M
R,R′,Q,Q0

j

i,j if j 6= i

and Q 6= Q0
j , and otherwise ∂F/∂pjQ = 0. This confirms

property (1). Property (2) follows from the formula

∀e ∈ R \ R′
n
X

k=1

∂F

∂ce(k)
=
Y

j 6=i

(Pj + 1)+

+
X

j 6=i

"

n
X

k=1

„

∂mcij(R ∩ Q0
j)

∂ce(k)
− ∂mcij(R′ ∩ Q0

j)

∂ce(k)

«

#

Pj

The detailed derivations will be included in the full version
of the paper.

Measure-theoretic and algebraic conclusions.
In order to apply Sard’s Theorem, we need to work with

a smooth manifold, whereas the set X of fully mixed weakly
stable equilibria may have singularities. However, we know
that X is contained in the affine algebraic variety V (I), so we
may use the fact that X decomposes into a union of finitely
many nonsingular varieties. (A precise statement and proof
of this decomposition theorem are contained in Lemma 6.1.)

Proof of Theorem 4.1. By Lemma 6.1, the set X of
fully mixed weakly stable equilibria can be covered by finitely
many smooth manifolds X1, . . . , Xm, so it suffices to prove
that each of them projects to a measure-zero subset of R

N .
If F is the polynomial defined in Lemma 4.3, then for every
x ∈ Xj (1 ≤ j ≤ m) and every tangent vector v ∈ TxXj ,
we have ∇F (x) · v = 0, by Lemma 6.1. Recalling that X
is a subset of the vector space R

M+N , where M is the com-
bined number of strategies in all players’ strategy sets, and
N is the combined number of pairs (e, k) such that the edge
cost ce(k) is well-defined, then we may write v = (vp, vc),
where vp denotes the first M components of v (correspond-
ing to the “probability coordinates”) and vc denotes the last
N components of v (corresponding to the “edge cost coor-
dinates”). Recalling that every polynomial in I vanishes at

x, properties (1)-(2) of Lemma 4.3 imply that the first M
coordinates of ∇F (x) vanish whereas the last N coordinates
do not. Thus, the equation ∇F (x) · v = 0 imposes a non-
trivial linear constraint on the vector vc. This implies that
the tangent space TxXj projects to a proper linear subspace
of R

N . Since x was arbitrary, we have proven that the dif-
ferential of the projection map Xj → R

N has rank less than
N at every point of Xj . By Sard’s Theorem, the image of
Xj in R

N has measure zero.

In fact, the technique used to prove Theorem 4.1 actually
allows us to establish a stronger theorem, in which we con-
sider congestion games whose edge cost functions are drawn
from a specified class of cost functions. Let us define a
smooth, monotonically parameterized class of cost functions
to be a collection of functions cγ : {1, 2, . . . , n} → R param-
eterized by a vector of real numbers γ = (γ0, γ1, . . . , γd) ∈ U
for some open subset U ⊆ R

d+1, satisfying the following
two properties: (1) for all k ∈ {1, 2, . . . , n}, the function
γ 7→ cγ(k) is a smooth function, which we will denote by
hk(γ); (2) for all k ∈ {1, 2, . . . , n} and all γ ∈ U , the par-
tial derivative ∂cγ(k)/∂γ0 is strictly positive. For exam-
ple, edge costs that are specified by degree-d polynomials
ce(k) = γ0 +γ1k+ . . .+γdkd constitute a smooth, monoton-
ically parameterized class of cost functions. The following
generalization of Theorem 4.1 can be proven using essen-
tially the same technique.

Theorem 4.4. Suppose that for each edge e of a conges-
tion game we are given a smooth, monotonically parameter-
ized class of cost functions with parameter γe ∈ Ue. The set
of congestion games having non-pure weakly stable equilibria
is a measure-zero subset of

Q

e Ue.

Turning now from measure-theoretic statements to alge-
braic ones, we present the proof of Theorem 4.2.

Proof of Theorem 4.2. We work over the field C of
complex numbers in order to apply theorems about varieties
over an algebraically closed field; in the last sentence of the
proof we will translate the result back to the field R. Let I be
the ideal defined in Section 4, and let XC = V (I), the zero-
set of I over C. By Lemma 6.1, XC can be covered by finitely
many nonsingular varieties X1, . . . , Xm. We will prove that
each of them projects to a proper closed subset of the affine
space C

N . If F is the polynomial defined in Lemma 4.3,
then as in the proof of Theorem 4.1, the equation ∇F (x) ·
v = 0 implies6 that rank(dxf) < N, where f denotes the
projection map Xj → C

N . However, if the set f(Xj) were
dense in C

N then by ([36], Lemma II.6.2.2) we would have
rank(dxf) = N for all x in a nonempty open subset of Xj .
It follows that f(Xj) is contained in a proper closed subset
of C

N for all j, hence f(XC) = ∪jf(Xj) is also contained in
a proper closed subset of C

N . This means there is a nonzero
polynomial P ∈ C[c1, c2, . . . , cN ] that vanishes on f(XC). If
P̄ denotes the complex conjugate of P , then W = P P̄ is a
polynomial in R[c1, c2, . . . , cN ] that vanishes on f(X).

5. THE DISCRETE-TIME PROCESS
In this section we give an approximate version of our main

result using the discrete-time learning process with a small

6See Lemma 6.2 in section 6 for a rigorous derivation of
this step using the standard algebraic-geometry definitions
of tangent spaces and differentials.



amount of added noise. The added noise is a useful artifact
for proving general convergence guarantees in the discrete
time setting.

Let p′(t) denote the mixed strategy profile at time t before
we introduce the noise and let p(t) express the resulting dis-
tribution. The original strategy distribution p′(t) is scaled
down by a factor of 1−ε2 and then shifted by mixing it with
the uniform distribution. The updated vector has the form
(1 − ε2)p′(t) + ε2~1. Next, a player is chosen at random (i.e.
player i) who in turns chooses uniformly and independently
two of her strategies R and R̄. If both piR, piR̄ are greater
than ε then the player proceeds to move ε/2 from the first
strategy to the second. If that is not the case, then she pro-
ceeds to move merely ε2/2 . This update is always possible
because of our first mixing step.

Approximately Stable Equilibria.
We need to extend the definitions of stable and unstable

fixed points to approximate stability. For the dynamical
systems definition, we define a ν-stable fixed point, for any
real number ν ≥ 0, to be a fixed point at which the Jacobian
has no eigenvalues whose real part is greater than ν.

For simplicity, we assume in this section that β(i, p) = 1
for all players i and all probability distributions p. This
section outlines a proof of the following result.

Theorem 5.1. The discrete-time learning process with a
small amount of added noise satisfies the following guaran-
tee for all congestion games with and non-decreasing cost
functions.

For all ν > 0 there exists an ǫ > 0, and for all
ǫ < ǫ0 there exists T0, so that when all players are
using Hedge(ǫ) to optimize their strategies, then
for all times T > T0 with probability at least 1−ν,
the mixed strategy profile is a ν-stable equilibrium
point in all but νT of the first T steps of the
history of play.

To use this theorem in the context of games, we need to
relate our game-theoretic notion of weak stability to this no-
tion of ν-stable fixed points. We say that a Nash equilibrium
p is ν̄-weakly stable, if the following holds for each pair of
players i and j. Suppose we randomly sample a strategy of
j with probability distribution pj , and assume that j plays
this sampled strategy Q and all other players k 6= i, j play
with the given probability distribution pk. Now sampling
two strategies R and R̄ of i with probability distribution pi,
the expected difference of payoffs of player i between strate-
gies R and R̄ is at most ν̄. Note that 0-weakly stable is ex-
actly our definition of weakly stable. We will show that the
learning process spends almost all the time near a ν-stable
equilibrium point. To conclude the same for ν̄-weakly sta-
ble Nash equilibrium, we need to show that ν-stable implies
ν̄-weakly stable.

Theorem 5.2. For every ν̄ > 0 there is a ν > 0 so that
if a Nash equilibrium p is ν-stable for the dynamical system,
then it is a ν̄-weakly stable Nash equilibrium.

Proof. Assume p is ν-stable, that is, for all eigenvalues λ
of the Jacobian J we have ℜ(λ) ≤ ν. If there are N players
and a total of M strategies, this implies Tr(J2) ≤ ν2M . We
know from Theorem 3.6 that this trace is equal to

X

i,j

X

R<R̄,Q<Q̄

piRpiR̄pjQpjQ̄(MR,R̄,Q,Q̄
i,j )2 (3)

where MR,R̄,Q,Q̄
i,j = mcij(R ∩ Q) − mcij(R ∩ Q̄) − mcij(R̄ ∩

Q)+mcij(R̄∩ Q̄), and recall that we are assuming here that
β(i, p) = 1 for all i and p for simplicity.

Now consider the change in the cost of strategy R for
player i when player j selects a strategy Q. This change is
mcij(R ∩ Q) −PQ̄ pjQ̄mcij(R ∩ Q̄). The difference in cost

between strategies R and R̄ is then
X

Q̄

pjQ̄(mcij(R ∩ Q) − mcij(R ∩ Q̄)−

− mcij(R̄ ∩ Q) + mcij(R̄ ∩ Q̄)) =
X

Q̄

pjQ̄MR,R̄,Q,Q̄
i,j .

Taking the expectation defining the ν̄-weakly stable Nash
equilibrium, the sum that we need to bound is

X

R,R̄,Q,Q̄

piRpiR̄pjQpjQ̄MR,R̄,Q,Q̄
i,j . (4)

Restricting the sum of squares in (3) to only the (i, j) pair
and using the Cauchy-Schwarz inequality we can bound the
sum in (4) by 2ν

√
M , which establishes the theorem with

ν̄ = 2ν
√

M .

Overview of the Discrete-Time Analysis.
In deriving Theorem 5.1 from the foregoing continuous-

time analysis, we must address several sources of error: the
noise introduced by the players’ random sampling, the evolu-
tion of mixed strategies in discrete jumps rather than along
continuous flow lines, and the approximation error resulting
from treating ε as infinitesimally small when estimating the
coefficients of the vector field ξ. Resolving these issues re-
quires careful manipulations of Taylor series, the details of
which can be found in the full version of the paper, but it is
also possible to distinguish a few main ideas which constitute
a road map for this stage of the proof.

Amortizing unstable steps.

Our analysis of the stochastic process p(t) distinguishes three
types of time steps: potential-diminishing steps in which
the expected decrease in Ψ is at least Ω(ε2), stable steps in
which p(t) is near a ν-stable equilibrium point, and unsta-
ble steps in which p(t) is near an equilibrium point which
is not ν-stable. To deal with unstable steps, we show that
a sufficiently long time window starting at an unstable step
t will contain (with high probability) many more potential-
diminishing steps than unstable steps. Amortizing the change
in Ψ over the entire time window, we can show that the ex-
pected potential decrease is Ω(ε2). Thus, the entire time his-
tory t = 1, 2, . . . can be broken up into good stages consisting
of a single stable step, and bad stages of bounded length such
that the expected potential decrease during a bad stage is
Ω(ε2). Since Ψ can only decrease by a bounded amount over
the entire history of play, we may easily conclude that with
high probability, the good stages vastly outnumber the bad
stages in any sufficiently long time history.

Balancing error terms by completing the square.

The most involved step in the preceding outline is the proof



that every sufficiently long time window which begins with
an unstable step is likely to contain many more potential-
diminishing steps than unstable steps. The difficulty is that
the rate at which an unstable fixed point p0 repels points
at distance ρ from p0 (along an unstable direction) is O(ρ2).
This second-order effect is offset by a second-order correction
term arising from our approximation of the multiplicative-
update rule by the vector field ξ. To compare these two
effects we use an analogue of “completing the square”: in-
stead of basing a Taylor expansion at the fixed point p0

we choose a nearby basepoint p1, resulting in a Taylor ex-
pansion whose leading-order term has an unambiguous sign
reflecting the system’s tendency to move away from p1 in
the repelling direction.

6. ALGEBRAIC GEOMETRY REVIEW
In this section, we prove some standard facts from alge-

braic geometry that are needed in Section 4.

Lemma 6.1. If I ⊆ R[x1, x2, . . . , xn] then the variety Z =
V (I) is the union of finitely many subsets Z1, Z2, . . . , Zm,
each of which is a nonsingular quasi-affine algebraic vari-
ety7, and therefore also a smooth manifold. For any polyno-
mial P ∈ I and any point z ∈ Zj (1 ≤ j ≤ m), the gradient
vector ∇P at z is orthogonal to the entire tangent space TzZj

of the manifold Zj .

Proof. To prove the existence of the decomposition into
nonsingular subsets, we induct on the dimension of Z. Ev-
ery algebraic variety is the union of finitely many irreducible
varieties ([36], Theorem I.3.1.1), so it suffices to prove the
statement when Z is irreducible. A zero-dimensional irre-
ducible variety is a point, so the base case is trivial. Assum-
ing now that the theorem holds for all varieties of dimen-
sion less than d, let Z be an arbitrary irreducible variety of
dimension d. The nonsingular points of Z form an open,
hence quasi-affine, subset Z1 ([36], Section II.1.4) and the
singular points of Z form a closed proper subvariety ([36],
Section II.1.4), whose dimension is strictly smaller than d
because Z is irreducible ([36], Theorem I.6.1.1). By the in-
duction hypothesis, the set of singular points of Z is the
union of finitely many nonsingular quasi-affine algebraic va-
rieties Z2, . . . , Zm. This completes the induction.

A nonsingular quasi-affine algebraic variety over R is a
smooth manifold ([36], Section II.2.3). For any z ∈ Zj (1 ≤
j ≤ m) and any tangent vector v ∈ TzZj , let γ : [−1, 1] →
Zj be any smooth parameterized curve in Zj such that
γ(0) = z, γ′(0) = v. Letting h(t) = P (γ(t)), we have

h′(0) = ∇P (γ(0)) · γ′(0) = ∇P (z) · v.

But h(t) = 0 for all t because P vanishes on Zj . Thus
h′(0) = 0, which establishes that ∇P (z)·v = 0 as claimed.

We now present some definitions about tangent spaces and
differentials, leading up to Lemma 6.2 below, which rigor-
ously establishes a key step in the proof of Theorem 4.2.

If k is a field and I ⊂ k[x1, . . . , xn] is an ideal, then the
affine algebraic variety X = V (I) is the set of points x ∈ kn

such that P (x) = 0 for all P ∈ I . (In algebraic geometry
it is customary to denote kn by A

n
k and to call if affine

n-space over k.) The coordinate ring k[X] is the quotient

7A quasi-affine algebraic variety is any variety isomorphic
to an open subset of an affine algebraic variety

ring k[x1, . . . , xn]/I. Note that every P ∈ k[X] determines a
well-defined function on X, because if P ≡ Q (mod I) then
P (x) = Q(x) for all x ∈ X. Functions from X to k defined
in this way are called regular functions on X.

An m-tuple of n-variate polynomials f1, . . . , fm collec-
tively determine a regular map f : A

n
k → A

m
k that sends ev-

ery point (x1, . . . , xn) to the point (f1(~x), . . . , fm(~x)). Note
that a regular map uniquely determines a homomorphism
from k[y1, . . . , ym] to k[x1, . . . , xn] by mapping the poly-
nomial yi to fi for each i. If X = V (I), Y = V (J) are
two affine algebraic varieties in A

n
k , Am

k , respectively, a reg-
ular map from X to Y is a mapping from the points of X
to the points of Y obtained by restricting a regular map
f : A

n
k → A

m
k to X. A regular map from X to Y uniquely

determines a homomorphism from k[Y ] to k[X].
If p ∈ X = V (I) ⊆ A

n
k , then the degree-1 polynomials

x1−p1, . . . , xn−pn generate a maximal ideal of k[X] denoted
by mp. Every function in k[X] that vanishes at p belongs to
mp. If m

2
p denotes the ideal generated by all products of pairs

of elements of mp (i.e., all regular functions on X that vanish
to second order at p) then the quotient mp/m

2
p is a k-vector-

space called the cotangent space of X at p. The dual vector
space TpX = (mp/m

2
p)

∗ is the tangent space of X at p.
If f : X → Y is a regular map and f(p) = q, then the

induced homomorphism h : k[Y ] → k[X] sends mq to a
subset of mp, hence it induces a well-defined linear trans-
formation from mq/m

2
q to mp/m

2
p. The dual of this linear

transformation is denoted by dpf : TpX → TqY.
It’s useful to consider how these ideas play out in the case

of the projection map that sends A
r+s
k to A

s
k by mapping

an (r + s)-tuple to its last s coordinates. Denoting the co-
ordinate rings of A

r+s
k and A

s
k by k[x1, . . . , xr, y1, . . . , ys] =

k[~x, ~y] and k[y1, . . . , ys] = k[~y], respectively, then the projec-
tion map induces the homorphism k[~y] → k[~x, ~y] that simply
includes k[~y] as a subring of k[~x, ~y]. If X = V (I) ⊆ A

r+s
k is

an affine algebraic variety, then the regular map f defined by
the function composition X →֒ A

r+s
k → A

s
k induces the ring

homomorphism k[~y] → k[~x, ~y]/I that maps a polynomial in
the variables y1, . . . , ys to its equivalence class modulo I .

If a = (b, c) is a point of A
r+s
k then a polynomial P ∈

k[~x, ~y] belongs to ma if and only if it vanishes at a, and P
belongs to m

2
a if and only if its Taylor expansion at a has

vanishing degree-0 and degree-1 terms, i.e. P (a) = 0 and
∇P (a) = 0. If X = V (I) ⊆ A

r+s
k and a = (b, c) is a point

of X, then we can also consider ma and m
2
a as ideals in

k[X]. (The notation doesn’t distinguish between these two
meanings.) In the case of ma the distinction is insignificant:
an element of ma in k[X] is an equivalence class (modulo I)
of polynomials that vanish at a. But with m

2
a we need to be

more careful: a polynomial P represents an element of m
2
a

in k[X] if and only if it is equivalent (modulo I) to another
polynomial Q that satisfies Q(a) = 0 and ∇Q(a) = 0.

So, for example, suppose that the gradient ∇F (a) of a
polynomial F ∈ I at a point a = (b, c) ∈ X is a vector of the
form (0, 0, . . . , 0, w1, . . . , ws) whose first r components are 0
and whose last s components constitute a nonzero vector w.
Let P denote the degree-1 polynomial

Ps

j=1 wj(yj − cj) ∈
k[y1, . . . , ys]. Then P ∈ m

2
a because P is congruent, modulo

I , to the polynomial Q = P − F , and Q satisfies Q(a) = 0
and ∇Q(a) = ∇P (a)−∇F (a) = (0, ~w)−(0, ~w) = 0. Thus, P
is a nonzero element of mc/m

2
c that maps to zero in ma/m

2
a;

i.e. the induced map of cotangent spaces mc/m
2
c → ma/m

2
a is

not one-to-one. Dualizing this statement, we conclude that



the differential daf is not surjective, i.e. its rank is strictly
less than s. Thus we have established the following lemma.

Lemma 6.2. Suppose X = V (I) ⊆ A
r+s
k is an affine al-

gebraic variety and f : X → A
s
k is the composition of

the inclusion and projection maps X →֒ A
r+s
k → A

s
k. If

F ∈ k[x1, . . . , xr, y1, . . . , ys] is a polynomial in I whose gra-
dient ∇F (a) at a is a vector of the form (0, ~w) for some
nonzero w ∈ ks, then the differential daf : TaX → TcA

s
k is

a linear transformation of rank strictly less than s.
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[38] B. Vöcking. Selfish Load Balancing. In Algorithmc

Game Theory (eds. N. Nisan, T. Roughgarden, É.
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